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Abstract 

Children with Hutchinson-Gilford Progeria Syndrome (HGPS) succumb to myocardial 

infarction and stroke in their teen years. Endothelial dysfunction is an early event in more 

common forms of atherosclerosis. Endothelial pathobiology may contribute to HGPS, but a 

comprehensive characterization of endothelial function in HGPS has not been performed. 

iPSCs derived from fibroblasts of HGPS patients or unaffected relatives were differentiated 

into endothelial cells (ECs). Immunofluorescent signal of the pluripotent stem cell markers 

SSEA4, Oct4, Sox2 and TRAI-60 was similar in HGPS or control iPSCs. Following the 

differentiation, FACS analysis and immunocytochemistry for CD31 and CD144 revealed a 

smaller percentage of ECs from HGPS iPSCs. Immunostaining for Lamin A revealed nuclear 

dysmorphology in HGPS iPSC-ECs. Furthermore, these cells were significantly larger and 

rounded, and they proliferated less, features which are typical of senescent endothelial cells.  

HGPS iPSC-ECs manifested less Dil-Ac-LDL uptake; less DAF-2DA staining for nitric oxide 

generation and formed fewer networks in matrigel in vitro. In immunodeficient mice injected 

with iPSC-ECs, HGPS iPSC-ECs generated a sparser vascular network compared to the 

control, with reduced capillary number. Telomere length (T/S ratio) of HGPS iPSC-EC was 

reduced as assessed by mmqPCR.    

iPSC-ECs derived from HGPS patients have dysmorphic appearance, abnormal nuclear 

morphology, shortened telomeres, reduced replicative capacity and impaired functions in vitro 

and in vivo.  Targeting the endothelial abnormality in patients with HGPS may provide a new 

therapeutic avenue for the treatment of this condition. 
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Abbreviations 

HGPS - Hutchinson-Gilford progeria syndrome 

ZMPSTE24 - Zinc metallopeptidase STE24 

FTI - Farnesyltransferase inhibitors 

VSMCs - Vascular smooth muscle cells 

iPSC - Induced pluripotent stem cells 

EC - Endothelial cells 

hTERT – Human telomerase reverse transcriptase 

VEGF - vascular endothelial growth factor 

DAF-FM DA - 3-Amino, 4-aminomethyl-2ʹ,7ʹ-difluorofluorescein diacetate 

BMP4 - Bone Morphogenetic Protein 4 

mmqPCR - mono chrome multiplex PCR 

SCG - single-copy gene 

CSI - Cell shape index 
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Introduction 

Hutchinson-Gilford progeria syndrome (HGPS) is a rare autosomal disorder of accelerated 

aging (OMIM: 176660) 1. Children are normal at birth but the first years of life are 

characterized by failure to thrive with low growth rates 2.  During childhood, more 

characteristic features of HGPS begin to appear including alopecia, reduced subcutaneous 

adipose tissue, osteoporosis, and sclerodermatous skin 3. The disease is also characterized by 

rapid vascular aging, with death occurring in the teen years typically secondary to myocardial 

infarction or stroke 3.  

A de novo mutation (C1824T) in the LMNA gene encoding lamin A causes the condition.   

Lamin A is a nuclear matrix protein that influences nuclear structure and function 4. As 

Prelamin A, it undergoes post-translational modifications, including farnesylation of the 

cysteine at the C-terminal CaaX motif, endoproteolytic cleavage of the three amino acids 

aaX, methylation of C-terminal cysteine, and endoproteolytic removal of the farnesyl group 5. 

The hydrophobicity of the farnesyl group suggests that this modification favours the precise 

positioning of the final Lamin A to the nuclear envelope 6. The mutation causes a splicing 

defect that deletes 150 bp in exon 11 (Δ150 LMNA).  This deletion includes the proteolytic 

cleavage site at which zinc metalloprotease ZMPSTE24 removes the farnesyl group at the C-

terminus 1. Thus, progerin is persistently farnesylated, causing its accumulation in the nuclear 

envelope, progressive appearance of a number of cellular alterations including severe growth 

defects and disruption of nuclear architecture and cellular function 7. Farnesyltransferase 

inhibitors (FTIs 8) inhibit progerin farnesylation and have been shown to improve both 

structure and function of progerin-containing cells in vitro 9; in murine models of HGPS the 

FTIs reduce cardiovascular defects 10, and extend lifespan 11,12. Subsequently, a clinical trial 

with lonafarnib indicated that treatment with the FTI improved vascular compliance and had 
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benefits on the auditory and skeletal system 13.  A follow-up study suggested that the 

treatment improved lifespan by about 2 years 14.  

Although HGPS mouse models, in which the lamin A gene is deleted, mutated, and/or 

overexpressed 15–18, have disclosed important information on the molecular mechanisms of 

the HGPS, none of them recapitulate all the features seen in the human disease. Human 

induced pluripotent stem cell (iPSC) have greatly improved the modelling of human disease 

in vitro 19–22. Studies on HGPS iPSC or iPSC-derived cells may complement information 

obtained in vivo. For example, in a previous report 23 HGPS iPSCs-derived vascular smooth 

muscle cells (VSMCs) showed increased sensitivity to various stimuli, including hypoxia, 

and perturbation of contractile properties due to calponin sequestration, whereas 

mesenchymal stem cell (MSCs) were not able to restore angiogenesis in hindlimb ischemia in 

mice 23. A recent report in an atherosclerosis-prone mouse model of HGPS showed that 

VSMC-specific expression of progerin is sufficient to accelerate atherosclerosis, trigger 

plaque vulnerability, and reduce lifespan in mice 24 . 

Endothelial dysfunction is a primary determinant of atherosclerosis and may also have an 

important role in HGPS. Previous observations from studies of lamin A defective ECs are 

quite discordant. For example, Zhang et al. 23 showed that HGPS-iPSC derived ECs are not 

functionally different compared to control, whereas Bonello-Palot et al. 25 demonstrated that 

prelamin A accumulation in progenitors and mature ECs derived from human umbilical vein 

induces premature senescence and functional impairment.   Thus, the characterization of the 

endothelial defect in HGPS is incomplete and the results are mixed. 

In this report, we have generated and extensively characterized HGPS iPSC-derived ECs. We 

have performed a comprehensive characterization of EC structure and function.  We found a 

broad derangement of EC structure and function, including nuclear morphology, telomere 

length 26, generation of nitric oxide 27,  Dil-Ac-LDL uptake, replicative capacity, as well as 
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angiogenesis in vitro and in vivo.  To conclude, there is a substantial derangement in HGPS 

EC, which could contribute to the premature vascular disease and death in these patients. 

Furthermore, iPSC-derived ECs may be an attractive model to study molecular mechanisms 

and test possible therapies for HGPS. 

 

Results 

We utilized iPSCs derived from fibroblasts originally collected from HGPS patients (167-1Q 

and 003-1D) and father or mother (168-1P and 090-1B, were used as control cell line,  

hereafter referred to as Non-HGPS). HGPS and Non-HGPS IPSC colonies appeared 

morphologically similar by light microscopy (movie 1, figure 1A) in cells from both patients. 

Western blotting analysis for pluripotent stem cell-specific markers showed a similar 

expression of Sex determining region Y-box 2 (Sox2) and octamer-binding transcription 

factor 4 (Oct4, also known as POU5f1) in the two groups (figure 1B). Furthermore, 

immunostaining for the pluripotent stem cell-specific markers: stage-specific embryonic 

antigen (SSEA4), Oct4, Sox2 and TRAI-60 (podocalyxin) showed no difference between the 

HGPS and non-HGPS iPSCs (figure 1C). Subsequently, HGPS and non-HGPS iPSCs at the 

same passage, that was between 22-24, were differentiated to endothelial lineage, a process 

that requires about two weeks using our standardized protocol (figure 2A). Experiments with 

cell lines of both patients showed no difference. Real time PCR on differentiated cells 

confirmed the presence of cells of mesodermal lineage, although the cell population was 

heterogeneous with markers of endoderm and ectoderm as well (figure 2B).    Accordingly, 

at this stage we sorted double positive cells for the endothelial markers CD31 and CD144.  

We observed smaller percentage of double positive cells generated from HGPS iPSCs 

compared to control (61.7% vs 89.3%; p≤0.01; figure 2C). Furthermore, real time PCR of 

FACS sorted CD31+-CD144+ double positive cells revealed a lower expression of 
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endothelial markers in HGPS compared to Non-HGPS (figure 3A). HGPS iPSC-ECs also 

exhibited morphological features that were different from non-HGPS iPSC-ECs (figure 3B), 

discussed below in more detail. Immunofluorescence for CD31 and CD144 confirmed the 

different morphology of HGPS iPSC-ECs compared to Non-HGPS iPSC-ECs (figure 3C).  

Next, we asked whether HGPS iPSC-EC exhibited features of premature senescence, 

including reduced telomere length and cell proliferation. Nuclear dysmorphology is a feature 

of HGPS somatic cells.  We observed, using fluorescence microscopy and Lamin A 

immunostaining, the prevalence of nuclear dysmorphology in HGPS iPSC-ECs by 

comparison to non-HGPS iPSC-ECs or HUVECs (figure 4A). Protein analysis confirmed 

that HGPS iPSC-ECs express Progerin and less Lamin A compared to Non-HGPS cells 

(figure 4B). Senescent endothelial cells are larger and rounder by comparison to healthy 

endothelial cells. Immunostaining revealed that HGPS iPSCs-EC have a size and shape 

consistent with senescence (figure 4C-D). We quantified this observation by assessing 

average cell “roundness” using the Cell Shape Index (CSI) as described 28. The HGPS iPSC-

ECs manifested a higher CSI (0.55 ± 0.15 vs. 0.41 ± 0.17 for control; p≤ 0.01), confirming 

that HGPS iPSCs-EC had a rounder shape.  In addition, HGPS iPSC-EC had a greater area 

(p≤ 0.01) (figure 4C-D). Monochrome Multiplex Quantitative PCR (mmqPCR) was used to 

assess telomere length. We observed that the HGPS iPSC-ECs have reduced T/S 

(Telomere/Single copy gene) ratios, meaning shortened telomeres compared to non-HGPS 

iPSC-ECs (p≤0.01) at the same cell passage (figure 4E). Senescence cells have reduced 

replicative capacity.  Accordingly, to analyze real time changes in cell number we used the 

xCELLigence instrument to monitor cell replication.  The xCELLigence instrument monitors 

the impedance to a current passing through the membrane on which the cells are growing.   

As the monolayer increases in confluence, impedance rises. The impedance value is plotted 

as a parameter called Cell Index (CI). The HGPS iPSC-ECs (red curve) exhibited a reduced 



 8 

CI compared to control (green curve) (figure 4F).   These observations were consistent with 

a reduced proliferation of the HGPS iPSC-EC. 

Senescent cells often exhibit an impairment of lineage-specific cell processes.  The uptake of 

acetylated LDL (AcLDL) is a function of EC that can be assessed using fluorescently (Dil)-

labeled Ac-LDL. In the HGPS iPSC-EC, Ac-LDL uptake was impaired, as reflected by a 

reduced fluorescence intensity in this assay (p≤ 0.01) (figure 5A-B).  Endothelium-derived 

nitric oxide (NO) is a major regulator of EC homeostasis 29, and its generation is reduced in 

senescent cells 30. Accordingly, we used DAF-FM DA staining to assess NO generation, 

which studies revealed that HGPS iPSC–ECs generated less nitric oxide (NO; p≤ 0.01) 

(figure 5C-D).  In addition, measurement of Nitrate/Nitrite, two end-products of NO, 

confirmed a reduced synthesis of NO in HGPS iPSC–ECs compared to control (figure 5E). 

Angiogenesis is a characteristic function of ECs. Accordingly, we assess the angiogenic 

capacity of HGPS iPSC-ECs in vitro and in vivo.  Using an in vitro matrigel assay we 

observed that HGPS iPSC-ECs formed fewer network structures (figure 6A-B). In addition, 

analysis of neovascularization in vivo using the Matrigel plug assay revealed a reduced 

neovascularization in matrigel plugs containing HGPS iPSC-ECs (figure 6C); reduced CD31 

immunostaining (p≤ 0.01) (figure 6D-E) and reduced lumina containing red blood cells (HE 

staining) (p≤ 0.01) (figures 6F-G). These data indicate that HGPS iPSC-EC are functionally 

defective cells, resembling senescent cells.  

Discussion 

The seminal finding in this paper is that there is a global impairment of endothelial functions 

in HGPS iPSC-ECs.  We find that HGPS iPSC-ECs have a senescent phenotype, as 

characterized by their cellular and nuclear dysmorphology, reduced telomere length, and 

impaired proliferative capacity; together with an impairment of angiogenic processes in vitro 
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and in vivo.  These endothelial aberrations are likely to be involved in the development of the 

premature vascular disease observed in HGPS, and thus ECs derived from HGPS iPSCs may 

represent an excellent in vitro cell model for testing new therapies. 

The premature aging observed in HGPS is associated with a de novo mutation in the LMNA 

gene.  The mutation results in the generation of an abnormal lamin protein that is 

permanently farnesylated. The aberrant farnesylation leads to accumulation of progerin in the 

nuclear envelope and a dysmorphic nucleus, with disorganization of nuclear lamina and 

heterochromatin 31–33. HGPS patients exhibit premature aging associated with accelerated 

coronary and carotid artery disease, which cause death typically in the early teens 1,34.  

Clinical trials have tested the efficacy of the farnesyltransferase inhibitors (FTI) lonafarnib, 

alone or in combination with statins (pravastatin) that blocks protein prenylation, including 

farnesylation, and reduces the formation of progerin, and bisphosphonates (zoledronate), but 

benefits have been modest 3,13,14. Although the recent development of CRISPR/Cas9 based 

therapy for HGPS seems promising 35, the therapeutic options are limited.   

Accordingly, a greater understanding of the pathobiology that leads to the premature death of 

these children might inform improved therapies.   Previous observations of the vascular 

disease in HGPS described intimal lesions that may be obstructive, deposition of extracellular 

matrix, thinning of the media, calcification and adventitial thickening 36,37, which are features 

that are consistent with atherosclerosis. A few studies have focused on the pathobiology 

affecting vascular smooth muscle cells in Progeria 23,24. By contrast, there has been 

insufficient characterization of the endothelial cell dysfunction in Progeria.  This is a critical 

gap in knowledge, as in adults, the process of atherosclerosis begins with impairment of 

endothelial processes 38.  The earliest stages of an atherosclerotic lesion, i.e. focal permeation 

and trapping of circulating lipoprotein particles in the sub-endothelial space 39, results from 

endothelial activation in lesion-prone areas of the arterial vasculature 40. This endothelial 
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dysfunction initiates a complex pathogenic sequence that later also involves immune and 

vascular smooth muscle cells. Because endothelial dysfunction is a characteristic feature of 

vascular disease, and is a major contributor to the initiation and progression of vascular 

disease, we chose to characterize HGPS iPSC-EC.  

In this report, we have differentiated and characterized HGPS iPSC-derived endothelial cells, 

contrasting their function compared to iPSC-derived endothelial cells from a related non-

HGPS individual (the patients’ father).  First, we confirmed that HGPS and control iPSC 

have similar expression levels of the iPSCs pluripotency markers SSEA4, OCT-4, SOX-2 

and TRA-1-60, as previously shown 23,41.  

Then, we differentiated iPSCs, at the same passage number, to endothelial cells (EC). We 

used cells at passage number between 22-24 because cells at higher passages, in particular 

above 28, showed a more frequent loss of pluripotency and reduced endothelial cells yield 

after differentiation. At the end of the differentiation protocol, the yield of EC was lower and 

the expression of EC markers impaired in HGPS iPSC, suggesting that the effect of progerin 

may begin during development at the stage of differentiation and maturation of EC. It is 

known that ageing reduces the expression and activity of CD144 (VE-cadherin), a main 

endothelial marker, in the adherens junctions of aged rat arteries, that contributes to 

endothelial dysfunction 42. Senescence can be induced by a plethora of stimuli that cause 

persistent DNA damage signalling and drives the phenotype of senescent cells, that may 

include the reduced expression of endothelial markers in HGPS endothelial cells. Indeed, 

progerin seems to affect the activation of the DNA damage response pathway and 

dysregulation of this pathway may be responsible for the development of cardiovascular 

pathology in HGPS patients 43. Consistent with a senescent state, the HGPS iPSC-EC had a 

“fried egg” appearance, i.e. they were larger and rounder as quantified by cell index and cell 

area.   
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HGPS iPSC-ECs displayed the nuclear lobulation which is a common feature of HGPS cells. 

The nuclear lamina is a meshwork of intermediate filaments composed of A- and B-type 

lamins 44 and has been shown to be critical for nuclear stability, particularly in tissues that are 

exposed to mechanical forces such as muscle fibers 45 and endothelial cells subject to the 

pulsatile nature of blood flow 46.  The alterations in the nuclear shape in HGPS cells appear to 

affect chromatin stability and gene expression 47, and may also affect the organization of 

nuclear pore complexes that normally regulate the trafficking of protein and RNA across the 

nuclear envelope 48.   

We observed that HGPS iPSC-EC have a reduced production of nitric oxide, a phenomenon 

also observed in aged endothelial cells 30. Telomeres play a prominent role in aging and cell 

senescence 49. Human telomeres are sequences of TTAGGG repeats that undergo progressive 

shortening with cell divisions as a consequence of the inability of DNA polymerases to fully 

replicate the DNA lagging strand. Eventually, telomere erosion will elicit a DNA damage 

response, resulting in growth arrest and senescence. Telomere reverse transcriptase (TERT), 

an enzyme present in stem cells, can add telomeric repeats to telomere ends by copying a 

template sequence of its RNA component (TERC) 50. A previous study has shown that stable 

expression of the human telomerase reverse transcriptase (hTERT), associated with an 

increase in telomere length, restored endothelial cells eNOS and NO activity in senescent 

cells 30.  Thus, the telomere erosion in HGPS may be linked to eNOS expression and activity.   

Also linked to telomere erosion is an impairment in cell proliferation.  We measured 

proliferative capacity of HGPS iPSC-EC in real time and noted a significant reduction in cell 

growth within 48 hours after seeding. HGPS iPSC-ECs also displayed impaired network 

formation on matrigel and reduced neovascularization in vivo in the matrigel plug assay, 

demonstrating the inability for the cells to promote angiogenesis.  
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We observed that the relative telomere length was significantly decreased in HGPS iPSC-EC.  

Telomere erosion is a key feature of aging.   Advanced age is a major risk factor for 

cardiovascular disease (CVD) 51 and the health of the vasculature 52 is directly associated 

with the increase of CVD risk.  A loss of telomeric DNA repeats below a critical threshold 

contributes to genome instability 53,54. This also causes deficiencies in the repair of DNA 

double-strand breaks, in particular through the non-homologous end-joining recombination, 

an error-prone mechanism for repairing lost telomeres 55.  

Notably, progerin accumulates in tissues of normal aged individuals 31, including the artery 

wall 36. Therefore, progeria may be a model to elucidate cell and molecular mechanisms 

driving normal aging and associated CVD. In addition, cardiovascular risk factors such as 

hypercholesterolemia, diabetes, obesity, hypertension, and smoking are normally absent in 

HGPS patients. Thus, cells derived from these patients provide a unique model to isolate age-

related mechanisms that impair cardiovascular health.  

In conclusion, we have characterized endothelial structure and function in HGPS.  We find a 

broad derangement in endothelial processes that are characteristic of senescence. The iPSC-

derived endothelial cells of HGPS patients are a useful model to characterize the endothelial 

pathobiology in HGPS, and to understand its role in the premature vascular disease in this 

condition.  

 

Material and Methods 

Maintenance of Human HGPS iPSC  

The human HGPS iPSC lines were obtained from the Progeria Research Foundation (PRF) 

Cell and Tissue Bank and were maintained on Matrigel (BD Biosciences)-coated plates 

(Corning) in mTeSR1 medium (STEMCELL Technologies cat. 85850) according to their 

protocol. The iPSCs were passaged every four days using RELSR dissociation reagent 
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(STEMCELL Technologies cat. 05873). All cells were cultured in humidified incubators at 

37°C and 5% CO2. Pluripotency of HGPS iPSC was characterized by morphology and 

immunostaining of pluripotency markers. 

Differentiation of Endothelial cells (EC) from iPSC 

EC differentiation was carried out using an in vitro monolayer endothelial differentiation of 

iPSC based on a modification of a previously established protocol 56,57. In brief, the iPSCs at 

passage between 22-24 were grown to 80% confluence, and placed in differentiation medium 

Advanced DMEM/F12 (ThermoFisher Scientific cat. 11320033), supplemented with Wnt 

agonist CHIR 99021 5 µM (Selleck, cat. S2924), bone morphogenetic protein-4 (BMP4, 25 

ng/m) (Peprotech cat120-05), B27 supplement (ThermoFisher Scientific cat. 17504044), and 

N2 supplement (ThermoFisher Scientific cat. 17502048) for 3 days. Then, cells were 

dissociated with HyQtase (GE Healthcare cat. SV30030.01) and plated in StemPro media 

(ThermoFisher Scientific cat. 10639011), supplemented with forskolin 5 µM (LC 

Laboratories cat. F-9929), vascular endothelial growth factor (VEGF) 50ng/mL (Peprotech 

cat. 100-20), and polyvinyl alcohol 2 mg/mL (Sigma-Aldrich cat. 360627) for 4 days. 

Finally, cells were washed with PBS, and cultured in endothelial growth media (EGM-2MV, 

Lonza cat. CC-3202) supplemented with additional VEGF (100 ng/ml) for 5 more days and 

maintained at 37°C, and 5% CO2 in a humidified incubator. Cells were passaged once they 

reached 80-90% confluence.  

Flow cytometry characterization of iPSC-EC 

Cells were dissociated with HyQtase, washed with PBS and blocked with 5% bovine serum 

albumin (BSA). Cells were then incubated with either Alexa Fluor 488-conjugated CD31 

mAb (PE mouse anti-human, BD Pharmingen, cat. 555446) or PE-conjugated CD144 mAb 

(FITC mouse anti-human, BD Pharmingen, cat. 560411)  for 30 mins. Isotype-matched 
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antibody served as negative control. The cells were washed with 5% BSA and then analyzed 

using a FACSAria (BD) flow cytometer. Data were analyzed by Flowjo software. 

Fluorescence Activated Cell Sorting (FACS). 

After differentiation, the iPSC-ECs were purified using FACS. Cells were dissociated into 

single cells with HyQtase for 5 minutes at 37°C, washed with PBS containing 5% BSA and 

passed through a 40-μm cell strainer. Cells were then incubated with either Alexa Fluor 488-

conjugated CD31 antibody or PE-conjugated CD144 antibody for 30 mins. Isotype-matched 

antibody served as negative control. The purified iPSC-ECs were expanded in EGM-MV 

media. 

Immunofluorescence staining 

For iPSC and staining, the Pluripotent Stem Cell 4-Marker Immunocytochemistry Kit 

(ThermoFisher Scientific, A24881) was used, according to manufacturer instructions.  iPSC-

ECs were seeded at a density of 10,000 x cm2. At 80% of confluence, they were fixed with 

4% paraformaldehyde (ThermoFisher Scientific cat. 28908), and blocked with 1% normal 

goat serum (Abcam cat. ab7481) and stained for anti-human CD31 (1:250, Abcam cat. 

ab28364), anti-human CD144 (1:250, Abcam cat. ab166715), overnight at 4°C. After washes 

with PBS, the cells were treated with Alexa Fluor-488 or -594 secondary antibodies (1:500) 

and co-stained with DAPI (Vector Laboratories, 1:10000). Images were captured using the 

EVOS M5000 Imaging System (ThermoFisher Scientific). 

Cell size and morphology were analyzed using ImageJ to determine size and circularity. Cell 

shape index (CSI) was calculated using the equation: (4π X area)/ (perimeter2), where a 

perfect circle would have a value of 1, whereas a straight line would have a value of 0. 

RNA Extraction and RT-PCR 
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mRNA was extracted from cells using column purification (RNeasy Mini Kit, Qiagen, cat. 

74104). The mRNA was reverse transcribed into cDNA using qScript cDNA Synthesis Kit 

(Quanta Bio, cat. 95047.) Primers (IDT Technologies), see table S1 for the full primers list, 

targeting specific genes and SYBR Green PCR kit (Invitrogen, Carlsbad, CA) were used for 

real-time qPCR with the QuantStudio 12 k Flex system (Applied Biosystems, Foster City, 

CA) following the manufacturer’s instructions. Genes expression were expressed as relative 

fold changes using the 'Ct method of analysis and normalized to E-actin. 

Protein Extraction and Western Blot Analysis 

Cultured cells were collected and solubilized in RIPA buffer (25 mmol/L Tris-HCl pH 7.6, 

150 mmol/L NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS) supplemented with 

protease inhibitor cocktail. Protein concentration was measured using BCA assay. Samples 

were loaded on polyacrylamide gel electrophoresis (4-15% gradient) for 2h and transferred 

on PVDF membranes for 2h. Membranes were blocked with non-fat milk 5% in PBST 

(PBS+0.1% Tween) for 1 hour at room temperature and probed with primary antibody 

overnight at 4°C. Antibody used were: Lamin A mAb (mice, ThermoFisher Scientific, cat. 

MA1-06101), Oct4 mAb (rabbit, ThermoFisher Scientific, cat. 701756), Sox2 mAb (mice, 

ThermoFisher Scientific, cat. MA1-014), E-tubulin polyclonal Ab (rabbit, Abcam, cat. 

Ab6046). Membranes were washed three times (5 minutes per wash) with PBST. HRP-

conjugated goat anti-mouse or rabbit antibodies were incubated for 1 hour at room 

temperature. PVDF membranes were washed three times with PBST for 5 minutes. Antigen-

antibody complexes were then detected by exposure for 4 min to the enhanced 

chemiluminescence solution (ECL; Amersham).  Then, the membrane was placed down on a 

film layer, which had been arranged inside a film cassette, covered with another film layer 

and exposed to photographic film (BioMax XAR Film Kodak, Sigma-Aldrich) for an 

adequate exposure time. The film was developed and immunoreactivity (band density) was 
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quantified by using densitometry (source: http://rsbweb.nih.gov/ij/docs/user-guide.pdf ) using 

ImageJ. E-tubulin was used as loading control. 

Nitric oxide production in cultured iPSC-ECs 

iPSC-ECs were stained with DAF-FM DA (Thermo Scientific) to assess intracellular NO 

levels. Cultured iPSC-ECs were incubated with DAF-FM DA 10 μM at 37°C/5% CO2 for 30 

minutes as recommended by the supplier. Excess probe was removed by washing with PBS 

and the cells were switched to fresh media prior to imaging. The intensity of the fluorescent 

signal (reflecting NO level) was measured using image J and plotted as mean of the 

fluorescent signal (integrated density) in each cell. As a second assay to measure nitric oxide, 

NO metabolites nitrate and nitrate (Cayman Chemical, Nitrate/Nitrite Assay Kit, cat. n. 

780001) were detected. In brief, cell culture medium was first added with nitrate reductase 

that converts nitrate to nitrite. Then, Griess reagents added to the sample convert nitrite into a 

deep purple azo compound. Photometric measurement of the absorbance (540nm wave 

length) derived from this azo chromophore accurately determines nitrite concentration. 

Cellular nitrate/ nitrite production is quantitated by subtracting the level of nitrate/nitrite 

present in the media alone from the total nitrate/nitrite level present during cell growth. 

Dil-Ac-LDL uptake Assay 

iPSC-ECs were plated in 6 well plates. Uptake of Ac-LDL was assessed by incubating with 

ac-LDL-594 (Thermo Scientific) at 1:200 dilutions for 5 hours. Then cells were washed with 

PBS and the mean fluorescence measured in n=5 high power fields using image J and plotted 

as mean of the fluorescent signal (integrated density) in each cell. 

Angiogenesis Assay (Vascular network formation) 

Vascular network formation assays were carried out as previously described in our studies 

58,59. iPSC-ECs were seeded at 40,000 cell per 24-well plate in growth factor reduced 
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Matrigel (Corning) in EGM2-MV medium. The number of network segments was measured 

after 24h in five random microscopic fields. ImageJ was used to process and analyze the 

images.  

Real-time iPSC-ECs proliferation assay 

Proliferation assays were carried out using the xCELLigence instrument (Roche) which was 

placed in a humidified incubator at 37°C and 5% CO2. iPSC-EC proliferation was monitored 

using 16-well plates (E-plate, Roche). iPSC-ECs were harvested and equal number of cells 

(3,000-5,000) was seeded into the wells with medium, in triplicate. The impedance value of 

each well was monitored by xCELLigence and expressed as a Cell Index (CI) value. CI was 

monitored every minute in the first 4 h, and every hour for the rest of days.  

Telomere length measurement by monochrome multiplex PCR (mmqPCR).  

Cellular DNA was isolated using Qiagen® AllPrep® DNA/RNA/Protein Mini Kit following 

the manufacturer’s protocol. MMqPCR was performed in accordance with a previously 

published protocol by Cawthon 60. Briefly, samples were run in triplicate for both control and 

HGPS iPSC-ECs. Samples and standards were pipetted into PCR tubes; standard was created 

via two-fold serial dilution. A PCR mix was added to each PCR tube (see Appendix) and then 

vortexed. Samples and standards were transferred to a white LightCycler® 480 Multiwell 

plate (384 wells), pipetting 10 µL of the total PCR preparation mix into each well, creating 

experimental triplicates in addition to the biological triplicates detailed earlier. PCR runs 

were performed on a Roche LightCycler® 480 (Software: 1.5.1.62) using a preinstalled 

MMqPCR protocol. Raw data was pre-processed via Python script to differentiate different 

primers for the telg/telc primers and single-copy gene (SCG) primer (human β-globin). After 

preprocessing, data was re-uploaded to the Roche LightCycler® system for T/S ratio 

calculations. 
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In vivo Matrigel angiogenesis assay  

To assess the capacity of the iPSC-ECs to form capillary structures in vivo, matrigel was 

mixed with 5 × 105 iPSC-ECs in a final volume of 200μl and injected subcutaneously into the 

lower abdominal region of SCID mice. Two Matrigel plugs were implanted per mouse. Five 

days later, the mice were sacrificed and the Matrigel plugs were retrieved, processed where 

appropriate, and analysed accordingly. For CD31 immunohistochemistry of Matrigel plugs 

harvested from the mice, 5 μm-thick paraffin sections were deparaffinized and hydrated. The 

slides were incubated with the CD3 antibody overnight followed by conjugation to the 

secondary antibody and DAB staining. The Matrigel plug was fixed in paraformaldehyde 4% 

and embedded in paraffin. Sections of 5 Pm were prepared and deparaffinized. After 

rehydration, the slides were stained with haematoxylin and eosin following a standard 

protocol.  

Data analysis 

Results were expressed as the mean±SEM. Each experiment was performed 3 times. The 

Shapiro-Wilk test was used to confirm the null hypothesis that the data follow a normal 

distribution. Statistical comparisons between two groups or multiple groups were then 

performed, respectively, via Student t-test or ANOVA test using PRISM 7 software. A P 

value <0.05 was considered significant. 
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Figure legends 
 
Movie 1 – Protocol of differentiation of iPSC in endothelial cells. From day 0-day 3, 

iPSCs colonies expand up to 80% of confluency. At day 3, the mTesr1 medium is replaced 

with the mesodermal differentiation medium. At this stage, iPSCs start to loosen and change 

their morphology. At day 6, cells are detached, resuspended in the endothelial differentiation 

medium and plated again on Matrigel for 4 days. At this stage, cell shape become more 

stringy, typical of the endothelial cells.  At day 10 this medium is replaced with mature 

endothelial cells medium. At this stage, cell further proliferate up to the confluency. 

 

Figure 1 – Characterization of iPSCs. A. Brightfield images of iPSC (HGPS 167-1Q and 

non-HGPS 168-1P) colonies cultured on matrigel coated dishes. B. Western blotting analysis 

for pluripotency markers Sox2 and Oct4 in HGPS and non-HGPS iPSC. C. 

Immunofluorescence staining for Oct4, SSEA-4, SOX2 and TRA1-60 in HGPS (167-1Q) and 

non-HGPS (168-1P) iPSCs show no difference in the expression of pluripotent stem cell-

specific markers. White bar length 100 um. N=3 experiments per donor cells. 

 

Figure 2 – Differentiation and purification of iPSCs-derived ECs. A. Protocol for 

differentiation of iPSC in endothelial cells. B. Real time PCR for markers of mesoderm, 

endoderm, ectoderm, white blood cells (WBC), red blood cells (RBC), mesenchymal stem 

cells (MSC) and hematopoietic stem cells (HSC) after differentiation and just prior to sorting 

for CD31+CD144+ cells. C-D FACS analysis for the endothelial markers CD31 and CD144 

reveals that both HGPS and non-HGPS iPSCs differentiate to endothelial cells, although the 
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percentage of mature endothelial cells is lower in HGPS. In negative samples, no 1st 

antibodies were added. N=3 experiments per donor cells, Student t-test, *p≤ 0.05, **p≤ 0.01. 

 

Figure 3 – Characterization of iPSCs-derived ECs. A. Real time PCR for endothelial 

markers CD31, CDH5, KDR, Tie2, NOS3 and vWF in non-HGPS and HGPS FACS purified 

iPSC-derived EC. B. Brightfield images of non-HGPS and HGPS purified iPSC-derived EC, 

showing different shape and size (see analysis in Fig. 5B-C). C. Immunofluorescence staining 

for endothelial markers CD31 and VE-Cadherin (CD144). Non-HGPS iPSC-EC with no 1st 

antibodies added were used as negative control (ctrl); HUVEC were used as positive control.  

Images show HGPS 167-1Q and non-HGPS 168-1P cells. N=3 experiments per donor cells, 

Student t-test, **p≤ 0.01. 

 

Figure 4– Senescence features in HGPS iPSC-derived ECs. A. Immunofluorescence 

images showing the expression of lamin A in control HUVEC, non-HGPS and HGPS iPSC-

EC. Nuclear dysmorphologies were observed in HGPS iPSC-ECs (right) compared to non-

HGPS iPSC-ECs (left). B. Western blotting for Lamin A/C and Progerin in Non-HGPS and 

HGPS iPSC-ECs. C-D. HGPS iPSC-EC were larger (cell area) and retain a rounded-shaped 

morphology [cell shape index (CSI)] compared to controls. E. Bar graph of telomere length 

assessed by Monochrome Multiplex Quantitative PCR. HGPS iPSC-ECs have shortened 

telomeres compared to non-HGPS iPSC-ECs at the same passage, as shown by the reduced 

T/S ratios in HGPS iPSC-ECs. F. Real time cell analyser profiles showed that HGPS iPSC-

ECs (red curve) have a reduced cell index compared to non-HGPS iPSC-ECs (green curve).  

Images show HGPS 167-1Q and non-HGPS 168-1P cells. N=3 experiments per donor cells, 

Student t-test, **p≤ 0.01.  

 

Figure 5– Analysis of iPSCs-derived ECs functionality. A. Immunofluorescence images 

showing the uptake of acetylated–low density lipoprotein in HGPS iPSC-EC and control. 

Fluorescence intensity is reported graphically in B. C. Immunofluorescence images of nitric 

oxide (NO), measured by DAF-FM staining, generated in HGPS and non-HGPS iPSC-ECs. 

Fluorescence intensity is reported graphically in D. E. Nitrate/Nitrite assay as measurement 

of nitric oxide. Images show HGPS 167-1Q and non-HGPS 168-1P cells. N=3 experiments 

per donor cells, Student t-test was used in B and D, ANOVA test was used in E. **p≤ 0.01. 
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Figure 6 – Measure of angiogenesis by iPSCs-derived ECs.  A. Representative images of 

vascular network formation (in-vitro matrigel assay) showing that HGPS iPSC-derived ECs 

formed fewer network segments compared to control. Results are reported graphically in B. 

C-G. Reduced neovascularization, shown by in-vivo matrigel plug assay, was observed in 

HGPS iPSC-ECs compared to non-HGPS iPSC-ECs. Images of CD31-immunostained 

sections (D) and HE stained section (F) with results graphically reported in E and G, 

respectively. Images are derived from experiments with HGPS 167-1Q and non-HGPS 168-

1P cells. N=3 experiments per donor cells, Student t-test, **p≤ 0.01. 

 

Table S1 – List of primers used in Real time PCR assay.  
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