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Abstract 22 

Full genome sequencing of organisms with large and complex genomes is intractable and 23 
cost ineffective under most research budgets. Cycads (Cycadales) represent one of the 24 
oldest lineages of the extant seed plants and, partly due to their age, have incredibly large 25 
genomes up to ~60Gbp. Restriction site associated DNA sequencing (RADseq) offers an 26 
approach to find genome-wide informative markers and has proven to be effective with both 27 
model and non-model organisms. We tested the application of RADseq using ezRAD across 28 
all ten genera of the Cycadales including an example dataset of Cycas calcicola 29 
representing 72 samples from natural populations. Using previously available plastid and 30 
mitochondrial genomes as references, reads were mapped recovering plastid and 31 
mitochondrial genome regions and nuclear markers for all of the genera. De novo assembly 32 
generated up to 138,407 high-depth clusters and up to 1,705 phylogenetically informative 33 
loci for the genera, and 4,421 loci for the example assembly of C. calcicola. The number of 34 
loci recovered by de novo assembly were lower than previous RADseq studies, yet still 35 
sufficient for downstream analysis. However, the number of markers could be increased by 36 
relaxing our assembly parameters, especially for the C. calcicola dataset. Our results 37 
demonstrate the successful application of RADseq across the Cycadales to generate a large 38 
number of markers for all genomic compartments, despite the large number of plastids 39 
present in a typical plant cell. Our modified protocol was adapted to be applied to cycads 40 
and other organisms with large genomes to yield many informative genome-wide markers.  41 

 42 

 43 

  44 



 

 

Introduction 45 

The size of an organism’s genome greatly affects the cost of sequencing its genome, which 46 
in turn affects the number of organisms for which genomic data is available (Andrews et al., 47 
2016). Large genomes are caused by numerous factors such as tandem repeats, 48 
pseudogenes, paralogs, polyploidy or a combination of these factors (Guan et al., 2016). 49 
Plant genome sizes are highly plastic (Pellicer et al., 2018), ranging from 13.2 Megabase 50 
pairs (Mbp) in the genome of Ostreococcus lucimarinus, to over 149 Gigabase pairs (Gbp) in 51 
the octoploid Paris japonica (Pellicer, Fay and Leitch, 2010). As a result of whole genome 52 
duplication, gymnosperm genomes are generally larger than those found in many 53 
angiosperms, ranging from ~8 Gbp in Microstrobus to ~72 Gbp in Pinus and Ceratozamia 54 
(Zonneveld, 2012; Zonneveld and Lindstrom, 2016; Scott et al., 2016; Roodt et al., 2017). 55 
Typically, as a result of polyploidy, the on-average large genome size is caused by an 56 
inefficiency of gymnosperms at eliminating repeat amplifications in the genome (Pellicer et 57 
al., 2018).  58 

Next generation sequencing (NGS) permits sequencing large stretches of a genome to 59 
produce DNA sequence data in the Gbp range at relatively low cost. Full genome 60 
sequencing may be the best approach for finding informative markers that assist 61 
investigating the evolutionary history of a species (Andrews et al., 2016). However, large 62 
and complex genomes present problems of cost for existing NGS approaches (Alexeyenko 63 
et al., 2014). Further issues include generating enough repeat reads to account for over-64 
representation of highly repeated elements in the genome (Catchen et al., 2017). 65 
Additionally, de novo assembly of larger genomes becomes problematic because of 66 
repeated elements, making effective repeatability of an assembly difficult (Meyers, Scalabrin 67 
and Morgante, 2004). 68 

Restriction-site associated DNA sequencing (RADseq), uses restriction enzymes to reduce 69 
the proportion of the genome sequenced by cutting DNA into smaller fragments, and a 70 
subset of these fragments (typically between 200-600 bp) is then selected for sequencing 71 
(Davey and Blaxter, 2010). Thus, RADseq allows the sequencing of a reduced 72 
representation of the genome yet still at a deep level of sequence coverage, especially near 73 
specific restriction sites, therefore only a portion of the genome is sequenced (Andrews et al. 74 
2016). Compared to many NGS methods such as shotgun and whole genome sequencing, 75 
RADseq is considered quick and economical under most research budgets (Peterson et al., 76 
2012; Toonen et al., 2013).  77 

RADseq has offered new avenues for phylogenetics and population genomics (Table 1) 78 
because it does not require the use of a reference genome (Andrews and Luikart, 2014), 79 
and has proven to be very effective for population genotyping by identifying thousands of 80 
polymorphisms (Mastretta-Yanes, et al., 2015). These polymorphisms include both neutral 81 
and non-neutral markers, that potentially reflect a large portion of a taxon’s genome which 82 
are involved in natural selection and mutation (Narum et al., 2013). RADseq has been 83 
applied in population genetics across a range of model plants, such as Oryza and Carex, as 84 
well as non-model plants including Senecio, Betula, Sisymbrium, Mimulus, Passiflora, 85 
Psychotria and Mangifera (Roda et al., 2013, Vandepitte et al., 2013, Wang et al., 2013, Guo 86 
et al., 2014, Twyford and Friedman, 2015 and Massatti, Reznicek and Knowles, 2016, 87 
Nazareno et al., 2018, Warschefsky and von Wettberg, 2019). It has also been used, to a 88 
lesser extent, in plant phylogenetics for Pedicularis, Diospyros, Quercus, Viburnum, and 89 
Diuris (Eaton and Ree, 2013, Eaton et al., 2015, Paun et al., 2015, Eaton et al., 2016 and 90 
Ahrens et al., 2017).  91 

Currently published fully-sequenced plastome and mitochondrial genomes for the cycads 92 
are few, yet this number already appears to provide sufficient evidence to invest in 93 
alternative sequencing methods of genomic DNA, such as that of RADseq. Of the ten 94 
genera of cycads, eight - Ceratozamia, Cycas, Dioon, Encephalartos, Macrozamia, 95 
Lepidozamia, Stangeria, and Zamia - have documented plastomes (Wu et al., 2007 and Wu 96 



 

 

and Chaw, 2015). Yet a comparison of high GC-biased substitutions, gene conversion, and 97 
low sequence variability between both theirs and other published gymnosperm plastomes 98 
(e.g. Pinus thunbergii, Abies koreana and Araucaria spp.) indicates that the plastid is not an 99 
optimal source of variable markers that are useful for population genetics or phylogenetic 100 
studies (Tsudzuki et al., 1992, Wu et al., 2007, Jansen et al., 2011, Ruhsam et al., 2015, Yi 101 
et al., 2015, Yang et al., 2016 and Zhou et al., 2016). As of yet, the only full mitochondrial 102 
genome that has been sequenced is that of Cycas (Wu et al. 2007). Compared to published 103 
mitochondrial genomes of the closest allies of Cycads (Ginkgo biloba and Welwitschia 104 
mirabilis), only a few number unique and polymorphic sites were found (Guo et al., 2016), 105 
which supports that this genomic compartment is equally uninformative as the plastome. 106 

In order to test the effectiveness of RADseq for taxa with large genomes, we used a 107 
RADseq technique across a cohort of samples representing ten known cycad genera 108 
(Cycadales). We chose cycads because they have particularly large genomes, ranging from 109 
~25-30 Gbp in Cycas L. to ~72 Gbp in Ceratozamia (Zonneveld, 2012), which appears to be 110 
the result of many tandem repeats, pseudogenes, paralogs, and possibly whole genome 111 
duplication (Roodt et al., 2017). In addition to having on-average larger genomes, we also 112 
chose cycads because there is need for better methods to find more data-rich sequences for 113 
the purposes of systematic and population genomic studies. Therefore, forming part of our 114 
larger conservation genomics study targeting cycads, we developed a RADseq protocol that 115 
is based on a modification of the ezRAD protocol (Toonen et al., 2013). ezRAD differs from 116 
other RADseq approaches as it uses a commercially available library preparation kit and 117 
does not require specific restriction enzymes to ligate adapters to cut sites (Andrews et al., 118 
2016). Another advantage of ezRAD when compared to other RADseq protocols is that it 119 
requires lower initial setup preparation and costs (Andrews et al., 2014). 120 

The aim of the larger project is to understand the evolution and genetic diversity of wild 121 
Cycas populations. As a proof of concept, we tested our RADseq approach across all cycad 122 
genera. This study aimed to: (1) demonstrate that RADseq can be successfully applied to 123 
organisms with large, repetitive genomes, such as cycads, (2) generate a sufficient number 124 
of loci using de novo assembly for phylogenetic and population genetic analyses, and (3) 125 
develop an effective method that can be used for genome skimming. Ultimately, our goal 126 
was to demonstrate the effectiveness of RADseq across large and complex genomes to 127 
allow others to follow this protocol. 128 

 129 

Materials and methods 130 

Sampling strategy. Freshly collected silica-dried leaf material was sampled for all of the ten 131 
genera representing 13 species in the Cycadales, from both families—Cycadaceae and 132 
Zamiaceae (Table 2). Cycadaceae leaf samples were taken from Cycas taitungensis at the 133 
living collection of the Royal Botanic Garden and Domain Trust, NSW Australia (RBGS), and 134 
samples of C. armstrongii, C. maconochiei, and C. calcicola were collected from wild plants 135 
in the Northern Territory, Australia. For Zamiaceae, Bowenia spectablis, Ceratozamia 136 
kuesteriana, Dioon mejiae, Encephalartos lebomboensis, Lepidozamia peroffskyana, 137 
Macrozamia johnsonii, Microcycas calocoma, Stangeria eriopus, and Zamia integrifolia 138 
samples were collected from the living collection of the RBGS (Table 2).  139 

Additionally, to test the utility of RADseq at population level, samples were collected from 60 140 
individuals of Cycas calcicola from natural populations in the Northern Territory, Australia 141 
(Appendix I). The samples included three populations from the Litchfield National Park and 142 
three populations in the Katherine region—each population consisted of ten individuals of 143 
varying ages. In addition, a further 13 samples were sourced from cultivated ex-situ 144 
collections of George Brown Darwin Botanic Garden (Darwin, Northern Territory, Australia) 145 
and Montgomery Botanical Centre (Miami, Florida, USA). 146 

DNA extraction and quantification. Approximately 0.05 g of silica-dried leaf samples were 147 



 

 

ground to a fine powder using a TissueLyser (Qiagen Inc., Venlo, the Netherlands). When 148 
present in large amounts, trichomes were removed to improve extraction quality (specifically 149 
in Cycas calcicola). High molecular weight genomic DNA was extracted using a DNeasy 150 
Plant DNA Extraction Mini Kit (3.0 BR DNA assay; Qiagen, Hilden, Germany). Genomic 151 
DNA was inspected using a 2% agarose gel to check for the presence of DNA and 152 
impurities. A Qubit fluorometer (3.0 BR DNA assay; Invitrogen, Life Technologies, Carlsbad, 153 
CA, USA) was then used to determine the quantity (µg/mL) of the extracted DNA for each 154 
sample. The target concentration for samples was (≥) 17 µg/mL; samples that yielded less 155 
then this amount was either re-extracted or concentrated using a 1:1 ratio of Agencourt 156 
AMPure XP magnetic purification beads to sample volume (Beckman Coulter, Inc) by 157 
combining multiple extractions (For more detailed laboratory methods, please see 158 
supplementary data Appendix II). 159 

DNA normalization and double digest reaction. First, genomic DNA was normalized to a 160 
concentration of 500 ng in 42 µL total volume (0.01 µg/mL) using a QIAgility liquid handling 161 
robot (Qiagen Inc., Venlo, the Netherlands). Second, using the QIAgility, 5 µL of NEB 10x 162 
CutSmart buffer and 1 µL of Bovine Serum Albumin (BSA; to help stabilize the enzyme 163 
digestion) was added to each well and mixed briefly for five seconds using a plate mixer 164 
(although these steps were performed using a liquid handling robot, they can be performed 165 
manually). This mix was stored at 4°C for a minimum of 5 hours—our tests showed that this 166 
helps to reduce the effect of DNA methylation, improving the cutting action of the restriction 167 
enzymes. Next, double digest reactions were set up using 1 µL of each EcoR1-HF and Mse1 168 
restriction enzymes, mixed by pipetting manually. Reactions were run in a thermocycler for 3 169 
hrs at 37°C with a final 20 min deactivation step at 65°C. Using 2% agarose gel, samples 170 
were checked for a smear to indicate the quality of digestion. Lastly, double digest reactions 171 
were cleaned using 1.8:1.0 ratio of AMPure XP beads to sample (90 µL of AMPure XP 172 
beads to 50 µL of digested DNA) and quantified using a Qubit high sensitivity kit (3.0 HS 173 
DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, USA). 174 

Library preparation. RADseq libraries were prepared following the ezRAD protocol 175 
(Toonen et al., 2013) in which we tested two different Illumina (Illumina Inc., CA, USA) 176 
library preparation kits: firstly, an Illumina TruSeq PCR-Free high throughput dual index kit 177 
and secondly, an Illumina TruSeq nano high throughput dual index kit (PCR-based, FC-121-178 
4003). Our initial aim was to use the PCR-Free kit to help reduce the probability of PCR 179 
amplification bias. However, after multiple attempts the PCR-Free kit resulted in poor final 180 
yields when quantified using qPCR, and after multiple troubleshooting steps, it was deemed 181 
unfit for our target group (cycads). However, the Illumina TruSeq nano kit proved to be 182 
effective when the input of genomic DNA was increased by 5x the recommended input, i.e., 183 
from 100ng to 500ng, due to the amount of DNA which is lost during clean-up and size 184 
selection. We followed the ezRAD protocol v3 using half of the recommended volumes of an 185 
Illumina TruSeq kit to save costs (Toonen et al., 2013).  186 

Several quality control checks were carried out during library preparation on a select number 187 
of samples (16-24 samples) using a high performance LabChip and a Qubit fluorometer; 188 
more specifically, DNA size and quantity (µg/mL) were checked after digestion and after size 189 
selection. During the final step of library preparation, we modified the ezRAD protocol in the 190 
final bead clean, using a 0.8:1 ratio of AMPure XP beads to sample for the removal of 191 
excess adapters observed using a LabChip. Final Illumina libraries were validated using a 192 
LabChip, cleaned using a 0.9:1 ratio of AMPure XP beads to sample, and quantified using a 193 
Qubit high sensitivity kit (3.0 HS DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, 194 
USA). Final libraries were normalized to 10 nM and pooled for sequencing. For more 195 
detailed laboratory methods, please see supplementary data (Appendix 1). 196 

Sequencing. We aimed to capture around 1 gigabyte (Gb) of sequence data per sample (in 197 
a run of 95 libraries) to account for overrepresentation of the plastid genome, and to capture 198 
as much of the nuclear genome as possible. Genomic sequencing was carried out using an 199 
Illumina NextSeq 500 with 150 bp paired-end high throughput (HT) on a single flow cell. The 200 



 

 

NextSeq 500 HT run can capture up to 120Gb of sequencing data, thereby allowing for our 201 
sequencing target of one Gb per sample. The sequencing run was also spiked with 20% 202 
PhiX sequencing control V3 (Illumina) to account for low sequence diversity caused by the 203 
identical enzymatic digestion cut sites in the ezRAD protocol. 204 

Bioinformatics 205 

Quality control and filtering of sequence reads. The NextSeq 500 generated four fastq 206 
files for forward and reverse reads (eight files per sample). The four forward fastq files were 207 
concatenated into a single forward fastq file and similarly a single reverse file was created, 208 
as required for the downstream RADseq assembly. The concatenated forward and reverse 209 
fastq files were screened for quality using PRINSEQ v0.20.4 (Schmieder and Edwards, 210 
2011). PRINSEQ allowed the detection of falloff in read quality for a range of samples from 211 
each population. The reads were trimmed using Trimmomatic 0.36 (Bolger, Lohse and 212 
Usadel, 2014) using the following settings: 1) the Illumina clip function was used to remove 213 
adapters, 2) the first six bases were cropped from the start of all paired-end reads, 3) all 214 
reads were cropped to 120 bp in length due to lower quality ends (observed using 215 
PRINSEQ), and a sliding window was also used to delete bases with a PhredQ score less 216 
than 20 with a sliding window of four, and 4) all reads less than 50 bp were discarded, and 217 
only paired reads were retained to improve merging of reads during clustering. 218 

Assembly of RADseq data for cycad genera. De novo assembly of the paired-end reads 219 
was performed using ipyrad 0.5.13 (Eaton and Overcast, in prep) on a high-performance 220 
cluster based at the Royal Botanic Garden Edinburgh using seven nodes, each with 12 221 
cores and 128 GB of RAM, totalling 84 cores and 896 GB of RAM, running for 21 days. In 222 
ipyrad all parameters were set to default, except for the following: data type was set to 223 
‘pairgbs’ (most closely matches ezRAD), bases with a PhredQ score less than 30 were 224 
converted to 'N’ and reads with 15 or more uncalled bases were discarded. Reads were 225 
further filtered for adapter sequences, trimmed, and reads were discarded if they were less 226 
than 40 bp in length. The maximum number of uncalled bases in consensus sequences was 227 
set to ten for forward and reserve reads. The maximum heterozygotes in consensus 228 
sequences was set at eight for both forward and reverse sequences, and the minimum 229 
number of samples per locus for output files was set to 4.  230 

Data assembly followed the general ipyrad workflow. Reads were more stringently filtered 231 
for presence of adapters (after initial trimming and filtering earlier in Trimmomatic). Next, 232 
clusters were identified within samples and consensus base calls were made. Finally, loci 233 
were aligned across all of the samples (four species of Cycas, and one species each of the 234 
nine other cycad genera) and output files were generated, after applying filters as specified 235 
in our parameter settings. These settings also included the minimum samples per locus- for 236 
example, a generated site is discarded unless it meets the requirement that it is present in a 237 
minimum number of samples.  238 

Assembly from population data of Cycas calcicola. To further demonstrate the utility of 239 
our protocol, we carried out de novo assembly for 72 individuals of C. calcicola (one sample 240 
failed during sequencing). The minimum number of samples per locus was set to 43 (as 241 
opposed to 4 for the genus level assembly, above), so that each site would be present 242 
across a minimum of ~ 60% of samples, to reduce missing data.  243 

Mapping of reads to published references. Large cycad genomes (25 - 60 Gbp), present 244 
potential problems with overrepresentation of repetitive regions, and for this reason it is 245 
important to test the genomic sources and distribution of RADseq reads. To test for 246 
overrepresentation reads were mapped against the published reference plastomes and the 247 
single mitochondrial genome (Wu et al., 2007 and Wu and Chaw, 2015) (Tables 3 and 4). 248 
The reference plastid and mitochondrial genomes were downloaded from NCBI GenBank 249 
and the filtered paired end reads were mapped to these references using CLC Genomics 250 
Workbench 11.0 (CLC Genomics, 2019; Qiagen Inc., Venlo, the Netherlands) using default 251 
parameters: for read alignment mismatch costs = 2, intersection and deletion cost = 3, 252 



 

 

length fraction= 0.5, similarity fraction = 0.8 and auto detection of paired distances was 253 
allowed. 254 

Phylogenetic analysis of Cycas calcicola populations. 255 

The resulting RADseq sequence data provides the first opportunity to investigate the 256 
infraspecific relationships between natural populations of C. calcicola. Furthermore, this 257 
approach can be used to help demonstrate the effectiveness of RADseq in differentiating 258 
natural populations. Phylogenetic reconstruction of C. calcicola populations was completed 259 
using SVDquartet plug-in for PAUP* version 4.0a158 (Swofford, 2002) because of its robust 260 
approach in analysing short gene sequences from RADseq data (Liu and Yu 2010, Mirarab 261 
et al 2015). Phylogenetic trees were estimated from the concatenated gene sequence 262 
alignments using SVDquartets analysis. Settings included exhaustive quartet sampling, 263 
100,000 bootstrap replicates, and the multispecies coalescent tree model. We examined 264 
results of all analyses using at least three independent runs for multi-species coalescent 265 
analysis by allocating samples to their respective populations. The three separate 266 
populations are at Litchfield National Park (including Tolmer Falls sites), Daly River, 267 
Katherine CDU, and Spirit Hills. 268 

 269 

Results 270 

Number and quality of reads. Sequencing on the Illumina NextSeq 500 platform generated 271 
approximately 1.9 to 6.7 million 150 bp paired-end reads per sample (Tables 3, 4 and 5). 272 
The number of reads generated varied—with the fewest for Stangeria eriopus, and the 273 
greatest for Macrozamia johnsonii. For Cycas (target genus), the number of reads generated 274 
showed less variation (1.9 to 2.5 million) and was lowest in C. taitungensis and greatest in 275 
C. maconochiei.  The PhredQ Score distribution of the sequencing run measured 75.2% at 276 
Q30 or greater, which passed the Illumina sequencing filter. Quality control of reads 277 
(measured as PhredQ score in FastQC 0.11.5) indicated that forward reads were of a higher 278 
quality with a drop-off after 135 bp, whereas reverse reads were lower quality due to drop-off 279 
after 120 bp. Due to this quality drop off, forward and reserve reads were filtered and 280 
trimmed to 120 bp. Data accessibility: the data that supported the finding of this study is 281 
archived to allow reproducibility of the assembly and filtered sequence reads is accessible 282 
from NCBI Sequence Read Achieve, BioSample accession number: PRJNA526348 (Table 283 
2). 284 

Mapping of reads to published references. RADseq reads were mapped against 285 
published reference mitochondrial and chloroplast (plastid) genomes. Plastomes ranged in 286 
size from 161,815 to 166,431 bp (Table 3). The number of reads mapped to the plastomes 287 
varied from 16,292 reads (0.80% of total reads) for Encephalartos lebomboensis to 288 
Encephalartos lehmannii and 221,486 reads (5.82% total number of reads) for Macrozamia 289 
johnsonii to M. mountperriensis (Table 6). The average read depth (Table 3) also varied 290 
between the samples and ranged from 10.74 in E. lebomboensis to 131.32 in Cycas 291 
armstrongii and demonstrates that no clusters were over represented. Although the 292 
percentage of RADseq reads mapped varied, in all species 89% or greater of the reference 293 
was covered and was lowest in Ceratozamia kuesteriana (89%) and greatest in Stangeria 294 
eriopus and C. armstrongii (97%). 295 

Reads for Cycas spp. were mapped to the mitochondrial genome of C. taitungensis which 296 
was 414,903 bp (Table 4). The number of reads mapped ranged from 14,672 (0.61% total 297 
number of reads) in C. calcicola to 26,616 (8.9% total number of reads) in C. taitungensis. 298 
The number of reads covering the reference mitochondrial genome only varied somewhat 299 
between species and was lowest in C. calcicola and C. taitungensis (62%) and highest in C. 300 
armstrongii (68%). 301 

De novo assembly of RADseq data. Initial filtering and trimming of the raw Illumina reads 302 
were carried out using TRIMMOMATIC. Approximately 65-75% of paired reads were 303 



 

 

retained (singletons were removed), each with a minimum PhredQ score of 20 (Table 5). 304 
The sample which yielded the lowest number of reads after filtering was C. taitungensis. 305 
During filtering approximately 1 million reads were discarded for each sample and 3 million 306 
reads were removed for M. johnsonii, however, M. johnsonii remained the taxon with the 307 
greatest number of reads overall (Table 5). The number of clusters obtained from de novo 308 
assembly ranged from 1.0 to 3.3 million per sample. The number of high-depth clusters 309 
(containing six or more reads) ranged from 32,000 in S. eriopus to 38,000 in M. johnsonii 310 
(Table 5). This lower number of high-depth clusters vs initial clusters indicates that there 311 
were a high number of clusters with less than six reads, which were discarded due to a 312 
higher likelihood of a base being miscalled. The number of recovered loci varied greatly 313 
among genera (Table 5), ranging from 1,641 in C. calcicola to 1,705 in C. taitungensis within 314 
Cycas. A lower number of loci were recovered for Zamiaceae when compared to 315 
Cycadaceae with 125 loci being obtained for Microcycas calocoma and 362 for M. johnsonii 316 
(Table 5).  317 

Example assembly of Cycas calcicola. The assembly of 72 samples from natural 318 
populations of C. calcicola (Table 6), generated 1.7 to 4.7 million reads during sequencing, 319 
and most reads passed the ipyrad filter (after trimming). The total number of clusters 320 
generated during clustering ranged from 1.3 to 3 million, and the number of high-depth 321 
clusters range from 22 to 78 thousand. Overall the assembly generated over three million 322 
informative SNPs across the 72 samples, and after final filtering, 4,421 loci were recovered 323 
for a minimum of 43 samples per locus (each locus was present for ~60% of samples).   324 

Phylogenetic analysis of Cycas calcicola. 325 

The unrooted tree (Figure 1) recovered seven well-supported populations/groups. Spirit 326 
Hills, Daly River, Litchfield National Park (NP) and Litchfield Tolmer populations received 327 
100% bootstrap support (BS). Katherine Charles Darwin University site (Katherine CDU) 328 
was provided with 99.3% BS and Katherine population and cultivated samples from 329 
Katherine TT (Katherine TT CUL) each were provided 90.6% BS. Populations from 330 
Katherine and Litchfield national park (NP) were recovered as two separate clades (99.5% 331 
and 100%, respectively). Total weight of incompatible quartets was 16.5780 (47.409%), and 332 
total weight of compatible quartets was 18.3897 (52.591%). 333 

 334 

Discussion 335 

Here we have presented an optimised RADseq protocol used to gain insights into the 336 
genetic diversity of cycads. Our results demonstrate that RADseq can successfully be 337 
applied across all ten genera of the Cycadales, with sufficient data generated to use this 338 
approach for conservation genomics, phylogenetics, and other potential applications.  339 

Assembly of RADseq data. Data was mapped against the reference plastomes and a 340 
mitochondrial genome, and showed that less than 8.01% of the total number of reads were 341 
mapped. This indicates that neither the plastome or mitochondrial genome were 342 
overrepresented in our data, which is further confirmed by the average and maximum read 343 
depth (Tables 3 & 4). Additionally, large portions of the reference genomes covered up to 344 
97% of the plastome and 69% of the reference mitochondrial genome. These results are 345 
expected with RADseq data as reads will rarely cover the entire reference because of the 346 
use of restriction enzymes (Liu and Hansen, 2017). These results indicate that our RADseq 347 
protocol is also effective at recovering large portions of the plastome and mitochondrial 348 
genome, without reducing the effectiveness and reliability of RADseq for population genetics 349 
or phylogenetic inference (Fitz-Gibbon et al., 2017). 350 

De-novo assembly in ipyrad recovered between 125 (Macrozamia) to 1,705 (Cycas) 351 
informative loci, which is the result of several factors: the number of high-depth clusters 352 
generated, the number of genetically similar samples included in the assembly and the 353 
degree of genetic similarity between species and genera (Table 5). A greater number of 354 



 

 

Cycas species were included in the assembly, which are closer genetically (Nagalingum et 355 
al., 2011), and is the reason why a greater number of loci were retained for Cycas, as with 356 
the Cycas calcicola example dataset (Table 6). Conversely, fewer loci were recovered for 357 
Zamiaceae because of greater genetic distances between genera, and only a single 358 
representative species of each genus was included in the assembly. If more samples were 359 
included from each genus in Zamiaceae, the resulting number of loci could be greater. 360 
Despite the genetic distance among the genera, there was a sufficient number of shared loci 361 
recovered between the Zamiaceae and Cycadaceae genera. These results mirror what was 362 
found in Myricaceae (Liu et al., 2015) and Diapensiaceae (Hou et al., 2015), as they also 363 
found a significant drop in loci recovered in more distantly related taxa, indicating that 364 
genetic differences between families would be considerable, as we found between 365 
Zamiaceae and Cycadaceae.  366 

The example assembly of Cycas calcicola showed a similar result in clustering to that found 367 
in the genera dataset by having far fewer high-depth clusters than clusters overall. The 368 
assembly generated 4,421 markers across 72 samples using a strict minimum number of 369 
samples per locus (to reduce missing data), which required that each locus was present in at 370 
least 43 samples (~60%). If the minimum samples per locus was reduced to the default of 371 
four, this would further increase the number of loci generated, but also the amount of 372 
missing data. This demonstrates that with a good number of samples and a high level of 373 
generic similarity, an assembly can generate a good number of loci even with very large 374 
genomes. This also appears to have provided sufficient data for coalescent-based analysis 375 
since our results were provided with high support (>90% BS) for closely related populations 376 
of C. calcicola.  377 

Sequencing depth and large genomes. Sequencing resulted in 2.7 to 9.8 million paired-378 
end-reads per sample. Although reads needed to be filtered and trimmed, the sequencing 379 
quality was generally high. We aimed to obtain 1 GB per sample to account for the large 380 
genome size (25-63 Gbp; Zonneveld, 2012) and overrepresentation of the plastome (Wu 381 
and Chaw, 2015). The amount of data (uncompressed) ranged from 1.2 GB for Stangeria 382 
eriopus to 3.9 GB in Macrozamia johnsonii, hence meeting our goal.  383 

One of the main considerations in assembling RADseq data is the clustering of reads for 384 
calling consensus sequences and SNPs, as this requires numerous repeat reads to be 385 
aligned (Eaton, 2014). In the third step of assembly in ipyrad, if two or more reads aligned, 386 
they form a cluster. Subsequently, these clusters are further assessed, and six or more 387 
reads (depending on minimum depth clustering depth set) are required for a cluster and its 388 
constituent SNPs to be considered reliable—these are termed high-depth clusters (Eaton, 389 
2014). However, in larger genomes, it is less likely that there will be a sufficient number of 390 
repeat reads in the sequence data to generate enough high-depth clusters (except for 391 
repetitive regions) (Karam et al., 2015). In our study, we found between 1 to 3.3 million 392 
clusters in the first clustering step, and 32,000 to 138,000 clusters after selecting only high-393 
depth clusters, indicating that there were many clusters with fewer than six reads. This 394 
number of high-depth clusters, while relatively small compared to the initial number, is 395 
nonetheless sufficient for downstream phylogenetic and population genetic purposes, 396 
especially given that previous work has used significantly fewer markers (Cibrián-Jaramillo 397 
et al., 2010, Nagalingum et al., 2011, Meerow et al., 2012, Salas-Leiva et al., 2014, Griffith 398 
et al., 2015).  399 

Thus far, RADseq has been utilized in phylogenetics and population genetics for a few plant 400 
groups with varying genome sizes (Table 1). The taxa with the smallest genomes (all <1 401 
Gbp) were Carex spp., Sisymbrium austriacum, Mimulus spp, whereas those with the largest 402 
genomes include Diospyros species (2.40-5.76 Gbp), Senecio lautus (4.90 Gbp) and 403 
Pedicularis species (5.68 Gbp). In our study, RADseq was applied to genomes that are 25 to 404 
63 Gbp - i.e. approximately 4 to 11 times larger than all previous studies. Therefore, we 405 
have demonstrated that RADseq can successfully be applied to groups of plants with larger 406 
genomes and holds a promise for future applications of RADseq to other plant groups, 407 



 

 

especially non-flowering plants with large genomes such as ferns and gymnosperms. 408 

Conclusions. We have demonstrated that RADseq can be applied to organisms with large 409 
genomes, such as cycads. This protocol uses high throughput sequencing to recover 410 
informative genome-wide markers. RADseq also offers the ability to multiplex and sequence 411 
many individuals simultaneously, at relatively low cost. These markers have the potential to 412 
be used for population level and for phylogenetic studies, ultimately helping to resolve the 413 
relationships among cycads, obtain a better insight into the genetic diversity among the 414 
Cycadales species, and to assist in developing informed conservation management plans 415 
for cycads and other groups in the future.  416 
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