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Abstract—In this study, we propose and compare neural
network models that use unsupervised layers for the prediction
of financial time series. We compare the novel FL-RBM and
FL-SMIA-RMB models that integrate a Restricted Boltzmann
Machine (RBM) and the self-organizing layer of the Self-
organized Multi-Layer Network using the Immune Algorithm
(SMIA) with the FL-SMIA network and a standard MLP. We
aim to investigate the performance of unsupervised learning in
comparison to purely supervised and other mixed models. The
FL-RBM model combines the products of raw input features (the
Functional Link, FL), with the Restricted Boltzmann Machine
RBM as a self-organizing first hidden layer, while the FL-SMIA
model uses the Immune Algorithm on the first layer. The FL-
SMIA-RBM model, combines both self-organizing layers with a
back-propagation network.

The results show that the FL-SMIA model outperforms the
FL-RBM, the FL-SMIA-RBM and the MLP as measured by An-
nualized Return (AR) in one-day-ahead prediction on exchange
rates time series. In terms of volatility, the FL-SMIA and MLP
perform similarly.

I. INTRODUCTION

Financial markets are an important aspect in modern
economies, which attracts much interest from both commer-
cial and academic communities. Therefore, a wide range of
investigations is ongoing in the financial domain. Predicting
financial time series has an effect on the trading decisions of
many companies and organizations, which are searching for
new technologies that will support them in becoming more
profitable and competitive [1], [2], [3]. Financial time series
are highly non-linear and complex [4], as many risk factors,
affect prices and exchange rates [5].

Artificial neural networks have gained significant interest in
financial research [6], [7] but they suffer from some problems,
such as over-fitting [8], [9]. Therefore, we propose novel
neural network models for financial prediction: the FL-RBM
model and the FL-SMIA-RBM model.

To reduce over-fitting, many methods and approaches have
been introduced, such as the Functional Link Neural Network
(FLNN) [10], [11]. The FLNN model uses inputs and their
products and removes the hidden layer from the standard
Multilayer Perceptron (MLP) architecture, in order to enable
the network to perform non-linearly separable classification
tasks and to reduce the model complexity compared to an
MLP. Due to an exponential increase in the number of inputs
units the FLNN architecture can suffer from the combinatorial
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explosion. Therefore, only products of two or three inputs are
recommended for neural networks [12],[13].

The Self-organized Multilayer neural network using the Im-
mune Algorithm (SMIA) [14], is another approach which has
successfully applied to improve the MLP models performance
which is based on the immune learning algorithm inspired by
biological immune systems.

In [15], the integration of the FLNN model and SMIA in
the Functional Link Self-organized Multilayer neural network
using the Immune Algorithm (FL-SMIA) has been proposed
as a novel method for financial time series prediction and to
improve the prediction ability for the multilayer networks.

In this paper, firstly we propose a model that combines
higher-order (inputs and their products) with the Restricted
Boltzmann Machine (FL-RBM). Secondly, we proposethe FL-
SMIA-RBM model which combines the FL-SMIA model and
the RBM network as a novel method for financial time series
prediction.

The rest of this research paper is organized as follows:
Section 2 discusses related work in the literature. The Func-
tional Link and the Restricted Boltzmann Machine model (FL-
RBM) are discussed in Section 3. In section 4, the combination
of the FL-SMIA model with the RBM network (FL-SMIA-
RBM) is detailed. The experimental design is presented in
Section 5. The results are presented and discussed in Section 6.
Conclusions and future work are provided in Section 7.

II. RELATED WORK

In this section, a literature review with a focus on the
Immune Algorithm and the Functional Link Self-organizing
Multilayer Network using the Immune Algorithm (FL-SMIA)
will be presented.

A. The Immune Algorithm

The concept of the immune algorithm was initially dis-
cussed in [16], [17]. The self-organization inspired by the
immune system appeared in [18], where the researchers used
one layer networks combined with contiguity constrained
method for clustering analysis.

The immune algorithm is based on the principle of the
natural immune system. It is based on the relationship between
its components that consist of antigens and cell. The basic
concept of the Immune Algorithm is a set of B cells, which
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the training data [19]. When a cell is matched with an antigen
then this antigen stimulates the cell to duplicate itself and a
mutated cell to produce a diverse set of antibodies in order to
remove and fight the intruder attacking the body [19]. Thus,
the immune algorithm allows a system to let its components
change and learn patterns.

The self-organization inspired by the immune system ap-
peared in [20], where the researchers used one layer networks
combined with a contiguity constrained method by [18] for
clustering analysis. Later, The the SMIA model has been
applied for financial prediction [14] and is extended with
product term inputs in [15].

B. The Functional Link Self-organizing Multilayer Network
using the Immune Algorithm (FL-SMIA)

The Functional Link-Self-organized Multilayer network us-
ing the Immune Algorithm combines aspects of Functional
Link Neural Network with the Self-organizing Multilayer
network using the Immune Algorithm in the structure and the
learning algorithm.
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Fig. 1. The FL-SMIA model (Functional Link Self-organized Multilayer using
the Immune Algorithm).

The architecture of the FL-SMIA network consists of
the input layer, which comprises a number of input units
X1, Xo,..., Xz, the self-organizing hidden layer with units
Hy, Ho, ..., Hy, and the output layer consisting of one output
unit as shown in Fig. 1. Here Z, and N refers to the
number of units in each layer. This research focuses on
adding second order terms to the input units. In our example
below the network has five input features X1, ..., X5. Adding
the second order term to the inputs results in 10 additional
inputs (X7 X2, X1 X3, X1Xy,...,X4X5), leading to fifteen
input units in total, five with input features and ten with
products of inputs features as represented in Fig. 1. The FL-
SMIA network uses a hidden layer which operates like in [14]
and [21].

The output of the hidden units is determined using the
Euclidean distance between the input units (X;) and the
connection weights between the input units and the hidden
units (Wpr;;). The advantage of using the Euclidean distance
is to make the network capable of exploiting local information

of the input data. The output of a hidden unit H; is calculated
as:

A
> (Waij — Xi)* + B; e

i=1

Hj = fhts

where Wyy;; represents the weight of the connection from
the " input unit to the j** hidden unit, and f},,, is the
hyperbolic tangent sigmoid function. The number of hidden
units is determined from the data by learning with the Immune
Algorithm as described in the next section.

The outputs of the hidden units are aggregated in a standard
layer with the network output given by:

N
Y = fis ZWij~Hj + By ()

Jj=1

where Wy, represent the strength of the connection weights
between the 5" hidden unit and the output unit, B, is the bias
of the output unit Y, and f;, is the logistic sigmoid function.

The FL-SMIA as described above has two weight matrices,
the first between the input layer and the hidden layer, the
second between the hidden layer and the output layer. The
second weight matrix is trained using the standard back-
propagation algorithm [22] with regularisation to penalise
large weights [23] in batch mode. In our case with a single
output neuron the weight change is calculated as:

aJ
8WHj

where Wy ;. is the weight of the connection from hidden units
Hj to the output unit, 7, € [0, 1] is the learning rate, and J the
mean squared error on the training set. The second term on the
right-hand side effects the regularisation, which is controlled
by the parameter \. The bias is adapted in the same way but
without regularisation.

Before the second weight matrix is trained, the first set
of weights and the structure of the hidden layer are trained
using the Immune Algorithm [21] as indicated in Fig. 1. In the
Immune Algorithm a hidden unit corresponds to a recognition
ball (RB) in the immune system. Each hidden unit represents
one or more input vectors with the weights of the connections
from the input layer to the hidden unit. The hidden unit Hj
is represented by (P;, Wy ;), where P; is the number of input
vectors associated with Hj and Wy ; is the vector of weights
from the input layer to Hj.

We start with one hidden unit (N = 1) and the first hidden
unit is created with P, = 1 and Wy, = X;. The Immune
Algorithm then performs the following steps to create and
update the hidden units until all inputs of the network have
found their corresponding hidden unit.

AWgjr = —m — AWhjk 3)

1) For m =1,..., M perform the following:
a) For j =1,..., N, calculate the Euclidean distance
between the m-th input and the weight vector of
the 5" hidden unit:

distm]‘ = (l‘mi — ijZ')Q (4)

Z
=1

(2



Where z,,,; is the it" element of input vector x,,,
and wgj; is the ith component of vector wy ;,
i.e. the weight of the connection from input m to
hidden unit j.

b) Determine the closest unit ¢, i.e. the unit with the
shortest distance to x,,,:

distye = min;(dist,,;) 5)

¢) If the shortest distance dist,,. is below the stim-
ulation level Sq (where Sq is selected between 0
and 1), then the input has found its corresponding
hidden unit. In this case the weight vector wp. of
the hidden unit closest to x,, will be updated as

WHe,pw = WHe + 1 % distye (6)

where 7, € (0,1) is the learning rate for the
Immune Algorithm, wp . is the weight vector of the
hidden unit closest to z,,. P. will be incremented
by 1.

Otherwise, the shortest distance dist,,. is greater
than the stimulation level Sq. This means that no
matching hidden unit was found for the input and
we create a new hidden unit (Py, W) with Py =
1 and Wy N = X,,,. Then we update N = N + 1.

2) Repeat from step 1 as long as new hidden units have
been created.

III. THE FUNCTIONAL LINK AND RESTRICTED
BOLTZMANN MACHINE MODEL (FL-RBM)

The Restricted Boltzmann Machine is an unsupervised
learning model that has been introduced in [24]. RBMs have
been used in several applications including classification[25],
feature learning [26], and dimensionality reduction [27]. It has
been used as pre-training to render deep learning architectures
more effective [28].

The RBM is a network of two layers, the first layer includes
a number of inputs or visible units (v) as binary inputs,
and the second layer with a number of hidden units (h).
The visible neurons are connected to the hidden neurons in
a stochastic way and without connections between each of
visible neurons in the input layer or hidden neurons in the
hidden layer. In other words, in an RBM network there are no
direct connections between units in the same layer, so which
is why it is called restricted [27]. Every unit has a binary state
of Oorl, and the input and hidden units are random variables
(v, h). The visible units are combined with biases a; and the
hidden units are combined with biases b;. The RBM learns
to extract features from the data by reconstructing the inputs.
The RBM’s energy E is given by the following:

ZZWW% Zaﬂh Zb hi, (7)

where v; is the binary state of visible unit 4, h; is the binary
state of hidden unit j, a; and b; are their biases, W;; is the
weight between the visible unit ¢ and hidden unit j, N refers

RBM
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Fig. 2. The proposed network FL-RBM

to the number of visible units, and L is the number of hidden
units. The probability of the state of the network is defined as
P(v,h) = —e BW:h) (8)

where Z is the partition function for normalization. The
probability of a hidden unit state given a visible vector is

given as:
(b; + sz i) )

The derivative of the log probability of a training vector v
with respect to a weight is:

dlogp(v)
“owy (Vihi) gara —

p(h; =1|v) =

{vihy) (10)

model

The (-) indicates the expected value under the distribution
in the index. For the model case we estimate the expectation
with the a single reconstruction cycle and get a simple update
rule [29]:

Awij = >\ ((vzhﬂ) - (vihj)model) (11)

Where A is a learning rate. The update for the biases is
analogous.

The outputs of the hidden units of the RBM are aggregated
as a standard hidden layer H; with the network output given
by:

data

N
Y = fug | Y_Wiy.H; + B,
j=1

12)

where W), represent the connection weights between the j"
hidden unit and the output unit, B, is the bias of the output
unit Y, and f,;, is the sigmoid activation function.

IV. THE FL-SMIA wWITH RESTRICTED BOLTZMANN
MACHINE (FL-SMIA-RBM)

In this section, we propose a novel model based on learn-
ing using a Functional Link-Self-organized network of the
Immune Algorithm (FL-SMIA) and the Restricted Boltzmann
Machines (FL-SMIA-RBM).



In general, the model proposed (FL-SMIA-RBM) is a
multilayer neural network using unsupervised and supervised
learning for improving the time series forecasting. The struc-
ture of the network (FL-SMIA-RBM) includes the following
layers:

1. The input layer consists of the 15 input units (5 inputs
and their products as a higher order).

2. The first hidden layer (SMIA) is the self-organized
layer using the immune learning algorithm (unsuper-
vised learning). The number of hidden units in this layer
is a combination of the units that generated by the SMIA
algorithm and extra 5 hidden units, these hidden units
are a various number depending on the data-set trained.
SMIA hidden units are represented as visible units to
the next hidden layer.

3. The second hidden layer (RBM) is the Restricted Boltz-
mann Machines (unsupervised learning). the number of
hidden units is 10.

4. The output layer with only one unit output is trained with
the Back Propagation Algorithm (supervised learning).

Immune Algorithm
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Fig. 3. The proposed network FL-SMIA-RBM

V. EXPERIMENTAL DESIGN

We used two financial time series (exchange rate prices)
to evaluate the FL-SMIA-RBM and the FL-RBM model. We
use time series data available from the Federal Reserve, Board
of Governors. !. This is daily time series covering the period
from 1/7/2002 to 11/11/2008, giving 1605 trading days. The
first time series is the US dollar to UK pound exchange rate
(US/UK), the second time series is the US dollar to EURO
exchange rate (US/EU).

TABLE I
FINANCIAL TIME SERIES DATASETS.
No Time series dataset Acronym
1 US dollar to UK pound exchange rate US/UK
2 US dollar to EURO exchange rate US/EU

Ihttp://economagic.com/ecb.htm/fedstl.htm

A. Pre-Processing of Data

The relative difference in the percentage of the price (RDP)
has been used in this work in order to reduce the non-
stationarity of the financial data-sets as they are known to be
highly noisy [30]. This transformation makes the distribution
of the data more symmetrical and closer to a normal distribu-
tion. To the input and output data were transformed as in [9],
[14]. The inputs are EMAL1S5, the difference between a 15-day
exponential moving average and original signal, and four RDP
values based on five-day periods (RDP-5, RDP-10, RDP-15,
and RDP-20).

In this research our forecast horizon is 1 day. Therefore the
output variable presented as a relative difference of price in
percent for the next day (RDP+1) . As explained in [9], the
RDP+1 and RDP+5 values are calculated as relative difference
in percent of 3-day exponential moving average for one day
ahead. The calculations for all the indicators are given in
Table II.

TABLE II
INPUT AND OUTPUT VARIABLES ACCORDING TO [9].
Indicator Calculation
Input variables
EMATS P(i) — EMA15(7)
RDP-5 (P(i) — P(i—5))/P(t — 5) * 100
RDP-10 (P(#) — P(i — 10))/P(i — 10) % 100
RDP-15 (P(i) — P(i — 15))/P(i — 15) % 100
RDP-20 (P(i) — P(i — 20))/P(i — 20) % 100
Output variable
RDP+h (P(i+ h) — P(z))/P(4) * 100
where P(i) = EM A3 (3)

The EMA,, (i) is the n-day exponential moving average of
the " day, p(i) is the signal value ( refer to (y;)) of the i'"
day, and h is the prediction horizon of 1 day or 5 days.

For the purpose of reducing the range difference in the data
and to avoid the computational problems, the time series data
which have been used in this research are scaled. All input and
output variables were scaled in order to produce a new data
range which is more suitable to the network transfer function.

The RDP series have been scaled in this work by using the
standard minimum and maximum normalization method, as
follows:

xz — Ming

Ny, = (M — M
(Maz m2)*<Max1—Min1

) + Ming (13)

Where N, is the normalized value, Min; and Max; refer
to the minimum and maximum values of the original series,
Mino and Maxs are the desired minimum and maximum of
the new scaled series and x is the original value of the time
series.

The prediction results of the FL-RBM model and the FL-
SMIA-RBM model has been compared to the performance of
threee neural networks models which are the Multilayer Per-
ceptron (MLP), Regularised Multilayer Perceptron (R-MLP),
and Functional Link-Self-organized network using the Immune
Algorithm (FL-SMIA) model.

In this research, the data have been applied for training,
validation and test sets comprising 50%, 25%, and 25%



respectively of the data. Early stopping has been used for all
networks.

The combinations of the parameters (momentum, learning
rate, and decay rate) have been explored in a grid search for all
networks learning that used in this research. The best values
found are in the following ranges: for the momentum 0.3
to 0.5, for the learning rate values are 0.04 to 0.4, and for
the decay rate parameter which has been used in the R-MLP,
R-SMIA, FL-SMIA, FL-RBM and FL-SMIA-RBM networks
optimal values are 0.0001 to 0.001.

B. Financial Evaluation Metrics

To evaluate the performance of the networks that have been
used in this research, we focus on Annualised Return (AR)
and Annualized Volatility (AV) measuring the profitability and
investment risk of the strategy over a year. [14].

1) Annualized Return (AR): The Annualised Return (AR)
measure estimates the effectiveness of a model for automatic
trading. It measures the total profitability in a year of a strategy
using buy and sell signals generated by the models [31].

The Annualised Return (AR) is represented relative to the
maximal return by buying and selling using perfect prediction,
and is calculated as follows [31]:

a) Calculate the returns (R;):

+ .
R, = |yl

=yl
where y; is the target output value and y; represent the

predicted output value.
b) Find the sum of profits:

ify;y; >0

. (14)
otherwise,

CR=Y (Ry), (15)

where n is the total number of data samples.
c) Calculate the profit and all profit, i.e. the maximal
possible profit:

Profit = <222> x* CR, (16)

252 -
AllProfit = | — bs(R;), 17
rofi <n>*;as( ) 17)
where n is the total number of the data sample, and 252
is taken as the number of trading days per year.
d) Calculate the Annualized Return (AR), which is ex-

pressed as percentage of the actual profit relative to the
maximal profit per year:

Profit
AR = <AllP7“0fit

2) Annualized Volatility (AV): In order to evaluate the in-
vestment risk and profits possibility, the Annualized Volatility
(AV) has been used in this work to provide information related
to the variability of the prices. The volatility measure is used
to measure the variance of returns over a period of time. The
small value of volatility is preferable for financial predictions.

> %100 (18)

Furthermore, in real trading, the volatility measure provides
significant information for investment risk which makes it
useful for financial analysis.

To calculate the variance of returns, firstly should the daily
returns I?; be calculated and use it to calculate the average of
the returns R*. Secondly, calculate the variance of the returns
which equal to the average of square of the difference between
the returns and the average of the returns. Then the standard
deviations (the square root of the variance of the returns) must
be calculated to produce the daily volatility.

1 n
Vi = (n 1) x Y (R; — R*)? (19)

=1

where Vj is the daily volatility, n represents the total number
of the data sample, R; illustrate the returns for each time
period, and R* is the average of the returns.

After the daily volatility is calculated, then it will be easy
to get the annualized volatility over the year by calculated it
as follows:-

1 n
AV = /252 « () * Z(Ri —R*)2  (20)

-1 i=1
Where 252 is the number of trading days in a year. We have
also used a variety of statistical metrics to further evaluate the

performance of the models [31], which we are not reporting
here.

VI. RESULTS AND DISCUSSION

The networks have been tested on all data-sets from Table I
using the metrics described above.

TABLE III
THE BEST US/UK RESULTS FOR ONE DAY AHEAD PREDICTION IN
PERCENT.
Network Hidden units | AR AV
MLP 8 71.4873 | 4.3927
R-MLP 8 72.1075 | 4.3763
FL-SMIA 40 76.2248 | 4.6260
FL-RBM 10 55.8498 | 4.7507
FL-SMIA-RBM 40 59.4492 | 4.6794

As shown in Table III and Table IV. The AR results for
one day ahead prediction proved that the FL-SMIA network
outperformed all the networks. The FL-SMIA network predicts
higher annualized return than the all other networks for both of
the data-sets. The AR results for the FL-RBM and FL-SMIA-
RBM models as worse than the other models.

TABLE IV
THE BEST US/EU RESULTS FOR ONE DAY AHEAD PREDICTION IN
PERCENT.
Network Hidden units | AR AV
MLP 8 71.5395 | 4.6284
R-MLP 8 73.2384 | 4.5828
FL-SMIA 40 76.6475 | 4.4865
FL-RBM 10 61.3265 | 4.8785
FL-SMIA-RBM 40 60.6847 | 4.6537




Regarding the investment risk, the Annualized Volatility
(AV) results proved that the FL-SMIA model reduced the
investment risk by produced the lowest AV value than all other
models when using the US/EU data, While for the US/UK
data, the R-MLP model has the lowest AV value than all other
of all networks used in this research.

VII. CONCLUSION

In this research, we proposed the FL-RBM model and the
FL-SMIA-RBM model. For FL-RBM model, we combine
inputs and their product with and RBM network. For the FL-
SMIA-RBM model, we combine the inputs and their product
with a self-organizing hidden layer and the RBM network,
using the Immune Algorithm as in SMIA networks. All
networks have been evaluated using two financial data-sets
(exchange rates) for prediction one day ahead. The FL-SMIA
outperformed all other networks for AR results. While in terms
of volatility, the FL-SMIA and MLP perform similarly.

Overall the use of the unsupervised Immune learning Algo-
rithm improved performance on financial time series prediction
compared to multilayer networks and the RBM networks.

ACKNOWLEDGMENT

Asmaa Mahdi would like to thank the Republic of Iraq,
Ministry of Higher Education and Scientific Research for
supporting her Ph.D study.

REFERENCES

[1] D. K. Bebarta, A. K. Rout, B. Biswal, and P. Dash, “Forecasting and
classification of indian stocks using different polynomial functional
link artificial neural networks,” in 2012 Annual IEEE India Conference
(INDICON). IEEE, 2012, pp. 178-182.

[2] K. Li, “Forecasting of government’s financial educational fund by using
neural networks model,” in Genetic and Evolutionary Computing, 2008.
WGEC’08. Second International Conference on. 1EEE, 2008, pp. 120—
123.

[3] K. Zou and R. Dong, “A novel approach for time series analysis
based rbf neural network,” in Information Technology and Applications
(IFITA), 2010 International Forum on, vol. 3. 1EEE, 2010, pp. 139-142.

[4] Y. Li and F Ying, “Multivariate time series analysis in corporate
decision-making application,” in Information Technology, Computer
Engineering and Management Sciences (ICM), 2011 International Con-
ference on, vol. 2. 1EEE, 2011, pp. 374-376.

[5] C. Chatfield, “The analysis of time series: theory and practice,” Chapman
Hall, 1975.

[6] E. Guresen, G. Kayakutlu, and T. U. Daim, “Using artificial neural
network models in stock market index prediction,” Expert Systems with
Applications, vol. 38, no. 8, pp. 10389-10397, 2011.

[71 G. Zhang and M. Y. Hu, “Neural network forecasting of the british
pound/us dollar exchange rate,” Omega, vol. 26, no. 4, pp. 495-506,
1998.

[8] S.Lawrence and C. L. Giles, “Overfitting and neural networks: conjugate
gradient and backpropagation,” in Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on,
vol. 1. IEEE, 2000, pp. 114-119.

[9] F. E. Tay and L. Cao, “Application of support vector machines in

financial time series forecasting,” Omega, vol. 29, no. 4, pp. 309-317,

2001.

C. L. Giles and T. Maxwell, “Learning, invariance, and generalization in

high-order neural networks,” Applied optics, vol. 26, no. 23, pp. 4972—

4978, 1987.

Y. Pao, “Adaptive pattern recognition and neural networks,” 1989.

T. Kaita, S. Tomita, and J. Yamanaka, “On a higher-order neural network

for distortion invariant pattern recognition,” Pattern Recognition Letters,

vol. 23, no. 8, pp. 977-984, 2002.

G. Thimm, “Optimization of high order perceptrons,” 1997.

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Mahdi, A. J. Hussain, P. Lisbo, and D. Al-Jumeily, “The application
of the neural network model inspired by the immune system in finan-
cial time series prediction,” in Developments in eSystems Engineering
(DESE), 2009 Second International Conference on. 1EEE, 2009, pp.
370-376.

A. Mahdi, T. Weyde, and D. Al-Jumeily, “The fl-smia network: A
novel architecture for time series prediction,” in 2017 10th International
Conference on Developments in eSystems Engineering (DeSE). 1EEE,
2017, pp. 31-36.

L. N. De Castro and J. Timmis, Artificial immune systems: a new
computational intelligence approach.  Springer Science & Business
Media, 2002.

J. Timmis, “Artificial immune systems: a novel data analysis technique
inspired by the immune network theory,” Ph.D. dissertation, Department
of Computer Science, 2000.

M. Y. Kiang, “Extending the kohonen self-organizing map networks for
clustering analysis,” Computational Statistics & Data Analysis, vol. 38,
no. 2, pp. 161-180, 2001.

X. Shen, X. Z. Gao, and R. Bie, “Artificial immune networks: Models
and applications,” International Journal of Computational Intelligence
Systems, vol. 1, no. 2, pp. 168-176, 2008.

R. Widyanto, Y. T. Megawati, and K. Hirota, “Clustering analysis using
a self-organized network inspired by immune algorithm,” in Proceeding
of the IASTED International Conference on Artificial and Computational
Intelligence, ACTA Press, Tokyo, 2002, pp. 197-202.

M. R. Widyanto, H. Nobuhara, K. Kawamoto, K. Hirota, and
B. Kusumoputro, “Improving recognition and generalization capability
of back-propagation nn using a self-organized network inspired by
immune algorithm (sonia),” Applied Soft Computing, vol. 6, no. 1, pp.
72-84, 2005.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, 1986, vol. 1.

C. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” Colorado Univ at Boulder Dept of Computer
Science, Tech. Rep., 1986.

H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted boltzmann machines,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 536-543.

A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011,
pp. 215-223.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504-507,
2006.

N. Le Roux and Y. Bengio, “Representational power of restricted
boltzmann machines and deep belief networks,” Neural computation,
vol. 20, no. 6, pp. 1631-1649, 2008.

G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 599-619.

R. Ghazali, “Higher order neural networks for financial time series
prediction,” Ph.D. dissertation, Liverpool John Moores University, 2007.
C. Dunis and M. Williams, “Modelling and trading the eur/usd exchange
rate: Do neural network models perform better?” Derivatives use,
trading and regulation, vol. 8, no. 3, pp. 211-239, 2002.



