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Abstract

Fluvial environments are dynamic systems whose evolution and management1

are strongly affected by the resilience of riparian vegetation to uprooting by2

flow. Similarly to other natural phenomena, the interactions between flow,3

sediment and vegetation uprooting is governed by both the magnitude and4

duration of hydrological events. In this work, we analytically derive the link5

between probabilities of plant uprooting by flow and the return time of corre-6

sponding hydrologic erosion events. This physically-based analysis allows to7

define the key parameters involved in the plant uprooting dynamics, and to8

link the uprooting probability of riparian vegetation to plant biomechanical9

characteristics, hydrological regime and sediment parameters. For example,10

we show how the rooting depth changes the return time of critical hydrologic11

event uprooting plants with different probabilities. The model also shows12
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the difference between magnitude driven and duration driven flow uprooting13

events. The proposed approach is eventually validated against data from field14

measurements and numerical simulations of pioneer woody species for two15

flood events with different return period. Our approach demonstrates the16

strong interrelations between the hydrological river regime and vegetation17

properties and suggests that such interactions may be key for species recruit-18

ment and consequent ecosystem shifts when hydrological regime is altered by19

either human or climate changing scenarios.20

Keywords: Peak Over Threshold, Poisson process, flow erosion, plant

uprooting, type II uprooting

1. Introduction21

Fluvial environments are dynamic systems whose evolution is governed22

by the interactions between vegetation dynamics, sediment processes and23

flow regime. Riparian plants alter turbulence structures, flow velocity and24

sediment transport (Nepf, 2012b). At the same time, the alternation of low25

and high flow discharges drives the recruitment, growth and decay of ripar-26

ian vegetation (Edmaier et al., 2011). Particularly during high stage events,27

vegetation is subjected to drag force and plant removal occurs when root28

anchoring force is reduced through bed erosion to equal the drag (named29

2



uprooting Type II after (Edmaier et al., 2011)). Vegetation uprooting un-30

der flow and scour constraints (Type II) was investigated by Edmaier et al.31

(2015) in laboratory experiments with Avena sativa and by Bywater-Reyes32

et al. (2015) in field measurements. Calvani et al. (2019a) used flume ex-33

periments with Avena sativa and Salix purpurea and field measurements to34

test and validate a model able to predict the critical bed erosion depth for35

which uprooting occurs. All these studies agree that the amount of bed36

erosion leading to plant uprooting by flow is smaller than the initial root-37

ing depth, thus supporting the critical rooting depth model (Edmaier et al.,38

2011; Calvani et al., 2019a). Perona and Crouzy (2018) hypothesized that39

for low plant size vs sediment size ratio, the critical rooting depth would40

correspond to a critical erosion depth. The latter is achieved by applying41

an erosion rate, which is the superposition of deterministic mean scouring42

(i.e., scouring happening over a characteristic longitudinal length scale) and43

random fluctuations mainly induced by turbulence and sediment transport44

mechanics.45

Bed elevation changes, which include deposition and erosion, are regu-46

lated by the Exner equation, which states that time changing rate in bed ele-47

vation depends on the spatial variability of sediment fluxes. Specifically, in a48
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river reach, erosion takes place when downstream sediment outflow is larger49

than the sediment inflow coming from upstream. Under a 1D framework, the50

corresponding mathematical formulation is the 1D-Exner equation,51

∂η(x, t)

∂t
= − 1

(1− λs) B
∂Qs

∂x
(1)

where η(x, t) is the bed elevation, x is the coordinate along the streamwise52

direction of the main channel, t is time, λs is the sediment porosity, B is53

the channel width and Qs(x, t) is the sediment discharge. At the time scale54

of a single flood event, the difference in sediment transport fluxes between55

two consecutive sections
(

∆Qs/∆x = 1
∆x

∫ 2

1
dQs

)
is related to the bed shear56

stress acting at the bottom of the channel, which depends on the average57

flow velocity and, in turn, on the flow discharge. Therefore, the amount of58

erosion achieved during a flood event depends both on the magnitude and59

the duration of the event itself.60

Flow discharge drives the uprooting process and, therefore, the hydrolog-61

ical time scale of flood events governs the recruitment of riparian vegetation62

species. Accordingly, riparian and aquatic species would have adapted their63

biomechanical properties in order to withstand the flow regime and increase64

survival chances during stress periods, due to either drought or flood events65

(Karrenberg et al., 2002; Gibling and Davies, 2012; Gurnell, 2014). As a66
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result, the link between vegetation dynamics and hydromorphological time67

scales may represent the key factor to understand the biological evolution68

of riparian species and predict their effects on ecosystem dynamics (Calvani69

et al., 2019b). Such link was seldom investigated in literature, mostly by70

focusing on short time horizon only (Corenblit et al., 2015), although the71

interactions among native and invasive alien species and river morphody-72

namics employ decades to evolve (Habersack, 2000; Solari et al., 2016). To73

this purpose, an analysis on the long term (return period) is therefore sought,74

as well as the definition of an hydrograph associated to such return period.75

This is particularly required when both the magnitude and the duration of76

the flow event play a fundamental role in flow-time related processes, such77

as flood risk modelling and management (e.g., Mignot et al., 2018; Tanaka78

et al., 2017), dam overtopping (e.g., Schmocker and Hager, 2009) and sedi-79

ment transport (e.g., Powell et al., 2001), among others.80

In this work we link the uprooting probability Pτ to the extreme value81

analysis of a flow discharge Compound Poisson Process (CPP) using the82

Peak Over Threshold (POT) methodology. POT is a common mathematical83

approach to evaluate the occurrence probability (i.e., return period) of rare84

extreme events and is widely used in many disciplines, such as meteorol-85
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ogy, geological, hydraulic and structural engineering and earth sciences (e.g.,86

Leadbetter, 1991; Önöz and Bayazit, 2001; Novak, 2011; Castillo, 2012). We87

additionally provide a formulation for the statistically average hydrograph88

of a flow event associated to such threshold and its return period. We then89

apply the proposed formulation to the case study of vegetation removal by90

flow and bed erosion (Type II uprooting). We combine the POT of the CPP91

and the probabilistic model of plant removal to correlate the hydrological92

parameters to the return period of riparian vegetation uprooting probability.93

As last, we perform a sensitivity analysis on the parameters involved and test94

the proposed approach against field measurements data from Bywater-Reyes95

et al. (2015).96

2. Methodology97

2.1. The uprooting model98

Consider figure 1, which represents the uprooting process investigated by99

Perona and Crouzy (2018). Scouring trajectories originate from the initial100

bed level (η = 0), reduce plant anchoring, until the critical erosion depth (i.e.,101

η = −Le) is achieved, then plant is uprooted. The different trajectories evolve102

according to the flow hydrograph Qξ(t) and the stochasticity in the erosion103
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process, gt . Such process results in a probability distribution function, pτ (t),104

of the times leading to uprooting. According to Perona and Crouzy (2018),105

the probability distribution function of time to uprooting, pτ (t), reads:106

pτ (t) =
Le

2
√
π G3(t)

(
gt (t)

2
Exp

[
− (Le − V (t))2

4 G(t)

]
+W (t) Exp

[
Le V (t)

G(t)

]) (2)

where Le is the critical erosion depth for plant uprooting to occur, gt (t)107

describes the strength of uncorrelated Gaussian noise of the erosion process,108

G(t) = 1
2

∫ t
0
gt (τ) dτ , V (t) =

∫ t
0
L̇d(τ) dτ andW (t) =

√
π G(t) Erfc

[
Le+V (t)

2
√
G(t)

]
109 (

L̇d(t)− gt (t)

2
V (t)
G(t)

)
, with τ the dummy time variable of integration. Therein,110

the deterministic part of the root exposing rate due to bed erosion is L̇d =111

η̇d(t) dL/dη̄ where dL/dη̄ accounts for the root shape and architecture within112

the soil. We assume dL/dη̄ = 1 under the simplifying hypothesis of root ver-113

tical development (Edmaier et al., 2015; Calvani et al., 2019a). This requires114

that the average hydrograph of an event must be defined in order to cal-115

culate the associated erosion rate, its total duration T̂ξ (figure 1) and the116

correspondent uprooting probability Pτ (t = T̂ξ).117

The quantity gt has the unit of a diffusivity (i.e., m2 s−1) and models118

the stochasticity of turbulence and sediment transport mechanics. Since no119

7



formulation are available in literature, we argue that a relationship for the120

quantity gt can be sought in the formula of the eddy viscosity (Pope, 2001;121

Michael, 2015), as disturbances in sediment transport are directly related to122

fluid obstacle interactions and flow turbulence at the stem scale (Nepf, 2012a;123

Perona and Crouzy, 2018). Thus, the formula reads:124

gt (t) = ls · u∗ (3)

where ls is the sediment mixing length (i.e., a length scale along the vertical125

direction y) and u∗ is the shear velocity, that plays the role of a velocity scale126

along the longitudinal direction x, similarly to the case of eddy viscosity νt .127

We set the sediment mixing length ls equal to the mobilized sediment layer128

thickness, which is in the order of magnitude of the D90. Accordingly, the129

equation for ls reads130

ls = kg ·D90 (4)

where kg is a multiplying coefficient equal to 2, according to Parker (1990).131

For the sake of dimensional consistency in unit of measurement, a multiplying132

constant equal to 1s d−1 has to be taken into account when considering the133

strength of the Wiener process (see Eq. (2.10) in Perona and Crouzy (2018)).134

Finally, the relationship for the probability of Type II uprooting Pτ (t)135
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reads (Perona and Crouzy, 2018):136

Pτ (t) =

∫ t

0

pτ (τ) dτ (5)

137

2.2. Peak Over Threshold analysis138

We now approximate the flow discharge signal to a Compound Poisson139

Process. The Compound Poisson Process (CPP) is a common mathematical140

representation to describe the dynamics of stochastic systems where instan-141

taneous perturbations cause sudden jumps in the state variable (Cox and142

Miller, 1965; Ridolfi et al., 2011). Forest fire spread (Daly and Porporato,143

2006; Zen et al., 2018), avalanches induced by snowfall (Perona et al., 2007,144

2012), groundwater recharge, soil moisture increase (Rodriguez-Iturbe et al.,145

1999; Botter et al., 2007), river flood events due to heavy rainfall (Todor-146

ovic, 1978; Önöz and Bayazit, 2001; Lague, 2010) and ecomorphodynamics147

(Crouzy and Perona, 2012; Bertagni et al., 2018) are only some of the natural148

processes that can be modelled using the CPP approach. In the following,149

we focus on flow discharges in a straight channel, characterized by constant150

width and bed slope. We assume flow discharge q(t) being driven by a de-151

terministic drift (i.e., exponential decrease Exp[−t/τP ], with decay rate τP )152

9



and instantaneous random positive jumps (with average frequency λP ) rep-153

resenting the flood events (figure 2) (Botter et al., 2007). The average flow154

discharge µP of the CPP is µP = γP · λP · τP , where γP is the mean values155

of the jumps. Accordingly, flow discharge can be modelled by a probabilistic156

distribution function, p(q) (figure 2), of the form (Lague et al., 2005; Botter157

et al., 2007):158

p(q) =
1

q Γ(βP )
Exp

[
− q

γP

] (
q

γP

)βP
(6)

where Γ[βP ] is the complete Gamma function (Abramowitz and Stegun, 1965)159

with βP = λP τP .160

Next, we perform an extreme value analysis using the Peak Over Thresh-161

old (POT) approach developed by Todorovic (1970) and then applied to162

exponentially distributed peak events (CPP) by Zelenhasic (1970) and Önöz163

and Bayazit (2001), among others. Once a certain threshold ξ is set, POT al-164

lows to evaluate the return period T (ξ) of the flow discharge higher than such165

threshold. For the sake of brevity, only the main results are reported here166

below, whereas we address the reader to Calvani (2019) for the calculation167

steps. The return period T (ξ) simply reads:168

T (ξ) =
1

1− Pξ
(7)

Therein, the probability of events higher than the threshold ξ, Pξ as given169
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by the POT analysis, is equal to:170

Pξ = e−T λ′P P+
ξ (8)

where T is a temporal quantity set equal to 1d for the aim of the POT,171

λ′P = e−φφβP

τPΓ[βP ]
is the average frequency of upcrossing the threshold ξ; φ is the172

ratio between the threshold ξ and the mean value of pulses γP ; P+
ξ is the173

probability of the signal q(t) (figure 2) to be higher than the threshold ξ,174

that is P+
ξ =

∫∞
ξ
p(q)dq =

Γ[βP ,φ]

Γ[βP ]
(Ridolfi et al., 2011) where Γ[βP , φ] is the175

upper incomplete Gamma function (Abramowitz and Stegun, 1965). It must176

be clear that the two frequencies, λP and λ′P , represent different quantities177

for the CPP. The first one, λP , is a property of the process and depends, in178

this case, on the hydrological regime of the river, only. On the contrary, the179

second one, λ′P , depends on the threshold value, ξ. To clarify this point, one180

can compare the whole number of jumps in figure 2 (which depends on λP )181

to the number of jumps across above the threshold ξ (which depends on λ′P ).182

2.3. Reference mean event183

For a given threshold ξ and its return period T (ξ) (Eq. (7)), we calculate184

the associated reference mean event, which represents a statistically averaged185

flow hydrograph following a jump (peak) above the threshold ξ and lasts186

11



until downcrossing the threshold Qcr. As we focus on events able to uproot187

vegetation after riverbed erosion (i.e., Type II uprooting), we consider flow188

discharge above the threshold value for incipient motion of sediment Qcr only,189

which we assume equal to the one for the incipient erosion. Such value can190

be calculated as follows:191

Qcr = τ ∗cr
5/3

(
ρs − ρ
ρ

)5/3

D
5/3
50

B

n
S−7/6 (9)

where τ ∗cr is the critical Shields parameter equal to either 0.03, according to192

Parker et al. (2007) for gravel bed rivers subjected to bedload transport, or193

τ ∗SL for sand-bed rivers with suspended load; ρs and ρ are sediment and water194

density, respectively; D50 is the mean grain size; B is the river width; n is the195

Manning coefficient and S is the bed slope. The critical Shields parameter for196

sand-bed rivers τ ∗SL can be calculated using Brownlie’s equation (Brownlie,197

1981).198

We address the reader to Calvani (2019) for the whole mathematical199

approach and report here the final equation of the reference mean event200

Qξ(t) defined by a piecewise function:201

Qξ(t) =


Q0(ξ) e−t/τ1

[
0 ≤ t ≤ T+

ξ

]
ξ e−(t−T+

ξ )/τ2

[
T+
ξ < t ≤ T̂ξ

] (10)
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Quantities Q0(ξ), τ1 and τ2 are calculated according to the properties of202

the Compound Poisson Process: particularly, the average time, T+
ξ , and the203

average flow value, Q̄q>ξ, above the threshold ξ, and the average time, Tξ→Qcr ,204

from the threshold ξ to the threshold Qcr. The temporal quantities, T+
ξ and205

Tξ→Qcr , are related to the concept of mean first passage time, that is the206

average time that a signal upcrosses or downcrosses a certain threshold value207

(Laio et al., 2001; Ridolfi et al., 2011). The total duration of the reference208

mean event is, therefore:209

T̂ξ = T+
ξ + Tξ→Qcr (11)

To this regard, we must point out that flow volume conservation is exactly210

satisfied for the first part of the reference mean event only (i.e., from Q0 to211

ξ), as this is imposed using the conditions for T+
ξ and Q̄q>ξ. The second ex-212

ponential decay (i.e., from ξ to Qcr) is calculated using the exact formulation213

for the average time Tξ→Qcr . This may lead to error in the flow volume con-214

servation, and the outcomes of this assumption will be explored in Section215

3.1.216
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2.4. Erosion rate217

In order to account for bed elevation changes and scouring events promot-218

ing Type II uprooting during high flow events, we couple the time-varying219

flow discharge to the 1D Exner (Eq. (1)) and sediment transport relation-220

ships. For the sediment transport, we consider both the cases of bed and221

suspended load. Specifically, we assume a Meyer-Peter-Müller type formula222

(Wong and Parker, 2006) for bedload and the van Rijn’s model (van Rijn,223

1984) for the suspended load. For the resultant relationships to be as simple224

as possible, we neglect the effects of the time derivative in the momentum225

equation at the time scale of the process. As a result, bed shear stress τb226

and water depth Y can be calculated from flow discharge only, by know-227

ing channel geometry and involving the Manning relation for normal flow.228

Additionally, for the channel geometry, we assume a wide rectangular cross-229

section with constant width and bed slope. By combining the aforementioned230

formulas and assuming negligible upstream sediment discharge (Perona and231

Crouzy, 2018), we obtain a relationship for the net (deterministic) erosion232

rate η̇d where the typical structure of sediment transport formula above crit-233

ical threshold and exponent 3/5 coming from Manning relation can be rec-234

14



ognized. The relation reads:235

η̇d (t) = ψ1 ψ2

(
q

3
5 (t)−Q

3
5
cr

)b
·
(
q

3
10 (t) · I(q(t), D50)

)aST
(12)

where ψ1 is a coefficient depending on physical parameters, river size and236

sediment properties, ψ2 is a coefficient depending on the main type of sedi-237

ment load, b is the exponent in the sediment transport formula (e.g., 3/2 in238

the case of van Rijn’s and MPM’s models), I(q(t), D50) is a quantity given239

by the Einstein’s integrals (Einstein, 1950) and depending on mean grain240

size D50 and flow discharge in the case of suspended load only, and aST is a241

parameter equal to either 0 for bedload or 1 for suspended load. The relation242

for the parameter ψ1 reads:243

ψ1 =

√
g D1−b

50

(1− λs)∆x

(
ρs − ρ
ρ

)−b ( n
B

) 3
5
b

S
7
10
b (13)

where g is the acceleration due to gravity, λs is the sediment porosity, ∆x is244

the length scale along the streamwise direction where the spatial derivative of245

sediment transport (right-hand side term in Eq. (1)) can be approximated by246

the finite difference. Following the approximation suggested by Perona and247

Crouzy (2018), ∆x is the spatial scale, where net (parallel) bed erosion takes248

place. The coefficient ψ2 depends on the main type of sediment transport,249

15



according to the following relation:250

ψ2 =


αBL D

1/2
50

(
ρs−ρ
ρ

) 1
2

aST = 0

αSL
(
n
B

) 3
10 S

7
20 R

−2
10
ep τ ∗SL

b aST = 1

(14)

Therein, αBL is the coefficient in the bedload formula (e.g., 3.97 in Wong251

and Parker (2006)), αSL = 0.174 is the coefficient in van Rijn’s formula for252

suspended load (van Rijn, 1984) and Rep is the particle Reynolds number.253

It is worth to mention that, in the case of bedload (αST=0 in Eq. (14)),254

when b=1.5 (e.g., Meyer-Peter and Müller, 1948; Wong and Parker, 2006),255

the mean grain size D50 cancels out in the product ψ1 · ψ2 in Eq. (12). As256

a result, the erosion rate η̇d(t) depends on the mean grain size, D50, by the257

critical flow for incipient motion of sediment, Qcr (Eq. (9)), only.258

3. Results259

3.1. Reference mean event260

A graphical explanation of the reference mean event Qξ(t) (Eq. (10))261

is reported in figure 3a), with the associated erosion rates due to bedload262

and suspended load and the critical thresholds, Qcr, for incipient sediment263

transport (Eq. (9)). Figure 3b) shows the comparison between a reference264
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mean event (blue line) and some Compound Poisson Process events (thin265

black lines) between the two thresholds ξ and Qcr.266

Due to assumptions made in the calculations of the reference event (Eq.267

(10)), particularly the second exponential decay from ξ to Qcr (Section 2.3),268

we compared the flow volume of the reference mean event
(

i.e.,
∫ T̂ξ

0
Qξ(t)dt

)
269

to the average flow volume of some events taken from a CPP, according270

to various combinations of the parameters λP and τP , and with respect to271

different values of the threshold ξ. The comparison was carried out for two272

ideal rivers characterized by different hydro-morphological parameters. The273

first one, here named the Small River, has a cross section width, B, equal to274

50m, bed slope, S, equal to 0.005, and grain size distribution characterized275

by D50 equal to 0.1m and D90 equal to 0.15m. The corresponding hydrology276

is characterized by a mean flow discharge, µP , equal to 15m3 s−1, average277

frequency of events, λP , equal to 0.1d−1, and exponential decay rate, τP ,278

equal to 1.5d. The second river, here named the Large River, has a cross279

section width, B, equal to 100m, bed slope, S, equal to 0.002, and grain280

size distribution characterized by D50 equal to 0.04m and D90 equal to 0.1m.281

The corresponding hydrology is characterized by a mean flow discharge, µP ,282

equal to 400m3 s−1, average frequency of events, λP , equal to 0.1d−1, and283

17



exponential decay rate, τP , equal to 1.5d. For both the rivers, the D90284

was used to calculate the Manning coefficient n, according to the empirical285

relation n = D
1/6
90 /26. The results of the comparison are shown in figure 4.286

The comparison shows that, as expected, the formulation of the reference287

mean event (Eq. (10)) does not capture exactly the average flow volume dur-288

ing the exponential decay from the upper threshold ξ to the lower threshold289

Qcr. Nevertheless, the agreement seems satisfactorily as the relative error is290

overall less than 5%, with a maximum of 15% for some very particular com-291

binations of the parameters λP and τP (e.g., λP=0.02d−1 and τP=7d) which292

are uncommon in natural rivers. It is worth to note that the flow volume293

calculated using the reference mean event overestimates the numerical data294

for most of the λP -τP combinations in the Small River. On the contrary, it295

has the tendency to underestimate the numerical data in the Large River.296

As a result, the formulation of the reference mean event yields to predicting297

errors in the uprooting probability. To this regard, we compared the average298

uprooting probability of fifty events taken from a CPP with two different val-299

ues of the higher threshold ξ for the Small River and the Large River (figure300

3c,d). For the Small River, for the first value of the threshold, ξ=125m3 s−1,301

the average uprooting probability of the CPP events was Pτ=0.24, whereas302
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the uprooting probability calculated using the corresponding reference mean303

event was Pτ (t = T̂ξ)=0.32. For the second threshold value, ξ=180m3 s−1
304

(figure 3c), the uprooting probability from the CPP was Pτ=0.24, whereas305

Pτ (t = T̂ξ)=0.56. For the Large River, the first threshold value was set to306

ξ=550m3 s−1 and the uprooting probability of the CPP events was Pτ=0.53,307

with the corresponding Pτ (t = T̂ξ) of the reference mean event equal to 0.54308

(figure 3d). For the second value of the threshold, ξ=750m3 s−1, the uproot-309

ing probabilities were Pτ=0.58 and Pτ (t = T̂ξ)=0.55. As a consequence of the310

approximation of the flow volume (figure 4), the approach leads to slight un-311

derestimations of the uprooting probability in the case of the Large River and312

overestimations in the case of the Small River. Therefore, we are confident313

that the case of ξ=550m3 s−1 in the Large River with slight overestimation of314

the uprooting probability depends on the particular randomly chosen events315

that are mainly lying below the reference mean event (see figure 3d).316

3.2. Resilience to vegetation uprooting317

We performed the calculations of Pτ (t = T̂ξ) for both the rivers presented318

in the previous section, in the case ofbedload transport (i.e., αST=0 in Eq.319

(14)). For the sake of simplicity, we did not consider the case of suspended320

load (i.e., αST=1 in Eq. (14)), even when the Shields number would be321

19



large enough to support its occurrence at high value of the flow discharge.322

The length scale, ∆x in Eq. (13), was set equal to 6·B, which is roughly the323

length scale of potential river bars (Leopold and Wolman, 1957). Due to the324

highly non-linear relationships involved in the calculation of the uprooting325

probability Pτ (t = T̂ξ), we performed a graphical analysis on the effects of326

varying parameter values, one at a time. In particular, we considered the327

effects of the critical erosion for uprooting, Le and the coefficient αBL in bed328

load sediment transport formula, by accounting for constant values of the329

hydrological parameters, µP , λP and τP . Additionally, we kept constant the330

fluctuations of the sediment transport rate (gt=0.05m2 d−1), regardless of331

Eq. (3), to highlight the changes induced by varying the tested parameter.332

Figure 5 shows the trend of the uprooting probability function, Pτ (t = T̂ξ),333

versus the corresponding return period Tξ at varying the parameters, for the334

Small River and the Large River, respectively.335

For both rivers, the critical erosion depth Le plays an important role in336

the probability of uprooting. In case of the Small River, figure 5a) shows337

that an increment of 0.25m in Le (e.g., from 0.5m to 0.75m) raises survival338

chances (=1-Pτ ) by more than 30% for a yearly flow event. For the Large339

River (figure 5c), the same consideration implies an increment of 20% in the340
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survival chances. According to Calvani et al. (2019a), plants do not need341

to grow root as deep as that amount, as soil strength increases with depth.342

Furthermore, the same gain in Le can be achieved by reducing the frontal343

area subjected to drag, either by increasing flexibility (i.e., reconfiguration)344

or by physically losing leaves. The latter mechanism appears to be a possible345

strategy for riparian plants in the temperate zone to adapt their deciduous346

period to autumn and winter seasons, not only to save energy, but also to347

withstand the larger and more frequent peak events.348

For the effects of the coefficient of the bedload transport formula, we349

considered the original value proposed by Wong and Parker (2006) and four350

other values, differing by ±25% and ±50%. For the Large River, figure 5d)351

shows that increasing the coefficient αBL by 25% raises theuprooting prob-352

ability by roughly 5% in the whole range of the tested return periods. A353

similar behaviour in the function Pτ can be observed when the coefficient354

αBL decreases by 25% (αBL=2.978). In this case we observed a decrease in355

the uprooting probability by 5%, only. As a result, the parameter αBL in356

the range of tested values does not seem to significantly affect the uproot-357

ing probability. Different results were obtained for the Small River, where358

the variation imposed in the bedload transport coefficient, αBL, affect the359
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uprooting probability by more than 10% for a yearly flow event (figure 5b).360

Particularly, for the case of doubling the bedload transport coefficient, the361

uprooting probability increases by 25%.362

Additionally, we investigated the effects of varying the hydrological pa-363

rameters, specifically the average jump value γP , the average frequency of364

jumps λP , and the exponential decay rate τP , and the grain size distribution,365

with particular focus on the mean grain size D50. The results of the analysis366

are reported in figures 6 and 7, for the Small River and the Large River,367

respectively.368

Both rivers show similar trends of the uprooting probability, while varying369

the same parameter. Similarly to the case with constant mean flow discharge370

µP (figure 5), the influence of the investigated parameters is more evident in371

the Small River, when compared to the Large River. Such result is partic-372

ularly clear in figures 6 and 7 when comparing panels c), varying the mean373

value of jump, γP , and panels d), at varying the mean grain size D50.374

Consider now, the case of figure 8, where the uprooting probabilities of375

two different cross sections in the same river are shown. Hydro-morphological376

parameters are representative of the Thur River (CH), at the two measuring377

stations of Jonschwil, Mühlau (upstream) and Andelfingen (downstream).378
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Data are reported within the figure. The uprooting probability Pτ (t = T̂ξ),379

for the same critical erosion length (Le=0.75m) and erosion process noise380

(gt=0.05m2 d−1), shows the existence of a return period for which the two381

curves intersect. Such return period corresponds to equal uprooting prob-382

ability in both the cross sections, thus supporting the idea of selecting the383

survival of equal vegetation species along the whole river reach. We explain384

this trend by considering the different reference mean events and the associ-385

ated pτ obtained for the tow different cross sections. For low return periods386

(e.g., T (ξ) ≈0.3y), the uprooting probability is higher in the downstream387

cross section (DS). The main reason is the longer duration of the reference388

mean event for the DS cross section, if compared to that in the upstream389

(US) one (i.e., T̂DSξ > T̂USξ ). On the contrary, for higher return periods (e.g.,390

T (ξ) ≈10y), the uprooting probability is higher in the US cross section. Al-391

though the condition T̂DSξ > T̂USξ still applies, the probability distribution392

function, pτ , in case of the US cross section (see bottom-left inset panel in393

figure 8) shows a very remarkable peak, leading to a higher integral value, Pτ .394

We refer to this dualism as duration driven and magnitude driven uprooting395

events, respectively.396
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3.3. Real case application397

We applied the proposed methodology and the uprooting model to the398

case study of the Santa Maria River (Arizona, USA). This river was inves-399

tigated by Bywater-Reyes et al. (2015) and plants on a bar along it were400

mechanically uprooted under different conditions of scouring. As a results,401

data of flow discharge to fit the CPP and measurements of root resistance402

and plant geometry are both available.403

Figure 9a) shows the reference mean event and its associated erosion rate404

η̇ driven by suspended load (aST=1 in Eq. (12)) for the 10y return period405

peak event. We calculated the uprooting probability according to different406

critical erosion length Le and compared the results for the two flow discharges407

investigated by Bywater-Reyes et al. (2015) (Q2=80m3 s−1; Q10=460m3 s−1)408

and the plants uprooted under 0.30m scouring condition. For the measured409

plants, we calculated the minimum, median and maximum of uprooting prob-410

ability of according to the corresponding velocities as output numerical sim-411

ulation carried out by Bywater-Reyes et al. (2015) for the two investigated412

return periods. Figure 9b) shows the uprooting probability Pτ (t = T̂ξ) versus413

the threshold ξ for different values of the unknown variable Le for the Santa414

Maria River. The critical erosion length Le = 0.33m used in figure 9b) was415
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calculated according to the model proposed by Calvani et al. (2019a) for the416

mechanically uprooted plants for which measurements of intact root (i.e.,417

main root length) were available. Uprooting probability for measured plants418

are shown as boxplots. As a final result of our analysis, we found a very good419

agreement between measured and modelled uprooting probability for both420

the flow discharges. Therefore, this supports the validity of our analysis and421

the robustness of our approach.422

4. Discussion423

For the sake of clarity, we have considered the reference mean event424

Qξ(t) starting when a jump in the Compound Poisson Process up-crosses425

the threshold ξ. This is replicated in the reference mean event by the initial426

jump from the critical value Qcr to the the flow discharge Q0(ξ). This as-427

sumption is often legitimated by the generally shorter duration of the raising428

limb compared to that of the falling limb in a flow hydrograph. However, such429

hypothesis can not be satisfied in case of high correlated signals, for instance430

when the temporal scale τP governing the exponential decrease (deterministic431

drift in the CPP) is larger than the average interval between shots (i.e., λ−1
P ).432

In this case, a more appropriate formulation for the raising limb of the refer-433
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ence mean event must be provided. This is object of ongoing investigations.434

Nevertheless, hydrological regimes with such characteristics are uncommon435

so we are confident that the proposed formulation and methodology can be436

satisfactorily applied to most rivers (e.g., figure 9).437

Additionally, in this section, we focused on Eq. (3) and the associated438

time-varying gt . We investigated the effects of different values of kg (Eq.439

(4)), representing the variability of the mobilized sediment layer thickness.440

We compared the resulting uprooting probabilities with constant and time-441

varying gt . For the sake of the analysis, we consider the constant gt as the442

integral average of the time-varying one over the entire duration T̂ξ of the443

reference mean event Qξ(t) for a given return period T (ξ).444

Figure 10 shows the comparison among uprooting probabilities with con-445

stant and time-varying gt according to different values of kg. Time-varying446

gt plays a significant role in modifying the resultant Pτ (t = T̂ξ) only for ei-447

ther very high or very low values of kg (e.g., kg = 0.2 or kg = 20). For more448

reasonable values (e.g., kg = 2 (Parker, 1990)), the uprooting probabilities449

are very similar and, therefore, the average value defines the entire trend.450

This behaviour is clearly explained by the corresponding probability distri-451

bution functions, pτ , plotted in the inset panels of figure 10 for two different452
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return periods, T (ξ). Moreover, for values of kg equal to 4, time-varying gt453

increases the uprooting probability for low return periods (e.g., T (ξ) <11y),454

whereas Pτ (t = T̂ξ) is almost equal for slightly higher recurrence intervals455

(e.g., 10y < T (ξ) <50y). For higher return period (T (ξ) >50y), the up-456

rooting probability with the time-varying gt is lower than the correspondent457

with constant gt . For even higher values (kg = 20), the uprooting probability458

with time-varying gt is always larger, for the tested range of return period459

and hydrological parameters. It is interesting to highlight that for kg lower460

than 4, the uprooting probability function behaves in the opposite way. We461

didn’t investigate on the threshold value of kg that switches between the two462

different trends.463

5. Conclusions464

In this work, we linked the uprooting probability given by the stochastic465

model of Perona and Crouzy (2018) to the return period of flood events,466

calculated using the Peak Over Threshold method on a Compound Poisson467

Process. We proposed a simple approach to calculate a reference mean event468

for a given return period and its application to the stochastic model for the469

uprooting probability.470
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Our analysis has been carried out for one single event and returns the471

probability of uprooting associated to characteristic flood/erosion events of472

assigned return period. However, riparian vegetation may withstand many473

more erosion events during its life. This suggests that the interval between474

consecutive peak events and the ability for riparian species to recover and475

grow in this interval play a fundamental role in the evolution of water driven476

patterns (Bertagni et al., 2018), both from the biological and the morpholog-477

ical point of view (Edmaier et al., 2015; Perona and Crouzy, 2018; Calvani478

et al., 2019b). For this reason, the role of the intertime between consecutive479

flood events and their cumulative effects should be further investigated.480

Our results suggest that the critical erosion depth Le and average fre-481

quency of peak events λP are the key parameters to define the uprooting482

probability of riparian vegetation in a given river basin. Yet, this study483

confirms that long time scale interactions between river hydro-morphology484

and riparian vegetation are fundamental to shape the riverine environment485

(Bywater-Reyes et al., 2015). For a given hydrological regime, the mecha-486

nisms at the base of such interactions may be key to select species according487

to their ability to survive in water-driven environments. For instance, in-488

vasive riparian plants can take advantage of these interactions, leading to489
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colonization of new fluvial landforms and suppression of local species, due to490

alteration in the hydrological regime by either human impacts (Tealdi et al.,491

2011; Coletti et al., 2017) or climate change (Serrat-Capdevila et al., 2007;492

House et al., 2016).493
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Serrat-Capdevila, A., Valdés, J.B., Pérez, J.G., Baird, K., Mata, L.J., Mad-621

dock III, T., 2007. Modeling climate change impacts–and uncertainty–on622

the hydrology of a riparian system: The san pedro basin (arizona/sonora).623

Journal of Hydrology 347, 48–66.624

36



Solari, L., Van Oorschot, M., Belletti, B., Hendriks, D., Rinaldi, M.,625

Vargas-Luna, A., 2016. Advances on modelling riparian vegetation-626

hydromorphology interactions. River Research and Applications 32, 164–627

178.628

Tanaka, T., Tachikawa, Y., Ichikawa, Y., Yorozu, K., 2017. Impact assess-629

ment of upstream flooding on extreme flood frequency analysis by incor-630

porating a flood-inundation model for flood risk assessment. Journal of631

hydrology 554, 370–382.632

Tealdi, S., Camporeale, C., Ridolfi, L., 2011. Modeling the impact of river633

damming on riparian vegetation. Journal of Hydrology 396, 302–312.634

Todorovic, P., 1970. On some problems involving random number of random635

variables. The Annals of Mathematical Statistics 41, 1059–1063.636

Todorovic, P., 1978. Stochastic models of floods. Water Resources Research637

14, 345–356.638

Wong, M., Parker, G., 2006. Reanalysis and correction of bed-load relation639

of Meyer-Peter and Müller using their own database. Journal of Hydraulic640

Engineering 132, 1159–1168.641

37



Zelenhasic, E.F., 1970. Theoretical probability distributions for flood peaks.642

Hydrology papers (Colorado State University); no. 42 .643

Zen, S., Mueller, E., Hadden, R., Perona, P., 2018. Effects of stochasticity644

on rate of spread and fire front evolution statistics.645

38



Figure 1: Illustration of the approach described by Eq. (2). The erosion rate evolves driven

by flow hydrograph Qξ(t), lasting T̂ξ, and erosion noise, gt , so that different scouring

trajectories result to a probabilistic distribution function, pτ , of the times to uprooting.

Vegetation is removed when total erosion reaches the critical erosion depth, Le.
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Figure 2: A sample realization of a Compound Poisson Process of flow discharge q(t)

(continuous blue line). Dashed blue line is the threshold ξ for extreme value analysis.

Dashed red line is the critical threshold Qcr for bed erosion. On the left the probabilistic

distribution function p(q) of flow discharge (continuous red line).
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Figure 3: The reference mean event Qξ(t) is the statistically averaged hydrograph associ-

ated to jumps above the threshold ξ. a) The reference mean event (continuous blue line)

and its associated erosion rate, both in case of bedload (continuous dark-yellow line) and

suspended load (dashed dark-yellow line) (see section 2.4). b) A comparison between the

calculated hydrograph and some events above the threshold ξ extracted from a Compound

Poisson Process. c) The reference mean event for the Small River whit ξ=180m3 s−1 and

some events taken from the CPP above such threshold. d) The reference mean event for

the Large River with ξ=550m3 s−1 and comparison to some events taken from the CPP.
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Figure 4: The flow volume comparison between the reference mean event (analytical re-

sults) and some events taken from the CPP (numerical data) for the two ideal rivers

involved in the analysis. Values are in m3. a) The comparison for the Small River. b)

The comparison for the Large River. Inset panels show the agreement for different com-

binations of the parameters λP and τP , according to different values of the threshold

ξ.
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Figure 5: The uprooting probability, Pτ (t), in the Small River (panels a) and b)) and the

Large River (panels c) and d)), at the end of the reference mean event (t = T̂ξ), according

to different values of the parameters involved in Eq. (5). Values of the parameters are

shown and, when not explicitly written, units are: [m] for Le, [d−1] for λP , and [d] for τP .

a) and c) Pτ (t = T̂ξ) versus return period T (ξ) varying the critical length of erosion Le,

for the Small River and the Large River, respectively; b) and d) Pτ (t = T̂ξ) versus return

period T (ξ) varying the coefficient αBL in the bedload transport formula, for the Small

River and the Large River, respectively.
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Figure 6: The uprooting probability, Pτ (t), in the Small River, at the end of the reference

mean event (t = T̂ξ), according to different values of the parameters involved in Eq. (5).

Noise in erosion process gt is set to 0.05m2 d−1, values of the other constant parameters

are shown. When not explicitly written, units are: [m] for Le, [d−1] for λP , and [d] for

τP . a) Pτ (t = T̂ξ) versus return period T (ξ) varying the mean frequency of jumps λP ; b)

Pτ (t = T̂ξ) versus return period T (ξ) varying the exponential decay rate τP ; c) Pτ (t = T̂ξ)

versus return period T (ξ) varying the mean jump value γP ; d) Pτ (t = T̂ξ) versus return

period T (ξ) varying the mean grain size D50.
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Figure 7: The uprooting probability, Pτ (t), in the Large River, at the end of the reference

mean event (t = T̂ξ), according to different values of the parameters involved in Eq. (5).

Noise in erosion process gt is set to 0.05m2 d−1, values of the other constant parameters

are shown. When not explicitly written, units are: [m] for Le, [d−1] for λP , and [d] for

τP . a) Pτ (t = T̂ξ) versus return period T (ξ) varying the mean frequency of jumps λP ; b)

Pτ (t = T̂ξ) versus return period T (ξ) varying the exponential decay rate τP ; c) Pτ (t = T̂ξ)

versus return period T (ξ) varying the mean jump value γP ; d) Pτ (t = T̂ξ) versus return

period T (ξ) varying the mean grain size D50.
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Figure 8: The uprooting probability, Pτ (t), at varying cross section. Hydro-morphological

parameters are reported in the inset table. Blue line is for the upstream cross section

(US), red line for the downstream one (DS). Inset panels show the probability distributions

functions, pτ , for short (e.g., T (ξ) ≈0.3y) and long (e.g., T (ξ) ≈10y) return periods.
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Figure 9: The uprooting probability Pτ (t) in the Santa Maria River, Arizona (USA) and

comparison to the data calculated by Bywater-Reyes et al. (2015). a) The reference mean

event Qξ(t) for 10y return period and its associated erosion rate η̇SL(t) due to suspended

load. b) Comparison of Pτ (t = T̂ξ) with different Le. Boxplots are the probability of

uprooting calculated with measured data by Bywater-Reyes et al. (2015) for 2 and 10y

return periods.
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Figure 10: Graphical comparison of uprooting probability Pτ (t = T̂ξ) versus return period

T (ξ) for different values of the time-varying noise gt (t) (Eq. (3)) and its integral mean

over the duration T̂ξ for different values of the coefficient kg of the sediment mixing length

ls (Eq. (4)) in the Large River. Continuous lines are for the uprooting probability with

constant gt , dashed lines are for the uprooting probability with time-varying gt . In the

inset panels the probability distribution functions, pτ , corresponding to the reference mean

event of two different return period (i.e., T (ξ) = 1y and T (ξ) = 20y) for different values

of the coefficient kg.
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