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ABSTRACT 

Ampicillin is a broad spectrum antibiotic and World Health Organization Essential Medicine whose 
crystallization is an essential unit operation in its production. A published model for the solubility of 
ampicillin as a function of pH as well as growth and nucleation kinetics allows for dynamic simulation 
and optimization of its batch crystallization. While experimental approaches to investigating different 
dynamic pH profiles have been considered in the literature, dynamic mathematical optimization of pH 
modulations to meet specific production objectives for ampicillin batch crystallization has yet to be 
implemented; therein lies the novelty of this study. This work performs dynamic simulation and 
optimization of the batch crystallization of ampicillin to establish optimal pH trajectories for different 
production objectives. Simulation of already published batch seeded ampicillin crystallization 
experiments is performed prior to definition and solution of a dynamic optimization problem for 
maximization of mean crystal sizes and minimization of size distribution width. The effects of seed 
loading, time domain discretization and mean crystal size and size distribution width objective function 
weights are considered and discussed. Pareto fronts showing tradeoffs between different objectives and 
constraints are then investigated.  
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1. Introduction 
The discovery and use of antibiotics has resulted in immeasurable benefits to society, revolutionizing 
modern medicine by treating a vast range of bacterial infections.1 Global consumption of antibiotics is 
high, with European and Asian countries consuming the largest volumes of World Health Organization 
(WHO) countries, shown in Fig. 1. The family of β-lactam antibiotics present one of the most consumed 
pharmaceutical products globally and are also some of the most important medicines worldwide in 
terms of their broad applicability to a variety of ailments.2 Penicillins, a subclass of the β-lactam 
antibiotic family, are considered critically important to the world healthcare system. Efficient 
manufacturing of these societally-essential pharmaceutical products is crucial to meet increasing 
antibiotic demands and for sustainable production.3 
 

 
Figure 1: Top 40 World Health Organization (WHO) countries by antibiotic consumption in 2016.4 
 

Ampicillin is a broad-spectrum, semi-synthetic β-lactam antibiotic, used to treat various bacterial 
infections such as urinary and respiratory tract infections, being one of the ten most consumed 
antibiotics worldwide. Ampicillin is stable against hydrolysis by a variety of β-lactamase enzymes and 
can therefore be administered for a wide range of gram-positive and -negative infections. Like most 
high sales volume β-lactam antibiotics, it is manufactured via batch enzymatic synthesis.5 Design of 
efficient separation processes of ampicillin is important for lean and effective manufacturing. 

Crystallization is an essential process in the pharmaceutical industry for the separation of 
intermediates or as the final process in the production of an Active Pharmaceutical Ingredient (API).6 
Supersaturation, i.e., the condition where the equilibrium solubility value of the solute is below that of 
its concentration in the solution, is the thermodynamic driving force for crystal nucleation and growth. 
Supersaturation can be generated in a variety of ways; 
 

1. reducing temperature, i.e., cooling crystallization 
2. removing solvent, i.e., evaporative crystallization 
3. altering the solution composition via acid, base or antisolvent addition. 

 
The final size, shape and form of the product crystals influences not only downstream operations but 

also the physical and chemical properties of the solid product.7 These properties often represent 
important quality attributes in the pharmaceutical manufacturing process, e.g., polymorphism and size 
distribution may affect the bioavailability of the crystalline product.
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Table 1: Literature demonstrations of mathematical optimization of pharmaceutical crystallization utilizing population balance modelling to meet specific production objectives. 
# API Application Operating 

Mode 
Continuous 

Design 
Objective Function Method of 

Supersaturation 
Generation 

No. 
Stages 

Operation / 
Residence 
Time (min) 

Yield  
(%) 

Benefits Attained Literature 
Reference 

1 Lovastatin 
Blood cholesterol 
reduction 

Batch (–) Size distribution control Antisolvent + Cooling 1 60 NS 
Improved size distribution 
control 

Nagy et al., 
20088 

2 Aspirin Analgaesic Batch (–) 
Minimize batch duration 
+ Size distribution 
control 

Antisolvent + Cooling 1 21.6 NS 
Reduced fines formation and 
size distribution control 

Lindenberg et 
al., 20099 

3 
Flufenamic 
Acid 

Analgaesic Continuous PFC 
Maximize crystal size + 
Minimize size 
distribution width 

Antisolvent 4 1.45 93.0 
Larger crystal size + 
narrower distribution width 

Ridder et al., 
201410 

4 Paracetamol Analgaesic Batch (–) 
Size distribution + shape 
control 

Cooling 1 90 NS 
Improved control of size 
distribution and shape 

Acevedo et al., 
201511 

5 
L-Asparagine 
Monohydrate 

Amino acid Continuous PFC Size distribution control Cooling 4 100 76.4 
Improved size distribution 
control 

Rasche et al., 
201612 

6 Cyclosporine Immunosuppressant Continuous MSMPR Maximize yield / purity Cooling 5 900 85.0 Improved yield and purity Li et al., 201713 

7 Cyclosporine Immunosuppressant Continuous MSMPR Minimize total costs Cooling 1 6,456 68.4 Cost optimal design 
Diab and 
Gerogiorgis, 
201814 

8 Paracetamol Analgaesic Continuous MSMPR Minimize total costs Cooling 1 646.8 73.9 Cost optimal design 
Diab and 
Gerogiorgis, 
201814 

9 Aliskiren Anticoagulant Continuous MSMPR Minimize total costs Cooling 1 368.4 83.2 Cost optimal design 
Diab and 
Gerogiorgis, 
201814 

10 Paracetamol Analgaesic Continuous COBC Minimize total costs Antisolvent + Cooling 1 14.93 70.0 Cost optimal design 
Jolliffe and 
Gerogiorgis, 
201815 

11 Aspirin Analgaesic Batch (–) 
Minimize degradation 
product concentration 

Cooling 1 200 90.0 
Maximum crystal growth 
with minimal product 
degradation 

Pal et al., 201916 

NS: Not specified 
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Significant advances in API crystallization design and control have been made in recent decades. 
Efforts in the development of batch crystallization processes for control of polymorphism, preferential 
crystallization of enantiomers from racemic mixtures, crystal size and distribution, slurry transfer and 
integration with membrane separation units, as well as the development of different continuous 
crystallization technologies have furthered pharmaceutical crystallization significantly.7 Performing 
conceptual crystallization process modelling and optimization prior to expensive and time-consuming 
experimental campaigns allows rapid design space investigation and elucidation of promising process 
configurations and design and operating parameters.  

Model-based optimization of crystallization processes has been implemented in the literature in a 
variety of ways, e.g. maximizing the product yield and mean crystal size, or minimizing batch/residence 
time and width of the Crystal Size Distribution (CSD). Other possibilities include minimizing cost or 
maximizing total profit.14,15,17 Table 1 summarizes instances of process optimization for pharmaceutical 
crystallization processes in order to meet specific production objectives (e.g., maximize crystal size, 
minimize size distribution width, enhance economic performance etc.), utilizing mathematical 
modelling and population balance equations from the literature. Most optimizations use cooling profiles 
and/or antisolvent addition rates for supersaturation control to meet the desired objectives. A variety of 
batch crystallizer optimization studies have been implemented (Table 1) as well as several recent 
implementations of optimization towards continuous crystallizer design, including traditional Mixed 
Suspension, Mixed Product Removal (MSMPR) and Plug Flow Crystallizer (PFC) units, as well as 
more elaborate Continuous Oscillatory Baffled Crystallizer (COBC) designs. 

The crystallization of ampicillin has been demonstrated in the literature by pH-variation, including a 
model with detailed growth and nucleation kinetics and solubility as a function of pH, allowing detailed 
prediction of attainable crystallization yields and mean crystal sizes for different pH variation profiles 
and seeding conditions.18 Dynamic optimization of pH-profiles for the batch crystallization of 
ampicillin subject to various product specifications and operational constraints may present improved 
process performances vs. straightforward linear pH variations demonstrated in the literature thus far.19 

In this work, the recently published crystallization model for ampicillin is utilized for dynamic 
optimization of pH manipulation profiles over the batch runtime in order to optimize product quality 
attributes subject to different operational and performance constraints.18 The paper is structured as 
follows. First, the published dynamic model for the batch crystallization of ampicillin that is used in 
this work for optimization purposes is described in detail. The performance of different demonstrated 
crystallization cases from the same previously published work are then presented. The formulation of a 
dynamic optimization problem with pH as the manipulated (control) variable is described, with different 
case studies corresponding to experimental demonstrations is then described. Optimization results for 
different considered cases are then presented with a critical comparison of the outcomes versus the 
published demonstrations. Tradeoffs between different product quality attributes are examined and 
discussed in the context of the implemented methodology.  
 
2. Methodology 
2.1. Dynamic Modelling of Batch Crystallization 
The batch crystallization of ampicillin is modelled using published solubility = f(pH), growth and 
nucleation kinetics and population balances.18 The following assumptions are made in the model: 
 

 The feed stream is a clear mother liquor with dissolved ampicillin for crystallization with seeds 
 Crystal breakage and agglomeration do not occur  
 Growth is size-independent and linear.  

 
The implemented crystallization model describes growth and nucleation kinetics, API solubility, 

crystal population balances and mass balances. The simultaneous solution of these equations describes 
batch crystallization. In this work the crystalliser is considered isothermal at temperature, T = 298.15 
K. Crystallization is induced only due to the solubility change by pH variation. It is also assumed that 
pH variation in the mother liquor mixture is instantaneous. 
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2.1.1. Crystallization Kinetics 
Crystal growth and nucleation kinetics are described by the eqs. 1–5. Crystal growth rate terms (eq. 1) 
consist of G = linear crystal growth rate, kG = crystal growth pre-exponential factor, SS = supersaturation 
(eq. 5) and g = crystal growth exponent. Nucleation terms (eqs. 2–4) are J = overall nucleation rate 
composed of B1 and B2 = primary and secondary nucleation rates, respectively, kB = nucleation pre-
exponential factors, B0 = primary nucleation constant, M = suspension density, b = suspension density 
exponent and s = secondary nucleation exponent. Supersaturation, SS (eq. 5), is calculated as the ratio 
of the ampicillin concentration in solution, [Amp], to the solubility value, S. Growth and nucleation 
rates, as well as supersaturation, vary as a function of time, t, in the batch crystalliser. 
 

G(t) = kG (SS(t) – 1)g (1)

J(t) = B1(t) + B2(t) (2)

B1 t  = kB1 exp –
B0

ln SS t 2  (3)

B2(t) = kB2 M(t)b (SS(t) – 1)s (4)

 SS(t) = 
Amp (t)

S(t)
 (5)

 
The suspension density is calculated via a mass balance on ampicillin between mother liquor 

(aqueous solution) and crystalline product (solid) phases (eq. 6), 
 

 M t  = msol Amp t0  – Amp t  (6)
 
where t0 = 0 is the batch start time and msol is the mass of the mother liquor solution. Crystallization 
kinetic parameters are summarized in Table 2. Nucleation and growth kinetic parameters for ampicillin 
crystallization have been regressed in the literature from a variety of experiments.18 Primary nucleation 
parameters (kB1, B0 in eq. 3) are regressed from induction time experiments under a variety of 
supersaturations, wherein supersaturation is rapidly induced by acid addition to a crystal-free solution 
of ampicillin (aq.) and the induction time is considered that taken to form nuclei (size range 0–10 μm); 
full details of the experiments are found in the literature.18 The regressed parameters kB1 and B0 showed 
good fit to experimental data, with a coefficient of determination R2 > 0.98 (experimental data and 
model fit visualized in Fig. 5 of Encarnación-Gómez et al.18). The remaining crystallization kinetic 
parameters (growth parameters kG and g in eq. 1, secondary nucleation parameters kB2, b and s in eq. 4) 
have been regressed via different seeded and unseeded experiments with varying initial supersaturations, 
initial pH and final pH for linear pH decrease. The full set of crystallization kinetic parameters replicated 
concentration profiles and final Mean Crystal Sizes (MCS) well. 
 

 
2.1.2. Ampicillin Solubility 
The extended Pitzer model20 is used to describe ampicillin solubility as a function of pH,  
 

Table 2: Crystallization kinetics model parameters.18 
Symbol Value Units 

kG 8.95×106 m min-1 
g 1.87  
B0 1.27  
kB1 5.0×109 # crystals (g kg-1)-1 min-1 
kB2 2.2×109 # crystals (g kg-1)-1 min-1 
b 0.60  
s 1.37  

log
S pH

S(pI)
 = pI  pH + log

1 + 10pH pKA1

1 + 10pI pKA1
 + log

1 + 10pH pKA2

1 + 10pI pKA2
 + 

2

ln10
λ S pI S pH  (7) 
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 λ = 
2πσ3NAρ

3
1

ε

kBT
 (8)

 
where constants ε, σ, pKA1 and pKA2 are taken from the literature for ampicillin solubility description = 
f(pH), kB is the Boltzmann constant, NA is the Avogadro number, ρ is the density of ampicillin and T is 
temperature; parameters for eqs. 7–8 are summarized in Table 3. The parameters presented on Table 3 
are used in eqs. 7–8 to calculate the solubility of ampicillin as a function of pH. Eq. 7 is an implicit 
function with respect to the solubility of ampicillin, solved numerically using the nonlinear equation 
solver fzero in MATLAB. The model accurately describes solubility as a function of pH; Fig. 2 
illustrates ampicillin solubility described by the extended Pitzer model as well as experimental data 
points from the literature.18,21,22 The solubility of ampicillin at the isoelectric point, S(pI), was regressed 
such that the model agreed with the published extended Pitzer model results (Table 3).18 
 
Table 3: Parameters for the extended Pitzer and solubility models at 298.15 K. 

Symbols Value Units Reference 
σ 5.42×10-10 m 18 
ε/kb 336.18 K 18 

pKA1 2.14 – 23 
pKA2 7.31 – 23 

pI (pKA1 + pKA2) / 2 = 4.725 – This work 
S(pI) 0.018 mol kg-1 This work 

 

 
Figure 2: Aqueous ampicillin solubility as a function of pH predicted by the extended Pitzer model.20  
 
2.1.3. Population and Mass Balance Equations 
The population balance equation for a batch crystalliser with no agglomeration or breakage is described 
by eq. 9, where n is the population density function, L, is the characteristic 1D crystal length (as growth 
is assumed linear). The assumption of 1D crystal growth is appropriate, as the ampicillin trihydrate 
crystal morphology is needle-like from the reported crystallization experiments.18 The boundary 
condition (eq. 10) is the nuclei population density, while the initial condition, n0 (eq. 11) is the initial 
population balance at time t = 0. For seeded crystallization, n0 is the population density of the seeds.  
 

∂n(t, L)

∂t
 = 

∂ G t n t, L  

∂L
 (9)

n(t, 0) = 
J(t)

G(t)
 (10)

n(0, L) = n0 (11)
 

The solute mass balance is calculated as the change in suspension density, assuming that the volume 
of the crystals is much smaller than that of the mother liquor. 

5
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Rudolph et al., 2000
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d[Amp]

dt
 = 

dM 
dt

 (12)

 
The system of PDEs composing the population density functions are converted to a system of ODEs 

via the method of moments,24,25 often used to simplify crystallization population balance modelling in 
crystallization models. The moments of the distribution are calculated by eq. 13, integration of which 
leads to the system of ODEs containing crystallization kinetic terms (eqs. 14 and 15). The mass balance 
is then obtained from eq. 16 
 

mi = n t, L LidL

∞

0

 (13)

dm0

dt
 = J (14)

dmi

dt
 = iGmi–1 (15)

d Amp

dt
 = –kvρC

dm3

dt
 = –3kvρCGm2 (16)

 
where ρc is the crystal density (= 1.5 g cm-3) and kv the crystal volume shape factor (= 0.03).18 The 
system of ODEs describing the population balance model is solved using MATLAB’s ODE solver 
ode113. 

The Mean Crystal Size (MCS) is calculated from the zeroth and first moments (eq. 17). 
 

 MCS t  = 
m1 t

m0 t
 (17)

 
Although implementing the method of moments presents a computationally simpler approach to 

crystallization modelling, the full crystal size distribution information is lost in the transformation. The 
standard deviation, STD (eq. 18), quantifies the width of the size distribution without its explicitly 
calculation; low values of STD correspond to narrow size distributions. Another metric often used to 
quantify the width of size distributions is the Coefficient of Variation, CV (eq. 19) 
 

 STD = 
m2 tf
m0 tf

–
m1 tf
m2 tf

2

  (18)

 CV = 
m2 tf  m0 tf

m1
2 tf

– 1 (19)

 
2.2. Dynamic Simulation 
Prior to formulation of a dynamic optimization problem for ampicillin crystallization, we first discuss 
and illustrate the experimentally demonstrated performances from the literature.18 Here, we consider 
three seeded ampicillin crystallization cases as performed in the literature, whose details are 
summarized in Table 4. Seeding a crystallization process is a simple method to control supersaturation 
in a batch crystallizer and to attain a specific mean crystal size and distribution width.26  

 
Table 4: Summary of experimentally demonstrated cases considered in this work. 
Parameter Case 1 Case 2 Case 3 
Seed Loading (wt%) 1.8 3.0 15.0 
pH0 7.09 7.01 6.84 
pHf 6.33 6.40 6.51 
ΔpH (hr-1) 1.50 1.40 0.60 
tf (hr) 4.23 5.83 25.00 
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Previous work by Encarnación-Gómez et al.18 performed three seeded batch ampicillin crystallization 
experiments with varying initial and final pH, rate of linear pH decrease, batch duration (tf) 
(implemented by the authors) and seeding concentration = {1.8, 3.0, 15.0} wt%.18 Fig. 3 shows the 
implemented pH trajectories, ampicillin (mother liquor) concentration profiles and crystallization 
performances (i.e., crystallization yield and MCS). The final batch time, tf, varies significantly between 
cases; thus, the time domains have been normalised with respect to final batch times for each case, 
which are also shown in Fig. 3. The presented results use the crystallization model equations described 
in sections 2.1–2.3 and have been validated vs. the original model results.18 
 

 
Figure 3: Dynamic simulation results for seeded cases from the literature. 
 

Fig. 3 shows that when seeding concentration and initial concentration are high and when the pH 
change is slightly lower (Case 3 vs. 1 and 2), crystallization yield increases by nearly 10%, while MCS 
only varies within a range of 5 μm (60–65 μm). The effect of different experimental conditions on the 
size distributions are not discussed as experimental data was not provided in the original work, nor can 
they be gained from the model equations (i.e., moments), as described previously. The calculated 
concentration profiles are exactly those in the literature as per the model equations and agree with the 
experimental data as per reported experimental results (Fig. 11 in Encarnación-Gómez et al.18). 
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Experimental results for CSD are not reported in the literature, but modelled final MCS values agree 
with experimental values with relative errors of –0.12% for Case 1 and –16.56% for Case 3 (the final 
experimental MCS value for Case 2 was not reported in the literature). These errors agree with the 
modelled result discrepancies reported in the literature.   

The pH profiles investigated in the experiments in the literature are linear only and do not consider 
other dynamic trajectories which could lead to enhanced process benefits, e.g., higher yields, larger 
MCS, lower CV etc.27 Control (pH) trajectory optimization for different objectives has not yet been 
implemented in the literature for ampicillin crystallization and could yield process benefits over the 
experimental demonstrations described here. Thus, dynamic pH optimization as per the methodology 
described in section 2.4, is implemented. 
 
2.3. Dynamic Optimization 
2.3.1. Problem Formulation 
The purpose of dynamic optimization is to establish a control variable trajectory as a function of time 
to meet some objective regarding the system state variables. This work considers the dynamic 
optimization of the batch seeded crystallization of ampicillin by manipulation of the pH trajectory over 
the batch duration. Generally, large mean crystal sizes and narrow size distributions are desirable crystal 
product quality attributes prior to further downstream processing. In this work, we aim to maximize 
MCS while simultaneously minimizing the width of the crystal size distribution, quantified by STD. 
This is implemented by considering the objective function as the minimization of a weighted sum of 
STD and MCS, with associated weights WSTD and WMCS. Values of STD and MCS are scaled by 1010 and 
106, respectively, in the objective function formulation to ensure they are of the same order of magnitude 
to ensure ease of convergence and numerical stability. Imposed constraints on the problem are also 
defined. 
 

min
pH t ,tf

f (x, tf) = WSTDSTD WMCSMCS  (20)

7 ≤ pH(t0)  (21)

5.5 ≤ pH(t) ≤ 8.0 (22)

[Amp](tf) ≤ [Amp]target (23)

1 < SS(t) (24)
 
The first constraint (eq. 21) ensures the initial pH value is greater than 7.0 to ensure sufficient 

supersaturation at the beginning of the batch duration. The second constraint (eq. 22) ensures pH is not 
too low (leading to ampicillin degradation) or high (leading to undesirable non-trihydrate ampicillin 
polymorphs). Ampicillin has limited chemical stability at pH ≤ 5, below which degradation products 
are formed.28 Batch enzymatic reactor effluents for ampicillin synthesis are typically round pH = 6.0–
6.5.29,30 It is preferred that ampicillin crystallization occurs at pH < 8 to ensure it crystallizes in the 
desired trihydrate polymorph31 and to avoid excessive supersaturations inducing uncontrolled 
nucleation resulting in broad size distributions. The third constraint (eq. 23) ensures that a minimum of 
a target amount of ampicillin has been crystallised from solution, which varies between the considered 
experimental cases; considered values and their corresponding crystallization yields are shown in Table 
5. Considered crystallization yields are comparable with those attained in experimental 
demonstrations;18 moreover, we consider a range of crystallization yields to quantify tradeoffs between 
yield and MCS and CV. The fourth constraint (eq. 24) ensures crystallization occurs by maintaining 
sufficient supersaturation (interior point constraint). The average seed crystal size used in this work is 
Lseed = 74.0 μm as per the experimental demonstration in the literature. 
 
Table 5: Different product ampicillin concentration constraints and batch durations for each case.  

Case 1 2 3 
Seeding (wt%)18 1.8 3.0 15.0 
[Amp](tf) (g kg-1) {6.6, 6.8, 7.0, 8.0, 9.0} {6.6, 6.8, 7.0, 8.0, 9.0} {11.0, 9.0, 7.5, 6.9, 6.7, 6.5} 

Yield (%) {41.6, 39.8, 38.1, 29.2, 20.4} {41.9, 40.1, 38.4, 29.6, 20.8} {53.6, 52.1, 50.7, 46.4, 35.7, 21.4} 
tf (min) 250 350 1,500 
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2.3.2. Solution Method 
In this work, a direct method for dynamic optimization (simultaneous strategy) has been performed. 
Orthogonal polynomials on finite elements were used to approximate the control (pH) and state 
(moments and ampicillin concentration) trajectories allowing the continuous problem to be described 
as a Nonlinear Programme (NLP). The state trajectories (moments and ampicillin concentration) are 
described by eqs. 13–16, which encompass the solubility trajectory (= function of implemented pH 
control profile), crystallization kinetics and population and mass balance equations. The dynamic 
optimization has been performed using the DynOpt package for MATLAB.32 Control and state variables 
are discretized via Lagrange polynomials, the coefficients of which become decision variables to a 
larger NLP problem. Differential equations are converted into algebraic equations using collocation on 
finite elements. The final NLP problem consists of the converted ODEs, continuity equations for the 
state variables and any other equality and inequality constraints that may be required. The problem is 
then solved using an NLP solver; the NLP solver used in this work is MATLAB’s fmincon. The 
dynamic batch crystallization process is described by a highly non-convex and nonlinear system of 
differential algebraic equations. The dynamic optimization solver is a local solver and does not 
guarantee global optima for any of the presented cases. 

A graphical representation of the model is provided in Fig. 4. The time interval t is discretized into 
different ti segments with each being of a length Δti, u(t) is the control variable and x(t) is the state 
variable matrix. The real value of x(t) with regards to the changing control variable is presented as a 
solid curve. In DynOpt, x(t) is approximated over each element i, ti ≤ t ≤ ti+1 by a Lagrange polynomial. 
The approximation xKx(t) is a (Kx+1) degree polynomial, where Kx is the number of collocation points. 
The same principle can be applied to u(t) where it is approximated by uKu(t), a Ku degree polynomial, 
where Ku is the number of collocation points. In Fig. 4 three collocation points xi,1–3 are depicted for the 
state variable and two points xi,0 and xi+1,0 at the bounds of the time interval are specified. This amounts 
to five points in total, between which a fourth order polynomial can be approximated. The locations of 
the collocation points are the shifted roots of Legendre polynomials. For uKu only the collocation points 
are used, as a result these profiles are constrained or bounded only at the collocation points. If Ku = 1, 
the control variable is constant in each time interval, i.e. a Piecewise Constant (PWC) control profile. 
If Ku = 2 the control variable is approximated with a line meaning a Piecewise Linear (PWL) control 
profile. In order to verify the accuracy of the approximation of the state variables (which depends on 
the model and degree of discretization), after the optimized profile for the control has been specified, it 
is advantageous to solve the model using that profile with an ODE solver and verify the accuracy of the 
DynOpt approximation. 
 

 
Figure 4: Graphical representation of the method of orthogonal collocation on finite elements. 
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2.3.3. Optimization Problem Structure 
In order to improve the accuracy of DynOpt the analytical derivatives of the ODEs, constraints and 
objective function were provided to the problem model. The time domain is discretized into N = {10, 
20, 30} intervals. Three collocation points were used to approximate the state variables, while one 
collocation point was used for the control (pH) variable, i.e., PWC control trajectories. Each case was 
initialized at a constant pH of 7 across the whole trajectory. Certain instances with constant pH = 7 
initialization lead to non-convergence, in which cases an initialization profile of constant pH = 6 is used. 

The state variables (i.e., the moments and ampicillin concentration) of the considered system 
significantly vary in magnitude. Scaling of each moment was implemented as per eq. 25. 
 

mi = 
mi

pi

  (25) 

 
where mi is the scaled ith moment, and pi is the corresponding scaling parameter. The scaling parameters 
used for each moment are p0 = 109, p1 = 105, p2 = 1, p3 = 10-4. 

In order to ensure that the calculated quality attributes and [Amp](tf) correspond to realistic values 
for the state variables, every optimized pH profile was used to simulate the model in MATLAB. 
Dynamic optimization problems were compared versus simulations using the solution profiles to see if 
the NLP approximation of the problem was sufficient; in the cases where the approximation was 
insufficient, the optimization was recomputed using KX = 6 collocation points for the state variables. In 
some cases of tighter constraints on final ampicillin concentration in solution, the optimization struggled 
to converge, in which case the system was initialized at a constant pH = 6. Such cases of differing 
initialization are highlighted in the results section. 

Objective function weights of [WSTD WMCS] = {[1.0 0.5], [1.0 1.5]} are also considered. Additionally, 
the effect of the time discretization, N = {10, 20, 30} is considered; varying N changes the number of 
equispaced time segments in which the pH is piecewise constant. With three experimental cases, each 
with three discretization levels, each with two combinations of objective function weights for five 
crystallization yield cases, the total number of optimization problem instances = 3×3×2×5 = 90. 
 
3. Results and Discussion  
3.1. Optimal Control Trajectories 
PWC profiles between discrete time points were computed in order to investigate the effect of different 
objective function weight parameters and the degree of discretization. Three options of discretization 
levels, N = {10, 20, 30}, have been considered and different combinations for the weights of the 
objective function have been tested: WSTD = 1.0 and WMCS = {0.5, 1.5}. Figs.  5–7 show the optimal pH 
(control), SS and MCS profiles over the batch duration for different cases (seed loading, N). Figs. 5 – 7 
only show results for certain [Amp]target endpoint constraints and WMCS = 1.5; control and state 
trajectories for the full set of conditions listed in Table 5 are provided in the Supporting Information. 

Optimal pH, SS and MCS profiles for different N for Case 1 are shown in Fig. 5. For lower 
crystallization yields (i.e., higher target ampicillin solution concentrations), the general form of the pH 
profile is a drop in pH near the beginning, followed by an increase and then a drop towards the end of 
the batch duration. This form of pH (control) profile results in a high supersaturation at the start of the 
batch, followed by a decrease and then another increase towards the end. The initial high SS value at 
the start of the batch promotes nucleation over growth. The subsequent low supersaturation allows 
nucleated crystals to grow in order to attain high MCS as per the defined optimization objective function. 
The final increase in supersaturation allows for further nucleation of crystals in order to increase the 
yield to meet the imposed concentration constraint. This results in MCS profiles which drop at the start 
(as many nuclei form, the MCS decreases) followed by an increase (due to growth dominating). As the 
target crystallization yield is increased, the resulting optimal control and state profiles change. The 
initial pH drop and increase in order to stimulate nuclei followed by growth, respectively, remain 
consistent trends with lower target crystallization yields; however, the final decrease in pH in order to 
enhance the yield occurs earlier. This behavior is caused by the need to crystallise more nuclei in order 
to meet the target yield. As a consequence, the MCS profiles begin to gradually decrease due to the 
formation of nuclei, although they are maintained at fairly high values and approximately the same as 
for cases with lower target crystallization yields. 
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Figure 5: Optimization results for Case 1. Objective function weights, WSTD = 1.0, WMCS = 1.5, no. state variable 
collocation points Kx = 3, initialization pH(t) profile = 7 (*: initialized at constant pH(t) = 6. **: Kx = 6). 
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Figure 6: Optimization results for Case 2. Objective function weights, WSTD = 1.0, WMCS = 1.5, no. state variable 
collocation points Kx = 3, initialization pH(t) profile = 7. 
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When the weight on MCS in the objective function (WMCS) is increased from 0.5 to 1.5 (see 
Supporting Information), control and state profiles maintain the same general form but contain some 
slight differences. For higher MCS weights, the same pH drop towards the end of the batch run is 
observed, but the magnitude of the drop is not as great, i.e., the pH is not dropped to as low a value as 
when WMCS = 0.5 (Fig. 5). This result is observed as when MCS is given greater importance in the 
objective function (i.e., higher WMCS), a lower drop in pH promotes nucleation less, i.e., forms fewer 
nuclei and allows for a higher MCS. This effect is also observed in the generated MCS evolution profiles, 
where the final MCS is higher. 
Increasing N increases the number of equispaced time segments in which the pH is piecewise constant. 
The lowest discretization (N = 10) is sufficient to capture the general behaviour as higher discretization 
levels, but not the more detailed fluctuations established as optimal by the dynamic optimization solver. 
The choice of N should also account for feasible control responses implementable in practical 
application, i.e., how fast pH can be varied by controllers in reality.  

The step-size (Δt) in the implemented dynamic optimization varies between different cases (which 
have different final time durations, tf, listed in Table 5 of the revised manuscript) and considered 
discretization level, N = {10, 20, 30}, but is not considered as a decision variable. Considering Δt as a 
decision variable increases problem complexity and may allow further artificial improvement of the 
objective function, but it is also critical to remark that below a certain value (equal to the fastest intrinsic 
timescale of the process, as per the concurrent mass, momentum and reactive transport phenomena), 
unrealistically short timesteps are inoperable, due to the inherent thermal/mass transfer inertia of 
bioreactors and fermentors (cf. relevant remarks in prior studies, Rodman & Gerogiorgis, 2016-19). 

Addition of pH dynamic equations to the model can allow for a comparison with the immediate pH 
response assumption. Varying weights on the MCS component of the objective function have also been 
considered. Generally, the same trends and optimal system manipulations and behaviors are observed. 
An objective function considering both MCS and STD are important, as both are essential quality 
attributes in pharmaceutical crystalline products. The weighted objective used in this work for 
minimization is formulated for the purposes of a multiobjective optimization, i.e., maximization of MCS 
and minimization of STD, using a single function. Other options may also be implemented for bicriteria 
optimization problems, e.g, ε-constraint approaches, wherein one objective can be considered as a 
constraint while the other is solved to optimality.33 Such approaches avoid potential arbitrarity in 
selecting objective function component weights a priori. Nevertheless, the method implemented in this 
work is valid for formulation of a bicriteria objective function which captures two essential attributes 
of pharmaceutical solid products. 

Optimization results for Case 2 are shown in Fig. 6. For both WMCS values considered, the pH drop 
towards the end of the batch duration is observed later than in Case 1. The likely cause of this is the 
higher seed loading; the yield is enhanced by increased seed loading and thus fewer nuclei are needed 
to meet the specified yield constraint. The attained crystallization yield is calculated from the final 
solute concentration in the product solution vs. that fed in the crystal-free feed mother liquor. It is 
observed that the attained crystallization yield is high for cases with higher seed loading. Other trends 
observed are as per Case 1. 

Optimal trajectories of pH, SS and MCS for Case 3 are shown in Fig. 8. In all cases, a pH drop is only 
implemented towards the end of the batch duration. This is likely a consequence of implementing a 
significant seed loading (15 wt%) compared to Cases 1 and 2. As the seed loading is very high, the 
crystallization yield is already high and thus crystal growth is more important that generating new nuclei 
in this case (as per the objective function). The MCS evolution generally decreases over time, with some 
cases having the final MCS value lower than the average seed crystal size; this result highlights the need 
for selection of appropriate seed loading and average seed crystal sizes as well as pH profile selection 
for optimal batch crystallization process design. Investigating seed size selection and dynamic seeding 
optimization may yield more materially efficient operating policies for ampicillin crystallization.26 

Unless otherwise highlighted in Figs. 5–10, optimization runs were performed using Kx = 3 
collocation points with an initially constant (i.e., non-dynamic) pH = 7. Certain problem instances 
required Kx = 6 collocation points in order to converge due to the higher accuracy/greater degree of 
approximation of the ODEs to algebraic equations; of course, this increase in accuracy is at the cost of 
more expensive computations and longer run times. The effect of initialization strategies on the optimal 
solutions may also be investigated to a greater degree and more systematically in future work. 
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Figure 7: Optimization results for Case 3. Objective function weights, WSTD = 1.0, WMCS = 1.5, no. state variable 
collocation points Kx = 3, initialization pH(t) profile = 7. 
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The currently implemented model assumes that pH change in the crystalliser mother liquor mixture 
is instantaneous, i.e., there is no explicit pH variation ODE incorporated into the dynamic model which 
accounts for a lag in change due to mixing of acid/base into solution. Incorporation of such a model 
will lead to different solutions than those presented here for different considered scenarios. The 
presented optima also assume that rapid monitoring is available; implementation of Process Analytical 
Technology (PAT) for rigorous control and analysis has been demonstrated in numerous publications 
in the literature and should be used wherever possible.34–36 

The mother liquor solution fed to the crystallizer only considers ampicillin being crystallised without 
any impurities which will inherently be present in practical applications, e.g., a crystallization operation 
following synthesis of the antibiotic. Considering the effects of impurities on crystallization 
performance requires data on component partitioning between mother liquor (liquid) and crystalline 
product (solid) phases, or explicit crystallization kinetics for the impurity components themselves as 
well as those for the desired antibiotic molecule.13 One method of circumventing impurity accumulation 
and solvent occlusion in the crystalline produce is reactive crystallization, a form of process 
intensification which has been implemented in the literature for β-lactam antibiotic molecules and other 
pharmaceutical compounds.37–39 Reactive crystallization requires that the ratios of reaction to mass 
transfer and crystallization be ensured such that the mixture supersaturation is not so high as to result 
in excessive nucleation and thus wide size distributions.27 
 

 
Figure 8: 3D Pareto front of the multiobjective optimisation problem for all cases. 
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3.2. Pareto Fronts 
A Pareto front represents a set of non-dominated solutions in a multiobjective optimization problem, 
where non-dominated solutions are those where no single objective can be improved without sacrificing 
at least one other objective. Comparison of Pareto fronts for different manufacturing scenarios are useful 
for visualisation and elucidation of the nature of trade-offs in multiobjective optimisation problems.40–

42 Pareto fronts of the attained ampicillin concentration with respect to MCS and CV are developed to 
quantify, visualise and highlight trade-offs between different product quality attributes of the batch 
ampicillin crystallization process. In Fig. 8, the 3D Pareto fronts for different seeded crystallization 
cases is presented, with 2D representations of the Pareto front from different perspectives ([Amp](tf) vs. 
MCS and [Amp](tf) vs. CV) shown in Figs. 9 and 10. Figs. 8–10 show non-dominating solutions from 
the MCS vs. CV 2D Pareto front (Fig. 12) highlighted in red, with dominated solutions in blue. 
 

 
Figure 9: 2D Pareto front of the multiobjective optimisation problem for all cases: MCS vs. CV. 

 
In Fig. 8, it is observed for lower seeding concentrations (i.e., Cases 1 and 2) that attained MCS and 

CV values are higher and lower, respectively, than for higher seed loading cases (Case 3). For Case 3, 
in some (dominated) cases the final MCS attained is lower than the seed crystal size; a possible method 
for mitigating this in the optimization problem formulation is to specify that the MCS should be larger 
than the seed size via an additional constraint to the problem. It is also observed for Case 3 that there is 
not as evident a tradeoff between yield and MCS or CV. As mentioned previously, investigating the 
effect of intermediate seed loadings and the effect of dynamic seeding policies will help to further our 
understanding of the process. However, the main purpose of this work was to establish novel optimal 
pH control profiles for product quality attribute (size and distribution width) optimisation subject to 
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various yield constraints for comparison with experimental demonstrations of different seeded 
crystallisation cases for ampicillin. 

Fig. 9 shows 2D projections of MCS vs. CV from the 3D projections in Fig. 8 for different cases 
considered. It is desirable to have a high MCS but low CV (i.e., narrow size distribution); it is seen from 
Fig. 9 that only a small number of the non-dominated solutions from Fig. 8 are non-dominated with 
respect to MCS and CV for all cases. For lower seed loading cases (1 and 2), the front of high MCS / 
low CV generally allows for better values in both objectives compared to Case 3, which has a higher 
seed loading. Trade-offs in these objectives and required values depends on the implemented 
downstream unit processes for ampicillin. Ampicillin is most commonly administered orally and so 
considerations of the effect of downstream processes on drug product dissolution kinetics and 
bioavailability are an important consideration. 

In Fig. 10, the observed Pareto fronts show the tradeoff between the considered performance metrics. 
Evidently, increasing the crystallization yield (i.e., decreasing the final ampicillin concentration in 
solution) is at the expense of a wider size distribution (i.e., a higher CV) and vice versa. This trend is a 
result of the fact that high yields require high nucleation vs. growth rates, which results in lower MCS 
and wider distributions. The gradient of the front is important in choosing an operating point; where the 
slope is shallow represents areas where reductions in CV (desirable) can be made without significant 
detriment to the crystallization yield. The pH profiles for labeled non-dominated solutions are also 
presented. The required MCS is dependent on downstream unit operations for formulation; additional 
information on specific requirements will narrow the number of feasible optimal operating points. 

 

 
Figure 10: 2D Pareto front projections for different cases. 
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4. Conclusions 
This work implemented dynamic optimization results for the batch crystallization of ampicillin via pH 
control. A recently published crystallization model describing ampicillin solubility, crystallization 
kinetics and population and mass balances was implemented. Dynamic simulations were conducted for 
design space investigation prior to dynamic optimization of different batch crystallization processes. A 
dynamic optimization problem for an objective function weighted in both the mean crystal size and size 
distribution width subject to different yield constraints was then formulated and solved for different 
seeded crystallization cases implemented in the literature. Optimization results show an initial pH drop 
(i.e. higher supersaturation) is necessary to induce primary and secondary nucleation, with a subsequent 
increase in pH (lower supersaturation) to promote growth of the formed nuclei. Then an intermediate 
phase is observed where is pH gradually decreased, the magnitude of which depends on the target yield 
of the crystallization process. This form of control profile allows for controlled supersaturation to 
enhance crystal growth. At the end of the intermediate phase a final pH drop is observed, forcing more 
product to crystallise in order to achieve the yield constraint whilst maximizing the quality attributes 
forming the optimization objective function. Future work can also consider the amount of seeding as a 
dynamic control variable to further elucidate optimal dynamic control profiles to meet different 
production specifications of ampicillin production. 
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Nomenclature 
Acronyms 
API Active Pharmaceutical Ingredient 
COBC Continuous Oscillatory Baffled Crystallizer 
CSD Crystal Size Distribution 
CV Coefficient of Variation 
FDA Food and Drug Administration  
MCS Mean Crystal Size 
MSMPR Mixed Suspension, Mixed Product Removal 
NLP Nonlinear Programming 
ODE Ordinary Differential Equation 
PDE Partial Differential Equation 
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PFC Plug Flow Crystallizer 
PWC, PWL Piecewise Constant, Piecewise Linear 
WHO World Health Organization 
 
Variables 
Latin Letters 
[Amp]0 Concentration of ampicillin in the mother liquor at t0 (g kg-1) 
b Secondary nucleation mass exponent (−) 
B0 Primary nucleation constant (−) 
B1, B2 Primary, secondary nucleation rate (# crystals  (g kg-1)-1 min-1) 
f Optimization objective function 
G Crystal growth rate (m min-1) 
g Growth rate exponent (−) 
J Total nucleation rate (# crystals  (g kg-1)-1 min-1) 
KA1, KA2 Acid, Amine protonation equilibrium constant 
kB Boltzmann constant (m2 kg s-2 K-1) 
kB1, kB2 Primary, secondary nucleation rate constant (# crystals  (g kg-1)-1 min-1) 
KD Equilibrium constant of neutral ampicillin molecules  
kG Growth rate constant (m min-1) 
KU, Kx Number of control, state variable collocation points (−) 
kV Crystal volume shape factor (−) 
L Characteristic crystal length (m) 
Lseed Average seed crystal characteristic length (m) 
M Crystalliser suspension density (g kg-1) 
mi ith moment of the population balance 
msol Mass of solution (kg) 
n Population density (# crystals m-1 g kg-1) 
N Number of discretized time intervals (−) 
NA Avogadro number (mol-1) 
n0 Initial population density (# crystals m-1 g kg-1) 
pi Scaling parameter for moment i (−) 
pH(t) pH value at time t (−) 
pI Isoelectric point of ampicillin (−) 
R2 Coefficient of determination 
S Solubility of ampicillin in water (g kg-1) 
s Secondary nucleation supersaturation exponent (−) 
SS Ampicillin supersaturation in the mother liquor (−) 
STD Size distribution standard deviation 
t Time (min) 
tf Batch duration (min) 
t0 Initial time point = 0 (min) 
T Temperature (K) 
u(t) Control variable  
Wj Weight on variable j in the objective function 
x(t) State variables 
  
Greek Letters  
ε  Van der Waals attractive interaction parameter (m2 kg s-2) 
λ Pitzer binary interaction parameter (kg mol-1) 
ρc Ampicillin crystal (kg m-3) 
σ Van der Waals diameter (m) 
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