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AAbstract  

Macrophages are present in large numbers in every tissue in the body where they play 

critical roles in development and homeostasis. They exhibit remarkable phenotypic and 

functional diversity, underpinning their adaptation to specialized roles in each tissue niche. 

CSF1, signaling through the CSF1 Receptor (CSF1R), which is restricted to monocyte-

macrophage lineage cells in adults, is a critical growth factor controlling macrophage 

proliferation, differentiation and many aspects of mature macrophage function. We have 

generated a macrophage reporter rat, utilizing a construct containing elements of the mouse 

Csf1r promoter and the highly conserved Fms intronic regulatory element (FIRE) to drive 

mApple fluorescent protein expression. Csf1r-mApple was robustly expressed in monocyte-

macrophage lineage cells in rat bone marrow, peripheral blood and tissues, with detectable 

expression in granulocytes and B cells and no evidence of expression in hematopoietic 

precursors or non-hematopoietic cells. Here, we use the Csf1r-mApple transgene to highlight 

and dissect the abundance and heterogeneity of rat tissue macrophage populations, and to 

demonstrate parallel increases in blood monocytes and multiple tissue macrophage 

populations, including bone marrow, liver, spleen and lung, in response to CSF1 treatment in 

vivo. The Csf1r-mApple rat is a novel tool enabling analysis of rat macrophages in situ by 

direct imaging and providing an additional phenotypic marker to facilitate exploration of rat 

tissue macrophage phenotypic and functional heterogeneity. 

 

  



IIntroduction 

 

The laboratory rat has been studied extensively in models of cardiovascular, neurological, cancer, 

diabetes, respiratory and inflammatory diseases.[1, 2] Many of these diseases involve cells of the 

mononuclear phagocyte system (MPS, monocytes, tissue macrophages) in different states of 

activation as effectors and are associated with differential genetic susceptibility amongst rat strains 

(e.g.[3]). Macrophages are a prominent cell population in all major organs and adapt in each site to 

perform specific functions. In mice, resident tissue macrophages adopt unique transcriptional 

profiles to perform organ-specific functions in development and homeostasis.[4-7] There are few 

similar studies in the rat, in part because of the lack of macrophage markers to enable isolation and 

characterization of tissue macrophages or their localization in situ. However, transcriptomic analysis 

of the brain and spleen of Csf1r deficient rats[8] and of the liver of CSF1-treated rats[9] indicated 

that the macrophage populations of those organs (microglia in brain, marginal zone and red pulp in 

spleen and Kupffer cells in liver) share many tissue-specific adaptations with mouse.  

 

Analysis of monocyte-macrophage ontogeny, location and function in mice has been driven by the 

widespread availability of monoclonal antibodies against numerous cell surface proteins, 

fluorescent reporter transgenes, and conditional and constitutive mutations in the germ line. 

Amongst many other applications, these tools have enabled the dissection of the differentiation of 

subsets of peripheral blood monocytes in the mouse. Mammalian peripheral blood monocytes can 

be separated into subpopulations based upon surface markers; LY6C in mouse and CD14/CD16 in 

humans (Reviewed in [10]). The subpopulations are also distinguished by their expression of 

chemokine receptors CCR2 and CX3CR1 in humans, mice and rats.[11] Previous studies of rat 

monocyte heterogeneity have relied on differential expression of the E-selectin ligand sialophorin 



(CD43) and an undefined marker, HIS48, that is shared with granulocytes (expression is somewhat 

analogous to LY6C in mouse).[12, 13] CD43, which is highly expressed on the non-classical 

monocyte population in rats,[11] is also highly expressed on LY6Clo and CD16hi non-classical 

monocytes in mice[14, 15] and humans,[16] respectively. CD43 (SPN) mRNA is strongly up-

regulated in CD16hi human monocytes relative to CD14hi classical monocytes. Most studies indicate 

that these populations are a developmental series, with the LY6Chi (mouse) or CD14hi (human) 

classical monocytes being short-lived immature precursors which may either leave the circulation 

or differentiate to long-lived progeny.[10, 17]  

 

The available macrophage markers for the rat are limited. There are, for example, no antibodies 

against rat CD115 (CSF1R), CD64, MERTK, TIMD4 or F4/80 (ADGRE1); each used widely to define 

subsets of resident tissue macrophages in the mouse. The mRNAs encoding these markers are 

highly-expressed by rat macrophages[3, 8, 9]. The most widely-used rat macrophage markers in 

tissues are still CD68 (ED1), CD163 (ED2) and CD169 (ED3).[18] Recently antibodies were generated 

against rat macrophage C type lectins, MCL1 (CLEC4D) and MINCLE (CLEC4E),[19, 20] but these 

have not been widely utilized.  

 

The proliferation, differentiation and survival of cells of the MPS are controlled by signals from the 

macrophage colony-stimulating factor receptor (CSF1R), elicited by binding of its two ligands, CSF1 

and IL34[21, 22]. Treatment of mice[23] or pigs[24] with a long-acting form of CSF1, CSF1-Fc, 

produced an expansion of blood monocyte and tissue macrophage populations. Conversely, a 

natural mutation of the Csf1 gene (Csf1tl/tl)[25] or targeted mutagenesis of the Csf1r[8] gene in rats, 

as in mice[26], is associated with substantial loss of blood monocytes and most tissue macrophage 

populations. However, the pleiotropic consequences of that loss differ between the rodent 



species.[8] Whereas Csf1r mutation in mice is lethal prior to weaning on most genetic 

backgrounds,[27] Csf1r mutant rats are viable as adults.[8] 

 

The regulatory elements of the mouse Csf1r locus, including a highly-conserved enhancer (the Fms 

intronic regulatory element (FIRE)) in the first intron, have been used in transgenic mice to drive 

fluorescent reporter gene expression[28, 29] and cre-recombinase for conditional mutagenesis and 

lineage tracing[30]. Csf1r reporter transgene expression appeared copy-number and position 

independent and was highly reproducible in multiple independent mouse founders. The Csf1r 

conserved elements also directed monocyte-macrophage reporter gene expression in transgenic 

chickens[31] and sheep[32]. In mice, granulocytes express Csf1r mRNA, but do not express Csf1r 

protein[28, 33]. Accordingly, both Csf1r-EGFP and Csf1r-mApple transgenes are expressed in mouse 

granulocytes, albeit at lower levels than in monocytes. The CSF1R-EGFP and Csf1r-mApple 

transgenes are also expressed at low levels in murine B cells, which, like macrophages, express the 

key transcription factor PU.1. The Csf1r locus is epigenetically-silenced during B lymphocyte 

differentiation[34]; presumably this regulation does not operate fully in a multicopy transgene. 

 

A major advantage of the rat as an experimental model is its much greater size, which permits 

isolation of large numbers of cells from major organs, experimental surgery including 

transplantation and dissection of structures such as lymphatics, lymph nodes and peripheral 

nerves[1]. By contrast to the extensive use of transgenic reporters in mice, there have been few 

reported in rats, mostly in the context of the neuronal[35-38] and vascular/lymphatic[39, 40] 

systems. The recent generation of a cre-dependent reporter gene into the rat Rosa26 locus[41] 

promises rapid advances in applications of lineage tracing in rats, and more broadly the generation 

of defined mutations in the rat genome using CRISPR-Cas9.  



 

To enable greater utility of the rat as an experimental model for the study of CSF1 biology and 

tissue monocyte and macrophage populations in rats, including live imaging applications, we 

generated a Csf1r reporter transgene in this species. For this purpose, we chose mApple as a 

reporter, which was used previously to generate Csf1r reporter transgenic mice[28] and chick[31]. 

mApple has the advantage of resistance to photobleaching[42] and there is relatively little 

background autofluorescence in this channel. Here we characterize the expression of the Csf1r-

mApple reporter transgene in adult rats and utilize the reporter to demonstrate the impact of CSF1-

Fc treatment on diverse tissue macrophage populations. 

 

 

 

  



MMaterials and Methods 

Generation of transgenic rats and animal maintenance. 

Csf1r-mApple transgenic fluorescent reporter rats were generated by pronuclear injection of 

a Csf1r-mApple construct[28] into outbred Sprague-Dawley (SD) embryos under contract 

with Cyagen Biosciences (Santa Clara, USA). Wild type SD rats were obtained from the Animal 

Resource Center, Australia. Genotyping was performed by PCR analysis of genomic DNA 

isolated from ear notches using primers that amplify a 507 bp product within the Csf1r-

mApple cassette (Forward: CCTACATGTGTGGCTAAGGA, Reverse: 

CTTGAAGTAGTCGGGGATGT).  Rats were bred and maintained in specific pathogen free 

facilities at the University of Queensland in accordance with the guidelines of The University 

of Queensland Animal Ethics Unit, under approved protocols. Csf1r-mApple+ founders were 

initially mated with wild type SD rats from a separate colony (ARC, Perth, Australia) and then 

with wild type littermates to avoid mating to homozygosity. Litter sizes averaged 15-17, and 

there was no evidence of a detrimental impact of the transgene knock-in in juvenile or adult 

rats.   

 

CSF1-Fc treatment 

Male (11 weeks old) and female (8 weeks old) rats were randomized into control and 

treatment cohorts and injected with saline or CSF1-Fc [23] (1 mg/kg) daily for 4 days in the 

loose skin over the flank. Animals were euthanized by CO2 inhalation and tissues were 

harvested on day 5. 

 

Tissue collection for imaging and disaggregation for flow cytometry analysis 



Peripheral blood (100 ul) was routinely collected into EDTA tubes by cardiac puncture 

following euthanasia. Blood was subjected to hematology analysis (Mindray BC-5000) 

followed by red blood cell lysis for 2 minutes in ACK lysis buffer (150 mM NH4Cl, 10 mM 

KHCO3, 0.1 mM EDTA, pH 7.4) and resuspended in flow cytometry (FC) buffer (PBS/2 % FBS) 

for staining. In experiments designed to maximize recovery of the marginal pool of 

monocytes, rats were perfused through the left ventricle with 500 ml of ice-cold PBS-EDTA as 

described by Scriba et al.[43] The resulting perfusate was collected and centrifuged. The 

mononuclear cells were isolated from the resulting cell pellet by Ficoll density gradient 

centrifugation. In some experiments the peritoneal and pleural cavities were sequentially 

lavaged using 100 ml and 50 ml PBS, respectively. Bronchoalveolar lavage was performed by 

inserting a plastic cannula into the trachea and inflating the lungs three times with 10 ml of 

Ca2+/Mg+ free PBS using a syringe. Following lavage procedures tissues of interest were 

removed and dissected for disaggregation and imaging. To remove the blood for some 

imaging experiments, euthanized animals were flushed with approximately 50 ml PBS via a 

syringe inserted into the left ventricle. Tissues for imaging were stored in PBS on ice and 

imaged within 2 h. Tissues for disaggregation, including liver, spleen and lung, were finely 

chopped in digestion solution containing 1 mg/ml Collagenase IV (Worthington) and 20 ug/ml 

DNAse1 (Roche) and placed on ice until further processing (~1 g tissue/10 ml). Tissues in 

digestion solution were placed on a rocking platform at 37°C for 45 minutes prior to mashing 

through a 70 μm filter (Falcon). For all tissues other than the liver the cell pellet was collected 

by centrifugation at 400 g for 5 min and resuspended in FC buffer. Percoll density gradient 

centrifugation was used to isolate the liver mononuclear cell fraction, which was then 

subjected to red blood cell lysis, washed and resuspended in FC buffer, as previously 

described[44]. For each tissue the cell count was estimated using a hematology analyzer 



(estimated as white blood cell count) and 1 X 106 cells were stained for flow cytometry 

analysis.  

 

Flow cytometry 

Cell preparations were stained for 45 min on ice in FC buffer containing unlabeled CD32 (BD 

Bioscience), to block Fc receptor binding, with antibody cocktails comprising combinations of 

CD3-FitC, CD161-AF647, HIS48-FitC, CD11b/c-BV570, CD45R-BV785 (BD Biosciences), CD172-

AF405 (Novus), CD4-APC-Cy7, CD43 AF647 (Biolegend). For intracellular staining (CD68-

AF647, BD Biosciences), following surface staining cells were fixed in 4 % paraformaldehyde 

for 10 min at room temperature, washed and stained with antibody in FC buffer containing 

0.1 % saponin. Cells were washed twice following staining and resuspended in FC buffer 

containing 7AAD (Life Technologies) for acquisition using a Cytoflex flow cytometer (Becton 

Dickinson). Relevant single-color controls were used for compensation and unstained and 

fluorescence-minus-one controls were used to confirm gating strategies. Flow cytometry 

data were analysed using FlowJo 10 (Tree Star). Live single cells were identified for 

phenotypic analysis by excluding doublets (FSC-A > FSC-H), 7AAD+ dead cells and debris. 

Absolute cell counts were calculated by multiplying the frequency of the cell type of interest 

by the total mononuclear cell yield per gram of disaggregated tissue. 

 

Confocal microscopy and immunohistochemistry. 

Direct imaging of tissues was performed using a Nikon/Spectral Spinning Disc Confocal 

microscope (X-1 Yokogawa spinning disc with Borealis modification). Ki67 staining was 

performed on paraformaldehyde-fixed paraffin-embedded liver tissue with heat-induced 



epitope retrieval in 10 mM sodium citrate buffer pH 6.0, rabbit anti-Ki67 (Abcam ab16667) 

and DAKO Envision anti-rabbit HRP detection reagents. 

 

Statistics 

Statistical tests were performed using GraphPad Prism 7. Comparisons between control and 

treated groups were performed using the unpaired student’s t-test with Welch’s correction 

for unequal variance where population variance significantly differed (F test). 

 

RResults 

Transgenic Csf1r-mApple rats on the outbred Sprague-Dawley (SD) background were generated by 

pronuclear injection using the same Csf1r-mApple cassette used previously to generate Csf1r-

mApple mice[28]. The mouse Csf1r regulatory elements in this construct, which include the highly 

conserved FIRE sequence[45] are the same as used in the original mouse Csf1r-EGFP transgene[29]. 

One founder line that showed germ line transmission and expression of the reporter in blood cells 

was chosen for further detailed characterization.  

 

Expression of Csf1r-mApple in peripheral blood leukocytes 

Rat monocytes were reported to be uniformly positive for the myeloid markers CD172A (SIRPα), but 

varied in expression of CD43, HIS48, CD11c, CD4 and MHCII.[12] The Csf1r-mApple transgene 

provides an additional myeloid marker. CD172A+ myeloid cells in peripheral blood from Csf1r-

mApple rats exhibited a spectrum of mApple expression (Figure 1A). Consistent with expression in 

mice with the same transgene[28], CD172A+/mApple+ myeloid cells included mAppleIntSSCHi 

granulocytes and SSCLow monocytes (Figure 1B). The monocyte population could be further 

segregated based on CD43 and HIS48 expression (Figure 1C). As previously reported, CD43Low 



monocytes expressed high levels of the granulocyte marker HIS48 whereas CD43Hi cells were 

HIS48Low (Figure 1C). There was also a small population of CD43Low/HIS48- cells (<5% of monocytes) 

(Figure 1C), that may represent immature myeloid cells. As previously reported CD43Hi/HIS48Low 

‘non-classical’ monocytes selectively expressed CD4,[11] whereas median CD11b/c expression was 

higher in CD43Low/HIS48Hi ‘classical’ monocytes (Figure 1D). The rat monocyte subpopulations were 

not clearly delineated consistent with evidence, as in humans and mice, that they represent a 

differentiation series.[11] There was a spectrum of mApple expression in both the HIS48Low/CD43Hi 

and HIS48Hi/CD43Low monocyte populations (Figure 1E). Amongst the non-myeloid (CD172A-) 

population approximately 90% of CD45R+ (B220+) peripheral blood B cells expressed detectable 

mApple (Figure 1A,F), similar to the profile observed in Csf1r-mApple mice.[28] 

 

CD43Hi/HIS48Low non-classical monocytes were present in approximately 4-fold excess compared to 

CD43Low/HIS48Hi classical monocytes (Figure 1C). Previous studies have reported an excess of 

CD43Hi:CD43low monocytes in peripheral blood ranging from approximately 2-fold to 8-fold [11] 

[12]. Different gating strategies or rat genetic backgrounds may have contributed to this 

discrepancy. The latter study also employed whole body perfusion with PBS-EDTA in an attempt to 

include the marginal pool of monocytes but did not compare the perfusate to more conventional 

sampling of the bulk flow.[11] Given the nature of surface markers including selectin ligands, and 

the proposed function of non-classical monocytes in monitoring the vessel wall, one possibility was 

that the CD43hi cells are selectively marginated. We compared the profiles of cells obtained from 

bulk flow with those obtained by flushing the circulation with PBS-EDTA. The PBS-EDTA eluate 

contained abundant leukocytes, but there was no selective enrichment in monocyte subsets or 

other mononuclear cells (data not shown).  

 



Expression of Csf1r-mApple in the bone marrow.  

Approximately 50% of bone marrow (BM) cells expressed mApple, of which ~50% co-expressed 

CD172A (Figure 2A). The large majority of mAppleHi/CD172A- non-myeloid cells expressed the B cell 

marker CD45R (B220) as in peripheral blood (Figure 2B). There was no detectable expression of 

mApple in CD3+ T cells or CD161+ NK cells (data not shown). Bone marrow (BM) myeloid 

CD172A+/mApple+ cells comprised a minor (10%) population of SSCHi cells (putative granulocytes) 

and 2 SSCLow/Int populations (Figure 2C). CD172A+/mApple+/SSCLow/Int monocytes/macrophages fell 

into 2 sub-populations distinguished by reciprocal high expression of CD43 and HIS48 (~70:30 ratio) 

(Figure 2D). CD43Hi cells expressed CD11b/c and CD4, whereas HIS48Hi BM cells were largely 

negative for both markers (Figure 2E). On cytospin analysis of sorted cells, the SSCInt/CD43Hi BM 

cells had irregular nuclei and abundant cytoplasm consistent with identity as resident marrow 

macrophages, whereas the SSCLow/HIS48Hi BM cells resembled monocytes, with round nuclei and 

relatively scant cytoplasm (not shown). CD68, an endosomal protein commonly-employed as a 

macrophage marker in rats, was most highly expressed in SSCHi granulocytes, followed by 

SSCInt/HIS48Low myeloid cells, again consistent with identity as resident macrophages, but was 

poorly expressed in SSCLow monocyte-like cells (Figure 2F). CD68 was not routinely included in 

phenotyping panels because fixation and permeabilization for intracellular staining compromised 

staining of several antibodies of interest. Overall, our data show that Csf1r-mApple transgene 

expression in the bone marrow is restricted to cells that express myeloid (CD172A, CD11b/c, HIS48, 

CD68) or B cell (CD45R) markers. Accordingly, we infer that the transgene is not expressed in 

lineage-negative cells, consistent with previous studies of the regulation of mouse Csfr1r 

transcription during lineage commitment.[46] 

 

Csf1r-mApple transgene expression in rat serous cavities and tissues. 



Mouse serous cavities contain two populations of macrophage lineage cells distinguished by surface 

markers. A population of small F4/80low short-lived cells turns over continuously from monocytes 

but can also contribute to replacement of the long-lived resident population.[47] Equivalent 

populations have been suggested in humans[48], but have not been identified in rats. We isolated 

cells from the peritoneal and pleural cavities to investigate the expression of myeloid markers on 

Csf1r-mApple+ cells and to seek equivalent heterogeneity. Approximately 70% of peritoneal and 

pleural exudate cells expressed mApple, 95% of which co-expressed CD172A (Figure 3A,D). In 

contrast to the uniform high reporter expression in mouse peritoneal macrophages[28], there was a 

large spectrum of Csf1r-mApple expression in rat peritoneal and pleural cells. 10-15% of 

CD172A+/mApple+ cells were also SSCHi (Figure 3B,E) and resembled granulocytes on cytospins (not 

shown). The majority (>90%) of SSCLow resident macrophages homogeneously expressed CD4 and 

CD11b/c (Figure 3C,F), but very low or no HIS48 and CD43 (not shown). Minor populations of 

CD11b/cLow/Neg. (5-10%) and CD11b/c+/CD4- were also identified (Figure 3C,F). In both the peritoneal 

and pleural cavities, mApple+/CD172A+/SSCHi granulocytes, but not SSCLow monocyte-macrophages, 

expressed CD68 (Figure 3G,H and data not shown). Consistent with published data[49], CD163, 

another commonly used rat tissue macrophage marker, which is not expressed on the surface of 

blood monocytes[49], labelled approximately 50% of peritoneal mApple+/CD172A+/SSCLow cells but 

did not define an obvious subpopulation (Figure 3G,H). Overall, the marker profile suggests that the 

peritoneal macrophages represent a spectrum of maturation. Consistent with that view, cytospins 

of flow cytometry-sorted peritoneal populations revealed a broad spectrum of morphologies from 

monocyte-like to mature macrophage (Figure 3I). We also assessed expression of the transgene in 

bronchoalveolar lavage cells. Like macrophages of serous cavities, lavage cells expressed very high 

levels of mApple, were highly autofluorescent and expressed CD172A, CD4 and CD43, but not HIS48 

and CD11b/c (Figure 3J and data not shown). 



 

Csf1r-mApple expression in rat tissues.  

To assess the expression of Csf1r-mApple in tissue macrophage populations in situ, we imaged a 

variety of fresh unfixed tissues from adult male and female reporter rats using a spinning disc 

confocal microscope. Representative images are shown in Figure 4. The abundance, distribution 

and stellate morphology of cells expressing detectable Csf1r-mApple in a diverse array of tissues 

mirrors previous analysis of mouse Csf1r transgenes[28, 29] and, in most cases, the location of 

mouse macrophages defined by the F4/80 antigen.[50] Consistent with the expression of the 

transgene in blood and bone marrow B cells Csf1r-mApple was apparently abundant in structures 

that resemble lymphoid follicles in the spleen, lymph nodes and Peyer’s patches (Figure 4). One 

striking finding made possible with the transgene is the imaging of macrophages in skeletal, cardiac 

and smooth muscle of the diaphragm and muscularis externa of the gut (Figure 4). Macrophages of 

the diaphragm are implicated in control of lymphangiogenesis[51, 52] and those of muscularis 

externa in the regulation of gut motility in the mouse[53]. In each location, macrophages are 

abundant and spread in the plane of the muscle fibres. There have been few published studies of 

skeletal muscle macrophages in the mouse[54], but the expression of the transgene is consistent 

with much older studies of the localization of ED2 (CD163) and ED3 (CD169) in rat skeletal 

muscle[55].   

 

In mice, the Csf1r-EGFP transgene provides a sensitive marker for imaging microglia[56]. For 

reasons that are not clear, mApple was readily detected by flow cytometry in CD45LowCD11b+ 

microglia in Csf1r-mApple mice[28] but the reporter gene was difficult to detect in whole mount 

brain preparations. This was also the case in Csf1r-mApple rats. Microglia were readily detectable in 

the brain meninges (Figure 4) but only faintly labelled in whole mounts of brain regions, although 



Csf1r-mApple+ myeloid cells (CD11b/c+, ~20 % of brain cells) were readily detected in disaggregated 

brain of Csf1r-mApple rats (data not shown). We conclude that there is some form of quenching of 

the mApple signal in nervous tissue. 

 

The effect of CSF1-Fc administration on circulating monocytes and tissue macrophage populations.  

The main purpose of the generation and characterization of the Csf1r-mApple transgene was to 

provide a marker for studies of macrophage biology in the rat. In particular, our focus is on 

potential therapeutic applications of CSF1 and the role of CSF1R signalling in development.[8] In 

neonatal rats, the administration of a CSF1-Fc fusion protein expanded the macrophage 

populations of the liver and other tissues but did not increase the blood monocyte count.[9] 

However, much earlier studies demonstrated increased peripheral blood monocytes in CSF1-

treated adult rats.[57] We therefore decided to investigate the effect of CSF1-Fc in adult rats using 

the Csf1r-mApple transgene as a marker. This study also serves to validate the CSF1-dependence of 

mApple+ tissue macrophage populations identified with the transgene by direct imaging and by flow 

cytometry analysis of disaggregated tissues. Using the same protocol as employed previously in 

mice,[23] in separate experiments we injected cohorts of adult male and female Csf1r-mApple rats 

with pig CSF1-Fc (1 mg/kg) on each of 4 days, sacrificed them on the 5th day and harvested cell 

populations and tissues for analysis.  

 

Consistent with the findings in mice and pigs, CSF1-Fc treatment produced a marked increase in the 

size of the liver and spleen in both male and female rats (Figure 5A,B). Liver growth was associated 

with an increase in the number of Ki67+ hepatocytes as well as non-parenchymal cells (Figure 5C). In 

the blood we confirmed an ~4-fold increase in total leukocytes, and a 4-fold increase in monocytes 

(Figure 5D-E), but no change in granulocytes or other hematological parameters (not shown). 



Consistent with these findings, flow cytometry analysis revealed an ~3-fold increase in the Csf1r-

mApple+ mononuclear cell population in peripheral blood (Figure 5F). There was no apparent 

change in the relative proportions of HIS48Hi and CD43Hi monocytes, but the minor population of 

HIS48-/CD43Low monocytes almost completely disappeared upon CSF1-Fc treatment (p=0.04, data 

not shown). The monocytosis initiated in response to CSF1-Fc treatment was associated with an 

increased prevalence of CD172A+/Csf1r-mApple+ cells in the BM, which was attributable to an 

increase in the SSCLow/HIS48Hi cells shown previously to resemble monocytes (Figure 2, Figure 6A-

C). In the peritoneum CSF1-Fc treatment modestly increased the total yield of exudate cells 

(approximately 1.5-fold, p=0.06), without changing the proportions of cells positive for CD172A.   

 

The combination of the transgenic reporter and whole mount imaging enabled a global overview of 

the impact of CSF1-Fc treatment. An increase in both the size of the macrophages and their 

abundance was visibly obvious in images of fresh tissue examined using the spinning disc confocal. 

Figure 7 shows representative images of the lung, liver, diaphragm, mesentery, mesenteric lymph 

node, Peyer’s Patches, colon and isolated lymphoid follicles with colonic patches from control and 

CSF1-Fc-treated Csf1r-mApple rats. In the liver, the obvious massive increase in Csf1r-mApple+ cells 

appeared to involve smaller, less stellate monocyte-like cells. Consistent with findings in the 

intestinal muscularis externa of CSF1-Fc treated mice,[28] individual Csf1r-mApple expressing 

macrophages in the diaphragm, where they can be readily imaged, were spread in the plane of the 

muscle and appeared larger and less ramified (Figure 7). The mesentery similarly provides a location 

where adipose tissue macrophages can be readily imaged. Csf1r-mApple+ cells were distributed 

between adipocytes in control rats, but in CSF1-Fc treated mice they appeared larger and 

surrounded each adipocyte (Figure 7).  

 



To confirm the substantial expansion of the tissue macrophage populations observed with direct 

imaging we disaggregated selected tissues and analyzed cell surface marker expression. In saline 

treated control rats approximately 45% of spleen cells expressed Csf1r-mApple, 80-90% of which 

co-expressed CD45R and lacked expression of CD172A, CD11b/c, CD43 and HIS48, consistent with 

expression by B cells (Figure 8A and data not shown). In contrast to other tissues in which  

CD172A-/CD45R+ cells exhibited intermediate mApple expression, the spleen contained an mAppleHi 

population (Figure 8A). CSF1-Fc treatment increased splenic white blood cells (WBC) approximately 

2-fold, including an increase in the proportion and number of mApple+/CD172A+ myeloid cells 

(p=0.005 and p=0.028, respectively), but no significant change in the mApple+/CD172A- 

compartment (Figure 8B). The increase in the myeloid compartment was driven by an increase in 

SSCLow monocyte-macrophages, including CD43Low cells with variable CD4 expression and a 

CD43Hi/CD4Hi sub-population (Figure 8C). Both CD172A+ monocyte-macrophage populations were 

CD11b/c+ and the majority were HIS48- (data not shown). Spleen mApple+/CD172A+ myeloid cells 

also included a population of relatively granular cells (Figure 8A), which were uniformly 

HIS48+/CD43+ and not affected by CSF1-Fc administration.   

 

 

In the liver of saline-treated control rats, approximately 40% of non-parenchymal cells expressed 

mApple, of which 60% expressed CD172A (Figure 8D). CSF1-Fc treatment increased the yield of 

mononuclear cells after liver disaggregation >5-fold (p=0.007) and dramatically increased the 

proportion and number of CD172A+/mApple+ cells (Figure 8E), in particular CD172A+/SSCLow 

monocyte-macrophages with intermediate mApple expression. In control animals, 3 populations of 

liver monocyte-macrophages with distinct phenotypes were identified: CD43-/CD4-/mAppleInt, 



CD4+/CD43-/mAppleInt and CD4+/CD43+/mAppleHi (Figure 8D). CSF1-Fc treatment led to increases in 

all 3 sub-populations, especially CD4+CD43- cells (Figure 8F).  

 

Whole mount imaging of the lung suggested that there was a substantial increase in the number of 

Csf1r-mApple+ cells in this organ in response to CSF1-Fc treatment (Figure 7). The lung has not 

previously been examined in detail, but in mouse we showed that injection of labelled CSF1-Fc 

accesses interstitial but not bronchoalveolar macrophages.[28] Consistent with the imaging data, 

CSF1-Fc treatment induced a significant increase in mApple+/CD172A+ cells that were released by 

enzymic disaggregation of the lung (Figure 8G,H). As in other tissues, in both control and CSF1-Fc 

treated lungs, these cells varied in granularity. The SSClow monocyte-macrophage population could 

be subdivided based upon CD43 and CD4 expression, with CD43Hi/CD4+ cells comprising 70% of the 

total (Figure 8G). CSF1-Fc increased the SSClow population without changing the relative proportion 

of CD43Hi cells (Figure 8I). The SSCHi and SSCInt granulocytic cells had a similar surface marker 

profiles; CD43+/HIS48+/CD4-/CD11b/c+ (data not shown). Neither CD172A+/SSCHi/SSCInt nor Csf1r-

mApple+/CD172-/CD45R+ B cells were affected by CSF1-Fc administration (Figure 8H,I).   

  

Discussion 

 

The 7.2kb mouse Csf1r promoter cassette used to generate the Csf1r-mApple transgenic rat line 

produced consistent position and copy number-independent expression of reporter genes in 

multiple independent mouse lines[28, 29, 58] and was also used to generate Csf1r-cre recombinase 

transgenes for lineage trace studies[30]. The expression of the reporter gene in this construct 

depends upon an enhancer, the Fms Intronic Regulatory Element (FIRE)[29] that is highly-conserved 

in vertebrates[45]. A FIRE-like sequence, in the same relative location in the chicken CSF1R locus, is 



also required for expression of reporter genes in macrophages in chicken transgenic lines[31] and a 

lentivirus containing mouse FIRE was shown previously to able to direct myeloid-specific expression 

in rat, human, pig, cow, sheep and even chicken[59]. FIRE is 96 % identical between mouse and rat 

and there only 5 transversions none of which affects the documented binding sites for transcription 

factors[60]. The 7.2kb mouse Csf1r promoter used to generate the reporter rat line can be aligned 

across its whole length with the rat Csf1r locus with approximately 85 % conservation. Most 

differences are due to repeat insertions and expansion. All the regulatory elements in the proximal 

promoter (reviewed in[60]) are also conserved between mouse and rat. The widespread expression 

of Csf1r-mApple in macrophage lineage cells in the reporter rat supports the view that the 

regulation is conserved. Notwithstanding that view, we recently demonstrated that germ-line 

deletion of FIRE in mice leads to selective loss of CSF1R expression in monocytes and only a subset 

of tissue macrophages[61].  There are likely to be regulatory elements immediately upstream of the 

proximal promoter region[58] and within the upstream Pdgfrb gene[60] that contribute to Csf1r 

regulation. In a detailed study of the role of CSF1R in brain development, Erblich et al[62] found 

that Csf1r-EGFP expression accurately reflected the presence of Csf1r mRNA exclusively in 

microglia. Several studies have suggested that CSF1R can be expressed in neurons and in some 

epithelia. One such study claimed that CSF1R was expressed in Paneth cells in the intestinal crypt, 

but this was recently demonstrated not to be the case and Csf1r-EGFP expression in the lamina 

propria accurately reflected the expression of Csf1r mRNA exclusively in macrophages including 

those closely-associated with the crypts[63]. In rat intestine there was a similar close apposition of 

Csf1r-mApple+ cells with the crypts, and the transgene was not expressed by epithelial cells. We 

have similarly seen no evidence for transgene expression in neurons or in any other location in 

tissues inconsistent with restriction to hematopoietic cells. The analysis of disaggregated tissues by 



flow cytometry strongly supports the restriction of transgene expression in tissues to 

monocyte/macrophage lineage cells, and generally low expression in granulocytes and B cells.  

 

The Csf1r-mApple reporter provides an additional marker for blood monocytes. As previously 

reported in studies in inbred PVG[11] and outbred SD rats[12], the CD43Hi “non-classical monocyte 

population was dominant in our SD Csf1r-mApple rats (4-fold compared to CD43Low “classical” 

monocytes). As in a previous study, rat monocytes were also distinguished by expression of CD4 

and the granulocyte marker HIS48[12]. CSF1-Fc treatment significantly increased peripheral blood 

monocyte count, as has been shown in other species. In mice, the relative abundance of the 

monocyte populations varies in different reports and may be strain and method dependent. On an 

outbred genetic background, the CD43+/Ly6CLow non-classical monocytes comprised around 60% of 

total monocytes[14]. However, in C57BL/6 mice Ly6CHi monocytes are clearly in the substantial 

majority[28, 64]. In humans the non-classical CD16+ monocytes constitute a minor population 

(~10%), but this depends upon the gating strategy and changes with disease status[65-67]. The 

delineation of a definitive “non-classical” monocyte is also difficult in other species[32, 68]. The 

original identification of CD43Hi monocytes in rats reported a similar relative abundance to 

mice[69], but subsequent studies indicated an apparent excess of CD43Hi non-classical cells[11, 12, 

70]. The identification of an excess of CD43Hi non-classical monocytes in the rat depends obviously 

upon the definition of monocytes. The Csf1r-mApple transgene provides an additional informative 

marker.  

 

The abundance and regular distribution of macrophages within rat tissues is remarkably consistent. 

Monocyte-macrophage homeostasis has been attributed to a combination of regulated growth 

factor availability and either mutual repulsion or competition for spatially-defined niches within 



tissues[17, 21, 71]. In previous studies, we showed that labelled CSF1-Fc injected into the 

circulation can access all tissue macrophage populations other than brain microglia and 

bronchoalveolar macrophages in mice[28] and that short-term CSF1-Fc administration increases the 

abundance of multiple tissue macrophage populations, in part due to resident macrophage 

proliferation[9, 23, 72, 73]. CSF1-Fc treatment also increased liver and splenic macrophage content 

in neonatal rats[9]. At this age, resident macrophage proliferation appeared to be the dominant 

mechanism since there was no impact on monocyte production. By contrast, in adult rats, CSF1-Fc 

treatment promoted a significant increase in circulating blood monocytes, and a massive expansion 

of tissue macrophages in every organ investigated. Changes in size and morphology were also 

evident. The lack of CSF1-Fc-induced monocytosis thus appears specific to neonates and adult rats 

respond to CSF1-Fc in a similar manner to mice and pigs[23, 24, 73]. Although CSF1 has been shown 

to promote monocyte maturation in mice and humans[74], we did not observe any difference in 

the relative proportions of monocyte subsets upon CSF1-Fc treatment. CSF1-Fc treatment of adult 

rats also promoted hepatomegaly (associated with hepatocyte and non-parenchymal cell 

proliferation) and splenomegaly, as observed in neonatal rats as well as mice and pigs[9, 23, 73]. 

The impacts of CSF1-Fc treatment in mice are age- and gender-dependent (unpublished data). In 

this study, we observed a greater impact of CSF1-Fc treatment on liver size in 8-week old female 

compared to 11-week old male rats. The underlying mechanism is not known, however CSF1-

dependent liver macrophages may interact with other pathways controlling sex-specific liver gene 

expression, organism growth and other functions. 

 

Tissue macrophage heterogeneity has been extensively studied in mice (e.g. www.Immgen.org), 

and some phenotypic and/or functional characteristics have been translated to human 

macrophages and informed our understanding of macrophage heterogeneity and plasticity in 



health and disease. Although rats are considered to be superior to mice for modelling many aspects 

of human physiology, including cardiovascular disease and cognition[1], there is a paucity of studies 

on rat tissue macrophages, in part due to the limited range of antibodies available. Here we use 

Csf1r-mApple to highlight and begin to dissect the remarkable macrophage heterogeneity in a 

diverse range of rat tissues. In addition to their differential expression on circulating monocytes, 

CD43 and HIS48 have been reported as markers of monocyte-macrophage subsets in rat bone 

marrow, liver, lung and spleen[12]. We used Csf1r-mApple and CD172A to identify myeloid lineage 

cells in multiple tissues and investigated co-expression of CD11b/c and the monocyte-subset-

specific markers CD43 and HIS48. We identified CD43Hi and HIS48Hi bone marrow populations that 

resembled macrophages and monocytes, respectively, and demonstrated a >3-fold increase in the 

HIS48Hi monocyte population in response to CSF1-Fc treatment. CSF1-Fc treatment also produced a 

dramatic increase in splenic monocyte-macrophages, including both CD43Hi and CD43Low sub-

populations, the majority of which lacked HIS48 expression. The largest impact of CSF1-Fc 

treatment was seen in the liver, with significant increases in 3 monocyte-macrophage populations 

distinguished by differential CD43 and CD4 expression. CSF1-Fc treatment also increased monocyte-

macrophage content in the lung, with parallel increases in CD43Hi and CD43Low sub-populations. 

Although the available markers do not definitively distinguish monocytes, monocyte-derived 

macrophages and embryonic-derived macrophages, these data suggest CSF1-Fc acts on multiple 

resident macrophage subsets and potentially promotes monocyte infiltration, consistent with data 

in mice, in which CSF1-Fc treatment promoted both monocyte infiltration and resident macrophage 

proliferation in the liver[73]. [75] Taken together, we show that CSF1-Fc treatment specifically 

expanded Csf1r-mApple/CD17A+ populations in every tissue examined, without impacting Csf1r-

mApple+ granulocytes and B cells, consistent with their identification as monocyte-macrophage 

lineage cells and highlighting the systemic impact of CSF1-Fc. Although HIS48 robustly labelled 



granulocytes and has previously been reported as a marker of tissue macrophage subsets[12], we 

did not find this marker to be a universally applicable monocyte-macrophage marker. On the other 

hand, CD43 and CD4 reliably distinguished macrophage sub-populations in multiple tissues. Further 

detailed investigations will be required to understand the ontogeny and function of the rat tissue 

macrophage sub-populations identified. 

 

The propensity of immune cell reporter genes to be downregulated by inflammatory stimuli is a 

potential limitation to their use. For example, a human CD68 promoter-driven GFP transgenic 

macrophage reporter mouse was shown to be superior to Cxcr3-GFP for studies of 

inflammation[75]. Csf1r-mApple expression in response to inflammatory stimuli has not yet been 

tested, however reporter downregulation has not previously been observed in Csf1r reporter mice 

in inflammatory settings, and there were no identifiable effects of CSF1-Fc treatment upon mApple 

expression in Csf1r-mApple rats. 

 

Circulating CSF1 is heavily buffered by macrophage-mediated clearance in the liver and spleen[21]. 

Nevertheless, increased circulating CSF1 has been measured in many different inflammatory and 

malignant disease states[76]. In obese patients, the level varied by an order of magnitude and was 

weakly correlated with insulin resistance[77]. Another study noted elevated circulating CSF1 in 

response to exercise and training[78]. Our key conclusion is that CSF1 is not saturating for any 

tissue macrophage populations. The results indicate that any increase in circulating CSF1 would 

drive increased macrophage numbers in every organ system. In effect, the mononuclear phagocyte 

system functions as a single regulated unit. The pleiotropic impacts need to be considered in any 

therapeutic application of either CSF1 or CSF1 antagonists.  

 



The major limitation of the Csf1r-mApple rat is that there are two populations of cells that express 

mApple that are clearly not macrophages. In mice, both Csf1r transgenes and Csf1r mRNA are 

expressed by granulocytes[33] but they do not express Csf1r protein unless starved of growth 

factors in vitro. They also do not bind labelled CSF1-Fc in vivo[28]. In several tissues, notably bone 

marrow, peritoneum and liver, we also identified Csf1r-mApple-/CD172A+ myeloid populations that 

exhibited high granularity and expressed the granulocyte marker HIS48. Circulating B lymphocytes 

expressed Csf1r-mApple in rats, as they do in mice[28]. We have extended that observation to 

demonstrate the expression in B cells in multiple organs, including spleen and lymph node. As 

noted above, the Csf1r promoter is active in B cells[34], but there is little to no detectable Csf1r 

mRNA in purified mouse B cells in any state of activation (www.biogps.org; www.immgen.org). It 

may be that elements outside the promoter construct used, as well as chromatin architecture, 

serve to restrict B cell Csf1r expression.  

 

In summary, we report the generation of the first macrophage reporter transgene in rats. A 

separate rat macrophage reporter line utilising the human CD68 promoter[75] driving EGFP has also 

recently been generated (Kevin J Wollard, personal communication), which will be valuable for 

comparative studies. Csf1r-mApple is robustly expressed in monocyte-macrophage lineage cells. 

We have demonstrated the utility of Csf1r-mApple for direct imaging and flow-cytometric 

identification of rat tissue macrophage populations and for monitoring impacts of modifiers of the 

mononuclear phagocyte system, exemplified by CSF1-Fc. The mApple reporter will enable two-

colour imaging of cell-cell interactions with more commonly-applied EGFP reporters and facilitate 

more detailed investigations into rat monocyte and tissue macrophage subsets, which are currently 

limited by the available markers.   
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Figure Legends:  

 

Figure 1. Csf1r-mApple expression in rat peripheral blood leukocytes. Peripheral blood (PB) 

was collected from Csf1r-mApple rats and analyzed by flow cytometry. (A) Csf1r-mApple 

expression in CD172A+ and CD172A- PB leukoyctes. Csf1r-mApple+/CD172A+ cells comprised 

SSCHi granulocytes and SSCLow monocytes (B), which could be further divided into 

HIS48Hi/CD43Low (red), HIS48Low/CD43Hi (green) and HIS48-/CD43Low (blue) subpopulations (C) 

exhibiting differential CD4 and CD11b/c expression (D) and a spectrum of mApple expression 

(E). (F) CD45R expression on CD172A- PB leukocytes. 

 

Figure 2. Csf1r-mApple eexpression in rat bone marrow. Bone marrow (BM) was collected from 

Csf1r-mApple rats and analyszed by flow cytometry. (A) Csf1r-mApple expression in CD172A+ 

and CD172A- BM cells. (B) CD45R expression on CD172A- BM cells. 

Csf1r-mApple+/CD172A+ cells comprised SSCHi granulocytes, SSCInt and SSCLow 

monocyte/macrophages (C). CD43 and HIS48 (D) and CD11b/c and CD4 (E) expression on 



Csf1r-mApple+/CD172A+/SSCInt and mApple+/CD172A+/SSCLow BM cells. CD68 expression on 

Csf1r-mApple+/CD172A+ BM cells (E, population cell counts normalized to mode).  

FFigure 3. Csf1r-mApple expression in rat peritoneal and pleural cavity and alveolar cells. 

Peritoneal, pleural and bronchoalveolar cells were collected from Csf1r-mApple rats by 

lavage and analyzed by flow cytometry. Csf1r-mApple expression in CD172A+ and CD172A- 

peritoneal (PT, A) and pleural (PL, D) cells. PT and PL Csf1r-mApple+/CD172A+ cells comprised 

SSCHi granulocytes and SSCLow monocyte/macrophages (arrow) (B,E). SSCLow 

monocyte/macrophages exhibited differential CD11b/c expression (C,F). CD163 and CD68 

expression on peritoneal monocyte-macrophages (G) and granulocytes (H). Cytospin analysis 

of Csf1r-mApple+/CD172A+/SSCLow peritoneal monocyte-macrophages (I, arrow and arrow 

head indicate macrophage and monocyte morphology, respectively. 20X magnification). 

Csf1r-mApple expression in CD172A+ bronchoalveolar lavage (BAL) cells (J).    

Figure 4. Localization of the Csf1r-mApple+ cells in rat tissues. Whole-mount imaging of freshly 

isolated meninges, optic nerve, liver, kidney, lung, cardiac muscle, diaphragm, muscularis 

externa of the gut, skeletal muscle, skin epidermis, brown adipose tissue (BAT), white adipose 

tissue (WAT), pancreas (including islet), spleen, mesenteric lymph node (MLN), inguinal 

lymph node (ILN), Peyer’s patch, and colon from Csf1r-mApple transgenic rats. Scale bars 

represent 50μM not including Peyer’s patch and colon, which is 100μM. 

Figure 5. CSF1-Fc administration increases blood monocyte count and promotes hepatomegaly 

and splenomegaly. Csf1r-mApple rats were administered 1 mg/kg CSF1-Fc daily for 4 days 

prior to sacrifice on day 5. Liver (A) and spleen (B) weight/body weight ratio, liver Ki67 

expression (C, D, 20X magnification), and peripheral white blood cell (WBC) count (E) and 

monocyte proportion (F) in PBS compared to CSF1-Fc-treated rats. 



FFigure 6. Impact of CSF1-Fc administration on bone marrow leukocytes. Bone marrow (BM) 

cells were harvested from Csf1r-mApple rats administered 1 mg/kg CSF1-Fc daily for 4 days 

prior to sacrifice on day 5. The impact of CSF1-Fc treatment on Csf1r-mApple CD172A+ and 

CD172A- BM myeloid cells (A) and CD172A+/SSCInt (solid arrow) and CD172A+/SSCLow (dashed 

arrow) BM cells in control and CSF1-Fc-treated rats (B-C). 

Figure 7: Localization of Csf1r-mApple+ cells in tissues of CSF1-Fc-treated rats. Whole mount 

images of freshly isolated lung, liver, diaphragm, mesentery, mesenteric lymph node (MLN), 

Peyer's patches (PP) and their surrounding villi (V), colon (including isolated lymphoid follicles 

(ILF)) and colonic patches (CP) from saline- and CSF1-Fc-treated (below) Csf1r-mApple rats. 

Scale bars represent 50 μM in lung, liver, diaphragm, mesentery and MLN. Scale bars 

represent 100 μM in Peyer’s patches, colon and colonic patches. 

Figure 8. Csf1r-mApple expression in rat spleen, liver and lung leukocyte populations and the 

impact of CSF1-Fc administration. Spleens, livers and lungs were harvested from Csf1r-

mApple rats administered 1 mg/kg CSF1-Fc daily for 4 days prior to sacrifice on day 5. Csf1r-

mApple expression in CD172A+ and CD172A- splenocytes (A) and their abundance (B) in 

control and CSF1-Fc-treated rats. Csf1r-mApple+/CD172A+/SSCLow spleen cells comprised 

CD43Low and CD43Hi sub-populations (A,C). Csf1r-mApple expression in CD172A+ and CD172A- 

liver leukocytes (D) and their abundance (E) in control and CSF1-Fc-treated rats. 

Csf1r-mApple+/CD172A+/SSCLow liver cells comprised CD43-/CD4-, CD43-/CD4+ and 

CD43+/CD4+ sub-populations (D,F). Csf1r-mApple expression in CD172A+ and CD172A- lung 

leukocytes (G) and their abundance (H) in control and CSF1-Fc-treated rats. The impact of 

CSF1-Fc treatment on CD172A+/SSCHi and CD172A+/SSCLow subpopulations (C).    

 


















