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Abstract

Two letters x and y alternate in a word w if after deleting in w
all letters but the copies of x and y we either obtain a word xyxy · · ·
(of even or odd length) or a word yxyx · · · (of even or odd length). A
graph G = (V,E) is word-representable if there exists a word w over
the alphabet V such that letters x and y alternate in w if and only if
xy ∈ E. It is known that a graph is word-representable if and only if
it admits a certain orientation called semi-transitive orientation.

Word-representable graphs generalize several important classes of
graphs such as 3-colorable graphs, circle graphs, and comparability
graphs. There is a long line of research in the literature dedicated
to word-representable graphs. However, almost nothing is known on
word-representability of split graphs, that is, graphs in which the ver-
tices can be partitioned into a clique and an independent set. In this
paper, we shed a light to this direction. In particular, we character-
ize in terms of forbidden subgraphs word-representable split graphs
in which vertices in the independent set are of degree at most 2, or
the size of the clique is 4. Moreover, we give necessary and sufficient
conditions for an orientation of a split graph to be semi-transitive.
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1 Introduction

There is a long line of research papers dedicated to the theory of word-
representable graphs (e.g. see [10]), and the core of the book [11] is
devoted to the theory of word-representable graphs. The motivation
to study these graphs is their relevance to algebra, graph theory, com-
puter science, combinatorics on words, and scheduling [11]. In particu-
lar, word-representable graphs generalize several fundamental classes of
graphs (e.g. circle graphs, 3-colorable graphs and comparability graphs).

A graphG = (V,E) is word-representable if and only if there exists a
word w over the alphabet V such that letters x and y, x 6= y, alternate
in w if and only if xy ∈ E. The class of word-representable graphs
is hereditary. That is, removing a vertex v in a word-representable
graph G results in a word-representable graph G′. Recognizing word-
representable graphs is an NP-complete problem [11].

Even though much is understood about word-representable graphs
[10, 11], almost nothing is known on word-representability of split
graphs, that is, graphs in which the vertices can be partitioned into
a clique and an independent set. The only known examples in the
literature of minimal non-word-representable split graphs are shown in
Figure 1. These graphs are three out of the four graphs on the last line
in Figure 3.9 on page 48 in [11] showing all 25 non-word-representable
graphs on 7 vertices. We note that non-representability of T1 is dis-
cussed, e.g. in [2], and non-word-representability of T2 follows from
Theorem 2 of Section 3 coming from [12]. The minimality by the num-
ber of vertices for the graphs follows from the fact that the wheel graph
W5 (see Section 3 for the definition) is the only non-word-representable
on 6 vertices.

In this paper we characterize in terms of forbidden subgraphs word-
representable split graphs in which vertices in the independent set are
of degree at most 2 (see Theorem 10), or the size of the clique is 4
(see Theorem 12). To achieve these results, we introduce the following
classes of graphs:

• K4` , ` ≥ 3, in Definition 3 that are always word-representable by
Theorem 8. This class of graphs is generalized in Corollary 16 to
word-representable graphs Kk

` .

• A`, ` ≥ 4, in Definition 4 that are minimal non-word-representable
by Theorem 9. This class of graphs generalizes the known non-
word-representable graph T1 in Figure 1 corresponding to ` = 4.

Also, in Theorem 15 we give necessary and sufficient conditions for an
orientation of a split graph to be semi-transitive. In Theorem 17 we
establish a particular property of semi-transitive orientations. Finally,
directions for further research are in Section 8.
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T1 = T2 =

T3 = =

Figure 1: The minimal (by the number of vertices) non-word-representable
split graphs T1, T2 and T3

2 Split graphs

Let Sn be a split graph on n vertices. The vertices of Sn can be parti-
tioned into a maximal clique Km and an independent set En−m, i.e. the
vertices in En−m are of degree at most m− 1. We only consider such
“maximal” partitions throughout the paper and let Sn := (En−m,Km).

Based on [4] it can be shown [11, Theorem 2.2.10] that the class of
split graphs is the intersection of the classes of chordal graphs (those
avoiding all cycle graphs Cm, m ≥ 4, as induced subgraphs) and their
complements, and this is precisely the class of graphs not containing

the graphs C4, C5 and 2K2 = as induced subgraphs. More relevant
to our studies is the following result (see Section 3 for the definition of
a comparability graph).

Theorem 1 ([6]). Split comparability graphs are characterized by avoid-
ing the three graphs in Figure 2 as induced subgraphs.

B1 =

B2 =
B3 =

Figure 2: Forbidden induced subgraphs for split comparability graphs

It is known that any comparability graph is word-representable,
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and such a graph on n vertices can be represented by a word, which is
a concatenation of (several) permutations of length n [13, 11]. Thus,
when studying word-representability of a split graph, we can assume
that one of the graphs in Figure 2 is present as an induced subgraph,
because otherwise the split graph in question is a comparability graph
and thus is word-representable.

3 Word-Representable graphs

Suppose that w is a word over some alphabet and x and y are two
distinct letters in w. We say that x and y alternate in w if after
deleting in w all letters but the copies of x and y we either obtain
a word xyxy · · · (of even or odd length) or a word yxyx · · · (of even
or odd length). For example, in 23125413241362, the letters 2 and 3
alternate. So do the letters 5 and 6, while 1 and 3 do not alternate.

Definition 1. A graph G = (V,E) is word-representable if there exists
a word w over V such that letters x and y, x 6= y, alternate in w if
and only if xy ∈ E. (By definition, w must contain each letter in V .)
We say that w represents G, and that w is a word-representant.

For example, a complete graph Kn can be represented by any per-
mutation π of {1, 2, . . . , n}. Also, the empty graph En (also known as
edgeless graph, or null graph) on vertices {1, 2, . . . , n} can be repre-
sented by 12 · · · (n− 1)nn(n− 1) · · · 21. Definition 1 works for both la-
beled and unlabeled graphs because any labeling of a graph G is equiv-
alent to any other labeling of G with respect to word-representability.

An orientation of a graph is transitive if presence of edges u → v
and v → z implies presence of the edge u → z. An unoriented graph
is a comparability graph if it admits a transitive orientation. It is well
known [11, Section 3.5.1], and is not difficult to show that the smallest
non-comparability graph is the cycle graph C5.

Theorem 2 ([12]). If a graph G is word-representable then the neigh-
bourhood of each vertex in G is a comparability graph.

Theorem 2 allows to construct examples of non-word-representable
graphs. For example, the wheel graph W5, obtained from the cycle
graph C5 by adding an apex (all-adjacent vertex) is the minimal (by
the number of vertices) non-word-representable graph.

4 Semi-transitive orientations

A shortcut is an acyclic non-transitively oriented graph obtained from
a directed cycle graph forming a directed cycle on at least four vertices
by changing the orientation of one of the edges, and possibly by adding
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more directed edges connecting some of the vertices (while keeping the
graph be acyclic and non-transitive). Thus, any shortcut

• is acyclic (that it, there are no directed cycles);

• has at least 4 vertices;

• has exactly one source (the vertex with no edges coming in),
exactly one sink (the vertex with no edges coming out), and a
directed path from the source to the sink that goes through every
vertex in the graph;

• has an edge connecting the source to the sink that we refer to as
the shortcutting edge;

• is not transitive (that it, there exist vertices u, v and z such that
u→ v and v → z are edges, but there is no edge u→ z).

Definition 2. An orientation of a graph is semi-transitive if it is
acyclic and shortcut-free.

Lemma 3. Let Km be a clique in a graph G. Then any acyclic ori-
entation of G induces a transitive orientation on Km. In particular,
any semi-transitive orientation of G induces a transitive orientation
on Km with a single source and a single sink.

Proof. Oriented Km is called a tournament, and it is well known, and
is not difficult to prove that any tournament contains a Hamiltonian
path, that is, a path going through each vertex exactly once. Taking
into account that the orientation of Km is acyclic, it must be transitive
with the unique source and sink given by the Hamiltonian path.

A key result in the theory of word-representable graphs is the fol-
lowing theorem.

Theorem 4 ([9]). A graph is word-representable if and only if it admits
a semi-transitive orientation.

A corollary of Theorem 4 is the following useful theorem.

Theorem 5 ([9]). Any 3-colorable graph is word-representable.

5 Preliminaries

We begin with a result that allows us to assume in our studies that
the size of a maximal clique in a split graph is at least 4.

Theorem 6. Sn = (En−m,Km) is word-representable for m ≤ 3.

Proof. Sn is 3-colorable, and so, by Theorem 5, it is word-representable.
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The following lemma allows us to assume in our studies that (i)
each vertex in a split graph is of degree at least 2, and (ii) no two
vertices have the same set of neighbours.

Lemma 7. Let Sn = (En−m,Km) and Sn+1 be split graphs, where
Sn+1 is obtained from Sn by either adding a vertex of degree 0 (to
En−m), or adding a vertex of degree 1 (to En−m), or by “copying” a
vertex (either in En−m or in Km), that is, by adding a vertex whose
neighbourhood is identical to the neighbourhood of a vertex in Sn. Then
Sn is word-representable if and only if Sn+1 is word-representable.

Proof. Suppose a vertex x of degree 0 is added to a word-representable
Sn with a word-representant w. Then the word xxw represents Sn+1.

Connecting two word-representable graphs by an edge gives a word-
representable graph (see [11, Section 5.4.3]), which is easy to see using
semi-transitive orientations and Theorem 4. A 1-vertex graph is word-
representable, so the lemma is true for adding a vertex of degree 1.

Copying a vertex v in Sn (either connected, or not, to v) is a par-
ticular case of replacing any vertex in a word-representable graph by
a module, which is a comparability graph. It is known (see [11, Sec-
tion 5.4.4]) that such a replacement gives a word-representable graph,
which completes the proof of the lemma.

Definition 3. For ` ≥ 3, the graph K4` is obtained from the complete
graph K` labeled by 1, 2, . . . , `, by adding a vertex i′ of degree 2 con-
nected to vertices i and i + 1 for each i ∈ {1, 2, . . . , ` − 1}. Also, a
vertex `′ connected to the vertices 1 and ` is added. See Figure 3 for
the graph K46 .

1 2

3

45

6

1′

2′

3′

4′

5′

6′
1 2

3

45

6

1′

2′

3′

4′

5′

6′

Figure 3: The graph K46 and one of its semi-transitive orientations

Theorem 8. K4` is word-representable.

Proof. In the case of odd `, it is not difficult to come up with a word
representing K4` based on the representation 12 · · · `12 · · · ` of K` and
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adding i′s as follows (where we present the resulting word on two lines):

1′121′3′343′5′565′ · · · (`− 2)′(`− 2)(`− 1)(`− 2)′`′`1`′2′232′

4′454′ · · · (`− 1)′(`− 1)`(`− 1)′.

However, we next provide a semi-transitive orientation of K4` that
works for any `, so that the statement will follow from Theorem 4.

First, orient the K` transitively so that there is a directed path
1 → 2 → · · · → ` as shown for the case ` = 6 in Figure 3. Next,
for i ∈ {1, 2, . . . , ` − 1} orient the edges incident to i′ as i → i′ and
(i + 1) → i′. Finally, orient the edges incident to `′ as 1 → `′ and
`′ → ` as again shown for the case ` = 6 in Figure 3.

We claim that the orientation obtained is semi-transitive. Indeed,
it is easy to see that there are no directed cycles. Furthermore, because
K` is transitively oriented, any possible shortcut must involve a vertex
i′. Clearly, `′ → ` and 1 → `′ are not shortcutting edges because
`′ is neither a sink nor a source. Note that a < b whenever a → b
for a, b ∈ {1, 2, . . . , `}. Using this observation, (i + 1) → i′, for i ∈
{1, 2, . . . , ` − 1}, is not a shortcutting edge because there is no path
from a vertex (i+1) to a vertex i. Finally, i→ i′, for i ∈ {1, 2, . . . , `−1},
cannot be a shortcutting edge because there is no path of length greater
than 2 from a vertex i to a vertex i′.

Definition 4. For ` ≥ 4, let A` be the graph obtained from K4`−1 by
adding a vertex ` connected to the vertices 1, 2, . . . , `− 1 and no other
vertices. Note that A4 = T1 in Figure 1. A schematic way to represent
a graph A` is shown in Figure 4.

Theorem 9. A` is a minimal non-word-representable graph.

1 2

y

`− 1

x

`

Figure 4: A schematic way to represent A`

Proof. Minimality. Because of the symmetries, we only need to con-
sider three cases with a reference to Figure 4.

• Removing the vertex ` we obtain the graph K4`−1 which is word-
representable by Theorem 8.
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• Removing the vertex x we get a graph isomorphic to the graph
obtained from K4` by removing the vertices 1′ and 2′. Such a
graph is word-representable by Theorem 8 taking into account
the hereditary nature of word-representability.

• Removing the vertex y, and then the two obtained vertices of de-
gree 1 not affecting word-representability by Lemma 7, we get
a graph isomorphic to the graph obtained from K4`−1 by re-
moving the vertices 1′ and 2′, which is word-representable by
Theorem 8 taking into account the hereditary nature of word-
representability.

Non-word-representability. We will show that A` does not admit
a semi-transitive orientation, and the result will follow by Theorem 4.

Suppose A` admits a semi-transitive orientation. By Lemma 3,
this orientation induces a transitive orientation on the clique of size
`−1 obtained by removing the vertex `. We claim that without loss of
generality, we can assume that the Hamiltonian path on this clique is
1→ 2→ · · · → (`−1), or its cyclic shift (e.g. 2→ 3→ · · · → (`−1)→
1, or 3 → 4 → · · · → (` − 1) → 1 → 2, etc). Indeed, if that were not
the case, then changing all orientations to the opposite, if necessary,
there must exist an i such that

• Pi = i → x1 → x2 → · · · → xj → (i + 1) is part of the Hamilto-
nian path for j ≥ 1; if i = (`− 1) then (i+ 1) := 1;

• either x→ i, or (i+ 1)→ y, or both, are present in the Hamilto-
nian path for some vertices x and y.

If the orientation of the edge i′(i+ 1) is (i+ 1)→ i′ then this edge,
along with Pi and the edge ii′ will either induce a directed cycle, or
a shortcut, a contradiction. Thus, the orientation of i′(i + 1) must
be i′ → (i + 1). Furthermore, to avoid a shortcut involving the edge
i′ → (i + 1) and Pi, we must orient the edge ii′ as i → i′. But
now, the graph induced by Pi, i → i′, i′ → (i + 1), and x → i or
(i + 1) → y (whatever exists) will induce a shortcut. Indeed, in the
former case, the edge x → (i + 1) is present, but the edge x → i′ is
not, while in the latter case, the edge i → y is present, while i′ → y
is not. Thus, renaming the vertices, if necessary (which is equivalent
to a cyclic shift), we can assume that the partial orientation of the
semi-transitively oriented A` is as in the graph to the left in Figure 5.
In that figure, we do not draw the edges i→ j for |j−i| ≥ 2, except for
the edge 1→ (`− 1), to arrange a better look for the figure (although
existence of these edges is assumed).

Now, if (` − 1) → `′ were an edge, then the edge 1`′ would either
be a shortcutting edge (e.g. 2 → `′ is missing), or would form a cycle
taking into account the directed path 1 → 2 → · · · → (` − 1). Thus,
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· · ·

`

`′

`− 11

2
1′ 2′

· · ·

`

`′

`− 11

2
1′ 2′

Figure 5: Non-word-representability of A`

we must have `′ → (` − 1), and not to have a shortcut, we must also
have 1→ `′, as shown in the graph to the right in Figure 5.

Next, consider the triangle 121′. Orienting it as 2→ 1′ and 1′ → 1
gives a cycle, while orienting it as 1 → 1′ and 1′ → 2 gives a shortcut
induced by the vertices 1, 1′, 2 and 3 with the shortcutting edge 1→ 3.
On the other hand, similarly to the proof of Theorem 8, one can see
that none of the orientations 1→ 1′ and 2→ 1′, or 1′ → 1 and 1′ → 2,
results in a shortcut or a cycle. Similarly, no matter which of these
orientations is selected, when considering the graph induced by the
vertices 1, 2, 1′ and `, we see that the orientation of the edges 1` and
2` must either be 1→ ` and 2→ `, or `→ 1 and `→ 2.

Similar arguments as above can be applied to the graphs induced
by i, i′, (i + 1) and ` for i = 2, then i = 3, etc, up to i = ` − 2,
except for now the orientations of the edges i` and (i + 1)` will be
uniquely defined based on the orientation of the edge 1`. Thus, we
see that ` must either be a sink or a source. Considering the graph
induced by the vertices 1, (` − 1), ` and `′ we see that in the former
case, 1 → ` is a shortcutting edge, while in the later case ` → (` − 1)
is a shortcutting edge, a contradiction. Thus, A` does not admit a
semi-transitive orientation and thus is not word-representable.

6 Our characterization results

6.1 Restricting degrees in En−m to be at most 2

Definition 5. For a split graph (En−m,Km), any triangle induced by
two vertices in Km and one vertex in En−m is a non-clique triangle.

Theorem 10. Let m ≥ 1 and Sn = (En−m,Km) be a split graph.
Also, let the degree of any vertex in En−m be at most 2. Then Sn is
word-representable if and only if Sn does not contain the graphs T2 in
Figure 1 and A` in Definition 4 as induced subgraphs.

Proof. Note that the necessary condition is given by Theorem 9 and
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Figure 1 containing non-word-representable graphs.
For the other direction, suppose that Sn is A`-free and T2-free. By

Lemma 7, we can assume that each vertex in En−m is of degree 2, and
no two vertices in En−m have the same neighbourhood. Because Sn

is T2-free, no three non-clique triangles can be incident to the same
vertex. Moreover, because Sn is A`-free, Km cannot have a cycle of
size less than m such that each edge in the cycle is an edge in a non-
clique triangle. These observations imply that either Km has a cycle
of length m formed by edges in non-clique triangles, or it contains
disjoint paths, such that each edge in a path is an edge in a non-clique
triangle, as shown schematically in Figure 6. But then we can redraw
the graph, if necessary, to see that Sn is exactly the graph K4m with
possibly some non-clique triangles missing, and this graph is word-
representable by Theorem 8 taking into account the hereditary nature
of word-representability.

Figure 6: Schematic structure of the graph Sn in Theorem 10

6.2 Cliques of size 4

We restrict our attention to the case of cliques of size 4 (m = 4). If the
degrees of vertices in En−4 are at most 2, we can apply Theorem 10
to see that word-representability is characterized by avoidance of the
graphs T1 and T2 in Figure 1 as induced subgraphs. However, En−4
may also have vertices of degree 3. Theorem 12 below gives a complete
characterization for word-representability of (En−4,K4).

Our methodology to prove Theorem 12 is in using Lemma 7 to come
up with the largest possible split graph Sn in the context. We then
identify a minimal non-word-representable induced subgraph in such
Sn and consider a smaller graph Sn−1 obtained from Sn by removing
one vertex. We need to consider all possibilities of removing a vertex in
Sn, but we use symmetries, whenever possible, to reduce the number
of cases to consider. If Sn−1 is word-representable, there is nothing to
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T4 =

Figure 7: A minimal non-word-representable split graph T4

do. Otherwise, we repeat the process for Sn−1 instead of Sn. This way,
we located all minimal non-word-representable induced subgraphs. We
note that in the proof, orientations claimed by us to be semi-transitive,
can be checked to be such either by hand, or using the software [5].

Lemma 11. The split graph T4 in Figure 7 is a minimal non-word-
representable graph.

Proof. The neighbourhood of the universal vertex in T4 is isomorphic
to the non-comparability graph B3 in Figure 2, and thus T4 is not
word-representable by Theorem 2.

The minimality of T4 follows from the fact that removing a vertex
in T4 we do not obtain one of the graphs in Figure 3.9 on page 48 in
[11] showing all 25 non-word-representable graphs on 7 vertices.

Theorem 12. Let Sn = (En−4,K4) be a split graph. Then Sn is word-
representable if and only if Sn does not contain the graphs T1, T2 and
T3 in Figure 1, and T4 in Figure 7 as induced subgraphs.

Proof. We can assume that En−4 contains at least one vertex of degree
3, or else we are done by Theorem 10 with T1 = A3 and T2 being
forbidden induced subgraphs. Further, recall that by Lemma 7, we can
assume that each vertex in En−4 is of degree 2 or 3, and no vertices in
En−4 have the same neighbourhood.

Note that the necessary condition has already been proved, so for
the opposite direction we assume that Sn is Ti-free for i = 1, 2, 3, 4.

Assuming that En−4 only contains vertices of degree 3, we can see
that T1 and T3 are the only minimal non-word-representable induced
subgraphs to be avoided by Sn to be word-representable. Indeed, since
no vertices in En−4 have the same neighbourhood, En−4 can have at
most 4 vertices in this case. If all 4 vertices are present, Sn contains
the minimal non-word-representable T3 as an induced subgraph (to
see this, T3 is redrawn in a different way in Figure 1). Removing
one of the 4 vertices in En−4 (any one due to the symmetries) we
obtain exactly T3 which is a minimal non-word-representable graph.
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2 1

3
4

5

6

=

Figure 8: The single maximal possibility, up to isomorphism, for (En−4,K4)
with vertices of degree 3 in En−4

1 2

3
4

5

6

7

8

9

10M =

1 2

3
4

5

6

7

8

9

10

Figure 9: Maximal non-isomorphic possibilities for (En−4,K4) with vertices
of degree 2 and 3 in En−4

It remains to notice that if En−4 contains 4 vertices and we remove a
vertex in K4 we will obtain the minimal non-word-representable graph
T1. Thus, En−4 can have at most two vertices in this case, resulting,
up to isomorphism, in a single case to consider that is presented in
Figure 8 (along with a justification that two of seemly different graphs
are actually isomorphic). But Sn is T1-free and T3-free.

We next consider adding vertices of degree 2 to En−4 in the graph
in Figure 8. Since Sn is T2-free, no three non-clique triangles (with
disjoint vertices) can be incident to the same vertex. Thus, at most
four vertices (with distinct neighbourhoods) of degree 2 can be present
in En−4, and there are just two non-isomorphic ways to add these
vertices to the graph in Figure 8 that are given in Figure 9.

The graph to the right in Figure 9 is word-representable and we
provide one of its semi-transitive orientations to justify this (we omit
a justification that the orientation is semi-transitive). On the other
hand, the graph M in Figure 9 contains T4 (just remove the vertices 7
and 10 to see this) while Sn is assumed to be T4-free. However, we are
not done yet since M is not a minimal non-word-representable graph.
To find all minimal non-word-representable induced subgraphs in M ,
we will consider removing one vertex from it. Note that there are only
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1 2

3
4

6

7

8

9

10M2 =

Figure 10: Two cases to consider in the proof of Theorem 12

four cases to consider up to isomorphism.

1. If vertex 1 is removed in M , then vertices 7 and 10 will be of
degree 1 and can also be removed by Lemma 7. Moreover, the
vertices 6 and 9 will have the same neighbourhoods, and by the
same lemma, one of these vertices can be removed. The same
applies to vertices 5 and 8, resulting in a graph on 5 vertices
induced by, say, vertices 2, 3, 4, 5, 6, and any graph on 5 vertices
is word-representable.

2. If vertex 2 is removed in M , then vertices 7 and 8 will be of degree
1 and thus can also be removed by Lemma 7. This leaves us with
a graph on 6 vertices which is word-representable because it is
different from W5, the only non-word-representable graph on 6
vertices.

3. If vertex 5 is removed, then we obtain the graph M2 in Figure 10,
which is word-representable because of the semi-transitive orien-
tation we provide in the figure (we omit a justification that the
orientation is semi-transitive).

4. Finally, if vertex 7 is removed in M , we will obtain the non-word-
representable graph M1 in Figure 10 (it contains T4).

To complete our proof, we need to remove a vertex in M1. No symme-
tries can be applied here, so we have to consider 9 cases.

1. If vertex 1 is removed then vertex 10 will be of degree 1 and
it can be removed by Lemma 7. The resulting graph is word-
representable because it is clearly a subgraph of T4, and T4 is a
minimal non-word-representable.

2. If vertex 2 is removed then vertex 8 will be of degree 1 and it can
be removed by Lemma 7. The resulting graph is precisely the
non-word-representable graph T1, which is avoided by Sn.

3. If vertex 3 is removed then vertices 8 and 9 will be of degree 1
and they can be removed by Lemma 7. The resulting graph is on
6 vertices, it is not W5 and thus is word-representable.
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4. If vertex 4 is removed then vertices 9 and 10 will be of degree 1
and they can be removed by Lemma 7. The resulting graph is on
6 vertices, it is not W5 and thus is word-representable.

5. If vertex 5 is removed then we will obtain a word-representable
graph M3 in Figure 11, where we provide a semi-transitive ori-
entation of the graph without justification.

6. If vertex 6 is removed then we will obtain a word-representable
graph M4 in Figure 11, where we provide a semi-transitive ori-
entation of the graph without justification.

7. If vertex 8 is removed then we will obtain the graph M5 in Fig-
ure 11. This graph contains T1 as an induced subgraph (remove
vertex 2 to see it). To complete this case, we need to remove
a vertex in M5 other than vertex 2, to make sure that a word-
representable graph would be obtained.

(a) Removing vertex 1, which is clearly equivalent to removing
vertex 3, gives vertex 8 of degree 1 which can be removed by
Lemma 7. Moreover, one of vertices 6 and 9 can be removed
by Lemma 7 because they have the same neighbourhood.
This results in a graph on 5 vertices, but any such graph is
word-representable.

(b) Removing vertex 4 gives two vertices, 9 and 10, that can be
removed by Lemma 7. The resulting graph is on 5 vertices
and it must be word-representable.

(c) Removing vertex 5 is equivalent to removing vertices 7 and
8 in the graph M2 in Figure 10, so this graph is word-
representable.

(d) Removing vertex 6 is equivalent to removing vertices 9 and
10 in the graph M2 in Figure 10

(e) Finally, removing vertex 9, which is clearly equivalent to
removing vertex 10, gives the graph obtained from the semi-
transitively oriented graph M6 in Figure 11, and it is word-
representable.

8. If vertex 9 is removed then the semi-transitively oriented graph
M6 in Figure 11 is obtained (we omit justification that the ori-
entation is indeed semi-transitive).

9. Finally, if vertex 10 is removed then we will obtain the minimal
non-word-representable graph T4, which is avoided by Sn.

We have shown that there are no other minimal non-word-representable
graphs apart from Ti, i = 1, 2, 3, 4, that need to be avoided in order
for Sn to be word-representable.
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Figure 11: Four subcases to consider in the proof of Theorem 12

source

sink

KmEn−m

Figure 12: A schematic structure of a semi-transitively oriented split graph

7 Semi-transitive orientations on split graphs

Let Sn = (En−m,Km) be a word-representable split graph. Then
by Theorem 4, Sn admits a semi-transitive orientation. Further, by
Lemma 3 we known that any such orientation induces a transitive
orientation on Km that can be presented schematically as in Figure 12,
where we show the longest directed path in Km, denoted by ~P , but do
not draw the other edges in Km even though they exist.

Lemmas 13 and 14 below describe the structure of semi-transitive
orientations in an arbitrary word-representable split graph.

Lemma 13. Any semi-transitive orientation of Sn = (En−m,Km)
subdivides the set of all vertices in En−m into three, possibly empty,
groups corresponding to each of the following types presented schemat-

15



type A type B

source

sink
type C

Figure 13: Three types of vertices in En−m under a semi-transitive orien-
tation of (En−m,Km). The vertical oriented paths are a schematic way to
show (parts of) ~P

ically in Figure 13, where ~P = p1 → · · · → pm is the longest directed
path in Km:

• A vertex in En−m is of type A if it is a source and is connected
to all vertices in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m;

• A vertex in En−m is of type B if it is a sink and is connected to
all vertices in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m;

• A vertex v ∈ En−m is of type C if there is an edge x → v for
each x ∈ Iv = {p1, p2, . . . , pi} and there is an edge v → y for each
y ∈ Ov = {pj , pj+1, . . . , pm} for some 1 ≤ i < j ≤ m. Iv (resp.,
Ov) is called the source-group (resp., sink-group) or vertices.

Proof. Let x be a vertex in En−m and x1, x2, . . . , xt be the vertices
in Km that are connected to x. First observe that to avoid directed
cycles, the partial orientation

x x2

x1

xt

...
forces

x x2

x1

xt

...

Moreover, the vertices x1, x2, . . . , xt must be consecutive on ~P . Indeed,
if xi and xi+1 are not consecutive for some i, 1 ≤ i ≤ t− 1 (there is a

vertex on ~P between xi and xi+1 not connected to x) then the vertices

on ~P between x1 and xi+1, along with x, form a shortcut with the
shortcutting edge x→ xi+1. On the other hand, the partial orientation
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x x2

x1

xt

... can either be extended to
x x2

x1

xt

...

with x1, x2, . . . , xt being consecutive to avoid x1 → x being a short-
cutting edge (by the reasons similar to the previous case), or to avoid
directed cycles, all edges of the form xi → x must be above of all edges
of the form x → xi as shown schematically in the following picture
where s := max{i | xi → x is an edge}:

x xs

x1...

xs+1

...

xt

...

One can use arguments as above to see that to avoid shortcuts, the
vertices x1, x2, . . . , xs corresponding to the edges oriented towards x
must be consecutive on ~P . The vertices xs+1, xs+2, . . . , xt must also

be consecutive on ~P . On the other hand, there are no restrictions on
the vertices xs and xs+1, so there can be some other vertices there on

the path ~P .
To complete the theorem, we show that x1 (resp., xt) must be the

source (resp., sink) in ~P . Indeed, suppose there exists a vertex y on
~P such that y → x1 is an edge. Then the subgraph induced by the
vertices y, x1, x, xs+1 is a shortcut with the shortcutting edge y → xs+1

(because the edge y → x is missing), a contradiction. Similarly, if there

exists a vertex z on ~P such that xt → z is an edge, then the graph
induced by the vertices x1, x, xt, z is a shortcut with the shortcutting
edge x1 → z (because the edge x→ z is missing), a contradiction.

There are additional restrictions on relative positions of the neigh-
bours of vertices of the types A, B and C. These restrictions are given
by the following lemma.

Lemma 14. Let Sn = (En−m,Km) be oriented semi-transitively. For
a vertex x ∈ En−m of the type C, presented schematically as
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x xs

x1...

xs+1...
xt

...

there is no vertex y ∈ En−m of the type A or B, which is connected
to both xs and xs+1. Also, there is no vertex y ∈ En−m of the type
C such that either the source-group, or the sink-group of vertices given
by y (see the statement of Lemma 13 and its proof for the definitions)
contains both xs and xs+1.

Proof. If y is of the type A, then the subgraph induced by the vertices
y, xs, x and xs+1 is a shortcut with the shortcutting edge being y →
xs+1 (the edge y → x is missing).

Similarly, if y is of the type B, then the subgraph induced by the
vertices y, xs, x and xs+1 is a shortcut with the shortcutting edge
being xs → y (the edge x→ y is missing).

If y is of the type C and both xs and xs+1 belong to the same group
of y’s neighbours, then x1 → xt will be a shortcutting edge. Indeed, if
both xs and xs+1 belong to

• the source-group then x1 → xs → x→ xs+1 → y → xt induces a
non-transitive subgraph (the edge y → x is missing).

• the sink-group then x1 → y → xs → x → xt induces a non-
transitive subgraph (the edge y → x is missing).

The following theorem is a classification theorem for semi-transitive
orientations on split graphs.

Theorem 15. An orientation of a split graph Sn = (En−m,Km) is
semi-transitive if and only if

• Km is oriented transitively,

• each vertex in En−m is of one of the three types presented in
Figure 13, and

• the restrictions in Lemma 14 are satisfied.

Proof. The forward direction follows from Lemmas 3, 13 and 14.
For the opposite direction, suppose that all restrictions are satisfied,

but a shortcut is created with the longest path ~X from the source to
the sink. Note that ~X must involve a node in En−m because Km is

oriented transitively. Also, ~X cannot involve more that one vertex
of the type A or B because otherwise we obtain a contradiction with
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the beginning of ~X not being the beginning of the shortcutting edge
(vertices of the type A or B are sinks or sources).

Next, we note that ~X cannot pass through two vertices of the type
C if they satisfy the conditions of Lemma 14, which is easy to see from
the following two figures representing schematically all possibilities:

Finally, we need to consider the situations when ~X passes through

• a vertex y of type A and a vertex x of type C, and

• a vertex y of type B and a vertex x of type C

while respecting the conditions of Lemma 14. In either of these cases,
both the shortcutting edge and the beginning of ~X must clearly start,
or end, at y (depending on y’s type). But then, in order for ~X to
visit x, the vertex y must be connected to both xs and xs+1 in the
terminology of Lemma 14, a contradiction.

The following corollary of Theorem 15 generalizes Theorem 8 (which
is the case k = 2 in the corollary).

Corollary 16. Let the split graph Kk
` be obtained from the complete

graph K` with vertices drawn on a circle, by adding ` vertices so that

• each such vertex is connected to k consecutive (on the circle)
vertices in K`;

• neighbourhoods of all these vertices are distinct; and

• ` ≥ 2k − 1.

Then Kk
` is word-representable.

Proof. Orient the clique in Kk
` transitively with the Hamiltonian path

going around the circle, and then assign to the vertices in the indepen-
dent set types A (or B) and C. Because ` ≥ 2k − 1, no vertex of the
type A or B will be violating the condition of Lemma 14, and thus by
Theorem 15, the obtained orientation is semi-transitive.

We complete this section with the following theorem.

Theorem 17. Let Sn = (En−m,Km) be semi-transitively oriented.
Then any vertex in En−m of the type A can be replaced by a vertex of
the type B, and vice versa, keeping orientation be semi-transitive.
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Proof. Suppose that a vertex x of the type A

x x2

x1

xt

...
becomes a vertex of the type B x x2

x1

xt

...

while no other orientation is changed in the semi-transitively oriented
Sn. Clearly, if the change has resulted in a non-semi-transitive orien-
tation then the vertex x must be involved in a shortcut (it cannot be
involved in a directed cycle) with xi → x being a shortcutting edge for
some i. This contradicts to the vertices x1, . . . , xt being consecutive
on ~P and inducing a transitive orientation together with x.

Essentially identical arguments, with a shortcutting edge being x→
xi this time, show that switching from type B to type A for a vertex
x ∈ En−m does not result in a non-semi-transitive orientation.

8 Concluding remarks

In this paper, we characterized in terms of forbidden subgraphs word-
representable split graphs Sn = (En−m,Km) in which vertices in En−m
are of degree at most 2 (see Theorem 10), or the size of Km is 4 (see
Theorem 12). Moreover, in Theorem 15 we give necessary and sufficient
conditions for an orientation of a split graph to be semi-transitive. Our
results were the basis for (computational) characterization of word-
representable graphs with cliques of size 5 in the follow up paper [1].

There are several natural directions of further research. For ex-
ample, one can consider vertices of degree at most 3 in En−m (thus
extending the results in Theorem 10), or letting the clique be of size
6 (thus extending the results in Theorem 12 and in [1]). Either of
these directions is challenging due to a large number of cases to con-
sider. It is conceivable that our classification result, Theorem 15, on
semi-transitive orientations of split graphs will eventually be the key
for a complete classification of word-representable split graphs, but
for the moment it is difficult to state any conjectures on how such a
characterization would look like.
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