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Abstract
Significant changes may occur in the thermal behaviour of a directly grid-fed induction machine when subjected to unbalances in the voltage supply. This paper studies and analyses the thermal behaviour of a low power, three-phase, squirrel-cage induction motor, connected in star configuration with floating neutral point, when subjected to different levels of unbalanced voltage. The dependence of the thermal motor behaviour on the severity level of the unbalance is studied and analysed. In addition to amplitude unbalances, this paper focuses on the effects of phase unbalances, as well, which were not addressed in detail in previous published studies. Moreover, situations of mixed unbalance, where amplitude and phase unbalances occur simultaneously, are also studied. The Finite Element Method (FEM) was used to simulate the thermal behaviour of the machine. The experimental setup consists of a three-phase programmable AC power supply, suitable to precisely emulate unbalance conditions that may occur in real-scale power systems, supplying a 2.2 kW induction motor. Experimental data were acquired resorting to Resistance Temperature Detectors (RTDs) PT100, placed in the machine phase whose supply current value changed the most. Finally, the simulation results are verified and critically discussed through experimentally obtained results. 
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1. INTRODUCTION
The directly grid-fed induction machine is widely used in industry, especially as a motor, due to its robustness, simplicity, reliability, low operation cost and low maintenance requirements [1]–[3]. As this is a very important machine for industrial applications, on-line monitoring of its operating characteristics is essential as a mean to maintain the reliability and to anticipate unexpected failures [4], [5].

Stator failures are very common among induction machines. Indeed, stator failures represent the majority of faults occurring in high voltage machines [6]. Concerning the machine stator, there are two types of faults that stand above all others: winding short-circuits [7], and voltage unbalance between phases [8], [9].

The latter, can theoretically occur due to many factors, but the following have been quite often verified by experience: defects in the power circuit connections, unmatched impedance on transformer banks, unequal impedance in the conductors of the power supply wiring, unbalanced distribution of single-phase loads and malfunction of the surrounding equipment [10].

Unbalances in the voltage supply can seriously damage the machine. The most common malfunctions resulting from this defect are increments in the motor losses – leading to local overheating and consequent lifetime reduction of the machine [8], the production of asymmetrical forces in the motor – which lead to higher harmonics in the torque and, as a result, to the increment of the vibrations and noise, and fast degradation of the bearings [11].
Following standardisation and stringent rules, electric machine manufacturers usually ensure that the machine can handle a voltage amplitude unbalance of up to 1 %  in order to avoid an early deterioration [12]. Unfortunately, electric grids are unable to assure, most of the time, a stable three-phase voltage supply, with such a small level of unbalance. Therefore, it should be expected that most directly grid-connected electric machines will be exposed to excessive supply unbalance conditions. 
As it is demonstrated further ahead, the analysis of the thermal distribution and behaviour of the electrical machine demonstrates particular potential for the identification of voltage supply unbalance conditions, due to the fact that the increment in the motor losses are the most important and tangible effects of voltage supply unbalance conditions. The relation between the temperature and the effect on the machine lifetime has been extensively studied in the past. Montsinger introduced the concept of the 10 °C rule. According to this rule, each 10 °C increment above the rated temperature of the winding insulating material leads to a decrease of about 50 % in the insulation lifetime [13], [14], raising the chances for inter-turn short circuit faults in the stator windings. Recent studies have shown that the degradation mechanism of the windings’ insulation, resulting from thermal ageing, is more complex than expected. Along with temperature, manufacturing variations also play an important role while defining the conditions of degradation of the windings’ insulation. Moreover, the resistance of the insulation materials might not vary linearly with their severity of degradation [15], [16].  
The available literature devoted to the analysis of the operation of induction motors subjected to unbalanced voltages covers distinctive matters. The evaluation of the effects of voltage amplitude and phase unbalance carried out in [17], [18] focuses on variables like current, torque, or efficiency, without considering the study of the motor thermal behaviour. 
So far, most studies devoted to the thermal analysis of induction motors operating under degraded conditions have used alternative methods to FEM, focusing on voltage amplitude unbalance conditions. In [8] and [19], the thermal model of the induction motor, supplied under unbalanced conditions, is established based on an equivalent thermal network. In [8], the study aims at identifying the effects of amplitude and phase unbalance conditions occurring along with deviations of the RMS voltage. The impact, on the motor temperature, of phase unbalance conditions combined with RMS voltage deviations strongly depends on aspects like the motor constructive features and the stator windings configuration (star or delta configuration). In that study, it is not mentioned whether the presented results report, or not, to the thermal steady-state conditions. Furthermore, reference [8] does not analyse the effects of a mixed unbalance condition with null VUF. As it is demonstrated further ahead in this study, the effects of such unbalance condition on the motor temperature are equally severe. Based on the results of the implementation of the thermal model developed in [19], an accurate estimation of the useful lifetime of the windings’ insulation is obtained. The implementation of thermal models based on equivalent thermal networks is challenging. Detailed knowledge of the motor parameters is required for the successful development of the motor thermal model [8], or involves the determination of those parameters resorting to well-known motor testing techniques [19], which might not be feasible in pre-installed machines. 
Some recent studies developing the thermal analysis of induction motors have incorporated FEM models in their analyses. In [20], a comprehensive experimental analysis of the effects of unbalanced voltage supplies in parameters such as temperature, speed-torque characteristic, noise, and vibration, is provided. The major effects resulting from the unbalance voltage condition include the non-uniform temperature distribution within the stator, the increment of vibration, pulsating electromagnetic torque and slight depreciation of the developed torque and speed.
The study developed in [21] takes into account not only the influence of voltage unbalance conditions, but also the total harmonic distortion (THD) of the voltage in the electromagnetic losses of induction machines. A method is developed to estimate the rotor electromagnetic quantities, allowing to estimate the overall electromagnetic losses. It is shown that the Joule losses in both stator and rotor circuits are particularly affected by the severity of the unbalance. On the other hand, both unbalance and THD conditions contribute to the increment of the iron losses.
In [22], a correlation model is developed, aiming to establish a relation between the stator temperature gradient and the degree of severity of anomalous operation conditions like voltage unbalance and mechanical overload. The model accurately describes the degree of voltage unbalance required to produce a thermal gradient in the motor stator. The model is established resorting to empirical data. 
In [23], an experimental study assesses the effects of amplitude and phase unbalances on the supply of low-power induction motors. The effects of the unbalance on variables like efficiency, power factor, or temperature, are evaluated. Amplitude and phase unbalance conditions are studied separately. Unfortunately, the study does not provide a complete analysis of the thermal behaviour of the motors. The thermal steady state conditions are not fulfilled for most unbalance scenarios, thus precluding the possibility to take enlightened conclusions about the potential increment of the motor temperature. Furthermore, the temperature of the windings is not measured directly. Instead, the temperature is deduced through the measurement of the windings’ resistance. Therefore, the accuracy of the obtained results is not confirmed.
From the analysis made to the literature, it is stated that there is a clear gap in what concerns the development of models that allow to accurately predict the thermal behaviour of induction motors subjected to unbalanced voltage supplies. Accordingly, this paper intends to fill the gaps observed in the literature concerning the analysis of the effects of amplitude and phase unbalances in the temperature of the induction motor connected in star configuration with floating neutral point, by observing the effects of all voltage unbalance scenarios (amplitude, phase and mixed unbalance). Based on a finite element analysis, this paper presents the results of a thermal study that focus different levels of voltage unbalance, namely amplitude and phase unbalances or a mixture of both. A model of the induction motor based on FEM is developed and validated through experimental tests.
2. Unbalance Voltage Definitions and Terminology
Past studies about unbalanced voltage conditions state that the exact quantification of the unbalance is mandatory [24], [25]. Several definitions can be found in the literature to calculate the unbalance severity level. The most well-known definitions are those given by the National Equipment Manufacturers Association (NEMA) and the International Electrotechnical Commission (IEC). The NEMA definition states that the voltage unbalance, denominated as “Percent of Voltage Unbalance” (PVU), is calculated by (1), where MVD is the Maximum Voltage Deviation, determined by (2), and Vavg is the average voltage value, calculated by (3) [24], [25]. 
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The NEMA definition also states that, for a particular voltage unbalance, there is always a consequent unbalance in the stator currents which may reach 6 to 10 times for each 1 % of voltage unbalance. Such unbalance will overheat the motor windings and, in extreme cases, may catastrophically degrade the windings’ insulation, causing severe damages to the motor [20]. The Percentage of Current Unbalance (PCU) can be calculated in the same way as the PVU, resorting to the per-phase current values.
The IEC definition, based on the symmetrical components method, states that the voltage unbalance factor (VUF) can be calculated as the ratio between the negative sequence (V2) and the positive sequence (V1) voltages [9], [24], [25]. Equations (4) - (6) illustrate the steps to calculate the VUF:
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Furthermore, according to international standards and scientific researchers [26], [27], there is also a relation between the motor temperature gradient and voltage unbalance, dependent on the PVU definition:
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This relation arises as a result of the fact that there is a direct correlation between the existing current unbalance and the increment of the motor windings temperature.
Some researchers advocate that the information about the voltage unbalance severity provided by the PVU and VUF definitions is not effective. Alternative unbalance severity metrics, like the CVUF, have been proposed to overcome the drawbacks of the PVU and VUF definitions [28], [29]. 

Still, and considering that PVU and VUF are the most commonly explored metrics in the literature, these indexes are also employed in this study.
3. Methodology

Multiple simulations of a directly grid-fed induction motor have been performed with the use of the Finite Element Method (FEM). The Finite Element Method (FEM) can be of great importance in such investigations since it takes into account the exact motor geometry, material properties and non-linearities, and accounts for several phenomena, such as the skin and proximity effects, and the saturation of the iron core, which are difficult to account for with analytical methods.

The parameters of the studied squirrel-cage induction motor are shown in TABLE I.
TABLE I
INDUCTION MACHINE SPECIFICATIONS

	Model
	W22 - Cast Iron Frame – IE3

	Frequency
	50 Hz

	Nominal Voltage
	400 V, Star Connection

	Nominal Current
	4.56 A, Star Connection

	Nominal Power
	2.2 kW

	Nominal Speed
	1435 rpm

	Pole Pairs
	2

	Service Factor
	1.0

	Insulation Class
	Class F (155 ºC)

	Protection Degree
	IP55


For each one of the scenarios under study, the developed FEM simulations consist of a transient electromagnetic simulation, coupled with a transient thermal simulation. Since a transient analysis is adopted, the simulation takes place in the time domain, allowing to capture the dynamics of the most relevant variables for the study, including voltages, currents, electromagnetic torque, slip, and temperature.
3.1. 
Transient Electromagnetic Simulation

The process of development of the model of the motor under study is similar to the procedure taken for the development of any finite elements model. It involves the development of the motor geometry, the establishment of a mesh, the assignment of the physical properties to each component of the motor, and the definition of the conditions of the scenario. In particular, the last two steps have pivotal importance defining the accuracy of the simulation results.

The properties of the materials employed in the electromagnetic simulation are shown in TABLE II. 
TABLE II
MAGNETIC, ELECTRICAL AND PHYSICAL PROPERTIES OF THE MACHINE MATERIALS 

	Material
	Magnetic properties
	Electrical properties
	Physical properties

	Cooper
	μr = 1
	ϱ = 1.72×10‑8 Ω.m
	d = 8940 kg.m-3

	Aluminum
	μr = 1
	ϱ = 2.7×10‑8 Ω.m
	d = 2698.9 kg.m-3

	Silicon steel
	μr0 = 11368.21
	ϱ = 4.8×10‑7 Ω.m
	d = 7650 kg.m-3

	
	Jsat = 1.97 T
	
	

	
	Knee adj. coef. (α) = 2.89
	
	

	Air
	–
	–
	d = 1.18415 kg.m-3

	Insulation
	–
	–
	d = 680 kg.m-3



In the case of the air and insulation, the corresponding magnetic and electrical properties are pre-defined in Flux 2D, reason why these properties are not specified in TABLE II.


TABLE III provides information about the parameters used to define the motor equivalent electric circuit, the supply voltages and the imposed load torque. 
TABLE III
MOTOR ELECTRIC CIRCUIT PARAMETERS

	Component
	Nomenclature
	Values

	Phase U voltage
	VU
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	Phase V voltage
	VV
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	Phase W voltage
	VW
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	Load torque
	TL
	7 N.m

	Winding resistance
	RS [U, V, W]
	2.1 Ω

	Winding inductance
	LS [U, V, W]
	18.4 mH



Note that the expressions of TABLE III that define the supply voltages in the time domain are solely valid for the scenario of a balanced voltage condition. Those expressions should be adapted according to the conditions of each scenario of unbalance.
A suitable time frame is selected to simulate the motor operation for a period of time that allows relevant variables like current, speed, and torque, to stabilize, while minimizing the computation time. The time step is selected in a way that allows to properly incorporate the influence of time harmonics in the model. Accordingly, a time frame of 0.5 seconds, with time steps of 0.5 milliseconds, is selected for the electromagnetic simulations. 

The iron losses and Joule losses are computed based on the results of the transient electromagnetic simulation. Joule losses of the stator coils and rotor bars are examined. To compute the iron losses in the stator and the rotor, two algorithms are available, namely the “Bertotti Method (BM)” [30] and the “Loss Surface Method (LSM)” [31], [32]. Despite the good performance of both methods, LSM is usually more accurate in transient simulation since it considers the mechanical losses, while the BM does not. Based on its benefits, the LSM was used in this study. This method estimates the magnetic losses resorting to a dynamic hysteresis model. That dynamic hysteresis model is established based on a priori knowledge on the magnetic behaviour of the material, expressed through a characteristic surface H(B, dB/dt) which is determined through experimental methods. The software Flux 2D includes a library with the characteristic surface H(B, dB/dt) of the most common laminated magnetic materials, including the silicon steel M40050A (IEC60404-8-4-1998), used in this study. By cross-referencing the information of the surface H(B, dB/dt) and the B(t) signal obtained through FEM simulation, it is possible to estimate the dynamic cycle of hysteresis B(H) and, consequently, to find the instantaneous iron losses. Analytically, the process of estimation of the H(t) signal is described by equation (8).

	
	
[image: image13.wmf](

)

(

)

(

)

,,

staticdynamic

HBdBdtHBHBdBdt

=+


	(8)


Figure 1 depicts a simplified flowchart illustrating the process of implementation of the Loss Surface method, developed for each time step of the electromagnetic simulation.
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Fig. 1. 
Strategy of implementation of the Loss Surface method. Adapted from [32].
3.2. 
Transient Thermal Simulation

For the thermal simulation, all the losses computed in the transient electromagnetic simulation are introduced as inputs of the thermal model. Along with the information about the losses, it is also required to define the thermal properties of the motor materials and the boundaries of the thermal model.

TABLE IV specifies the thermal properties of the machine materials.
TABLE IV
THERMAL PROPERTIES OF THE MACHINE MATERIALS 

	Motor

Component
	Material
	Thermal conductivity (k)

[W.m-1.ºC-1]
	Thermal inertia (I)

[J.m-3.ºC-1]

	Stator windings
	Cooper
	388
	3441900

	Rotor bars
	Aluminum
	210
	2429010

	Stator
	Silicon steel
	39
	3800000

	Airgap
	Air
	0.03
	1214.4

	Copper insulation
	Insulation
	0.083
	1456000


Two boundary lines are established to define regions of exchange of heat with the exterior: one located at the interface between the rotor and the shaft and another one located at the outer stator boundary. Convection and radiation coefficients are defined for each boundary. TABLE V summarizes the properties of the domain boundaries.
TABLE V
THERMAL PROPERTIES OF THE DOMAIN BOUNDARIES 

	
	Parameters

	Boundary
	Emissivity (ε)

[W.m-2.K-4]
	Coefficient of convection (h)

[W.m-2.K-21]

	Interface between rotor and shaft
	0.9
	–

	Outer stator boundary
	0.9
	62.5


At the beginning of each simulation, the temperature distribution inside the motor is uniform. All components are at the room temperature (21 ºC). A time frame of 9000 seconds, with time steps of 100 seconds, is selected for the thermal simulations. The selected time frame allows the motor to reach the thermal steady state condition, as defined in [33], for the scenarios of unbalance under study.
4. Simulation with Finite Element Analysis
Multiple simulations of a three-phase squirrel cage induction motor connected in star configuration with floating neutral point have been performed with the use of the FEM. All simulated scenarios concern the motor operation at half-load condition. The motor supply frequency is kept constant at the rated frequency (50 Hz) and the load torque is maintained at 50 % of the rated load torque for all scenarios. 
Local temperature values were acquired in two different positions in the stator (Fig. 2). It needs to be stated here that in the experimental tests, the sensors were placed in the exact same spots with respect to the cross section of the motor, next to the motor drive end. This is a necessary assumption, since the FEM simulation in 2D does not consider any end effects.
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Fig. 2.
Temperature sensors placement in 2D model (Flux 2D).
4.1. Amplitude unbalance 

To understand how amplitude unbalances in the voltage supply affect the induction motor thermal behaviour, seven different simulations have been carried out.

Firstly, a simulation of the healthy operating condition was carried out. After that, two additional simulations were carried out, where the motor was submitted to amplitude voltage unbalances of ±10 % in phase W. Then, four additional simulations were performed, where both phase U and V voltage amplitudes were changed, applying the same degree of unbalance. These simulations allow to understand the differences between the PVU and VUF indexes.

TABLE VI shows the zero (V0), positive (V1) and negative (V2) sequence voltages, the percentage of the amplitude unbalance of each phase, considering both PVU and VUF definitions, the RMS values of line currents and phase-to-phase voltages, and the motor slip. Voltage values in bold identify the phase(s) in which amplitude unbalance conditions are imposed.
TABLE VI
ELECTROMAGNETIC SIMULATION RESULTS FOR AMPLITUDE UNBALANCES

	
	Phase Voltage [V] 
Phase Angle [ᵒ]
	V0
	V1
	V2
	PVU
	VUF
	IU
	IV
	IW
	VUV
	VVW
	VWU
	Slip

	
	U
	V
	W
	[V]
	[%]
	[%]
	[A]
	[V]
	[%]
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The values of voltage and current provided at TABLE VI confirm the behaviour of the induction machine described in previous studies [34], when it is supplied under unbalanced conditions. Moreover, data from TABLE VI confirms that the PVU and VUF definitions give slightly different results for the same cases. Although VUF definition gives typically higher values than PVU definition, it is possible to see that they follow the same trend.
Fig. 3 depicts the distribution of the Joule losses, the iron losses and the sum of all losses for each scenario of unbalance. These results are obtained for the period of the electromagnetic simulation at which the motor operation stabilizes.
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Fig. 3.
Distribution of the Joule losses and iron losses within each scenario of voltage amplitude unbalance.

Regarding the stator Joule losses, the simulation results show that when there is an amplitude decrease in the voltage of a specific phase, there is also a decrease on the Joule losses of that phase, and vice-versa as expected. However, the Joule losses of the rotor bars follow a different trend. Therefore, a positive amplitude unbalance does not have a relevant weight in the increment of the Joule losses in the rotor bars, while a negative amplitude unbalance tends to increase the Joule losses in the rotor bars.


Regarding the iron losses, it is stated that an amplitude unbalance leads to an increment of the rotor iron losses. This value can be usually neglected, due to the fact that it is very small compared to the Joule losses. The stator iron losses behave similarly to the Joule losses of the stator coils. In other words, a positive amplitude unbalance (cases C and G) leads to an increment of the stator iron losses, while a negative amplitude unbalance (cases B and F) leads to a decrease of the stator iron losses. For a positive amplitude unbalance in one phase and a negative amplitude unbalance in another phase, there is a respective increase and decrease in the stator iron losses, so when there is a positive and an equally negative amplitude unbalance (cases D and E) the total values of the losses do not change.

4.2. Phase Unbalance
Another type of supply imbalance can be the phase unbalance between the supply voltages. This scenario happens when the phases are not ideally shifted by 120°.
To better understand the phase unbalance concept in an induction motor, ten new simulations were carried out. The goal is to compare the effects of a single-phase unbalance, considering either lead or lag scenarios; and unbalances of two phases, where one phase is lagged while the other is leaded. TABLE VII and Fig. 4 summarise all the results.
TABLE VII
ELECTROMAGNETIC SIMULATION RESULTS FOR PHASE UNBALANCES

	
	Phase Voltage [V]

Phase Angle [ᵒ]
	V0
	V1
	V2
	PVU
	VUF
	IU
	IV
	IW
	VUV
	VVW
	VWU
	Slip
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	W
	[V]
	[%]
	[%]
	[A]
	[V]
	[%]
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Fig. 4.
Distribution of the Joule losses and iron losses within each scenario of voltage phase unbalance.


The PVU and VUF definitions show that a phase unbalance of 2.5 %, 5 %, and 7.5 % in a single phase is quite the same as having a phase unbalance of 1.25 %, 2.5 %, and 3.75 % in each two different phases, respectively. Although the percentage of unbalance is calculated differently through the PVU and VUF definitions, they follow the same pattern as stated in Fig. 5 REF _Ref515110932 \h  \* MERGEFORMAT 
. 
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Fig. 5.
Comparison between PVU and VUF along the phase V angle.
Minor changes in the iron losses are expected. The amplitude of the positive sequence voltage V1, but particularly of the negative sequence voltage V2, suffers perturbations that have a direct impact on the iron losses. Moreover, and since the relative frequency of V2 with respect to V1 is twice as high, it is expected that the frequency of V2 will also impact the overall iron losses. Furthermore, it can be stated that the Joule losses in the rotor bars have a slight increment, as a result of the phase unbalance. The Joule losses in the stator coils evolve in the same way as the currents or, in other words, when one phase gets closer to another, the losses of the second phase decrease, and vice-versa. Fig. 6 shows that the total amount of losses has an exponential increment while the phase unbalance increases. Phase unbalances of 0 %, 2.5 %, 5 % and 7.5 %, correspond to phase shifts of 0 °, 3 °, 6 ° and 9 °, respectively.
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Fig. 6. 
Trend curve of the total amount of losses as a function of the phase displacement.

4.3. Mixed Unbalance

Since both amplitude and phase unbalance conditions are commonly experienced in real-world applications, the study of the effects of both unbalance conditions becomes particularly relevant. For that reason, additional tests were conducted, concerning the occurrence of both amplitude and phase unbalance conditions. TABLE VIII and Fig. 7 show how the induction motor is affected while operating under both amplitude and phase unbalance conditions.
TABLE VIII
ELECTROMAGNETIC SIMULATION RESULTS FOR MIXED UNBALANCES

	
	Phase Voltage [V]

Phase Angle [ᵒ]
	V0
	V1
	V2
	PVU
	VUF
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	VWU
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Fig. 7.
Distribution of the Joule losses and iron losses within each scenario of voltage mixed unbalance.

The first two cases (R and S) have some similarities to the phase unbalance cases found in TABLE VII (H and N, respectively) with the slight change that they also have a small positive amplitude unbalance. Regarding the last two cases (T and U), they are quite interesting. In case T, the balance was not reached, although in case U it did, as can be seen by the value of the currents and by PVU and VUF values. Despite the small unbalance experienced in case U, there was a slight increase in the motor currents that leads to higher Joule losses.

As expected, cases R and S show an increment of the total amount of losses, because both cases concern phase unbalances of the same severity and the same amplitude unbalance, which not only impacts the Joule losses but also the iron losses.

As for case T, it is seen that there is a residual increment in the total amount of losses. 

Case U shows a slight increment in the Joule losses coming from the value of the currents, and also an increment in the iron losses resulting from the increase in the amplitude of two phases. This means that even when an induction motor seems to have its phases balanced, they are not in reality. This unbalance condition will inflict overheating in the motor’s temperature.

5. Comparison between simulation and experimental thermal results

After the calculation of the losses, they are used as inputs for the thermal simulations in order to make a thermal analysis of the motor’s behaviour. The environment temperature was set at exactly 21 ºC for all the thermal simulations. Due to technical constraints, it was impossible to maintain the room temperature at exactly 21 ºC during the entire experimental procedure. Thus, the room temperature was measured along each experiment, and the motor temperatures, acquired along the experiments, were compensated in such a way that allowed to obtain the effective thermal curves over time, considering a constant room temperature of 21 ºC. 

Fig. 8 depicts a schematic representation of the test bench used to carry out the experimental activities.
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Fig. 8. 
Simplified overview of the test bench used to carry out the experimental activities.
The setup comprises a three-phase programmable AC power supply, feeding the AC induction machine used in the study. The amplitude and angle of the AC voltage waveforms are set individually for each phase. Load torque is imposed and controlled resorting to a hysteresis dynamometer. In all the scenarios analysed in this paper, the motor operates at half-load condition – the motor supply frequency is kept constant (50 Hz) and the load torque is set at 50 % of the rated load torque. A power analyser is also included in the assembly, allowing to track the variation, in real time, of the most relevant electrical and mechanical variables – voltages, currents, torque, and speed. To establish a comparison between simulation and experimental results, temperatures are measured inside the machine, resorting to two PT100 sensors, placed next to the drive end, in the positions illustrated in Fig. 2.

5.1. Thermal Results

TABLE IX, Fig. 9 and Fig. 10 show the experimental results obtained for amplitude, phase, and mixed unbalance conditions. Information about the RMS line currents, RMS phase-to-phase voltages, zero (V0), positive (V1) and negative (V2) sequence voltages, as well as the Joule losses is introduced in TABLE IX, allowing to establish a comparative analysis between simulation and experimental results. The temperatures shown in Fig. 9 and Fig. 10 were acquired when the motor reaches the thermal steady-state condition, according to the definition established in [33].
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EXPERIMENTAL RESULTS – ELECTRICAL PARAMETERS
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Fig. 9.
Comparison between the steady-state temperatures recorded at sensor PT100 2A.
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Fig. 10.
Comparison between the steady-state temperatures recorded at sensor PT100 3.
Concerning the cases of voltage amplitude unbalance, it is possible to state, from both simulation and experimental results, that negative and positive amplitude unbalances lead to an increment in the motor’s temperature. That increment is higher for cases where there are one or more phases under overvoltage condition. For all cases, it is also possible to verify small deviations between the temperatures obtained through simulation and experiments. One possible reason can be that, some of the material parameters introduced in the simulation environment may not match exactly with the material parameters of the motor prototype. On the other hand, a simulation always considers ideal motor geometry and homogenous materials. The challenges faced to reproduce the stray losses occurring in the stator end windings and rotor short-circuit rings in the 2D FEM model also justify such deviations. Still, the temperature curves obtained through both simulation and experimental tests follow the same patterns. For both D and E cases, where a positive and negative amplitude unbalance conditions were employed, respectively, there was a slight increment in the motor’s temperature, reaching almost the same final temperatures. In case F, where there was a double negative amplitude unbalance, the final temperatures suffered a residual increment, in both simulation and experimental tests. In case G, where a double positive amplitude unbalance was employed, the temperatures reached the highest values, denoting this as the worst performing case.
As for the cases of phase unbalance, Fig. 11 shows the trend lines for both simulation – curves SIMU_PT100_2A and SIMU_PT100_3 – and experimental tests – curves EXP_PT100_2A and EXP_PT100_3. 
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Fig. 11. 
Comparison between the trend curves of the final motor’s temperatures and the phase displacement.


To obtain the trend lines depicted in Fig. 11, a cubic polynomial function is adopted as the fitting function. The R-squared fitting coefficients of each fitted function are also included in Fig. 11. 
Despite the difference observed between the trend curves related to simulation and to experimental tests, they both illustrate an exponential increase of the temperature. In practice, that means that higher levels of phase unbalance have a massive effect in the motor’s thermal behaviour, that may lead to unexpected stops and breakdowns of the machine. Moreover, the R-squared fitting coefficients confirm the excellent accuracy of the fitted functions. In practice, that means that distinctive phase unbalance conditions, with identical degree of severity, lead to identical increment of the motor temperature.

Unbalances of both amplitude and phase are very interesting cases, because they can either enhance the motor’s overall unbalance, or they can cancel it out. The last two cases (T and U), but above all, the last case (U), confirm that statement. Although, in case U, the motor is operating close to the normal condition, there is a double positive amplitude unbalance that increases the stator iron losses, causing a small rise in the motor temperatures.
5.2. Thermal Images

To better understand the thermal results, thermal images from simulation and experimental tests were taken. The experimental results were acquired using a Fluke Ti450 infrared thermal camera.


In Fig. 12, it can be seen that the rotor is the warmest part of the motor, and that the external part of the stator is the coolest. Inside the stator slots, there are different colours between coils, due to the non-uniform distribution of Joule losses inside those slots. As this is a case where the voltage amplitude of both phase U and phase V increased, those phases show a light green colour, while phase W shows a light blue colour, corresponding to a slightly cooler condition, with a thermal difference of about 0.5 ºC.
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	Fig. 12. 
Simulation thermal image of case G (Flux 2D), concerning the motor operation under half-load condition and amplitude overvoltage in two of the supply phases.



Fig. 13 shows the experimental thermal images of the case G, obtained from different points of view: a) shaft-side view, b) lateral-side view and c) fan-side view. As expected, the highest external temperatures are measured in the drive end, while the lowest temperatures are measured in the opposite side, the fan side. Through the image of the lateral view, it is possible to confirm what was referred before: the motor is warmer in the drive end, as expected.
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	Fig. 13. 
Experimental thermal images of case G, taken with a thermal camera, concerning the motor operation under half-load condition and amplitude overvoltage in two of the supply phases.



The second presented case has some similarities with the first one. In this case, phase W is the phase which appears to be the warmest one. A single phase unbalance, where phase V got closer to phase U (case L) is adopted. Unlike the last case, Fig. 14 shows that phase W produces more heat than the other two phases (U and V). As phase V got closer to the phase U, those two got lower current values, while phase W current has increased. The difference of temperature between the motor phases is also small (about 0.5 ºC). It is also possible to see that this case shows a slight overall decrease of the motor temperature.
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	Fig. 14. 
Simulation thermal images of case L (Flux 2D), concerning the motor operation under half-load condition and phase unbalance in one of the supply phases.



Fig. 15 shows a slight decrease of the temperatures at the same places, proving that the motor’s thermal steady-state is reached at lower temperatures, compared to the case G.
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Fig. 15. 
Experimental thermal images of case L, taken with a thermal camera, concerning the motor operation under half-load condition and phase unbalance in one of the supply phases.
6. Conclusion

In this paper, a two-dimensional computational model of an induction motor has been developed, through a finite element method software, capable of analysing the behaviour of a directly grid-fed low power three-phase squirrel cage induction motor with floating neutral point. 

Multiple unbalance voltage scenarios have been studied. In the healthy scenario, the results obtained through the FEM thermal model proved to be satisfactory while being very close to the ones obtained experimentally. Therefore, it was possible to move on to the faulty cases, regarding voltage unbalances. In this step, amplitude, phase, and mixed unbalances were considered, and the results have shown that phase unbalances can be as dangerous as amplitude unbalances, being able to seriously damage the electrical machine through overheat. Amplitude unbalances increase both the Joule and iron losses, which lead to the motor overheating. Even though phase unbalances do not interfere with the motor iron losses, these fault conditions have an active role in the increment of Joule losses in parts of the induction machine.

Additionally, in the cases of mixed unbalances, the results have shown that mixing amplitude and phase unbalances may increase the voltage unbalance or extinguish it, by balancing the motor currents. Overall, the most important observation to take from the analysis of the results of mixed unbalance supply is that relevant increments in the motor’s temperature are observed, regardless of the degree of unbalance of the voltage supply.

Finally, as there was a similar behaviour between simulation and experimental tests, it can be concluded that the proposed model allows to predict, with a significant degree of accuracy, the motor thermal behaviour under voltage unbalances. The comparison of the Joule losses obtained via simulation and experimental tests provide an effective metric to confirm that the developed model is able to accurately predict the losses mechanisms occurring in induction machines. The extrapolation of the developed model to other real-life operating conditions, which cannot be verified through experimental tests, namely overloaded operation, should provide an important tool to predict the evolution of the motor temperature. More important than that, the developed model should allow to accurately predict how long can an overloaded induction motor, subjected to severe unbalance conditions, can withstand the unbalance conditions without suffering significant damages.
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				Joule Losses (Phase U)		Joule Losses (Phase V)		Joule Losses (Phase W)		Joule Losses (Rotor Bars)		Iron Losses (Stator)		Iron Losses (Rotor)

		A		19.68		20.31		20.22		14.33		24.22		0.83

		B		21.02		25.85		13.25		16.44		22.74		1.41

		C		20.77		15.43		30.42		14.88		25.89		1.35

		D		14.03		24.54		23.22		15.24		24.19		0.92

		E		27.69		16.12		18.46		15.48		24.4		0.95

		F		19.52		13.46		27.02		17.46		20.98		1.49

		G		25.48		28.93		15.8		14.21		27.77		1.42
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				Joule Losses (Phase U)		Joule Losses (Phase V)		Joule Losses (Phase W)		Joule Losses (Rotor Bars)		Iron Losses (Stator)		Iron Losses (Rotor)

		A		19.68		20.31		20.22		14.33		24.22		0.83

		R		16.45		18.29		29.8		15.23		24.85		1.23

		S		20.32		15.08		29.12		15.19		24.89		1.21

		T		22.11		20.58		17.72		14.52		24.25		0.87

		U		21.28		20.74		21.32		13.52		25.65		1.23
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Folha1

				Joule Losses (Phase U)		Joule Losses (Phase V)		Joule Losses (Phase W)		Joule Losses (Rotor Bars)		Iron Losses (Stator)		Iron Losses (Rotor)

		A		19.68		20.31		20.22		14.33		24.22		0.83

		H		17.93		18.38		24.7		14.66		24.17		0.86

		I		23.04		21.29		16.35		14.76		24.23		0.92

		J		16.26		17.39		29.46		15.76		24.19		0.92

		K		26.28		23.25		12.89		15.91		24.39		1.1

		L		15.22		16.69		34.59		17.6		24.23		1.01

		M		20.85		22.54		17.08		14.61		24.22		0.9

		N		19.9		17.07		23.97		14.62		24.2		0.85

		O		21.74		25.63		14.28		15.41		24.26		0.97

		P		19.95		14.76		28.05		15.53		24.21		0.9

		Q		20.4		12.79		32.48		17.07		24.29		0.94
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				Simulation		Experimental						Experimental

				Simulation		Experimental		PT100 32		PT100 4		PT100 2A2		PT100 33		Coluna1		Coluna2

		A		43.42		43.66						43.66		44.69

		B		43.64		44.08						44.08		45.29

		C		46.17		47.39						47.39		48.51

		D		44.22		46.07						46.07		47.25

		E		44.36		46.3						46.3		47.52

		F		43.59		43.91						43.91		44.79

		G		47.36		49.61						49.61		50.96

		H		44.11		44.69						44.69		45.76

		I		43.94		44.47						44.47		45.63

		J		44.81		46.01						46.01		47.13

		K		44.71		45.91						45.91		47.19

		L		46.41		48.09						48.09		49.31

		M		43.55		44.24						44.24		45.17

		N		43.76		44.41						44.41		45.26

		O		44.42		45.73						45.73		46.83

		P		44.61		45.87						45.87		46.81

		Q		45.96		48.01						48.01		49.22

		R		45.35		46.93						46.93		48.04

		S		45.31		46.7						46.7		47.83

		T		43.51		44.58						44.58		45.72

		U		44.62		45.49						45.49		46.65
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				Simulation		Experimental
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