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Abstract 

 

BACKGROUND AND AIMS The non-medical use of over-the-counter or prescribed 

analgesics (NMUA) is a significant public health problem. Little is known about the genetic and 

environmental etiology of NMUA and how these risks relate to other classes of substance use 

and misuse. Our aims were to estimate the heritability NMUA and sources of genetic and 

environmental covariance with cannabis and nicotine use, cannabis and alcohol use disorders and 

nicotine dependence in Australian twins. 

 

DESIGN Biometrical genetic analyses or twin methods using structural equation univariate and 

multivariate modeling. 

 

SETTING Australia. 

 

PARTICIPANTS 2,007 young adult twins (66% female; µage=25.9, SD=3.6, range=18-38) from 

the Brisbane Longitudinal Twin Study retrospectively assessed between 2009 and 2016. 

 

MEASUREMENTS Self-reported NMUA (non-opioid or opioid-based), lifetime nicotine, 

cannabis and opioid use, DSM-V cannabis and alcohol use disorders and the Fagerström Test for 

Nicotine Dependence. 

 

FINDINGS Lifetime NMUA was reported by 19.4% of the sample. Univariate heritability 

explained 46% (95% CI = 0.29-0.57) of the risks in NMUA. Multivariate analyses revealed that 

NMUA is moderately associated genetically with cannabis (rg=0.41) and nicotine (rg=0.45) use, 

and nicotine dependence (rg=0.34). In contrast, the genetic correlations with cannabis (rg=0.15) 

and alcohol (rg=0.07) use disorders are weaker.  

 

CONCLUSIONS In young male and female adults, the non-medical use of over-the-counter or 

prescribed analgesics (NMUA) in Australia appears to have moderate heritability. NMUA is 

only moderately associated with cannabis and nicotine use and nicotine dependence. In contrast, 

it is largely etiologically distinct from the genetics of cannabis and alcohol use disorders.  

 

 

 

 

 

Key words: non-medical use, over-the-counter, prescribed analgesics, twin, gene, comorbidity, 

substance use  

  



Introduction 

The non-medical use of over-the-counter or prescribed analgesics is one of the fastest growing 

drug trends in the U.S. (1-3). However, very little is known about the sources of individual 

differences in this emerging class of substance use or how these differences relate to the genetic 

and environmental risks that are known to predict other major classes of substance use and 

misuse.  

 

The non-medical use of either prescribed or over-the-counter analgesics (NMUA) is a clear 

public health threat. In the U.S., deaths related to NMUA now exceed those for all other illicit 

substances including cocaine and heroin, and continue to increase (4). Between 1993 and 2005 

the prevalence of the non-medical use of prescribed opioids among U.S. college students 

increased by 343% (5). Among the 1.2 million emergency department visits in the U.S in 2009 

involving nonmedical use of pharmaceuticals or dietary supplements, approximately 50% 

involved the nonmedical use of prescribed opioid-based analgesics (6). In Australia in 2016, 

prescribed and over-the-counter analgesics were the most commonly misused pharmaceuticals in 

the past 12 months, which made this class the second most illicitly used substance after cannabis 

(7). The non-medical use of opiate or non-steroidal analgesics is associated with a variety of 

negative physical effects including, tachycardia, seizures, agitation, dependence, and death (8, 9). 

In terms of comorbid substance use, the non-medical use of prescribed opioids has been linked to 

the risk of transitioning to other classes of illicit SU and SUDs (10-13).  

 

Despite these trends and consequences, the genetic epidemiology of this class of substance use 

remains completely unknown. Specifically, the degree to which the genetic risk factors 

underpinning comorbid licit and illicit substance use and misuse are also responsible for 

individual differences in NMUA remains to be determined.  

 

We hypothesize that familial aggregation in the NMUA will be largely explained by genetic risks 

and that these risks will be correlated with the genetic risks in other forms of licit and illicit 

substance use including opioid use as well as common classes of substance use disorders 

involving cannabis, alcohol and nicotine. These predictions are based on widely accepted 

findings showing heritability estimates ranging from 40-70% across substances (14-17), along 

with evidence that genetic risks in licit and illicit substance abuse or dependence, at least in 

males, are largely common across substances (18, 19) and indeed are shared more broadly with 

the spectrum of externalizing psychopathology (20, 21). Although evidence supports two distinct 

genetic risk factors underpinning individual differences in substance use disorders (22) with one 

predisposing to illicit (cannabis and cocaine) and the other to licit (alcohol, caffeine and nicotine) 

drug dependence, both factors are highly correlated (22) and recent studies demonstrate 

moderate to high genetic correlations between licit and illicit abuse and dependence disorders in 

both males and females (23). And because of the degree of shared genetic risks between licit and 

illicit substance use despite their diverse pharmacology (18, 19), we hypothesize that the genetic 

correlation between NMUA and common classes of substance use and misuse will be high.  

 

The degree to which environmental risk factors related to NMUA are shared with other drug 

classes is unclear. Quantifying heritability and establishing if the genetic and environmental 

pathways leading to NMUA are linked to other major classes of substance use and misuse will 

provide valuable insight into the aetiology of NMUA, which may, in turn, inform future 



intervention and prevention programs.  

 

Aims 

This report has two aims. The first is to estimate the contribution of genes and environment to 

the NMUA. This includes determining if there are significant sex differences in the prevalence of 

use, including sex differences in the relative proportions of genetic and environmental risks. The 

second aim is to determine if the genetic and environmental risks in lifetime cannabis and 

nicotine use are correlated with NMUA. This aim will also determine if the genetic and 

environmental risks in cannabis use disorder, nicotine dependence, and alcohol use disorder are 

likewise correlated with NMUA.  

 

Methods 

Participants 

The sample consists of male and female adult twins from the ongoing and population-based 

Brisbane Longitudinal Twin Study (BLTS) (24-26). Participants are of European ancestry, 

predominately Anglo-Saxon, who were ascertained beginning 1992 to study melanocytic naevi, 

and have since been followed up on multiple occasions. The BLTS is a longitudinal, 

phenotypically rich collection of psychiatric phenotypes, environmental and psychological risk 

factors, and neurobiological correlates of psychiatric disorders (24-26). The sample comprises 

2,900 twins (including 700 siblings and 2,100 parents) with assessments at 12, 14, 16, and 21 

years. Typical response rates across the BLTS projects since 1992 range from 73% to 85% (24-

26).  

 

BLTS data for this report come from the 19UP Project (66% female; µage = 25.9, SD=3.6, 

range=18-38) collected between 2009-2015 and which relied on a combination of telephone and 

online self-report surveys to assess SU and SUDs (25-27). The 19UP was a US National Institute 

on Drug Abuse (NIDA) and Australian National Health and Medical Research Council 

(NHMRC) funded project to study the pathways to cannabis use and misuse (25, 26), comorbid 

substance use and misuse, internalizing and externalizing disorders along with a wide array of 

general health, behavioural, and lifestyle measures (27).  

 

Measures 

The non-clinical data used to test our hypotheses included lifetime nicotine, cannabis and opioid 

use (e.g. heroin morphine, methadone, codeine, etc.), as well as the non-medical use of over-the-

counter or prescribed analgesics (NMUA). NMUA included codeine-based and nonsteroidal 

anti-inflammatory drugs (e.g. cough medicine, acetaminophen, codeine phosphate hemihydrate, 

doxylamine succinate, ibuprofen, acetaminophen, acetaminophen & codeine phosphate 

hemihydrate, codeine, hydrocodone etc). Non-medical use was defined as substances not taken 

in quantities or in a manner prescribed by a medical practitioner. All four lifetime use measures 

were assessed as dichotomous outcomes beginning with the phrase ‘In your life, have you ever 

used [substance]’. Alcohol use was not included because the lifetime prevalence was 98% at the 

time of assessment.  

 

Diagnostic data included criteria for the Fagerström Test for Nicotine Dependence (FTND) (28), 

DSM-V Alcohol Use Disorder and DSM-V Cannabis Use Disorder (CUD) (marijuana, hashish, 

‘THC’ or ganja) (29). All three diagnoses were based on the period(s) when subjects reported 



using each substance the most. Subjects answered the AUD psychiatric criteria only if they 

endorsed having consumed 5 (males) / 4 (females) or more drinks at least once a week for one 

month or more. Subjects answered the CUD psychiatric criteria if they endorsed having smoked 

cannabis 6 or more times lifetime or 11 or more times in a month. Finally, subjects answered 

FTND psychiatric criteria if they reported having smoked 100 or more cigarettes lifetime.  

 

In order to avoid sparse data and improve computational efficiency when using raw ordinal data 

methods, we recoded the AUD, CUD and FTND criteria sum scores. The total AUD and CUD 

criteria were recoded onto 3-point ordinal scales (0-1, 2-3,4), which combined the DSM-V 

categories of ‘moderate’ and ‘high’. The total FTND criteria were also recoded onto a 3-point 

ordinal scale (0-1, 2-3,4). Here, we combined (i) ‘low’ and ‘low to moderate dependence’ and 

(ii) ‘moderate dependence’ and ‘high dependence’. 

 

For the FTND and CUD diagnoses, nicotine and cannabis non-users were excluded and their 

diagnosis coded as missing. Our rationale was based on the possibility that non-users are 

potentially heterogeneous and comprise individuals with varying degrees of environmental risk 

(including exposure opportunities) and levels of genetic liability that cannot be accurately 

assessed here. Recoding non-users to ‘zero’, instead of missing, falsely assumes that knowledge 

of an individual’s diagnosis status can be known in the absence of self-reported data on either the 

use or exposure to a substance. Assigning non-users to zero inflates the denominator in 

prevalence estimates, thereby altering not only the item threshold but all subsequent variance-

covariance estimates. Although only 1.7% of the sample (N=34) reported no lifetime alcohol use, 

the same procedure was followed for AUD.  

 

Among the N = 2,773 twins eligible to participate in the 19UP Project, N = 2,007 (72%) 

provided complete responses to the non-medical use of analgesics item for lifetime use. This 

included 214 complete and 56 incomplete same-sex MZ female twin pairs, 132 complete and 86 

incomplete same-sex MZ male twin pairs, 157 complete and 37 incomplete same-sex DZ female 

twin pairs, 97 complete and 66 incomplete same-sex DZ male twin pairs, and 216 complete and 

130 incomplete opposite-sex MZ female twin pairs. 

 

Statistical analyses 

Prevalence and measures of association 

The prevalence of the non-medical use of analgesics, along with pairwise polychoric correlations 

between all the above binary and ordinal measures of substance use and misuse were calculated 

using the Full Information Maximum Likelihood (FIML) raw data method using the OpenMx 

software package (Version 2.9.9.1) (30) in R (Version 3.4.1) (31). We did not use Weighted 

Least Squares (WLS) since considerably larger samples are required to arrive at reliable weight 

matrix estimates (32). Given the numbers of incomplete twin pairs (see Supplement Table S2), 

WLS would result in significant listwise deletion thereby altering the accuracy of the threshold 

estimates. The raw ordinal data FIML option (30) has the advantage of not only being more 

robust to violations of non-normality. Critically, FIML enables the analysis of missing or 

incomplete data as well as the direct estimation of covariate effects e.g. age and sex, on the item 

thresholds. More accurate thresholds improve the estimation of the polychoric correlations. 

Polychoric correlations were first proposed by Pearson (33, 34). They are based on the central 

limit theorem of theoretical statistics, which assumes that underlying an observed binary or 



ordinal variable, there exists a continuous, normally distributed latent liability and that the joint 

distribution of each scale with the liability scales underlying other items is bivariate normal (35, 

36). Polychoric (or tetrachoric for binary or dichotomous variables) represent correlations 

between the underlying liability distributions rather than observed dichotomous or ordinal 

distributions. 

 

Burnham and Anderson have argued that choice between AIC and alternatives such as the 

Bayesian Information Criterion (BIC) should be determined by the philosophical context of what 

is assumed about reality (37). We have argued elsewhere that the advantage of AIC is its deep 

theoretical connections to cross-validation (38). Specifically, in large samples, the AIC is 

expected to select that model in the candidate set which minimizes the error of prediction in new 

samples of the same size from the population (where the error is based on a log-likelihood 

function) (38). Specifically, the AIC is expected to minimize the Kullback–Leibler (KL) 

divergence from full reality at the given sample size. A sensible objective of model selection is 

to choose the model that has the smallest KL divergence from full reality. The full reality, of 

course, is not known, and may not even be knowable. Indeed, a complete description of full 

reality would be infinitely long. If we accept the possibility that no statistical model can 

completely describe reality, then the premise of there being a ‘true model’ that generated the data 

becomes rather dubious. In summary, because full reality may be unknowable, we do not 

presume that the true model is knowable from our data and consequently, chose our fit index 

based on this philosophy. Rather than proposing to identify the true model, the AIC selects the 

best-approximating model based on an optimal balance of parsimony and model fit. 

 

Univariate twin modelling 

To test the hypothesis that familial aggregation in the non-medical (lifetime) use of analgesics is 

entirely explained by additive genetic risk factors, we fitted univariate biometrical genetic 

models (32) that exploit the expected genetic and environmental correlations between 

monozygotic (MZ) and dizygotic (DZ). Specifically, we fitted twin models using the Full 

Information Maximum Likelihood (FIML) raw ordinal data methods in the OpenMx software 

package (Version 2.9.9.1) (30) in R (Version 3.4.1) (31). This approach assumes that the 

categories in a binary or ordinal variable are imprecise indicators of a latent normal liability 

distribution. These categorical thresholds are conceived of as cut-points along a standard normal 

distribution that relate category frequencies to cumulative probabilities indicating increasing 

levels of risk. In OpenMx2.0 (39), thresholds can be adjusted for covariates such as age and sex. 

Based on the Classical Twin Design (32, 40), our method of univariate modelling also assumes 

that individuals differences in substance use or variance in an observed behaviour can be 

decomposed into additive (A) genetic, shared environmental (C), and non-shared or unique (E) 

environmental variance components (32, 40). Since MZ twin pairs are genetically identical and 

DZ twin pairs share, on average, half of their genes, the expected twin pair correlations for 

additive genetic effects are 1.0 and 0.5 respectively. An important assumption is that the 

common environments (C) are equal in MZ and DZ twin pairs and because non-shared 

environments (E) are uncorrelated, E necessarily includes measurement error. All models include 

the covariates of age and sex.  

 

The univariate A, C and E parameters were estimated using a ‘variance components’ or Direct 

Symmetric approach, which directly estimates a set of symmetrical variance components 



matrices (41). This approach may return nonsensical values in some situations (e.g. heritability 

estimates larger than 1, or non-positive definite covariance matrices). However, the absence of 

boundaries on the estimates (as in the pathway coefficients approach) yields asymptotically 

unbiased parameter estimates and corrects for Type I and Type II errors (41). 

 

Multivariate twin modelling 

To test the hypotheses that genetic risk factors in the NMUA are shared with common forms of 

licit and illicit substance use and misuse we fitted common and independent pathway models 

(see Figure 1) (Neale and Cardon, 1992) again using the OpenMx software package (Version 

2.9.9.1) (30) in R (Version 3.4.1) (31). In Figure 1, the reference model is the Cholesky 

decomposition (i) is a method of triangular decomposition where the first observed phenotypic 

measure is assumed to be caused by a latent factor (A1) that can explain the variance in the 

remaining variables. The second variable is assumed to be caused by a second latent factor (A2) 

that explains variation in the second as well as the remaining observed variables. This pattern 

continues until the final observed variable is explained by a latent variable which is constrained 

from explaining the variance in any of the previously observed variables. A ‘Cholesky 

Decomposition’ is specified for each latent source of additive genetic (A), shared environmental 

(C), and individual-specific environmental variance (E).  

 

The common pathway model (ii) predicts that a single, common latent liability to substance use 

or misuse, which can be decomposed into A, C, and E components of variance. The common 

pathway is ‘indicated’ by the strength of the factor loadings to each of the observed phenotypic 

measures. Residual variance or risks unique to each measure of substance use or misuse can be 

further decomposed into variable specific ‘as’, ‘cs’, and ‘es’ components. In contrast, the 

independent pathway model (iii) predicts that latent genetic and environmental risk factors each 

independently account for any observed comorbidity between the substance use and misuse 

phenotypes. For each aim, the best fitting model was determined based on an optimal balance of 

complexity and explanatory power using the Akaike’s Information Criterion (AIC) (27). For 

each best fitting model, the A and C parameters are successively fixed to zero and their 

significance determined using a likelihood ratio test.  

  

 Figure 1 here 

Error! Reference source not found.Table 1 here 

 

Results 

Prevalence of lifetime non-medical use of over-the-counter or prescribed analgesics (NMUA) 

Table 1 shows prevalence and age initiation for lifetime NMUA, cannabis, nicotine, and opioid 

use along with the age of onset for AUD, ND and CUD. Psychiatric criteria for AUD, ND and 

CUD were based on the period of heaviest use. The prevalence of lifetime NMUA was 

marginally higher among females (20.2% vs 18.4%). The prevalence of lifetime NMUA was 

lower compared to lifetime use of cannabis or nicotine, but higher than the lifetime prevalence of 

opioids. For males and females alike, the average age of NMUA initiation occurred after nicotine 

but before cannabis and opioid use. Finally, the prevalence of NMUA was marginally lower 

among males.  

 

Table 2 here 



 

Measures of association 

Among males and females, NMUA was correlated with lifetime opioid use (r=0.60-0.67) (see 

Table 2a). In contrast, the phenotypic correlations between NMUA and lifetime cannabis or 

nicotine use were smaller in males (r=0.26-0.29) and much smaller in females (r=0.10-0.15). As 

expected, the phenotypic correlations between cannabis and nicotine use were high. The 

correlations between opioid and cannabis (r=0.42-0.60) or between opioid and nicotine (r=0.39-

0.43) use were higher than the correlations between NMUA and cannabis (r=0.10-0.26) or 

between NMUA and nicotine (r=0.15-0.29) use. 

 

In terms of the associations between NMUA and substance misuse, NMUA did not correlate 

phenotypically very highly with AUD, ND or CUD (see Table 2b) with point estimates ranging 

from 0.15 to 0.32 among males and from 0.11 to 0.24 among females. In contrast, correlations 

between the three measures of substance misuse were moderate to high (r=0.43-0.72).  

 

Sex differences 

Before modelling the genetic aetiology of NMUA we first tested the significance of age and sex 

effects on the prevalence of each variable (see Supplement Table S1). Specifically, we tested age 

and sex effects on the mean latent liability. For NMUA, a model without any age and sex 

differences did not deteriorate significantly (2=1.97, df=2, p=0.37). Likewise, there were no 

sex differences in the prevalence of lifetime opioid use. In contrast, males were significantly 

more likely to report lifetime cannabis and nicotine use and be diagnosed with DSM-V alcohol 

use disorder, cannabis use disorder and nicotine dependence. Older subjects were also more 

likely to endorse lifetime cannabis, nicotine and opioid use, as well as receive a diagnosis of 

nicotine dependence. 

 

 

Twin pair correlations 

Monozygotic (MZ) and dizygotic (DZ) twin pair polychoric correlations including 95% 

confidence intervals based on combined male and female data with sex and age included as 

covariates are shown in the Supplement Table S2. For NMUA, the DZ twin pair correlation is 

approximately one-half of the MZ counterpart, which is consistent with the hypothesis that 

familial aggregation is entirely explained by additive genetic risk factors. For nicotine and opioid 

use as well as alcohol use disorder the DZ twin pair correlations did not exceed one-half of the 

MZ correlations suggesting familial aggregation attributable to additive genetic risks. In contrast, 

the DZ correlations for FTND and cannabis use disorder suggest familial aggregation attributable 

to a combination of shared environmental and additive genetic risks. Note however that the 95% 

confidence intervals for most of the twin pair correlations are wide.  

 

Univariate results 

When fitting univariate models to estimate the proportions of genetic and environmental risks in 

each variable, we first determined if the genetic (A) and environmental (C and E) risk factors 

could be constrained equal across sex (see Supplement S3). For NMUA, constraining these 

variance components did not result in a significant deterioration in model fit (2=6.13, df=3, 

p=0.11), which suggests that the relative contribution of these risk factors is unchanged with 

respect to sex. Likewise, for all remaining variables, there were no significant sex differences in 



the variance components. Henceforth, all male and female data were combined and modelled 

with age and sex effects on the variable means.  

 

Table 3 here 

 

Table 3 includes the standardized variance components based on each of the best fitting 

univariate models (see Supplement Table S4). With the exception of lifetime opioid use, all 

shared environmental risk factors could be removed from each univariate model without any 

significant deterioration in model fit. For lifetime NMUA additive genetic risk factors explained 

46% of the total variation. Relative to cannabis use, nicotine use, nicotine dependence and 

cannabis use disorder, the genetic risk factors for NMUA explained a much smaller proportion of 

the total variance. Instead, the remaining proportion of variance was entirely explained by non-

shared or random environmental risk factors including measurement error.  

 

For lifetime opioid use, neither the AE nor CE models deteriorated significantly when compared 

to the full ACE model and all three AICs were in close proximity. Therefore, the ACE was 

retained in Table 3 despite the non-significant estimate for A and the nonsensical negative 

variance estimate for C. In samples where there is greater sampling distribution variability, the 

observed MZ twin pair correlations can be underestimated and the DZ correlations overestimated 

by chance alone. When this occurs, variance component estimates will often be negative but not 

significant, implying that the parameter is not statistically distinguishable from zero (41). 

Negative shared environmental variance components may be due to stochastic variation in the 

estimate or to a genuinely different source of variation such as genetic dominance (41). Post-hoc 

power calculations using the R-based acePowOrd function (42) revealed insufficient power 

(19%) to detect an additive genetic variance of 25% based on the AE model in Table S4. Given 

the lack of statistical power to resolve the sources of familial aggregation, lifetime opioid use 

was excluded from all subsequent analyses.  
  

Multivariate results 

Lifetime cannabis, nicotine and opioid use and NMUA  

To test the hypothesis that comorbid cannabis and nicotine use and NMUA can be explained by 

common genetic risks, we first fitted an ACE Cholesky as a reference for comparing the 

common independent pathway models (see Supplement Table S5). When compared to the full 

Cholesky, neither of the hypothesis-driven models provided a better fit when judged by the AIC. 

 

Table 4 here 

 

We then determined if the additive genetic or the shared environmental risks could be removed 

from the Cholesky. As shown in Table S5, all shared environmental risks could be removed from 

the model. Table 4 shows the standardized proportions of variance attributed to the additive 

genetic and non-shared environmental variance for each variable based on the multivariate AE 

Cholesky. We then estimated the latent genetic and environmental factor correlations, which 

revealed that the additive genetic risks in NMUA were modestly correlated with those for 

cannabis and nicotine use. In contrast, aspects of the unique environment that comprise 

individual differences in NMUA were unrelated to those for lifetime cannabis and nicotine use.  

 



Lifetime alcohol use disorder (AUD), nicotine dependence (ND), cannabis use disorder (CUD) 

and NMUA. 

To test the hypothesis that cannabis use disorder, nicotine dependence, alcohol use disorder and 

NMUA can be explained by common risks, we again fitted a Cholesky as a reference, followed 

by the common and independent pathway models (see Supplement Table S6). Neither the 

common nor independent pathway models provided a good fit to the data. Subsequent hypothesis 

testing revealed that shared environmental risk factors could be entirely removed from the 

Cholesky without any significant deterioration in fit. Standardized multivariate components of 

variance are shown in Table 5 along with the additive genetic and non-shared environmental 

correlations. The correlations between the additive genetic risks for NMUA and the three 

substance use disorders ranged from small to moderate (0.07 to 0.34). The highest genetic 

correlation was with FTND. The additive genetic correlation between NMUA and AUD was 

non-significant. Finally, the unique environments risks in NMUA were unrelated to those in 

substance use disorders.  

 

Table 5 here 

 

Discussion 

Almost one-fifth of this Australian sample of young adults reported lifetime non-medical use of 

over-the-counter or prescribed analgesics (NMUA). There were no sex and age differences in the 

prevalence of this class of substance use. Regarding the aetiology, lifetime NMUA could be 

explained by a combination of genes and random aspects of the environment. Commensurate 

with other family studies on substance use and misuse (18, 21, 43), the shared familial 

environment played no significant role in the risk of NMUA. Contrary to our hypothesis, genes 

that increase the risk of NMUA were only moderately related to the genes for lifetime cannabis 

and nicotine use. In terms of substance misuse, this class of substance use was genetically 

unrelated to alcohol use disorder, and while the genetic correlations with cannabis and nicotine 

use disorders were significant, they were small to very modest. Overall, the genetic risks in this 

newer class of substance use were mostly distinct from the more prevalent classes of licit and 

illicit substances and misuse.  

 

Our finding of no significant sex differences in lifetime NMUA is commensurate with the 2013 

National Drug Strategy Household Survey (NDSHS) in Australia based on a nationally 

representative sample of 23,855 respondents, which found the prevalence of past 12-month use 

was similar among males (3.3%) and females (3.2%) (44).  

 

In the 2016 NDSHS (45), pain-killers and opioids were combined into one section while the use 

of non-opioid over-the-counter (OTC) substances such as paracetamol and aspirin were removed. 

This was because they were not known to be misused for cosmetic purposes, to induce or 

enhance a drug experience, or to enhance performance  (45). Despite the removal of all non-

opioid OTCs from the 2016 survey, the past 12-month prevalence of NMUA increased slightly 

to 3.6% (45), suggesting that non-opioid OTCs were not being misused nor were they being 

endorsed by respondents in the 2013 survey.  

 

The finding of no significant shared environmental risks in the lifetime NMUA contrasts with 

reports that have investigated cannabis (46-49) and nicotine (50, 51) initiation, as well as 



individual differences in the frequency of nicotine, alcohol, cannabis and other classes of 

substance use (52-55), nearly all of which have revealed evidence of significant shared 

environmental risks. The decline in shared environmental risk factors over time is characteristic 

of the progression to more frequent substance use and the variation in psychiatric criteria 

indicative of misuse (56). Beyond the associations with other forms of substance use examined 

here, it is plausible that the liability to NMUA represents a more severe, emerging class of 

substance use. For instance, NMUA has been linked to psychiatric symptoms by us (57-60) and 

others (61). In non-genetically information studies, we have documented numerous adverse 

associations between NMUA and stimulants with behaviours such as high-risk sexual behaviour 

(62, 63), driving under the influence (60) and sexual assault (64, 65). However, attempts to 

determine empirically the degree of impairment associated with this class of substance use vis-à-

vis other substances are currently hampered by a lack of available abuse and dependence criteria 

and the appropriate application of item response theory analysis (66) beyond the scope of the 

present analyses.  

 

Limitations 

Our findings must be interpreted in the context of four potential limitations. First, our sample 

comprises a population-based sample of young adult Australians, predominately of Anglo-Saxon 

ancestry. Although our findings may not generalize to other populations, given the higher rates 

of prescribed opioid use (67) and opioid-related mortality (68) in Anglo-Saxon ancestral 

populations, this is an ideal sample for preliminary investigation and one of the few with 

genetically informative NMUA data. With respect to genetic relatedness, we have detected no 

significant genetic differences between our sample, large population-based samples from the 

U.S., Western and Eastern Europe (69, 70).   

 

Second, opioids refer to the entire family of natural, synthetic, and semi-synthetic forms. Our 

self-report assessment of lifetime opioid use included heroin (semi-synthetic), morphine (opium 

alkaloid), methadone (fully synthetic), and codeine (opium alkaloid). At the time of assessment, 

many over-the-counter analgesics in Australia contained codeine (71). Codeine was also 

included among the list of NMUA examples. This may have inflated the phenotypic association 

with lifetime self-reported illicit opioid use. However, if subjects were responding to lifetime 

codeine use in both items, then the prevalence and components of genetic and environmental 

variance ought to have been identical. Future research would benefit from more fine-grained 

assessment of illicit opioids, non-medical use of opioid prescription medications and non-

medical use of over-the-counter medications. We note also that Australia has seen an increase in 

both codeine dependence and death-related to overdose from codeine-containing over-the-

counter products (9). Consequently, as of February 2018 codeine-based drugs were rescheduled 

to be available only by prescription (71). Changes in the rescheduling of codeine-based 

medications are likely to impact the prevalence and individual differences in use, and potentially 

the relative contribution of genes and environment to its use and misuse.  

 

Third, the NMUA assessment included non-steroidal or non-opioid analgesics. Their inclusion 

and any ensuing heterogeneity may have attenuated the association between lifetime non-

medical use of opioid-based analgesics and other classes of SU and SUD. We note that the 

prevalence of NMUA in the NDSHS surveys between 2013 and 2016 did not change despite the 

removal of non-opioid OTC from the list of survey items (45). This is consistent with non-opioid 



analgesics not being known to be misused for cosmetic purposes or to induce or to enhance a 

drug experience or to enhance performance (7). 

 

Fourth, non-medical use was defined as not taken in quantities or manner prescribed by a 

medical practitioner. This definition may have benefited with an expanded description that 

included ‘exceeding the recommendations on the label’ for the non-medical use of OTC 

medications.  

 

Fifth, the NMUA assessment was lifetime. Psychiatric criteria for abuse and dependence were 

not assessed. The extent to which the genetic and environmental risks in this measure predict the 

risk of transitioning to chronic NMUA is unknown. Our work has previously shown that the 

genetic and environmental risks in licit and illicit substance use are partly, but not entirely related 

to corresponding diagnoses of substance misuse (46, 48, 72). Although very high genetic 

correlations between major classes of illicit and licit substance use disorders have been observed 

(55), it is unclear if the genetic risks in chronic non-medically prescribed or over-the-counter 

analgesics use will be highly correlated with those for CUD, AUD, and ND.  

 

Conclusion 

Lifetime non-medical or over-the-counter use of analgesics is moderately heritable and there is 

no evidence that aspects of the familial or shared environmental risks are etiologically 

significant. Twin modelling suggests that the genetic risks in this emergent class of substance use 

are mostly etiologically distinct. There was no genetic overlap with alcohol use disorder and very 

little overlap with cannabis use disorder. There was, however, a moderate degree of genetic 

overlap between NMUA and lifetime cannabis use, nicotine use and nicotine dependence.  
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Figure 

 

Figure 1. The Cholesky decomposition (i) common (ii) and independent (iii) pathway models to 

explain sources comorbid substance use (or misuse) in terms of genetic (A), shared 

environmental (C) and non-shared (E) environmental risks. For brevity, the shared 

environmental risk factors are omitted from the Cholesky. The common and independent 

pathway models include variable specific genetic (as1-4) and environmental (cs1-4, es1-4) risks 

unique to each substance. All latent variables (circles) are standardized. All pathways with 

single-headed arrows are estimated.  
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Tables 

 

Table 1. Prevalence of lifetime cannabis, nicotine, illicit opioid, alcohol use disorder, nicotine dependence, cannabis use disorder, and 

lifetime non-medical use of over-the-counter or prescription analgesics (NMUA). 

 

 Sample size  Prevalence   Age of Initiation 

(SD) 

 Total Male Female  Total Male Female  Male Female 

1. Cannabis use 2,100 910 1,190  56.0% 63.7% 50.0%  17.5 

(2.73) 

17.6 

(2.81) 

2. Nicotine use 2,012 873 1,139  45.2% 37.7% 51.0%  16.0 

(3.07) 

15.3 

(2.28) 

3. Opioid use   2,005 870 1,135  6.1% 6.4% 5.8%  20.4 

(0.03)  

19.8 

(0.04) 

4. Alcohol use 

disorder  

1,989 846 1,126  45.5% 56.0% 37.5%  15.8 

(1.80) 

16.1 

(1.77)  

5. FTND  1,162 557 605  36.9% 40.0% 34.2%  NA NA 

6. Cannabis use 

disorder 

1,024 512 512  24.2% 29.5% 18.9%  NA NA 

7. NMUA 2,007 871 1,136  19.4% 18.4% 20.2%  16.2 

(0.05) 

15.9 

(0.06) 

FTND = Fagerström Test for Nicotine Dependence. SD=standard deviation. Substance use disorders based on the period when subjects 

reported using the most. All non-users coded as missing. 

 

 

 

 

 

 



Table 2. Pairwise polychoric phenotypic correlations (and standard errors) between lifetime non-medical use of over-the-counter or 

prescription analgesics (NMUA) and measures of (a) substance use and (b) substance use disorders. Males are below the diagonal. 

 

 (a) Correlations with lifetime 

substance use 

 (b) Correlations with  

substance use disorders 

 1. 2. 3. 4.   1. 2. 3. 4. 

1. Cannabis use  1 0.74(0.04) 0.42(0.07

) 

0.10(0.05)  1. CUD  1 0.44(0.04

) 

0.50(0.05

) 

0.11(0.00) 

2. Nicotine use 0.78(0.03) 1 0.43(0.07

) 

0.15(0.05)  2. FTND  0.43(0.05) 1 0.72(0.04

) 

0.22(0.00) 

3. Opioid use   0.60(0.08) 0.39(0.08) 1 0.60(0.06)  3. AUD  0.46(0.05) 0.70(0.04

) 

1 0.24(0.00) 

4. NMUA 0.26(0.06) 0.29(0.06) 0.67(0.06

) 

1  4. NMUA 0.15(0.00) 0.24(0.00

) 

0.32(0.00

) 

1 

Notes: CUD = DSM-V cannabis use disorder, FTND = Fagerström Test for Nicotine Dependence, AUD = DSM-V alcohol use 

disorder (AUD). Substance use disorders based on the period when subjects reported using the most. All non-users coded as missing. 

 

  



 

 

Table 3. Standardized components of variance (and 95% confidence intervals) attributable to additive genetic (A), shared 

environmental (C), and non-share or random environmental (E) risks based on the best fitting univariate models for substance use and 

misuse. 

 

 A C E 

1. Cannabis use  0.77 (0.68-0.85) - 0.23 (0.15-0.32) 

2. Nicotine use 0.70 (0.60-0.79) - 0.30 (0.21-0.40) 

3. Opioid use   0.49 (-0.52-

0.99) 

-0.20 (-0.79- 

0.57) 

0.71 (0.40-0.99) 

4. AUD  0.49 (0.38-0.60) - 0.51 (0.40-0.62) 

5. FTND 0.72 (0.60-0.81) - 0.28 (0.19-0.40) 

6. CUD  0.65 (0.47-0.80) - 0.34 (0.20-0.53) 

7. NMUA 0.46 (0.29-0.57) - 0.54 (0.43-0.71) 

Notes: A = additive genetic, C = common environmental risks, E = non-shared environment risk factors, AUD=DSM-V Alcohol Use 

Disorder, FTND = Fagerström Test for Nicotine Dependence, CUD = DSM-V Cannabis Use Disorder, NMUA = lifetime non-medical 

use of over-the-counter or prescription analgesics (NMUA). Substance use disorders based on the period when subjects reported using 

the most. All non-users coded as missing.



 

Table 4. Standardized proportions of variance along with additive genetic and non-shared environmental risk factor correlations (95% 

confidence intervals) based on the best fitting multivariate AE Cholesky decomposition of cannabis use, nicotine use and lifetime non-

medical use of over-the-counter or prescription analgesics (NMUA). 

 

 

Variance components 

 Additive genetic (below diagonal) & non-

shared environmental correlations 

 A E  1. 2. 3. 

1. Cannabis use 

0.80 (0.71-

0.87) 

0.20 (0.13-

0.29) 

 

1 0.71 (0.50 - 0.88) -0.28 (-0.54 - 0.00) 

2. Nicotine use 

0.72 (0.62-

0.80) 

0.28 (0.20-

0.38) 

 

0.78 (0.71 - 0.85) 1 -0.18 (-0.42 - 0.00) 

3. NMUA 

0.47 (0.41-

0.61) 

0.53 (0.39-

0.59) 

 

0.41 (0.24 - 0.56) 0.45 (0.27 - 0.60) 1 

Notes: A = additive genetic, E = non-shared environment risk factors  



Table 5. Standardized proportions of variance along with additive genetic and non-shared environmental risk factor correlations (95% 

confidence intervals) based on the best fitting multivariate AE Cholesky decomposition of CUD, FTND, AUD and lifetime non-

medical use of over-the-counter or prescription analgesics (NMUA). 

 

 Variance components  Additive genetic (below diagonal) & non-shared  

environmental correlations 
 A E  1. 2. 3. 4. 

1. CUD  

0.68 (0.50-

0.81) 

0.32 (0.19-

0.50) 

 

1 0.71 (0.50 - 0.88) 

-0.28 (-0.54 - 

0.00) 

-0.28 (-0.54 - 

0.00) 

2. FTND  

0.76 (0.65-

0.84) 

0.24 (0.16-

0.35) 

 0.67 (0.54 - 

0.82) 1 

-0.18 (-0.42 - 

0.00) 

-0.18 (-0.42 - 

0.00) 

3. AUD 

0.51 (0.40-

0.61) 

0.49 (0.39-

0.60) 

 0.40 (0.18 - 

0.62) 0.25 (0.08 - 0.41) 1 

-0.18 (-0.42 - 

0.00) 

4. NMUA 

0.46 (0.30-

0.61) 

0.54 (0.39-

0.70) 

 0.15 (0.06 - 

0.41) 0.34 (0.14 - 0.54) 0.07 (-0.14 - 0.29) 1 

Notes: A = additive genetic, E = non-shared environment risk factors, AUD=DSM-V Alcohol Use Disorder, FTND = Fagerström Test 

for Nicotine Dependence, CUD = DSM-V Cannabis Use Disorder. Substance use disorders based on the period when subjects 

reported using the most. All non-users coded as missing



 

Supplement 

Profile-likelihood confidence intervals (also known as “likelihood-based” confidence intervals; 

Neale & Miller, 1997) are confidence intervals (CIs) that “invert” the likelihood-ratio test in the 

following sense.   

 

Let 𝜙 denote a scalar-valued function of the free parameters of a statistical model for which a 

confidence interval is desired (the “reference quantity”).  Let (𝜙𝐿 , 𝜙𝑈) denote a profile-

likelihood confidence interval for 𝜙 with coverage probability 1 − 𝛼, estimated from a given 

sample of data, where 𝜙𝐿 is the lower confidence limit (CL) and 𝜙𝑈 is the upper confidence 

limit.  Then, using the same data, one could conduct a likelihood-ratio test of the null hypothesis 

that 𝜙 equals any particular value in (𝜙𝐿 , 𝜙𝑈), and fail to reject that null hypothesis at 

significance level 𝛼, for all values in (𝜙𝐿 , 𝜙𝑈).  Further, one could conduct a likelihood-ratio test 

using either 𝜙𝐿 or 𝜙𝑈 as the null value, and obtain a test statistic equal to the 1 − 𝛼 quantile of a 

chi-square distribution on 1 degree-of-freedom (the “critical value,” e.g. approximately 3.841 in 

the case of a 95% confidence interval).  If there is reason to suspect the accuracy of a profile-

likelihood CI reported by software, then one can attempt to validate the CI via a pair of 

likelihood-ratio tests using the CI’s upper and lower CL in the manner just described.  If both test 

statistics are close to the expected chi-square critical value, then the CI has successfully 

validated.  If a CI fails validation, then it is either “too wide” or “too narrow;” CIs calculated via 

a method that produces CIs that are “too wide” or “too narrow” will have a long-run coverage 

probability that differs from the nominal 1 − 𝛼. 

 

In OpenMx (Neale et al., 2016), calculating a profile-likelihood CI requires a numerical 

optimization each for the lower and upper CL.  If the results of such an optimization are suspect, 

then the corresponding confidence limit will be reported as NA in the output of the summary() 

function.  CI details and diagnostics can be output if summary() is invoked with the 

verbose=TRUE argument.  It may be advisable to attempt to validate suspect confidence limits in 

the manner described above.  Specifically, one would constrain the reference quantity to the 

suspect CL, then re-optimize the model, then calculate the decrease in loglikelihood from the 

maximum-likelihood estimate to the newly optimized solution, and then multiply the decrease by 

-2 to obtain a likelihood-ratio test statistic. 

 

OpenMx offers the user a choice of more than one gradient-based numerical optimizer.  NPSOL 

(“Nonlinear Programming, Systems Optimization Laboratory”; Gill, Murray, Saunders, & 

Wright, 2001), CSOLNP (“C++-based optimizer for Solving Nonlinear Programs”; Zahery, 

Maes, & Neale, 2017), and SLSQP (“Sequential Least-Squares Quadratic Programming”; Kraft, 

1994) are the three primary numerical optimizers used with OpenMx.  All three can be set as the 

value for mxOption ‘Default optimizer’, or provided for argument engine to 

mxComputeGradientDescent().  NPSOL is proprietary software written at Stanford University’s 

Systems Optimization Laboratory in the 1980s.  Because its source code cannot be freely 

distributed, NPSOL is not available in the CRAN build of OpenMx.  Historically, NPSOL was 

the only optimizer available in OpenMx prior to version 2.0 (Neale et al., 2016), and in 

OpenMx’s predecessor, “classic” Mx (Neale, Boker, Xie, & Maes, 2003).  CSOLNP is 

free/open-source software, and is the work of OpenMx developer M. Zahery.  It is a C++ 

translation of R package Rsolnp (Ghalanos & Theussl, 2015), itself an R translation of a Matlab 



program named ‘solnp’, by Y. Ye (Ye, 1989).  CSOLNP first became available in OpenMx 

version 2.0 (Neale et al., 2016).  It is currently the on-load default optimizer.  SLSQP is 

free/open-source software originally written at the German Aerospace Center in the 1980s (see 

references in Kraft, 1994).  The SciPy Project obtained permission to distribute SLSQP’s 

FORTRAN code under a free/open-source license, which S.G. Johnson subsequently ported to C 

and incorporated into NLopt, his optimization library (Johnson, n.d.).  OpenMx developer J.N. 

Pritikin wrote an OpenMx API to NLopt, with the result that SLSQP was first available in 

OpenMx version 2.2—which was also the first OpenMx version to be distributed through 

CRAN.   

 

The point estimates and confidence intervals reported in Tables 4 and 5 were calculated using 

SLSQP, and the confidence intervals were also validated using SLSQP. 

 

OpenMx has two different internal representations of the CL optimization problem (Pritikin, 

Rappaport, & Neale, 2017): an inequality-constrained representation and an unconstrained 

(quadratic-penalty) representation.  Its default behavior is to select one of the two representations 

based on which optimizer is in use.  Define 𝜙, 𝜙𝐿, and 𝜙𝑈 as above.  Let 𝛉 denote the vector of 

free parameters, �̂� denote the maximum-likelihood estimate (MLE) from the instant data, 

−2log𝐿(𝛉) denote -2 times the loglikelihood evaluated at 𝛉, 𝜒𝑐𝑟𝑖𝑡
2  denote the 1 − 𝛼 quantile of 

the 1df chi-square distribution.  Let 𝑐 = 1 when searching for 𝜙𝐿, and let 𝑐 = −1 when 

searching for 𝜙𝑈.  The constrained optimization problem is then, 

 

minimize 𝑐𝜙 

subject to −2log𝐿(𝛉) + 2log𝐿(�̂�) − 𝜒𝑐𝑟𝑖𝑡
2 > 0 

 

The unconstrained optimization problem, which uses a quadratic penalty to approximate an 

equality constraint, is 

 

minimize [−2log𝐿(𝛉) + 𝜒𝑐𝑟𝑖𝑡
2 + 2log𝐿(�̂�)]

2
+ 𝑐𝜙 

 

OpenMx’s default behavior (which can be overridden through an advanced feature) is to use the 

constrained representation with SLSQP, and to use the unconstrained representation with 

NPSOL and CSOLNP.  This default behavior is based upon the OpenMx Development Team’s 

testing, which concluded that SLSQP works best with the constrained representation, whereas 

the other two work best with the unconstrained representation (Pritikin et al., 2017). 

 

The unconstrained representation is the theoretically inferior choice.  It suffers from the “shallow 

slope” bias discussed in Neale & Miller (1997).  To avoid ill-conditioning the optimization 

problem, its penalty term has a coefficient of unity, but a quadratic penalty only perfectly 

approximates an equality constraint asymptotically, as the coefficient increases without bound 

(Gill, Murray, & Wright, 1982, chapter 6).  There are also several minor features that aid in CL 

optimization that are currently implemented only for SLSQP or for the constrained 

representation (Pritikin et al. 2017).  First, SLSQP uses the obvious analytic gradient during 

optimization if 𝜙 is an identity function of a single element of 𝛉.  Second, with SLSQP, OpenMx 

will automatically re-attempt a failed CL optimization as many as three times, with the start 



values randomly perturbed between attempts.  Third, the Wu-Neale correction (Wu & Neale, 

2012) for a boundary on a parameter only works correctly with the constrained representation. 
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Table S1. The change in each univariate model fit when age and sex differences on the mean 

latent liability to substance use and misuse are removed. If significant, the standard effects () 

for age and sex are shown.  

 

Variable -

2LLdf=2 

p age sex 

1. Cannabis use  173.03 *** 4.16 -0.36 

2. Nicotine use 50.48 *** 3.16 -0.33 

3. Opioid use   6.69 0.04 4.13 ns 

4. Alcohol use 

disorder 30.24 *** ns -0.25 

5. FTND 14.87 *** 1.77 -0.20 

6. Cannabis use 

disorder 17.47 *** ns -0.36 

7. NMUA 1.97 0.37 ns ns 

Notes: -2LLdf=2 = change in -2  log-likelihood when removing age and sex effects from the 

model 

*** = p < 0.001, NMUA = lifetime non-medical use of over-the-counter or prescription 

analgesics 

 



Table S2. Aggregated monozygotic (MZ) and dizygotic (DZ) twin pair polychoric correlations (including 95% confidence intervals) 

based on combined male and female data. Also shown are the complete same- and opposite-sex MZ and DZ twin pair correlations.  

 

Zygosity 

Cannabis 

use 

Nicotine 

use 

Opioid 

use 

Alcohol 

use 

disorder 

FTND 

Cannabis 

use 

disorder 

NMUA 

 MZ  0.79(0.70-0.86) 

0.71(0.60-

0.80) 0.29(-0.08-0.61) 0.50(0.37-0.61) 0.71(0.57-0.81) 0.64(0.43-0.79) 0.46(0.27-0.61) 

 DZ  0.30(0.16-0.43) 

0.32(0.18-

0.45) 0.04(-0.30-0.38) 0.24(0.11-0.36) 0.45(0.27-0.61) 0.40(0.14-0.61) 0.22(0.04-0.40) 

        

 MZFF 0.75(0.62-0.85) 

0.68 0.52-

0.79) 

 0.48(-0.02-

0.81) 0.41(0.24-0.56) 0.74(0.57-0.85) 0.68(0.39-0.86) 

 0.47(0.24-

0.66)  

 MZMM 0.86(0.72-0.94) 

0.77(0.59-

0.88) 

 0.07(-0.92-

0.56) 0.62(0.44-0.75) 0.65(0.37-0.81) 0.60(0.26-0.81) 

 0.44(0.13-

0.68)  

 DZFF 

0.13(-0.11-

0.35) 

0.28(0.04-

0.50) 

-0.99(-0.99-

0.43) 

0.16(-0.06-

0.37) 0.58(0.25-0.78) 0.65(0.08-0.90) 

 0.35(0.05-

0.60)  

 DZMM 

0.18(-0.13-

0.46) 

0.60(0.34-

0.79) 

 0.14(-0.44-

0.65) 0.58(0.34-0.75) 0.65(0.37-0.82) 0.53(0.09-0.81) 

-0.43(-0.75-

0.00) 

 DZFM 0.48(0.29-0.64) 

0.21(-0.01-

0.41)  0.13(-0.35-0.58 

0.13(-0.07-

0.32) 

0.12(-0.23-

0.44) 0.21(-0.17-0.54) 

 0.39(0.11-

0.62)  

        

 Number of incomplete / singletons () & complete () twin pairs 

               

 MZFF 

 57 225  56 21

5 

 57  213  59 211  89   89  72  72 56 214 

 MZMM 

 82 142  87 13

2 

 86  132  87 130  84   72  79  71 86 132 

 DZFF 

 27 170  37 15

7 

 37  157  38 156  84   51  87  41 37 157 

 DZMM  70 101  65  98  67   96  65  97  65   52  74  39 66 97 

 DZFM 

128 230 131 21

6 

130  216 138 207 166   73 148  59 130 216 



Table S3. Summary of the observed changes in model fit when comparing sex-specific (separate 

male and female genetic and environmental risks) versus no sex differences for each of the 

substance use and misuse variables.  

 

Variable -

2LLdf=3 

p 

1. Cannabis use  1.46 0.69 

2. Nicotine use 4.47 0.21 

3. Opioid use   1.70 0.64 

4. Alcohol use disorder 4.26 0.23 

5. FTND 0.33 0.95 

6. Cannabis use 

disorder 

0.26 0.97 

7. NMUA 6.13 0.11 

-2LLdf=3 = change in -2  log-likelihood with 3df, NMUA = lifetime non-medical use of over-

the-counter or prescription analgesics  

 

 

  



Table S4. Univariate model fitting comparisons.  

 

 Model np -2LL df -2LL df p AIC BIC 

Cannabis use  ACE 6 2620.60 2097    -1573.41  

 AE 5 2622.57 2098 1.97 1 0.061 -1573.44  

 CE 5 2656.36 2098 35.76 1 0.000 -1539.64  

Nicotine use ACE 6 2604.15 2009    -1413.62  

 AE 5 2604.39 2010 0.23 1 0.629 -1415.62  

 CE 5 2623.82 2010 19.67 1 0.000 -1396.18  

Opioid use   ACE 6 910.19 2002    -3093.81  

 AE 5 910.44 2003 0.24 1 0.623 -3095.56  

 CE 5 911.10 2003 0.90 1 0.342 -3094.90  

Alcohol use disorder ACE 6 3825.49 1985    -144.51  

 AE 5 3825.53 1986 0.04 1 0.835 -146.47  

 CE 5 3834.27 1986 8.78 1 0.003 -137.73  

FTND ACE 7 1996.51 1158    -319.49  

 AE 6 1997.57 1159 1.06 1 0.303 -320.44  

 CE 6 2002.48 1159 5.97 1 0.014 -315.52  

Cannabis use 

disorder ACE 7 1388.37 1020    -651.63 

 

 AE 6 1388.69 1021 0.32 1 0.570 -653.31  

 CE 6 1390.93 1021 2.57 1 0.109 -651.07  

NMUA ACE 6 1944.91 2004    -2063.09 1968.95 

 AE 5 1944.92 2005 0.00 1 0.962 -2065.08 1964.95 

 CE 5 1948.19 2005 3.28 1 0.070 -2061.81 1968.23 

Notes: FTND= Fagerström Test for Nicotine Dependence, NMUA = lifetime non-medical use of 

over-the-counter or prescription analgesics, ACE = additive genetic (A) + shared environmental 

(C) + non-shared environmental (E) variance, np = number of parameters, -2LL = change in -2 

 log-likelihood, AIC = Akaike Information Criterion,  

 



Table S5. Comparisons between the Cholesky, common and independent pathway models for 

lifetime cannabis, nicotine and lifetime non-medical use of over-the-counter or prescription 

analgesics. 

 

Model np -2LL df AIC 

ACE Cholesky  22 6664.14 6106 -5547.86 

AE Cholesky 16 6664.20 6112 -5559.80 

CE Cholesky 16 2.1E+08 6112 2.1E+08 

ACE Common Pathway 19 6674.17 6106 -5537.83 

ACE Independent 

Pathway 22 6664.12 6103 -5541.88 

Notes: ACE = additive genetic (A) + shared environmental (C) + non-shared environmental (E) 

variance, np = number of parameters, -2LL = change in -2  log-likelihood, AIC = Akaike 

Information Criterion  

 



Table S6. Comparisons of the Cholesky, common and independent pathway models for lifetime 

cannabis use disorder, Fagerström Test for Nicotine Dependence, alcohol use disorder and 

lifetime non-medical use of over-the-counter or prescription analgesics. 

  

Model np -2LL df AIC 

ACE Cholesky  38 8978.45 6156 -3333.55 

AE Cholesky 28 8983.57 6166 -3348.43 

CE Cholesky 28 9005.23 6166 -3326.77 

ACE Common Pathway 28 8990.07 6159 -3327.93 

ACE Independent 

Pathway 23 8986.27 6158 -3329.73 

Notes: ACE = additive genetic (A) + shared environmental (C) + non-shared environmental (E) 

variance, 1 CPM & 2 CPM = models with 1 & 2 common pathways, np = number of parameters, 

-2LL = change in -2  log-likelihood, AIC = Akaike Information Criterion 

 

 

 


