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Polymer photocatalysts with plasma-enhanced activity† 
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Plasma treatment was used as a new method to enhance the 

photocatalytic performance of a hydrophobic polymer 

photocatalyst. The sacrificial hydrogen evolution rate was 

enhanced  by a factor of more than 8 after a plasma treatment time 

of 20 minutes. Contact angle measurements confirmed that the 

plasma treatment improved the wettability of the polymer film and 

XPS results indicated a surface chemical modification. 

Hydrogen production from water using solar energy is an active 

and fast-moving area of research. A range of water-dispersible 

inorganic photocatalysts has been developed to harvest solar 

energy for hydrogen evolution.1,2 In the last few years, organic 

polymer photocatalysts have also become an active area of 

investigation,3–5 with several different material classes being 

developed such as, carbon nitrides,6,7 conjugated microporous 

polymer networks,8–11 linear conjugated polymers,12–15 triazine-

based frameworks,16–18 and covalent organic frameworks,19–21 

each showing promising hydrogen production rates, at least for 

the sacrificial proton reduction half reaction. Most of these 

photocatalysts are insoluble in organic solvents, making it hard 

to process these materials—for example, to prepare 

composites. In addition, these photocatalysts are typically used 

in aqueous suspensions, resulting in the need for continuous 

agitation during photocatalysis to prevent sedimentation. 

Besides oligo(phenylene)s,22 which show only limited catalytic 

activity even under UV light, alkylated conjugated polymers 

were shown to be solution processible while retaining activity 

when cast as thin films.23 However, the hydrophobic solubilizing 

alkyl-chains in these materials also results in a much reduced 

photocatalytic activity,12,23 which can be explained by a reduced 

wettability and poorer interaction with water.13  

 Our group and others11,13,24 have shown that the 

introduction of polar groups into apolar conjugated building 

blocks increases wettability and this can result in significantly 

enhanced photocatalytic activity. 

 An alternative approach to enhancing the wetability of 

hydrophobic polymers is plasma treatment. Even short plasma 

treatment times have been shown to result in a significant 

reduction in contact angles with water for aliphatic 

poly(ketones),25 poly(etheretherketone)26 and even for 

poly(tetrafluoroethylene).27 When argon plasma is used, 

incorporation of oxygen into the material can either occur via 

reaction of oxygen containing species during plasma treatment 

(i.e., H2O, O2)28 or by reaction of surface free radicals with 

atmospheric oxygen upon exposure to air after plasma 

treatment.29 The introduction of oxygen into the material 

results in the formation of polar groups that enhance the 

interaction with water.25,29 Plasma treatment is inexpensive, 

cheap, and scalable, but there are no examples, to our 

knowledge, of its use to modify organic photocatalysts. 

 
Figure 1. Structure of photocatalysts FS-5Dodec and P35. 

Here we report a new approach to modifying conjugated 

polymer films by using plasma treatment. This enhances the 

wettability of conjugated polymer films bearing apolar side-

chains and this enhances photocatalytic performance 

significantly.  

 For this study, we prepared a solution-procesable polymer 

photocatalyst, FS-5Dodec, which is a copolymer of a 

dibenzo[b,d]thiophene sulfone monomer and di-n-dodecyl-9H-

fluorene (Figure 1). This copolymer was found previously to be 

photocatalytically active,30 and the alkyl side chains render it 

highly soluble in organic solvents such as THF, dichloromethane, 

and chloroform. They also make the copolymer very 

hydrophobic. This copolymer was prepared using Pd(0)-

catalysed Suzuki-Miyaura polycondensation followed by work-

up and Soxhlet extraction with methanol, acetone, ethyl 

acetate, and chloroform. The chloroform soluble fraction was 

found to have a molecular weight of Mw = 31.9 kg mol-1 (Mn  = 
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18.9 kg mol-1) as determined by gel permeation 

chromatography calibrated against polystyrene standards.  

 
Figure 2. Plasma treated FS-5Dodec (a) Hydrogen evolution performance under 
visible light. Conditions: Drop-cast films on glass, 5 vol. % triethylamine in water, 
λ > 420 nm, 300 W Xe light-source; (b) Correlation of the plasma treatment time 
and the hydrogen evolution rate under visible light; (c) UV-visible absorption 
spectra; (d) Wetting envelopes of the polymer films. 

 1H NMR spectroscopy confirmed the structure of the 

FS-5Dodec copolymer (Fig. S-1) and thermogravimetric analysis 

(TGA) showed that the polymer exhibited good thermal stability 

under air up to 300 °C (Fig. S-2). UV-visible spectrometry 

measured for a thin-film showed that the material absorbs in 

the visible light range (λ > 420 nm) and the band-gap was 

estimated to be 2.80 eV using a Tauc plot (Fig. S-3). The HOMO 

level energy was estimated to be -6.0 eV using photoelectron 

spectroscopy in air and the LUMO estimated to be -3.2 eV (Fig. 

S-4). 

 The photocatalytic activity for proton reduction for FS-

5Dodec was tested in water with 5 vol. % triethylamine (TEA) 

acting as the hole scavenger.12,31 No methanol cosolvent was 

added. No additional metal co-catalyst was added, since 

residual palladium nanoparticles from the synthesis act as a co-

catalyst.12,32 The polymer was found to have no measureable 

catalytic activity when tested (over 20 hours) for its 

performance as a spin-coated thin-film on n-

octadecyltrichlorosilane (OTS) treated glass (λ > 420 nm, 300 W 

Xe light-source; Fig. S-5).  After Ar plasma treament under 

reduced pressure, a low but measureable hydrogen evolution 

rate was determined (11 µmol g-1 h-1).  

 We went on to use drop-casted films of FS-5Dodec on 

frosted glass slides, which resulted in thicker and rougher films 

compared to the spin-coated thin-films as evident from 

scanning electron microscope images (4-6 µm vs 20-30 nm, Fig. 

S-7). When tested under otherwise identical conditions, a 

modest hydrogen evolution rate of 135.8 µmol g-1 h-1 was 

measured for untreated FS-5Dodec films. A significant 

enhancement in photocatalytic activity was observed when 

these films were treated with Ar plasma (Fig. 2a and b). The 

maximum hydrogen evolution rate of 1131.3 µmol g-1 h-1 was 

observed after 20 minutes plasma treatment time, which 

equates to more than an 8-fold increase in activity compared to 

the untreated film. Longer plasma treatments (25 to 

60 minutes) led to a decrease in activity (Fig. 2b). 

 The plasma treatment did not change  the optical properties 

of the films very significantly, although all films showed a small 

bathochromic shift compared to the untreated film (Fig. 2c). 

The enhanced activity seems to be due to enhanced wettability: 

untreated films of FS-5Dodec have a high contact angle against 

water in air of 109°, which is even higher than poly(p-

phenylene) which has a contact angle of 88°,13 which impacts 

the photocatalytic performance.  

Table 1 Ar plasma treatment time, resulting contact angle and hydrogen evolution rates 

for films of photocatalyst FS-5Dodec. 

Treatment timea 

/ min 

CA (H2O)b 

/ ° 

HER 

λ > 420 nmc 

/ µmol g-1 h-1 

0 109 ± 2.7 135.8 ± 9.0 

5 66 ± 5.8 173.2 ± 41.6 

10 72 ± 3.2 318.7 ± 21.5 

15 50 ± 7.2 779.3 ± 39.5 

20 43 ± 6.7 1131.3 ± 113.6 

25 42 ± 3.5 1001.0 ± 99.7 

30 28 ± 2.9 799.1 ± 95.2 

35 396 ± 3.1 704.3 ± 56.6 

40 33 ± 2.0 249.3 ± 22.5 

45 28 ± 2.0 370.6 ± 51.3 

60 30 ± 1.0 215.4 ± 20.8 

[a] Conditions: Drop-cast polymer film treated with Ar plasma (10 W, 10 mTorr); 

[b] Average of measurements in at least 3 location of the sample; [c] Hydrogen 

evolution rates (HER) determined in water/ 5 vol. % triethylamine mixtures 

irradiated by 300 W Xe light-source for at least 5 hours using a λ > 420 nm filter. 

The contact angle was reduced to 43° after 20 minutes plasma 

treatment and to 30° after 60 minutes (Table 1 and Fig. S-8). 

However, longer treatment times of 45 and 60 minutes reduced 

the photocatalytic activity to 370.6 µmol g-1 h-1 and 

215.4 µmol g-1 h-1, respectively. This is possibly due to damage 

caused to the films upon longer plasma exposure. One 

indication of this might be a hypsochromic shift in the 

absorption for the samples treated for 45 and 60 minutes 

relative to the sample after 20 minutes treatment. Repeat 

experiments show that similar rates are obtained for samples 

treated for the same time and a deviation of less than 20% was 

observed between batches (see S-9). We also considered using 

a plasma consisting of 80% nitrogen and 20% oxygen, rather 

than argon, which has been reported to result in 

functionalisation within the plasma.29 This resulted in broadly 

similar hydrogen evolution rates when tested under same 

conditions for the same treatment times (see S-10). 

 Longer term-stability of an Ar plasma-treated sample 

(20 minutes treatment time) was evaluated by testing a sample 

in water/5 vol. % TEA using visible light (λ > 420 nm, 300 W Xe 

light-source; Fig. S-16) over 20 hours. Like the untreated 

polymer, the sample showed reduced activity over the course 

of the run, but nevertheless remained active for the duration of 

the experiment. We also noticed that the sample started to 

delaminate from the substrate, which resulted in photocatalyst 



Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

moving out of the light path, accounting for at least some of the 

reduction in the observed activity. When water/methanol/TEA 

mixtures were used instead of water/5 vol. % TEA mixtures, we 

observed that the rates were even higher, as in previous 

studies.13 The rates for the FS-5Dodec film treated with Ar 

plasma for 20 minutes increased to 3861.1 µmol g-1 h-1 

compared 692.5 µmol g-1 h-1 for the untreated sample under 

visible light illumination (λ > 420 nm, 300 W Xe-light source; Fig. 

S-17). Delamination was even more apparent under these 

conditions, possibly due to swelling of the film or formation of 

H2 bubbles behind the film, effecting performance already after 

4 hours. An external quantum efficiency of 0.9% at 420 nm was 

determined for FS-5Dodec under these conditions, when 

stacking three films in a row. We also studied the stability of a 

plasma-treated FS-5Dodec film that was stored for a month 

under ambient conditions in the dark. The contact angle was 

slightly increased after one month (54 ± 4.0° vs 43 ± 6.7°; S-13) 

and the hydrogen evolution rate under visible light illumination 

(λ > 420 nm, 300 W Xe light-source) was also found to be 

somewhat lower (HER = 875 ± 36.4 µmol g-1 h-1 vs 1131.3 ± 

113.6 µmol g-1 h-1; S-14). This is possibly due to the oft-observed 

‘hydrophilic recovery’ of plasma treated samples.33 

 We assumed that the aromatic core of FS-5Dodec might be 

stable to O2 and reactive oxygen species since the HOMO level 

is relatively deep due to the electron-withdrawing nature of the 

dibenzo[b,d]thiophene sulfone unit.30 We therefore 

hypothesized that any changes to the chemical structure might 

occur on the alkyl side-chains, which are far more prone to 

oxidation. To probe this, we also plasma treated the 

photoatalyst P35 (Fig. 1),30 which only has methyl-groups on the 

fluorene bridge-head, but is otherwise identical to FS-5Dodec. 

 As expected, we observe no changes in the UV/visible and 

FT-IR spectra for P35 before and after plasma treatment (Fig. S-

23 and Fig. S-24). We then tested its photocatalytic 

performance in suspensions, rather than films, due to the 

insoluble nature of the material, which prohibits casting of films 

from solution. Unlike the case of FS-5Dodec, we observed a 

small drop in performance for P35 after plasma treatment from 

1223 µmol g-1 h-1 to 979 µmol g-1 h-1 (visible light illumination 

(λ > 420 nm, 300 W Xe light-source in water/MeOH/TEA 

mixtures; Fig. S-25) and the contact angle remained unchanged 

for pellets of the material before and after treatment (Fig. S-26). 

 We next explored if a modification of the bridge head in the 

fluorene with ketones would change the wettability of the 

material. For this, co-polymers of dibenzo[b,d]thiophene 

sulfone with varied amounts of dimethyl-fluorene and 

fluorenone were prepared by Suzuki-Miyaura polycondensation 

as model polymers (P35-X%Fl, whereby X denotes the amount 

of fluorenone used in the polycodensation reaction; Fig. S-27). 

This affected the UV-vis spectra of the materials and a 

bathochromic shift of the absorption on-set with increased feed 

amount of fluorenone was observed (Fig. S-28), with P35-50%Fl 

being the furthest shifted, followed by P35-25%Fl, P35-5%Fl 

and P35. Similarly, a peak at 1716 cm-1 in the FT-IR spectra was 

observed, which increases with increased fluorenone content 

(Fig. S-29). However, this does not effect the wettability, as 

evident by virtually unchanged contact angles with water (Fig. 

S-30). It also does not affect the photocatalytic activity much 

when tested under visible light illumination (λ > 420 nm, 300 W 

Xe light-source in water/MeOH/TEA mixtures), with all rates 

falling between 727.6 µmol g-1 h-1 and 981.6 µmol g-1 h-1 (Fig. S-

31). 

 With all of this in mind, we investigated the effect of the 

plasma treatment on the soluble polymer FS-5Dodec to explore 

whether the effects are due to changes in the chemical 

structure, in this case on the alkyl side-chains, or perhaps 

changes in the surface roughness. FT-IR spectra before and after 

Ar plasma treatment were very similar (Fig. S-32) and no new 

band relating to chemical functionalities, such as ketones, 

alcohols, or carboxylates are present. This might not be 

surprising since the modification is expected to take place only 

at the surface,29 and even in the case of the model polymer P35-

5%Fl, the C=O stretch is not clearly visible. 

 
Figure 3. XPS Spectra of FS-5Dodec in the C1 region (left), O1 region (right) before 
and after Ar plasma treatment and after exposure to high vacuum. Treatment 
conditions: 20 minutes, 10 W, 10 mTorr. 

 We therefore used X-ray photoelectron spectroscopy (XPS) to 

analyse the FS-5Dode surface before and after Ar plasma 

treatment (Fig. 3). We found that the XPS spectra do indeed 

show changes to C1s and O1s regions after treatment (Figure 3; 

see Fig. S-33 and Fig. S-34 for peak fits). FS-5Dodec after plasma 

treatment showed a broader main peak to C 1s (ca. 285 eV) and 

O 1s region compared FS-5Dodec before plasma treatment, as 

well as the appearance of new species in the C 1s region. By 

contrast, we found that the sample that went through the 

vacuum treatment without plasma does not show changes to 

its surface chemical environment. The new features of FS-

5Dodec after plasma treatment in the C1s region can be 

assigned to carboxylates (ca. 288.9 eV), ketones (ca. 287.7 eV), 

and alcohols (ca. 286.3 eV). Similar assignments have been 

made previously for Ar plasma treated polystyrene.29 The shift 

in the UV/vis spectra after treatment is therefore possibly 

explained by the introduction of fluorenones on the bridge-

head which alter the electronics,34 or self-doping as previously 

observed for poly(fluorene) bearing carboxylates on the side-

chain.35 

 Scanning electron microscopy showed no changes to the 

surface morphology, ruling out that changes to the surface 

roughness are responsible for the enhanced wettability 

(Fig. S-35).26 This is further evidence that chemical modification 

is the main cause of the observed effects on catalytic activity. 

 In summary, we have shown that films of a solution 

processible conjugated polymer photocatalyst can be modified 

by plasma treatment, resulting in materials with significantly 
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increased photocatalytic activity. This can be explained by the 

enhanced wettability of the polymer film, which seems to have 

undergone chemical modification during the plasma treatment 

process with new polar functional groups appearing on the 

surface of the material. This study shows again that wettability 

is a key aspect for polymer photocatalysts, and we believe that 

plasma modification might be applicable to a wide range of 

other photocatalytically active materials, such as carbon 

nitrides. 
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