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Abstract 

Well maintained vessels exhibit high reliability, safety and energy efficiency. Even though 

machinery failures are inevitable, their occurrence can be foreseen when predictive 

maintenance schemes are implemented. Predictive maintenance may be optimally applied 

through condition, performance, and process monitoring. Most importantly, it can include the 

detection of developing faults, which affect the performance of ship systems and hinder energy-

efficient operations of ships. Under this viewpoint, this paper proposes a new data-driven fault 

detection methodology in a novel application for shipboard systems, by exploring the “learning 

potential” of recorded voyage data. The proposed methodology, combines the benefits of 

Expected Behaviour (EB) models, by selecting the optimal regression model, with the 

Exponentially Weighted Moving Average (EWMA) for fault detection, in novel ship 

applications. It is seen that a multiple polynomial ridge regression model, with testing 𝑅ଶ score 

of nearly 0.96 and can accurately detect certain developing faults manifesting in both the Main 

Engine (ME) cylinder Exhaust Gas (EG) temperature and the ME scavenging air pressure. The 

early detection of developing faults can be used to supplement the daily monitoring of ship 

operations and enable the planning of pre-emptive rectifying actions by reducing sub-optimal 

machinery conditions. 

Keywords: pre-processing, expected behaviour, machine learning, fault detection, ship 

machinery systems, ship operations 

  

1. Introduction 

The prosperity of global trade is closely tied with the performance of the global fleet (Stopford, 

2018). A factor that influences the performance of the global fleet is the physical condition of 

its vessels and their systems and machinery. Detecting developing ship systems’ faults, and 

taking rectifying actions before any major failure is an effective way of mitigating 

environmental and safety risks (Ančić et al., 2018). 

Predictive maintenance represents one of the latest trends in maritime maintenance for 

ensuring the physical condition of ships (Mobley et al., 2008). It is applied through condition 

and process monitoring and it is best implemented in critical ship systems (CDNSWC, 2010). 



The aim of condition and process monitoring is to use information from specific ship systems 

to assess the state of the examined system (e.g. failed, degraded, etc.) and detect developing 

faults (Kobbacy, 2008; Mohanty, 2015). The successful application of predictive maintenance 

is tied to the quality of the data and the applicability of the various algorithms, which can be 

employed for the systems condition assessment and Fault Detection (FD) (Cheliotis et al., 

2019).  

The early detection of faults can increase safety and reliability and reduce downtime, 

as it allows for pre-emptive rectifying actions and planning for the required maintenance 

(Zhang et al., 2019). As discussed by Beşikçi et al (2016), the energy-efficiency of ships can 

be improved and safeguarded by a variety of different factors, including practices in their 

management and operation. FD, as part of predictive maintenance, can have a substantially 

positive impact on the operation of ships and the management of their maintenance (Tan et al., 

2019). Therefore, the use of FD can improve the energy-efficiency of ships in two ways: it can 

detect degraded machinery operations, and predict failures, avoiding the sub-optimal 

operations of machinery improving their energy-efficiency as well. In the same manner, FD 

can avoid inefficient operations resulting from the overloading and increased strain of other 

systems due to failures of specific machinery arrays as also discussed by Armstrong and Banks 

(2015). These benefits also translate to 10-35% more cost-efficient operations as discussed in 

Dikis and Lazakis (2019), when compared with reactive maintenance approaches. Similar cost-

benefits have also been reported across different industries as seen in May and Thons (2015) 

and Kumar and Saini (2018). 

 

1.1 Fault Detection Status Quo 

The area of FD has been rapidly expanding and is currently facilitated using various condition 

describing signals, as reviewed and explained by shown in Martinez-Guerra and Luis Mata-

Machuca (2013), Sari (2013) and Sayed-Mouchaweh (2018). As reviewed by Jardine et al 

(2006), FD includes a variety of different methods ranging from statistical to Machine Learning 

(ML), all aimed at identifying the presence of a fault in the examined system. 

As discussed by Isermann (2006) the most basic statistical approach for FD is through 

limits checking (e.g. maximum and minimum values), whereas more advanced approaches are 

built around the identification of specific trends (e.g. cyclic patterns, rates of change, etc.). The 

use of the Exponential Weighted Moving Average (EWMA) for FD is an approach gaining 

popularity due to its versatility and accuracy and is based on the identification trends in the 



examined signal (Garoudja et al., 2017). EWMA-based FD models use selected signals and 

plot the signals' EWMA in a control chart, which contains upper and lower control limits for 

the detection of faults (Nounou et al., 2018). This type of FD creates easy to visualise models 

that can be used to detect various faults, with improved accuracy compared to traditional 

statistical control charts (Mukherjee et al., 2019; Shamsuzzaman et al., 2019). For instance, 

Harrou et al (2015) combined partial least squares with EWMA for the detection of faults in 

industrial processes. The effectiveness of this model was showcased through its ability to detect 

developing faults in distillation columns. Similarly, Badodkar and Dwarakanath (2017) 

developed a methodology based on EMWA for the detection of broken teeth in mechanical 

gearboxes. The EWMA analysed time-series acceleration signals, which showcased a good 

performance in detecting faults in their early stages. Awad et al (2018) developed a method for 

the detection of structural damage in buildings, based on Artificial Neural Networks (ANNs) 

and control charts. Nounou et al (2018) proposed a condition monitoring scheme for grid-

connected photovoltaic panels. The scheme was based on the monitoring of environmental and 

performance parameters (voltage, current, and frequency) in an EWMA control chart. Finally, 

Adegoke et al (2019) proposed the use of an EWMA-based FD methodology for the 

manufacturing sector. The effectiveness of the methodology was showcased in an example of 

a continuous stirred tank reactor. 

As discussed by Ma and Jiang (2011), FD based on ML approaches are gaining 

popularity in a variety of applications, including the manufacturing, nuclear, and offshore 

sectors. ML-based approaches for FD are traditionally based on classification algorithms, like 

Support Vector Machines (SVMs) and Logistic Regression, as reviewed by Liu et al (2018). 

However, these algorithms are restricted and not easily used in FD models trained on fault-free 

data only. Also, classification-based FD models are not easy to integrate with prognostic and 

diagnostic tasks (Hong et al., 2007). 

FD based on Expected Behaviour (EB) models is an alternative approach to 

classification models (Hong et al., 2007). EB models are often used for FD tasks in efforts to 

improve safety in a variety of applications, including the offshore, automotive, nuclear, and 

manufacturing sectors. The use of such models offers several advantages. Notably, they 

replicate the normal behaviour of selected signals (target variables) based on appropriate inputs 

(predictor variable). These models leverage ML to assess any deviations from the normality to 

detect faults. Zaher et al (2009) examined the use of an ANN for the development of an EB 

model for FD in wind turbines, based on operational data. The ANN was trained with more 



than three months of operational data and was used to monitor the condition of the turbine’s 

gearbox. Similarly, Schlechtingen and Ferreira Santos (2011) examined the application of 

ANNs and polynomial regression models for the development of EB-based FD for wind 

turbines. The examined models showed good performance in detecting faults in the stator and 

gearbox of a wind turbine, by modelling the power, speed, and various temperatures. The same 

authors developed an ANN-based EB model for the detection of a variety of faults in wind 

turbines based on operational data. The networks were trained by using more than 30 months 

of operational data (Schlechtingen et al., 2013; Schlechtingen and Santos, 2014). Lastly, 

Bangalore and Patriksson (2018) studied the topic of optimal maintenance planning for wind 

turbines by using an ANN-based EB model for the detection of faults in critical components. 

As with the previous cases, the developed models were trained on readily available operational 

data. 

 

1.2 Fault Detection in the Maritime Industry 

Following the above, the current literature on maritime FD is not as widespread as in other 

industrial sectors. For example, Capezza et al (2019) investigated the use of partial least squares 

regression in combination with the Hotelling’s T2 and the squared prediction error control 

charts, for  FD under the scope of emissions monitoring. Also, the benefits of predictive 

maintenance have been addressed under a decision support framework using fuzzy–sets 

enhanced with Analytical Hierarchy Process (AHP) (Lazakis and Ölçer, 2015). Ahn et al 

(2017) also examined the use of a fuzzy-based Failure Mode Effects Analysis (FMEA) 

approach to study the risk profile of the gas turbine system of specialised tankers. Similarly, 

Cem Kuzu et al (2019) proposed the use of a fuzzy-based Fault Tree Analysis (FTA) to analyse 

the inherent risks of ship mooring operations. Dikis et al (2014) examined the use of data-

driven dynamic Bayesian Networks (BN) for the maintenance prioritisation of multiple ship 

systems. Expanding on this, the coupling of BN with data mining and Markov Chains (MC) 

has been studied for the development of a predictive maintenance scheme of marine Main 

Engine (ME) and their supporting systems (Dikis and Lazakis, 2019). The application of a 

regularised feed-forward ANN classifier for the monitoring of the Exhaust Gas (EG) valve of 

a marine two-stroke engine, using acoustic emissions signals, has also been examined (Fog et 

al., 1999). Li et al (2011) also presented the use of a back-propagating ANN classifier for the 

condition monitoring a marine gearbox, based on the spectrum analysis of a vibration signal. 

Likewise, the use of a three-layer feed-forward ANN for the condition monitoring of the air 



intake and fuel injection system of a medium speed marine engine has been examined (Basurko 

and Uriondo, 2015). Raptodimos and Lazakis (2018) and Lazakis et al (2018) examined the 

application of ANNs and their combination with Self Organising Maps (SOM) and inter-

clustering for the monitoring, prediction and healthiness assessment of a marine ME. 

Moreover, Lazakis et al (2018a) demonstrated the use of SVMs for the classification of faults 

and the development of a data-driven normality index for a marine generating engine. Zhan et 

al (2007a) (2007b) examined the use of a multi-class SVM for the fault diagnosis of marine 

ME cylinder covers, based on vibration analysis and Principal Components Analysis (PCA). 

The combination of data simulation, through physical modelling, with both supervised and 

unsupervised ML algorithms has been examined with application to system decay in naval 

vessels (Cipollini et al., 2018; Coraddu et al., 2016). Lastly, Begg et al (2018) developed a 

method for the detection of damaged mooring equipment by leveraging dynamic modelling. 

 

1.3 Comparison, Gaps and Novelty 

Having in mind the above-cited literature, the subsequent conclusions regarding maritime FD 

can be derived. Firstly, the characteristics of the available data (e.g. size and density) influence 

the developed methodology. As a result, the selection of the employed algorithm must be 

thoroughly investigated. Any selection must take into account the characteristics of the 

available data and demonstrate a good performance under case-specific constraints (e.g. lack 

of recorded faulty data, data with low sampling frequency). 

Moreover, the majority of the EB models for FD are based on ANNs which, although 

they have good performance, they require large datasets for training, which are not always 

available within the maritime domain. In addition, the use of ANNs is related to a ‘black-box’ 

approach, which makes it difficult to impart domain knowledge. Consequently, the selection 

of the underlying approach for the EB models should serve the application and the data 

available. In cases of limited data and when accurate and fast results are required, regression-

based EB models could be examined instead. 

The selection of the EB model approach for the detection of faults is also beneficial 

when compared to the alternative classification approaches. Firstly, with EB models, there is 

more flexibility in the selection of the underlying algorithms used. With classification 

approaches, in the absence of observed faulty data, one-class SVM is the standard choice, with 

limited alternative algorithms. In contrast to classification, EB models have greater flexibility 

in the selection of the algorithm (e.g. ANNs, polynomial regression). Moreover, the output of 



the EB models (i.e. a time-series) is more interpretable and useful for future tasks (e.g. 

diagnostics), when compared to the output of classification approaches (i.e. decision space). 

Summarising these critical reflections, the following gaps regarding maritime FD are 

revealed. Firstly, predictive maintenance in the maritime sector is at its infancy and is severely 

lagging compared to other sectors. A potential gap is also identified in the application and use 

of FD models addressing the particular needs and requirements of maritime predictive 

maintenance which in turn will lead to the assessment of energy-efficient operations of ship 

systems. The development of a novel methodology that addresses the previously discussed 

limitations and takes advantage of the benefits of regression-based EB modelling and the 

EWMA control chart, is a methodology that can address the above-mentioned gaps.  

Therefore, this study proposes a novel methodology that integrates with a new way pre-

processing analysis, regression-based EB modelling based on the investigation of the optimal 

regression model, and EWMA control charts. Moreover, the aim is to apply the novel 

methodology in a case study for FD in the main engine of a ship, which to the best of authors' 

knowledge has not been implemented before. The developed FD methodology includes the 

combination of data-driven models with engineering analysis, resulting in interpretable and 

effective models using real ship system data. Through this, the new methodology will increase 

safety and reliability, and establish energy-efficient operations by detecting developing faults 

and allowing for pre-emptive actions and corrective planning.   

The application of the new methodology, presently missing from the maritime industry, 

will have the following impact: a) it will enable capturing of previously unseen anomalies 

based on an EB model, b) it will allow the examination of how signals evolve in real-time, 

based on contributing factors while uncoupled from variable operating conditions, due to EB 

modelling, c) it will enable the accurate detection of developing faults, due to the use of EWMA 

control chart, d) it will allow for the efficient filtering of noise due to the superior performance 

of EWMA control charts compared to traditional control charts and e) it will combine the above 

benefits in a single methodology aimed at improving the energy-efficient operations of ship 

systems. 

Finally, the current paper is structured as follows: Section 2 discusses the details and 

novelty of the developed methodology, Section 3 presents the case study of a marine main 

engine together with the results and finally, Section 4 provides the overall conclusions and 

suggestions for future work. 

 



2. Proposed Methodology 

This study employs a fast and effective FD methodology that supports the requirements of the 

maritime industry, taking into account the limitations imposed by the used data and is aimed at 

maintaining energy-efficient ship operations. More specifically, the detection of developing 

faults can improve the energy-efficiency of the monitored ship system and can also safeguard 

the energy-efficiency of other systems by avoiding cascading failures and overloading patterns. 

The produced methodology uses a regression-based EB model, which provides accurate results, 

without the need to develop time-consuming physical models and complex ‘black-box’ 

approaches. In addition to that, the complexity of the suggested EB model can be controlled, 

without requiring very large training datasets, thus addressing the maritime domain limitation 

of small datasets available.  

The necessary steps and processes to develop the novel FD methodology are presented in 

Figure 1: 

1. Data collection: including the data gathering efforts by an onboard ship DAQ system. 

2. Pre-processing: including form handling, unit checking, outlier detection, and further 

data filtering. 

3. Model development: including the investigation for the optimal regression model, in 

terms of regression type and input. 

4. Fault detection: including the estimation of the residuals and the implementation of the 

EWMA control charts. 

5. Finally, the developed methodology is assessed during the model verification phase, to 

ensure that the required functionality is achieved.  

As can be seen in Figure 1, the novel methodology initiates with the data collection 

step. During this step, two unique Process Monitoring (ProMon) datasets from a DAQ system 

are collected for use during the model development and methodology verification. The ProMon 

dataset used during model development contains historic information and represents “healthy” 

ship operation, as established by the ship’s operators. Similarly, the ProMon dataset used 

during the FD and verifications steps includes incoming ProMon data. Once the data is 

collected, the pre-processing step follows, which includes the outlier detection and data 

filtering for the isolation of non-operational data points. It should be highlighted that the pre-

processing step is used for all the data sets. Then, the model development step follows, which 

is based on pre-processed historic ProMon data and outputs the optimal EB model. During this 



step, the feasibility of different regression techniques and predictor variables is assessed in 

terms of their suitability for an EB model. Once this model is established, it is used to compare 

the recorded and the expected values of a target variable, generating the residuals. In detail, 

once the incoming ProMon data are pre-processed, they are used as input to the optimal EB 

model to produce the expected values of the target variables. These values are compared with 

the target variable from the incoming ProMon data. Thereupon, the obtained residuals are 

assessed in an EWMA control chart for FD, and the methodology gets verified. 

 

2.1 Data collection 

The data collection is the first step of the methodology and includes the required efforts to 

assemble the needed information. The output of the data collection step is the creation of an 

extended dataset, different segments of which are used for both model development and 

methodology verification purposes. The collected data may originate from a marine 

commercial DAQ system installed onboard a merchant navy vessel. Typically, DAQ signals 

for FD tasks of engineering systems include ProMon data, such as power output, rotational 

speed, injection and scavenging pressure, and exhaust gas temperature. Similarly, the data 

frequency usually ranges from one sample per second or per ten minutes and up to hourly 

intervals, depending on the application.  

 

2.2 Pre-processing 

Data pre-processing ensures that datasets reach their full knowledge-extracting potential. Pre-

processing is a standard step in most data-driven research efforts (Martinez-Guerra and Luis 

Mata-Machuca, 2013; Sari, 2013; Sayed-Mouchaweh, 2018; Tanasa and Trousse, 2004). The 

output of this step is the creation of a processed dataset, ready for model development and 

methodology verification. The processes contained in this step include form handling, outliers 

detection, and data filtering. 

Pre-processing starts with the form handling and unit checking of data. This is a simple yet 

important process, as it ensures that the data are placed in a fitting format for the next steps of 

the methodology. 

In the next process, the Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm is used to remove outliers and transient states of operation, which are 

out of scope in the present work. Outliers are sparse data points with significantly different 



values from the rest of the instances of the same variable. They are often caused by sensor 

errors and other instrumental faults and are not part of a fault indicative pattern. For instance, 

negative EG temperatures and power output above an engine’s rated power are considered as 

outliers.  Thus, outliers can be considered as data “anomalies” and if they are not removed they 

can have a negative impact on the developed models. 

DBSCAN algorithm is very effective in detecting outliers and does not rely on domain 

knowledge, which offers several advantages. It works by examining each point in the dataset 

and identifying dense areas of points (clusters). DBSCAN requires the use of the user-defined 

𝑚𝑖𝑛𝑃 hyperparameter. The 𝑚𝑖𝑛𝑃 defines the minimum number of points that are required to 

form a cluster. The 𝑚𝑖𝑛𝑃 is simple to specify as it is a function of the dimensionality of the 

dataset. Larger values are preferable, with an exclusive global lower bound of 3 (Schubert et 

al., 2017). Lastly, the value of 𝑚𝑖𝑛𝑃 should be close to the number of dimensions of the dataset 

(Chen and Li, 2011; Ester et al., 1996). As suggested in the literature, the 𝑚𝑖𝑛𝑃 hyperparameter 

is selected by combining the above restrictions with domain knowledge (Schubert et al., 2017; 

Thang and Kim, 2011). Also, the 𝜀 hyperparameter is required, which defines the maximum 

distance between points for them to be considered to be in the same cluster. If 𝜀 is too small, 

the majority of the data points will be clustered as noise, whereas if it is too big all the data 

points will be in the same cluster. In general, smaller values are preferred. An approach for 

calculating the 𝜀 hyperparameter, is by considering the rate of change of the distance of each 

point to  the  nearest  neighbour (k-nearest  neighbour  graph), as shown in the relevant literature 

(Gaonkar and Sawant, 2013; Rahmah and Sitanggang, 2016). However, this approach is not 

usable when using evenly spaced data (i.e time-series with constant sampling rate). As a result, 

the value of 𝜀 is obtained after iterative attempts. 

Given these hyperparameters, the data are categorised in three groups. Core points are 

considered as data points with more than 𝑚𝑖𝑛𝑃 points within a radius 𝜀. Border points are 

defined as data points with fewer than 𝑚𝑖𝑛𝑃 points within a radius 𝜀. The remaining points are 

considered as outliers or noise. Moreover, point 𝑞 is directly density-reachable from a point 𝑝, 

if 𝑝 is a core point and 𝑞 is within a radius 𝜀 from 𝑝. Assuming another point 𝑞ଵ which is 

directly density-reachable from point 𝑞 only, it is said that points 𝑝 and 𝑞ଵ are indirectly 

density-reachable (Çelik et al., 2011; Chen and Li, 2011; Thang and Kim, 2011). The working 

process of the DBSCAN algorithm, as used in this methodology is shown below: 

1 Find all core points 



2 Assign all points that are directly density-reachable and indirectly density-reachable 

in the same cluster 

3 Mark any unassigned points as outliers. 

Following the removal of the transients and outliers, further data filtering takes place. 

Specifically, the data are filtered to retain the points that represent operational periods.  Since 

the data collection took place over an extended period, some points could have been recorded 

when the ship and its main engine were not operational. The data filtering is performed by 

using a value-based approach. Therefore, this process removes non-operational points whilst 

retaining the rest.  

 

2.3 Model Development 

The model development step follows the data pre-processing step and uses as input pre-

processed historic ProMon data, as seen in Figure 2. The aim is the development of an EB 

model that can predict the ideal (expected) behaviour of a selected variable of a system based 

on appropriately selected inputs. EB models are often used for FD tasks, as they can model the 

expected behaviour of a variable subject to changing operating conditions. EB models are ideal 

in the absence of faulty labelled data, as they can detect developing faults by defining a range 

of normal operation. The output of this step is the developed EB model which is in turn used 

for the FD and verification steps, using the incoming ProMon data (Figure 2). It should be 

noted, that the model development step includes iterations for the identification of the optimal 

predictor variables. Throughout this step, the used data are divided into training, validation, 

and testing, based on empirical rules and common practices. The training sample of the data is 

used to fit the different ML models. It is said amongst practitioners, that the models “sees” and 

“learns” for the training data. The validation sample of the data is then used to tune the models’ 

hyperparameters. The validation set is withheld from the ML models during the training phase, 

but it can still affect the models’ performance, albeit in a more limited manner than training. 

Ultimately, the appropriate ML model is selected based on its performance on the validation 

set. Lastly, the test sample of the data is used to evaluate the overall performance of the selected 

model, after they are trained and their hyperparameters are tuned. The test sample is also 

withheld from the models during both training and validation. 



 

2.3.1 Training and Validation 

The training and validation process is used to fit and fine-tune the different ML models and is 

structured around the use of historic ProMon data, collected during the ship’s operation.  The 

aim is to use a training set to fit the different models and a validation set to fine-tune and 

ultimately select, the best performing model, before the evaluation of its generalisation 

capabilities in a test set. This process uses training and validation datasets, which are a portion 

of the historic ProMon data. Finally, it must be stressed, that the recorded ProMon data 

represent “healthy” ship operation, as established by the ship’s operators.  

 Four ML regression models are generated including Ordinary Least Squares (OLS) 

single linear regression, multiple linear ridge regression, OLS single polynomial regression, 

and multiple polynomial ridge regression. As previously discussed, regression-based EB 

models do not depend on extremely large training datasets and offer greater flexibility in 

imparting domain knowledge. These ML models are used to produce an estimated output for a 

selected target variable, by relying on the use of appropriately selected inputs (predictor 

variables). The examined EB  models are trained and validated, using the 𝑅ଶ score. Linear and 

polynomial regression models are developed to examine the best type of fit, given the acquired 

data. There are several advantages for each type of model (linear and polynomial), however, 

the selection is application-specific (Müller and Guido, 2015). The suitability of linear or 

polynomial models is a function of the available data. Single-input OLS regression models, 

both linear and polynomial, are used as benchmark models (Assaf et al., 2019; Erto et al., 2015; 

Lepore et al., 2017; Naik et al., 2018). Ridge regression models are selected based in their 

overall accuracy and effectiveness, as discussed by Gkerekos et al (2019). Lastly, the specific 

inputs for the EB models are investigated separately. 

The developed linear regression models have a form as shown in Equation 1, where 𝑦ො 

represents an estimate for the target variable, 𝑤଴ to 𝑤௣ are the estimated regression coefficients, 

𝑏 is the estimated axis intercept and 𝑥଴ to 𝑥௣ represent the 𝑝 different predictors (inputs). 



 
𝑦ො = 𝑤଴𝑥଴ + ⋯ 𝑤௣𝑥௣ + 𝑏 = ෍ 𝑤௜𝑥௜

௣

௜ୀ଴

+ 𝑏 

Equation 1 

The developed polynomial regression models have a form as shown in Equation 2, which is 

the general form of 𝑘௧௛ order polynomial using two predictors (𝑥ଵ, 𝑥ଶ). Equation 2 also includes 

interaction terms between the two predictors (Bowerman et al., 2015; Olive, 2005).  

 𝑦ො = 𝑤଴𝑥ଵ + 𝑤ଵ𝑥ଶ + 𝑤ଶ𝑥ଵ𝑥ଶ + ⋯ 𝑤௣𝑥ଵ
௞ + 𝑤௣𝑥ଶ 

௞ + 𝑏 Equation 2 

 

During the training phase, sets of known predictors (𝑥଴ 𝑡𝑜 𝑥௣) and target variables (𝑦) 

are used as input in Equation 1 and 2 to obtain 𝑦ො. The aim of the training phase then becomes 

minimising the objective functions in either Equation 3 (OLS regression) or Equation 4 (ridge 

regression) to obtain the estimates for the coefficients (𝑤) and intercept (𝑏).   

In OLS regression, the coefficients and intercept are estimated by minimising the sum 

of the squared difference between the predicted and the actual values of the target variable 

(residuals). The minimisation of this objective function is possible since both 𝑦 and  𝑦ො are 

available during the training phase(Bowerman et al., 2015; Olive, 2005).  

 𝑂𝐿𝑆: ‖𝑦ො − 𝑦‖ଶ
ଶ  Equation 3 

In ridge regression, the coefficients and intercept are estimated by minimizing an 

objective function similar to the OLS. In addition to the sum of the squared residuals, an 

additional term is included. The additional term is called L2 regularisation and limits the 

magnitude of the coefficients. L2 regularisation explicitly restricts the model to avoid 

overfitting. The limiting capability of the regularisation term is attributed by the user-specified 

hyperparameter, 𝛼.  This hyperparameter limits the influence of the predictors to the target, 

given that α is appropriately selected. When 𝛼 = 0, the objective function becomes OLS and 

on the other hand, if 𝛼 is very large the model will underfit the data. During this research effort, 

k-fold cross-validation was used to estimate the optimal 𝛼 value (Bishop, 2006; Bowerman et 

al., 2015; Olive, 2005). 

 𝑅𝑖𝑑𝑔𝑒: ‖𝑦ො − 𝑦‖ଶ
ଶ + 𝑎‖𝑤‖ଶ

ଶ     𝑤𝑖𝑡ℎ   𝑎 ∈ [0, ∞)  Equation 4 

K-fold cross-validation iteratively trains and validates the examined models by using 

all the possible combinations of training and validating sets. The working principle of this 

process is demonstrated in Figure 3, which is a common example with k=3 folds. In essence, 

the k-fold cross-validation is used to evaluate the performance of the trained models and select 

the best performing approach for testing. This process trains and validates as many models as 



there are different combinations of model hyperparameters. The different hyperparameters 

included in this work are parameters of the learning methods (e.g. 𝛼 regularization term), and 

the different inputs used (e.g.  predictor variables). The k-fold cross-validation partitions the 

data in k different folds. Each fold is set aside once and the examined models are trained on 

the remaining k−1 folds. Then, the fold withheld from training is used, to obtain the validation 

score of the trained models. This sequence is repeated until every fold is used for validation 

once. For each model, the mean validation score is calculated and the model with the highest 

mean score is selected. Finally, the identified model is trained with all the training and 

validation data, before its generalisation capabilities are assessed in the test set. 

Moreover, the general working process that is followed as part of the development of 

the EB model is shown as an algorithm in Figure 4. The algorithm requires as input the 

predictor (X) and target (Y) variables. Also, it requires the number of folds (k) for the k-fold 

cross-validation and the size of the test set. Lastly, the set of the considered values for the 

model’s hyperparameters is given. Figure 4 represents the generalised process for the 

development of the supervised model, including the optimisation of the 𝛼 hyperparameter. 

 

2.3.2 Testing 

As mentioned above, four different types of ML regression models are used, namely OLS 

single linear regression, multiple linear ridge regression, OLS single polynomial regression, 

and multiple polynomial ridge regression. Also, during the training and validation, the value 

of 𝛼, and the different predictor variables are assessed in the required cases. After the k-fold 

cross-validation, the mean validation score for each of the examined model is obtained. The 

validation performance is assessed using the 𝑅ଶ score and the model with the highest 𝑅ଶ is 

selected for testing. 

The model selected for testing is fully defined in terms of the regression type, the 

predictor variables, and the value of 𝛼. That model is then retrained using the training and 

validation datasets, and its testing performance is evaluated using the 𝑅ଶ score. Once the testing 

performance of the selected model is analysed, the model is used to obtain the residuals. 

2.4 Fault Detection 

Following the full specification of the EB model, the fault detection step takes place. The output 

of the EB model is a prediction for the EB of a specifically selected variable of an engineering 



system. To facilitate fault detection, the aim is to monitor certain variables (𝑦) and gauge any 

deviations from their expected value (𝑦ො), given the system’s operational profile. As shown in 

Figure 1, the fault detection process has two inputs: a) incoming, previously unseen, ProMon 

data, and b) the EB estimate from the model for the monitored variable.  

For each instance of the incoming database, the residuals (𝑟) between the expected 

value and the recorded value is calculated according to Equation 5.  

 𝑟௞ =  𝑦௞ෞ − 𝑦௞ 
   𝑓𝑜𝑟   𝑘 = 1, … 𝑁 

Equation 5 

Analysing the residuals is an effective method for detecting faults in engineering systems, as 

the comparison between the actual and the expected behaviour can uncover developing faults. 

The residuals quantify the deviation of a variable from its expected value, given an operating 

profile (Harrou et al., 2015; Holmes and Mergen, 2000; Neubauer, 1997; Nounou et al., 2018) 

 After the residuals are calculated, the EWMA control chart is constructed (Hunter, 

1986). In Equation 6, 𝑧 refers to the EWMA statistic which is calculated for all of the 𝑘 

instances. For the special case of 𝑧଴, the mean value of the variable in the incoming data is 

used. The smoothing effect of the EWMA is attributed to the user-defined smoothing 

parameter, 𝜆. The smoothing parameter is defined according to common practices. Lastly, the 

residual at each instance (𝑟௞) is used. 

 𝑧௞ = 𝜆𝑟௞ + (1 − 𝜆)𝑧௞ିଵ  
𝑓𝑜𝑟  𝑘 = 1, … 𝑁  
𝑎𝑛𝑑 𝜆 ∈ (0, 1] 

 

Equation 6 

 A crucial component of the EWMA fault detection is the Upper Control Limit (UCL) 

and Lower Control Limit (LCL). These two limits provide the basis for the detection of faults, 

as any point above the UCL or below the LCL signifies faults. These limits are calculated 

according to Equation 7 and Equation 8. 

 

𝑈𝐶𝐿 = 𝜇଴ + 𝐿𝜎ඨ
𝜆

2 − 𝜆
[1 − (1 − 𝜆)ଶ௜] 

Equation 7 

 

𝐿𝐶𝐿 = 𝜇଴ − 𝐿𝜎ඨ
𝜆

2 − 𝜆
[1 − (1 − 𝜆)ଶ௜] 

Equation 8 

In these equations, 𝜇଴ is the mean value of the variable in the incoming data and 𝜎 is the 

standard deviation. Lastly, 𝐿 represents the width of the control chart and its value is assigned 

based on the application. In essence, the UCL and LCL form the envelope of normal operations 



for the selected variable. As the choice of 𝐿 affects this envelope, it must be appropriately 

selected so that it can correctly classify normal and faulty operating points. If the recorded data 

represent “healthy” operating points, as discussed in Section 2.3.1, the resulting UCL and LCL 

envelope, must fully encase all the data points. On the other hand, if a known fault exists in the 

data, the ULC or LCL must exceed at the point of the failure. If the resulting envelope does not 

exhibit this behaviour, the value of L must be altered. Consequently, assigning L its value can 

be an iterative process. 

 

2.5 Methodology Verification  

The last step of the proposed methodology is the verification of the developed methodology. 

This is arguably one of the toughest tasks, especially when access to the physical system is not 

a valid option. Similarly, the lack of access to a physical model of the examined system and 

the lack of recorded faulty data, increase the challenging nature of this step (Lazakis et al., 

2018b). The main aim of this step is to ensure that the methodology performs as expected and 

that the developed models are fit for their purpose. This is achieved in two main ways. Initially, 

during the case study and while keeping the developed models constant, one predictor is altered 

and the outcome is observed. As an abnormal variation is given to the changed predictor, it is 

expected that the EB model and EWMA fault detection are able to identify this as a fault. By 

doing that, the ability of the model to capture abnormal values is evaluated. Also, the ability of 

the different regressors to achieve high 𝑅ଶ score on previously unseen real data provides a 

practical approach to measure the models’ fitness of purpose (Gkerekos and Lazakis, 2020).  

 

3. Case Study 

The FD methodology aims to establish a novel approach for the early detection of developing 

faults, to avoid sub-optimal ship operations and thus maintaining ship system energy-efficient 

operations. During this study, the considered faults are the result of gradual degradation and 

wear-and-tear. Consequently, sudden breakages and shock loads are not considered. The 

following sections showcase the effectiveness of the methodology and present its outcomes as 

obtained from a specific case study of a bulk carrier. The use of a specific case study does not 

reflect on the applicability of the developed model. On the contrary, the developed 

methodology has high transferability and can be applied to different cases (e.g. container ships, 

tanker, etc.). The pre-processing step is mainly based on the use of the DBSCAN for outlier 



detection, which does not rely on domain knowledge. The EB-models are not based on complex 

and time consuming physical modelling and as a result, they can easily capture the behaviour 

of a new target variable. However, this process is conditional on the availability of recorded 

voyage data. Lastly, the use of the EWMA is application-agnostic, which improves the model’s 

flexibility.  

 

3.1 Data Collection 

The application of the novel methodology is examined through a specific case study, including 

data acquired by a DAQ system installed onboard a 64,000DWT Handymax bulk carrier. In 

this paper, the case study focuses on the monitoring and prediction of the Exhaust Gas (EG) 

temperature of a 5-cylinder two-stroke Main Engine (ME). This variable was selected due to 

its great importance in ship and system performance and process monitoring. Monitoring the 

ME cylinder EG temperature can help 1) control the ME’s emissions, 2) understand the 

cylinders’ combustion performance 2) identify underlying and developing faults. In more 

detail, faults in the air cooler, turbocharger, and gas passages of the ME can manifest through 

the ME EG temperature (HHI, 2010; MAN B&W, 20017; Woodyard, 2009). The schematic of 

the examined system is shown in Figure 5. The variables used during model development are 

shown in Table 1. As can be seen, along with the ME cylinder EG temperature (target), 

additional variables are used (predictors). In addition, the variables were recorded between 01st 

of January 2017 and 30th of March 2017 with a five minutes sampling rate, resulting in 25,627 

points per variable. As mentioned in Section 2.3.1, the collected data represent fault-free 

operating conditions.  

 

Table 1 Descriptive information of the variables in the ME system 

Variable Name Variable Description Units Count 

ME CYL 1 EGT ME cylinder 1 EG temperature oC 25,627 

ME CYL 2 EGT ME cylinder 2 EG temperature oC 25,627 

ME CYL 3 EGT ME cylinder 3 EG temperature oC 25,627 

ME CYL 4 EGT ME cylinder 4 EG temperature oC 25,627 

ME CYL 5 EGT ME cylinder 5 EG temperature oC 25,627 

ME AVG EGT ME mean cylinder temp oC 25,627 



SCAV_AIR_TEMP ME scavenging air temperature oC 25,627 

SCAV_AIR_PRESS ME scavenging air pressure bar 25,627 

SHAFT_PWR  ME shaft power kW 25,627 

ME_RPM_TM ME speed rpm 25,627 

 

3.2 Data Pre-processing 

The pre-processing step, as described in Section 2.2, ensures that the data reach their full 

knowledge-extracting potential. All of the variables go through this step including the data used 

for training, validation, and testing. The first process of this step is to ensure that the units of 

the data are in the correct form and that the dataset is in a tabulated form. Following that, the 

DBSCAN algorithm is deployed to remove transient states of operation and outliers from each 

variable. 

 The application of the DBSCAN algorithm requires the specification of the 𝜀 and 𝑚𝑖𝑛𝑃 

hyperparameters. The 𝜀 hyperparameter dictates the maximum distance between points for 

them to be considered in the same cluster. Also, the 𝑚𝑖𝑛𝑃 hyperparameter controls the number 

of neighbouring points required to form a cluster. As discussed in Section 2.2, the value of 𝜀 is 

determined after iterative attempts. Different values are iteratively used until the transient states 

are removed, and consequently, the outliers are filtered out. Finally, the selected value was 𝜀 =

0.25. Considering the dataset used in the FD methodology has 10 dimensions, as seen in Table 

1, and keeping in mind the restrictions suggested by Chen and Li (2011) the final value for 

𝑚𝑖𝑛𝑃 was determined to be 10. As the sampling rate of the data is 1 recording per 5 minutes 

and 𝑚𝑖𝑛𝑃 = 10 samples from 50 minutes are required to form a cluster. This is a realistic and 

reasonable time-frame for the operation of the ME when the ship in on voyage, as confirmed 

by the operators of the considered bulk carrier. The last process of the data checking step is to 

filter-out any points collected when the ship was not operational. For that purpose, a value-

based filter was created, as seen in Equation 9. 

𝑆𝐻𝐴𝐹𝑇_𝑃𝑊𝑅 > 10 𝑘𝑊 Equation 9 

As it can be seen in Figure 6, the pre-processing step is effective in filtering-out 

transient states and outliers. The spikes and dips, in the “Raw Data” graph of Figure 6, are 

filtered out by the DBSCAN clustering algorithm, while the flat-lines are removed by the value-

based filter. For example, the dips and the spikes, recorded between the 1st of January 2017 and 

15th of January 2017, are successfully removed.   



3.3 Model Development 

During the model development, the available historic data are divided into a training and 

validation set and a testing set.  The former is used to fit the different models, tune the different 

hyperparameters, compare and ultimately select the best performing model. The best model is 

selected by primarily assessing the validation score and taking into account the standard 

deviation (𝜎) of the prediction errors. Once the best performing model is selected, its 

generalisation capabilities are assessed in the training set. 

In total four different types of regression models are examined include OLS single 

linear regression, multiple linear ridge regression, OLS single polynomial regression and 

multiple polynomial ridge regression. Apart from the different types of models, different inputs 

(predictor variables) are considered for each model. The various resulting models are detailed 

in Table 2. For each of the ridge regression models, the 𝑎 hyperparameter ranges from 0.1 to 

0.6. Also, the examined polynomial models are assumed to be of 6th order. The value of 𝑎 and 

the order of the polynomial models depend purely on each application and there is no standard 

guide for their selection. Instead, different ranges of 𝑎 and different values for the polynomial 

order can be examined. In case none of the models exhibits good behaviour with the selected 

𝑎 and order, these values are changed and the analysis is repeated. 

Table 2 List of the examined regression model, including single-input, multiple linear and multiple polynomial. 

Model ID ME 
Power 

ME 
Speed 

ME scavenging 
air temperature 

ME scavenging 
air Pressure 

Linear Polynomial 

M1       
M2       
M3       
M4       
M5       
M6       
M7       
M8       
M9       

M10       
M11       

N1       
N2       
N3       
N4       
N5       
N6       
N7       
N8       
N9       



N10       
N11       

L       
P       

       
       

 

3.3.1 Training and Validation 

From the historic ProMon data, 80% of them are randomly selected for training and validation, 

according to empirical knowledge and common practices. The different models need a 

substantial amount of the collected data (e.g. 80%) to identify patterns and develop good 

generalisation capabilities. The random selection of the data controls the variance of the model 

and it enhances its generalisation capabilities, as during the training, data from the entirety of 

the operational profile are used (Kirk, 2017). 

 During this stage, k-fold cross-validation is used to train and validate the different 

models discussed above. For this work, the value 𝑘 = 7 was assumed. Similarly with the 

previous hyperparameters (e.g. 𝛼), the selection of k was based on empirical knowledge, as its 

value is application-specific. Consequently, each model is trained and validated 7 times, each 

time using a different segment of the data for validation. The validation performance of each 

model is then assessed by averaging the 7 different validation scores resulting from the 7-fold 

cross-validation 

 Figure 7 shows the validation performance of the different models in terms of their 

average 𝑅ଶ score during the k-fold cross-validation. This Figure examines different regression 

models with varying inputs and ranging α values. The upper bar chart examines the average 

score of each model (multiple linear ridge regression) shown in Table 2. To further evaluate 

the performance of the different models, the maximum score is shown as a dashed blue line. 

Similarly, the performance of the single OLS linear regression, using the ME power as an input, 

is shown as a solid black line. Models M11, M12 and M13 which use as inputs the ME power, 

speed, scavenging air temperature and pressure with 𝑎 = 0.1,  𝑎 = 0.2 and 𝑎 = 0.3 

respectively have the best validation score of nearly 0.93. The performance of the OLS single 

linear regression is lower than all the other multiple linear ridge regression models. The bottom 

bar chart of Figure 7 examines the average score of each model (multiple polynomial ridge 

regression) and its results are summarised in Table 3. The maximum score and the performance 

of the OLS single polynomial regression are also shown as a dashed and a solid line 



respectively. Models N53, N54, N55 and N56 which use as inputs ME power, speed, 

scavenging air pressure with 𝑎 = 0.3,  𝑎 = 0.4, 𝑎 = 0.5 and 𝑎 = 0.6 respectively have the best 

validation score of nearly 0.96. Interestingly, the performance of the OLS single polynomial 

regression is satisfactory and preferable to most of the multiple polynomial ridge regression 

models. Finally, it is observed that the polynomial models have a superior performance in terms 

of the mean validation score. As summarised in Table 3, the polynomial models have a higher 

mean validation score and a smaller score range compared to the linear models. 

  

Table 3 Performance of linear and polynomial models in terms of R2. 

 Linear Models Polynomial Models 
Mean Validation Score 0.83 0.94 

Validation Score Range 0.11 0.091 
 

Figure 8 shows the validation performance of the different models in terms of the 

standard deviation (σ) of the average 𝑅ଶ scores during the k-fold cross-validation. This Figure 

shows the results of the same models as Figure 8 and is supplementary for the evaluation of 

the different models. Similarly, the minimum σ of the average 𝑅ଶ score is shown as a solid line 

and the σ of the 𝑅ଶ scores from the OLS single linear and OLS single polynomial models are 

shown as dashed lines. The standard deviation of the validation performance describes the 

consistency of each model in their predictions during the k-fold cross-validation. It is observed 

that the linear models have a superior performance in terms of the σ of the mean validation 

score. As summarised in Table 4, the linear models have a lower mean σ and a smaller range 

compared to the polynomial models. 

  

 

Table 4 Performance of linear and polynomial models in terms of σ 

 Linear Models Polynomial Models 
σ of Mean Validation Score 0.046 0.07 

Range of σ of Mean Validation Score 0.07 0.24 

 

As previously discussed, the model development aims to identify and compare the 

models with the highest 𝑅ଶ and lowest σ. As seen in Table 5, model N54 has the best mean 

validation 𝑅ଶ and a σ comparable with the remaining models, and for these reasons is identified 

as the optimum choice. In summary ML model N54 uses multiple polynomial ridge regression 

has α=0.4 and uses as input the ME Power, pressure, and speed. 



 

Table 5 Performance of models with the highest R2 and performance of models with lowest σ 

Models Mean Validation R2 σ of Mean Validation R2 
N54 0.96 0.03 
M31 0.89 0.01 
M32 0.89 0.01 
M33 0.89 0.01 
M34 0.89 0.01 
M35 0.89 0.01 
M36 0.89 0.01 
M91 0.88 0.01 
M92 0.88 0.01 
M93 0.88 0.01 
M94 0.88 0.01 
M95 0.88 0.01 
M96 0.88 0.01 

 

Finally, Figure 9 shows the learning curves of model N54 having as target variable the 

EG temperature of the cylinders of the ME and the average EG temperature of all the cylinders 

of the ME. These curves show the training (red) and validation (black) scores for each case as 

a function of the number of folds in k-fold cross-validation. In effect, increasing the number of 

folds also increases the training data. Thus, the learning curves aim to evaluate if the model is 

either overfitting or underfitting the data. In other words, the learning curves are used to gauge 

the model’s generalisation capabilities. In Figure 9, across all the graphs, as the number of fold 

increases the training performance reaches a plateau, indicating that the training performance 

can no longer improve by increasing the amount of training data. Similarly, the validation score 

increases indicating that the generalisation capabilities of the model are satisfactory. In general, 

the convergence of the training and validation learning curves indicate the presence of a model 

with a good fit on the data. For example, the upper left chart of Figure 9 shows the learning 

curves for the model predicting the average EG temperature of all the cylinders of the ME. As 

seen, the training score reaches a plateau of around 0.977, and the validation score reaches a 

maximum value of nearly 0.968. 

 

3.3.2 Testing 

Model N54 is identified as the optimal and fully defined choice for the prediction of the EG 

temperature of the cylinders of the ME. Following the completion of the training and validation 

process, model N54 is trained using the whole training set (no validation set is used). The 

trained model is then evaluated on the previously unseen test set. Figure 10 shows the training 

and testing scores of this process. It evaluates the model’s capabilities in predicting the EG 



temperature of the cylinders of the ME and the average EG temperature of all the cylinders of 

the ME. As observed the testing performance is satisfactory as the R2 ranges from 0.93 to 0.966. 

Also, the testing score is systematically lower than the training score, which is expected 

behaviour for this type of modelling.  

 

3.4 Fault Detection and Verification 

This step of the methodology uses the incoming ProMon data, which are pre-processed 

according to Section 2.2 and aims at detecting faults in the operation of the examined vessel. 

The identified and evaluated model (N54) is used to obtain the expected (predicted) values for 

the ME EG temperature of each cylinder of the examined vessel. Once these values are 

calculated, they are compared with the actual EG temperature from the incoming ProMon data, 

resulting in the residuals. 

 Once the calculation of the residuals is completed, the EWMA control chart is 

constructed, which requires the specification of the 𝜆 and 𝐿 hyperparameters. The former is the 

smoothing parameter and is obtained according to common practices. In this work, it is 

assumed that 𝜆 = 0.3, according to Badodkarand and Dwarakanath (2017). On the other hand, 

the 𝐿 hyperparameter controls the width of the control chart (distance between UCL and LCL) 

and its value is assigned after iterations. As previously discussed, the incoming data represent 

healthy operating conditions, as confirmed by the operator of the examined vessel. Therefore, 

the value of 𝐿 was selected so that the residuals on the control chart do not exceed the UCL 

and LCL. Figure 11 shows the residuals of the average EG temperature of cylinders of the ME 

of the examined vessel, plotted in an EWMA control chart. The average EG temperature is 

used for simplicity reasons, as it summarises the behaviour of the individual cylinders. In this 

figure, the obtained residuals are shown with grey and the EWMA statistic for each residual is 

shown as blue. Lastly, the UCL, LCL, and the Center Line (CL) are also shown. In Figure 11, 

𝐿 = 3 was used, since the resulting EWMA statistics for the residuals lie between UCL and 

LCL. It should be specified that 𝐿 = 3 is the first value correctly classifying the EWMA 

residuals. 

The evaluation of the methodology transpires by using the developed EB model and 

analysing the residuals in an EWMA chart for fault detection. To examine the detection 

capabilities of the methodology, and by considering the fault-free nature of the available data, 



four different fault cases are examined through simulated data in the form of a sensitivity 

analysis (Law, 2009; Saltelli, 2004).  

These four cases are presented in Table 6 and represent failure modes that can affect 

the target variable. In detail, according to domain knowledge and by considering the 

publications by Hountalas (2000) and Theotokatos et al (2015), the examined cases represent 

specific failure modes in the Turbocharger (TC), Air Cooler (AC) and gas passages of the ME 

that can affect the ME EG temperature. Table 7 provides a brief summary of the possible faults 

that included in the different cases of Table 6 (MAN B&W, 20017). Table 7 highlights the 

functionality of the methodology and provides practical suggestions, however, the faults are 

indicative and dedicated diagnostic efforts are required for the specification of their root-cause. 

Table 6 Verification cases description 

Case ID Variable Alteration Limit Value 
Case 1 ME scavenging air 

pressure 
Increased Upper 3.30 

bar Case 2 ME scavenging air 
pressure 

Decreased Lower 0.4 bar 
Case 3 ME cylinder EG 

temperature 
Increased Upper 420 

oC Case 4 ME cylinder EG 
temperature 

Decreased Lower 214 
oC In addition to that, the limits presented in Table 6 are selected from the ME manufacturer guide 

(MAN B&W, 20017) and represent the alarm limits set by the manufacturer. In each case, the 

appropriate variables in the dataset used for verification are adjusted linearly, to reach and 

exceed the presented limits, simulating the faulty conditions. These adjustments take place, 

across all cases, from 10/01/2017 to 11/01/2017 and is assumed that after this period rectifying 

actions take place. Moreover, since the examined failures represent the result of gradual 

degradation, the faults are represented as a group of points exceeding the ULC or LCL. The 

identification of such patterns indicates the presence of a fault. Also, from a practical 

standpoint, the detection of a fault could be verified by inspecting the examined system, 

however, additional diagnostic efforts are required. Lastly, single points exceeding the limits 

of the EWMA control chart should be further investigated, even though they are out of the 

scope of this work. Figures 12 to 15 show the EWMA fault detection results for Case 1 to Case 

4 respectively. All cases show the residuals of the average EG temperature across all the 

cylinders. This is due to simplicity reasons, as the examples of the examined faults affect the 

EG temperature of all the cylinders. 

 

 



Table 7 Indicative possible faults organised in system-level and sub-system level, adapted from (MAN B&W, 20017). 

System-Level Faults Sub-System Level Faults 

AC 
Air-side fouling 
Water-side fouling 

ME Gas Passages 
Air filter fouling 
Corroded TC mechanical components 
TC fouling 

Cylinder head 
Leaking EG valve 
Blocked fuel valve or injector 

Combustion Chamber Blow-by 

 

Figure 12 shows the EWMA smoothed residuals signal for case 1 which describes a 

typical example of a fault related to the overloading of the ME caused by the fouling of the 

ship’s hull over time. As it can be observed, the points from the first few days have residuals 

with an error close to 0oC. However, from the 10/01/2017 the residuals begin to increase and 

reach more than 200oC. This surge is attributed to the increase of the ME scavenging air 

pressure to more than 3.20 bar. The residuals (as defined in Equation 5) increase, as the 

expected value of the target variable, increases with a higher rate. As it can be observed, the 

simulated fault is successfully detected as the EWMA exceeds the UCL.  

Figure 13 shows the EWMA smoothed residuals signal for case 2. Similarly with the 

previous case, the residuals from the first few days fluctuate around 0oC. However, from 

10/01/2017 the residuals begin to drop and reach a value of more than -350oC. This decrease 

is attributed to the controlled drop of the ME scavenging air pressure to nearly 0.20 bar. In this 

case, the residuals drop, as the expected value of the target variable declines with a sharper 

rate. As it can be observed, the simulated fault is successfully detected by the LCL. Such 

behaviour can be attributed to fouling and corrosion in the TC of the ship, and fouling and 

corrosion in the nozzle ring of the TC. 

Figure 14 shows the EWMA smoothed residuals signal for case 3. As it can be 

observed, the points from the first few days fluctuate around 0oC. However, from 10/01/2017 

the residuals begin to decrease and reach a value of approximately 150oC. This drop is 

attributed to the simulated rise in the ME cylinder EG temperature to nearly 420oC. The 

residuals in case 3 decline, as the actual value of the EG temperature drops decoupled from the 

expected value. As can be seen, the simulated fault is successfully detected, as the LCL is 

successfully exceeded. Typical examples of fault described in case 3 include the fouling of the 

main cooler of the ship and fouling in the AC of the ME (both air and water sides). 



Figure 15 shows the EWMA smoothed residuals signal for case 4. In this case, the 

points from the first few days fluctuate around 0oC. However, from 10/01/2017 the residuals 

begin to increase and exceed the value of approximately 200oC. This surge is attributed to the 

simulated drop in the ME cylinder EG temperature to nearly 214oC. Following the same 

underlying reasoning as case 3, the decoupled decrease of the actual values of the target 

variable increases the residuals and the simulated fault is successfully detected by the UCL. A 

typical example of a fault described in case 4 includes the improperly maintained or improperly 

configured engine room conditions, resulting in obstructed air flows. 

 

4. Conclusions 

The present paper provides a novel ML and data-driven FD methodology, based EB modelling 

and EWMA control charts, and its application on ship systems. The ultimate goal of the FD is 

to allow for pre-emptive actions and scheduling, reducing downtime and improving safety and 

energy efficiency and supplement the daily monitoring of ship operations. The early detection 

of developing faults can reduce the sub-optimal operations of the monitored system, 

safeguarding its energy-efficient operations. Similarly, as failures can cascade to other systems, 

avoiding the failure of certain machinery can have a positive effect on the energy-efficiency of 

a wider spectrum of systems. More specifically, it can avoid increased strain and overloading 

on other systems, maintaining their energy-efficient operations. The EB modelling approach is 

used to predict the EB of the ME cylinder EG temperature. The ME EG temperature parameter 

is selected, as several faults in the ME’s supporting systems can manifest through this variable. 

Also, the data used in all the aspects of the EB model are pre-processed using the DBSCAN 

algorithm and a value-based filter. Then, the residuals from the incoming and expected ME 

cylinder EG temperature are analysed in an EWMA control chart to detect developing faults 

through the UCL and LCL. During the development of the EB model, the optimal ML model 

is identified by examining the performance of several ML regression types with varying inputs. 

The main outcomes of this paper are summarised below: 

● The developed methodology can successfully detect imminent faults by analysing the 

difference between the recorded and expected (predicted) ME cylinder EG temperature. 

● By analysing the residuals of the ME cylinder EG temperature, it is possible to detect 

faults manifesting in both the ME cylinder EG temperature and the ME scavenging air 

pressure. 



● The optimal EB model is based on multiple polynomial ridge regression and has as 

inputs the ME power, ME speed and ME scavenging air pressure. 

● The optimal EB model can accurately predict the target variable, having a test 𝑅ଶ score 

of more than 0.96. This is advantageous, especially when considering that the EB model 

is not based on time-consuming and complex physical models.  

● It is possible to obtain accurate prediction, without resorting to “black-box” approaches 

while keeping the ability to both interpolate and extrapolate the value of a continuous, 

target variable.  

● The EWMA smooths the residuals signal and gives a dynamic aspect to the 

methodology, as previous points are taken into account.  

● The pre-processing step is essential for the maximisation of the knowledge-extracting 

capabilities of the used data. 

● The developed methodology is highly transferable and can be applied in a variety of 

different cases (e.g. tankers, container ships). The various steps of the methodology are 

not reliant on domain knowledge (pre-processing), are not based on complex 

application-specific models (EB-models) and employ application-agnostic tools 

(EWMA control chart).  

The proposed novel methodology was verified in a case study, where simulated faults, 

selected from domain knowledge, were fed into the model. Through this, it was observed that 

all of the simulated faults were detected. Even though the selected target variable can provide 

the means for efficient monitoring of ship systems, future steps of this work could include the 

development of an independent diagnostic system. For instance, the results from the FD could 

be aggregated and used as input in diagnostic networks fault localisation in the supporting 

systems of the ME. 
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