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Abstract 

Background. Visceral Leishmaniasis (VL) due to Leishmania donovani is a neglected protozoan 

parasitic disease in humans, which is usually fatal if untreated. Phlebotomus orientalis, the 

predominant VL vector in East Africa, is a highly exophilic/exophagic species that poses a major 

challenge to current Integrated Vector Management (IVM). Here we report results of pilot 

studies conducted in rural villages in Gedarif state, Sudan, to evaluate outdoor residual spraying 

of 20mg active ingredient (a.i.) /m2 deltamethrin insecticide applied to the characteristic 

household compound boundary reed fence and to the outside of household buildings (Outdoor 

Residual Insecticide Spraying, ODRS), and as an alternative, spraying restricted to the boundary 

fence only (Restricted Outdoor Residual Insecticide Spraying, RODRS). 

Methods. Four to six clusters of 20 households were assigned to insecticide treatments or control 

in three experiments. Changes in sand fly numbers were monitored over 2,033 trap-nights over 

43-76 days follow-up in four sentinel houses per cluster relative to unsprayed control clusters. 

Sand fly numbers were monitored by sticky traps placed on the ground on the inside (“outdoor”) 

and the outside (“peridomestic”) of the boundary fence, and by CDC light traps suspended 

outdoors in the household compound. The effects of ODRS on sand fly numbers inside sleeping 

huts were monitored by insecticide knockdown.  

Results. After a single application, ODRS reduced P. orientalis abundance by 83%-99% in 

outdoor and peridomestic trap locations. ODRS also reduced numbers of P. orientalis found 

resting inside sleeping huts. RODRS reduced outdoor and peridomestic P. orientalis by 60%-

88%. By direct comparison, RODRS was 58%-100% as effective as ODRS depending on the 



trapping method. These impacts were immediate on intervention and persisted during follow-up, 

representing a large fraction of the P. orientalis activity season. Relative costs of ODRS and 

RODRS delivery were $5.76 and $3.48 per household, respectively. 

Conclusions. The study demonstrates the feasibility and high entomological efficacy of ODRS 

and RODRS, and the expected low costs relative to current IVM practises. These methods 

represent novel sand fly vector control tools against predominantly exophilic/exophagic sand fly 

vectors, aimed to lower VL burdens in Sudan, with potential application in other endemic 

regions in East Africa.   

 

Authors’ summary  

Phlebotomus orientalis is the predominant vector of visceral leishmaniasis (VL, kala azar) in 

Sudan and other countries of East Africa, where the disease causes high morbidity and mortality. 

This sylvatic sand fly species is abundant in wild habitats characterized by presence of black 

cotton soil and vegetation dominated by Balanites aegyptiaca and/or Acacia seyal trees. In 

villages, the vector bites people in the household yard and in nearby peri-domestic locations, 

exhibiting limited indoor resting behaviour. The marked exophagic and exophilic behaviours of 

P. orientalis represent a profound challenge for VL control by excluding indoor residual 

spraying of insecticides (IRS) and compromising the efficacy of insecticide-impregnated bednets 

(ITNs). In this study, we evaluated the entomological efficacy of residual pyrethroid applied 

outdoors to household boundary fences and the exterior walls of household huts (outdoor 

residual insecticide spraying, ODRS), to reduce the abundance of P. orientalis inside and outside 

houses. We also evaluated the entomological impact of a restricted outdoor residual insecticide 

spraying (RODRS), whereby insecticide was applied only to the boundary fence. The study was 



carried out in June 2016-June 2017 in Jebel-Algana and Umsalala villages, Gedarif state, eastern 

Sudan, which are highly endemic for VL. The results showed that a single ODRS application of 

20mg a.i. /m2 2.8% deltamethrin provided average reductions of 83%-99% in outdoor and 

peridomestic P. orientalis sand fly numbers relative to unsprayed control clusters. RODRS 

reduced outdoor and peridomestic P. orientalis by 60%-88%. The average cost of ODRS and 

RODRS per household were $5.76 and $3.48, respectively. The costs of these community-based 

control measures were substantially lower than the costs of LLINs, which is the only evidence-

based tool used to protect against VL in the area. Future studies should evaluate the impact of 

ODRS/RODRS transmission of VL incidence in endemic villages and in seasonal agricultural 

farms.  

 

Introduction 

Standard methods to combat hematophagous arthropod vectors of infectious diseases include –

among other possibilities- indoor residual spraying of insecticides (IRS) and use of insecticide-

treated bednets (ITNs), the success of which largely rely on insecticide-susceptible vector 

populations showing endophilic and/or endophagic blood-feeding behaviours. Sustainable 

methods to control exophilic/exophagic vectors, by contrast, are lacking, but key in the fight 

against many of the so-called “tool-deficient” Neglected Tropical Diseases (NTDs) [1,2,3]. One 

such challenge includes the Phlebotomine sand fly vectors of the protozoan parasites Leishmania 

causing human visceral leishmaniasis (VL, also known as kala azar) which occurs in East Africa, 

the Indian sub-continent, the Americas, the Mediterranean region, and Central and Eastern Asia.  

Globally, an underreported estimated 31,000-90,000 new cases are reported each year [4,5]. 

 



Visceral leishmaniasis, caused by L. donovani is a serious public health problem in E. Africa 

with some of the highest case incidences worldwide, resulting in severe epidemics in the region 

[4, 5,6,7,8,9,10,11,12], and exerting tremendous social and economic burdens on afflicted 

populations [13,14]. The symptoms of systemic clinical VL development include fever, weight 

loss, fatigue, splenomegaly and hepatomegaly. VL is usually fatal within two years if not treated, 

and there is no human vaccine. 

In East Africa, the prominent VL vector is Phlebotomus orientalis, which thrives in remote 

woodlands, villages, and peridomestic habitats, characterized by the presence of black cotton soil 

and Acacia seyal and Balanites aegyptiaca trees [13,15,16,17,18,19,20,21]. The vector is highly 

exophilic and exophagic, rarely captured inside household buildings [22,23,24,25,26,27,28, 29] 

with villagers being exposed outdoors in the household compound and in the peridomestic 

surroundings.  Phlebotomus orientalis is a highly seasonal species.  In Sudan and neighbouring 

countries of East Africa, the vector starts to appear in small numbers following the rains in 

October, reaching peak abundance in March-June, before disappearing at the onset of the heavy 

rains at the beginning of July [15,16,17,20,21,25]. Studies on the seasonality of infection rates of 

L. donovani in P. orientalis, and longitudinal studies on the incidence of VL in Sudan, 

demonstrate that the transmission of the parasite occurs between March and June [7,16,30,31].  

The highest burden of clinical VL in East Africa occurs in Sudan and South Sudan [4,5] with 

highest prevalence (43%-70%) reported in children <15-year-old [4,12,32]. In Sudan, 90% of 

cases occur in Gedarif state, eastern Sudan, where 51,200 patients were registered receiving 

treatment against VL between 2002-2015 [12], and the case incidence ranges between 26‒

37/1000/year (2014‒2017 MoH data) resulting in 2,000-7,000 newly reported cases per year 

[12,33].  



 

Integrated Vector Management (IVM) recommendations in the region include IRS using 

pyrethroid or Bendiocarb – (a carbamate)- twice per year, and provision of long-lasting 

insecticide-impregnated bednets (LLINs) to villagers. These approaches have been shown to 

impact on the local mosquito vectors of malaria e.g. Anopheles arabiensis [34], which bites and 

rest inside huts during the rainy season. In contrast, IRS has little potential in control of exophilic 

and exophagic species such as P. orientalis, which is unlikely to land on unsprayed or sprayed 

indoor wall surfaces [35]. Furthermore, the effectiveness of LLINs against P. orientalis is 

compromised by the habit of sleeping outdoors in the uncomfortably hot weather during the sand 

fly season (requiring setting up the bednets each night), and where a large fraction of P. 

orientalis bites occur early evening, before bedtime [9]. Indeed, the propensity to sleep outdoors 

may be a contributory factor to the marked exophagic behaviour of P. orientalis in Sudan and 

elsewhere.  

 

To provide privacy to this outdoor sleeping area, each household yard is surrounded by 1.5-2 m 

tall fence made of tightly thatched reed, thus separating the outdoor yard from the immediate 

peridomestic area. In a recent investigation of microhabitat distribution of P. orientalis in 6 

villages in Gedarif state, we captured lower numbers of the vector inside houses than their 

immediate surrounding; a result indicating that these boundary fences act as physical barriers, 

reducing numbers of P. orientalis entering the household yard and sleeping huts from the 

peridomestic habitats [36].   

 

In pursuit of feasible alternative community-wide vector control methods, we investigated the 

impact on vector abundance of outdoor coverage with residual pyrethroid insecticide. Pilot 



studies were designed specifically to test the entomological efficacy of (i) outdoor residual 

spraying of the walls of household huts and the boundary fence (ODRS), to reduce indoor, 

outdoor and peridomestic P. orientalis abundance; (ii) to compare the efficacy of ODRS to an 

alternative insecticide application restricted to spraying boundary fences alone (RODRS); and 

(iii) to estimate the relative costs of ODRS and RODRS. 

 

Methods 

Study sites 

The study was carried out in the rural villages of Jebel-Algana (13.6294444, 36.13666667) and 

Umsalala (12.85055556, 35.1822222) in Gedarif State, eastern Sudan, located within 70km of 

the northern Sudanese-Ethiopian border (Figure 1). Jebel-Algana is in Eastern Gureisha Mahlia 

(district), near the Atbara River, 129 km distance from Umsalala village [Western Galabat 

Mahalyia], located on the eastern bank of the River Rahad.  

 

Fig. 1. Map of Gedarif state, Sudan, showing location of Jebel-Algana and Umsalala study 

villages in relation to Tabarakllah and Umelkher kala azar treatment centers.  

 

The villages are representative of this hyperendemic region of VL in eastern Sudan [37], 

experiencing high transmission rates with VL case incidence of 26‒37/1000/year at the time of 

the study (2014‒2017 Hospital Records; Ministry of Health [MoH] unpublished data). The 

stability in P. orientalis biting rates in the region is indicated by the consistent human VL 

incidence rates in previous and current years [31,38,39,40] 

Both villages lie in an area that was previously covered by dense woodlands of Acacia seyal and 

Balanites aegyptiaca, but now greatly reduced by mechanized seasonal plantations of sorghum, 



sesame, pearl millet (“dokhun”) and groundnuts, leaving remnant thickets of B. aegyptiaca, A. 

seyal and Zyzyphus spina christi trees in and around the villages. The soil is predominantly black 

cotton soil (chromic vertisols), interrupted by sandy and silt soils (“azaza”). During the dry 

season, the black cotton soil shrinks; creating deep cracks which are thought to harbour several 

species of sand fly including P. orientalis [15,18,41]. The climate is characterised as tropical 

continental, with annual rainfall of approximately 600-800 mm. The year is divided into a hot 

dry season (March-May), a moderately warm rainy season (June-October), and a warm dry 

winter (November- February). The regional mean temperature and relative humidity respectively 

are 32.3oC and 25.9% in the hot dry season, 26.2oC and 54.4% in the rainy season, and 27.0oC 

and 21.9% in the winter. Phlebotomus orientalis is active for 3-4 months between March and 

June, being most abundant at the end of the hot dry season, after which the abundance rapidly 

declines at the onset of the heavy seasonal rains in June/July [15,17]. 

 

The resident populations of Jabel-Algana (3,955 inhabitants) and Umsalala (2,710 inhabitants) 

are predominantly agrarian comprising a number of ethnic groups following waves of migration 

for agricultural work between the early 1950s to the 1980s from the Darfur region, western 

Sudan [34]. Household compounds are typically surrounded by a 1.5-2 metre tall boundary fence 

made of tightly woven thatched reed Cymbogon nyrvatus, primarily to provide privacy (Figure 

2A). Compounds contain an average of three (range: 1-4) huts (“rakobas”), one used for keeping 

belongings and sleeping in cooler months; the others used for cooking, storage, or daytime 

shelter. These huts are predominantly constructed of a wooden frame thatched with grass on the 

walls and roof. Most households maintain a variable small number of mixed livestock (chickens, 

sheep, goats, cattle, and donkeys); villagers rarely keep dogs or cats. Due to the excessive heat, 



people sleep outside in the compound throughout October–May, and on hotter dry nights of 

June-September [9,38]. They sleep inside huts only during the rains (June-October) and in the 

winter (November- February). The villages are designed on a grid where blocks of contiguous 

houses are separated from neighbouring blocks by well-demarcated earthen tracks (Figure 2B). 

 

Fig. 2. Images of typical household layout in VL endemic villages in Gedarif state, eastern 

Sudan (this example in Jebel-Algana study village). Each house consists of 2-4 thatched grass 

huts surrounded by a tall thatched reed fence that provides privacy. (A) Acacia and Balanites 

trees, associated with P. orientalis vectors, are commonly present within the property boundary, 

and (B) in the narrow earthen streets that separate household blocks. During the VL transmission 

season people sleep outside in within the household yard. 

 

Village, cluster and sentinel house recruitment  

Villages. The two study villages were selected as a convenience sample from many possible VL 

endemic villages along the Atbara and Rahad rivers, on the criteria that within 1-2 years prior to 

the study there was evidence of active L. donovani transmission; an abundance of P. orientalis in 

the villages; and they were geographically located within 5 km from the field operations centres 

in Tabarakallah and Umelkher, respectively, to aid in logistical requirements. Jebel-Algana and 

Umsalala villages had 17 and 55 human VL cases recorded by the nearby Kala-azar treatment 

centres in Tabarakallah (data for 2015-2016) and Umelkher (data for 2016-2017), respectively. 

Phlebotomus orientalis presence was demonstrated by sand fly capture conducted in 2015 -2016 

[36]. During the current study, as in past entomological surveys, P. orientalis densities were 

generally higher in Umsalala than in Jebel-Algana [36].  



Clusters. Clusters were defined as 20 contiguous households. Ten clusters were identified in 

Jebel-Algana and Umsalala villages for possible recruitment into the study. The selection criteria 

included that clusters within villages were separated from neighbouring clusters by a distance of 

>300 metres to avoid possible contamination by sand fly dispersal [42,43,44]; that clusters 

showed relatively typical vegetation, topography, soil type and that each of the household 

compounds was surrounded by the characteristic reed fence.  

 

Following consultation with village leaders, and informed written consent from all householders, 

four clusters in Jebel-Algana village (Experiment 1), and four clusters in Umsalala villages 

(Experiment 2) were recruited. The same four clusters used in Experiment 1 in 2016, plus two 

additional clusters in the same village, Jebel-Algana, were recruited for Experiment 3 in 2017. 

Due to the grid design of houses within villages, each household faced an earthen street on one 

side, and bordered neighbouring household compounds on the other sides. Therefore, to 

maximise proximity of households within clusters, each cluster comprised one linear block of 10 

contiguous houses separated from the second block of 10 contiguous houses by a narrow earthen 

street (2-3 metres wide). 

Sentinel houses. Four sentinel households per cluster were identified for monitoring intervention 

effects on sand fly abundance. The four households were located in the centre of the cluster i.e. 

two households in the centre of each block of ten houses. The portion of the boundary fence 

facing the earthen street were the focus for monitoring sand fly numbers as described below. 

 

 

 



Study design 

The study comprised of three experiments: Experiment 1, conducted between 9th and 16th June 

2016, was the initial scoping study to assess the potential and feasibility of ODRS to reduce P. 

orientalis abundance inside sleeping huts, outdoors in the household compound, and outside the 

compound boundary fence. Experiment 2 was designed to evaluate the residual effectiveness of a 

single application of ODRS against outdoor and peridomestic sand fly numbers compared to 

controls followed-up over 43 days post intervention. Experiment 3 similarly aimed to assess the 

residual effectiveness against P. orientalis numbers of a single ODRS application, compared to 

single restricted ODRS (RODRS) application; over 76 follow-up days post intervention. 

Experiments 2 and 3 were conducted between 2nd May and 16th June 2017, and between 31st 

March and 20th June 2017, respectively. Following the baseline pre-intervention sample, each 

intervention was applied on a single occasion per experiment, on 13h June 2016 (Experiment 1), 

4th May 2017 (Experiment 2), and 5th April 2017 (Experiment 3).  

 

Intervention randomization 

The enrolled clusters were randomised to one of the two interventions (Experiments 1 & 2), or to 

one of three interventions (Experiment 3), by an independent blinded local observer who selected 

folded slips of paper with cluster names written on them from a container. The interventions 

were assigned alternatively in order that cluster names were drawn to achieve two clusters per 

treatment in each Experiment 1-3. All houses within a cluster received the same intervention. No 

significant differences in pre-intervention fly numbers captured by Sticky traps (ST) or CDC 

light trap (LT) were detected when controlling for study design variables (see below), suggesting 

that the randomisation process for the three Experiments was successful (z<2.01, p>0.347).  

 



The interventions 

ODRS comprised of spraying 2.8% deltamethrin WP insecticide (Scientific Fertiliser Co. PVT. 

Ltd, Mysuru, Puram Colinbatore, India) at a dose of 20mg a.i. /m2 on the exterior walls of all 

huts (“rakobas”), and on both the interior and exterior surface of the household compound 

boundary fence. Restricted ODRS (RODRS), comprised of spraying only the boundary fence as 

described above. Control households and fences were left unsprayed.  

 

Insecticide was applied using a 10 litre Hudson spray pump (Hudson Products, X-Pert 67322AD 

Professional Sprayer, Hudson Manufacturing Company, Hong Kong). The tank solution was 

prepared by one trained technician, and the insecticide applied by three trained Gedarif health 

authority personnel responsible for routine IRS under the regional IVM program. The 

interventions were supervised by the research team. All spraying personnel wore appropriate 

protective clothing, goggles and masks.  

 

 

Sand fly sampling  

Sand fly traps were placed pre- and post-intervention in the four sentinel households per cluster. 

Sticky traps (ST) were made of standard A4 sheets of white paper coated with sesame oil.  In a 

recent study, we showed that when placed horizontally on the ground, these traps had a 

significantly higher efficiency in sampling P. orientalis as compared to when placed vertically 

[45]. Therefore, sets of 10 sticky traps were laid horizontally (sticky-side up) on the ground in a 

line spaced 0.5 m apart; one set was positioned 30cm from the inside of the household compound 

boundary fence (labelled “outdoor” trap location). Another set of 10 STs were similarly 

positioned on the outside of the boundary fence (labelled “peridomestic” trap location) that faced 



the earthen street. STs were in position from 18:00 hrs and collected the following morning at 

06:00 hrs.  In addition, a single CDC light trap (LT) (Model 512, John Hock Company, USA) 

was set outdoors within the household compound, positioned approximately 1 meter from the 

compound boundary fence and suspended 0.5 meters from the ground from a tree branch or 

bamboo pole. LT placement and collection times were the same as for the STs. 

 

A standard chemical knockdown (KD) technique [17] was used to determine the numbers of 

sand flies resting inside the household sleeping hut (Experiment 1 only). Between 06:00-07:00 

hrs, the floor was covered with white cotton sheets, the room tightly sealed, and then spatially 

sprayed with 250 ml combination of 0.2% Tetramethirn, 0.025% Cyluthrin, 1.0% Piperonyl 

Butoxide, and 98.8% solvents and propellants (Flytex, Khartoum, Sudan). Fifteen minutes post 

spatial spraying; sand flies were carefully collected from the floor sheets for identification.  

 

Sand fly identification 

Collected sand flies were washed in mild detergent solution, rinsed in distilled water and 

immediately stored in Eppendorf tubes containing 70% ethanol. Sand flies were initially sorted 

under a dissecting microscope to separate Phlebotomus from Sergentomyia spp. Phlebotomus 

specimens were then individually mounted in PVA medium (BioQuipp, USA) to inspect the 

spermatheca, pharyngeal armature and male genitalia under a binocular microscope to confirm 

species identification following relevant taxonomic keys [15, 46]. 

 

Statistical analysis 

The unit of study was the cluster-level P. orientalis trap count. Trap counts of male and female 

P. orientalis combined were standardised to represent numbers captured per trap per night (“trap-



night”). The sum number caught by one set of 10 STs per night, or by one CDC light trap per 

night, was considered a trap-night, respectively. 

The intervention effects in treated compared to in control clusters were estimated by fitting the 

standardised trap counts to negative binomial regression models, including variables describing 

the experimental design structure as appropriate including trap-type code, trap-site code, number 

of trap-nights, days from intervention, and a quadratic term (days2) to account for non-linearity 

in outcome measures over follow-up time (Experiments 2 and 3). Study cluster ID was entered as 

a cluster term in the model, and pre-intervention (baseline) log10-transformed (+1) number of P. 

orientalis was used as the model offset parameter.  

The potential variability in intervention effects between trap types and trap sites, and time (days 

and days2) from intervention, were examined by model inclusion and testing of relevant 

interaction term(s). Effect estimates were expressed as incidence risk ratio (IRR) generated using 

post-estimation routines (LINCOM) in STATA.  

Data from Experiments 2 and 3 were fitted to equivalent mixed effects (ME) models where 

cluster ID was treated as a random effect term, but this did not improve the model fits (Log-

likelihood Ratio Test: p>0.05), or the models failed to converge. 

Data were analyzed using Stata v.15.1 software (StataCorp LP, College Station, TX). 

 

Insecticide delivery cost estimation 

The costs of insecticide use for ODRS and RODRS were calculated based on the average inner 

and outer surface boundary fence area to be sprayed.  This was estimated to be 175m2 by 

measuring the convenience sample of 40 households treated in Experiment 1. For ODRS, this 

was added to the exterior wall surface area of 3 huts per household using a previously estimated 



average surface area of a single hut of 49.17 m2 (Gedarif state IRS technical manual, 

unpublished). Insecticide usage for each of the 40 households was also recorded. The average 

costs of ODRS and RODRS per household were then calculated including the pro rata costs of 

skilled labour for three trained labourers (sprayers) and one technician (to prepare the Hudson 

tank solution) as practised in this study. The labour time to deliver RODRS was an average 30% 

less than that to deliver ODRS. For reporting, the total costs were converted using the 2016 

official exchange rate of $1 USD = 6.6 Sudanese pounds (SDG).   

 

Ethical Considerations  

Insecticide spraying was approved by the district (Mahalia) health authorities of Gureisha and 

Rahad. Following a full explanation of the spraying procedures and the study objectives, 

informed written consent was obtained from the heads of all recruited households, and the head 

of the popular committee of the village. The study did not involve sampling human subjects. 

 

RESULTS 

Trapping efficiency 

Across the three experiments, a total of 10,813 P. orientalis sand flies were captured in 2,033 

trap-nights, of which 33% were female flies (Table 1). Trap counts in clusters not treated with 

insecticide (pre- and post-intervention) indicated that households sampled in Experiment 2, 

conducted in Umsalala village (in 2017), produced substantially higher P. orientalis trap counts 

than in Experiment 1 (in 2016) or in Experiment 3 (in 2017), both conducted in Jebel-Algana 

(Figure 3; Table S1; Table S2).  

 



Fig. 3. Variations in the natural numbers of P. orientalis at households in Jebel-Algana and 

Umslala villages, Gedarif state, Sudan.  Sand flies were captured by CDC light traps and sticky 

traps at untreated households before (pre-intervention) and after treatment (post-intervention). 

Houses labelled by their post-intervention subsequent assignment to full (ODRS) or restricted 

(RODRS) outdoor residual insecticide spraying, or as untreated controls (C). Data are aggregated 

for the three independent experiments: Exp. 1 conducted in Jebel-Alagna, 9th-16th June 2016; 

Exp. 2 conducted in Umsalala village, 2nd May-16th June 2017; and Exp. 3 conducted in Jebel-

Algana, 31st March-20th June 2017.  Error bars represent the interquartile range. 

 

Differences in LT and ST counts (“trapping efficiency”) within and between experiments were 

also variable (Table 1; Table S2), though controlling for covariates, no consistent differences in 

the mean numbers captured by the two methods were detected pre-intervention cluster samples 

(Z=0.19, P=0.846, N=568), or in post-intervention control cluster samples (Z=0.58, P=0.564, 

N=594). However, due to inherent differences between ST and LT mechanisms, the intervention 

effects on sand fly numbers were calculated separately for each trap type (thus trap location).  

 

 

 

Table 1. Summary of the total numbers of P. orientalis captured during the studies of effects of 

outdoor residual spraying of insecticide against the vector of visceral leishmaniasis in Gedarif 

state, Sudan.     

Trap site 

Trap 

type1 

Total P. 

orientalis 

Male P. 

orientalis 

Female P. 

orientalis 

n trap 

nights1 

Pre-intervention Controls 



Inside sleeping huts KD 4 0 4 8 

Outdoor LT 480 346 134 80 

Outdoor ST 531 283 248 78 

Peridomestic ST 560 298 262 78 

Sum 

 

1575 927 648 244 

      

Pre-intervention Treated ODRS/RODRS 

Inside sleeping huts KD 7 1 6 8 

Outdoor LT 697 455 242 112 

Outdoor ST 1022 563 459 110 

Peridomestic ST 907 486 421 110 

Sum 

 

2633 1505 1128 340 

      

Post-intervention Controls 

Inside sleeping huts KD 13 3 10 8 

Outdoor LT 2056 1539 517 218 

Outdoor ST 1825 1364 461 188 

Peridomestic ST 1905 1428 477 188 

Sum 

 

5799 4334 1465 602 

      

Post-intervention Treated ODRS/RODRS 

Inside sleeping huts KD 2 0 2 8 

Outdoor LT 162 111 51 305 



Outdoor ST 334 195 139 267 

Peridomestic ST 308 177 131 267 

Sum 

 

806 483 323 847 

      

Totals 

 

10813 7249 3564 2033 

Pre- and post-intervention total numbers of P. orientalis and trap nights are aggregated across 

three experiments and presented according to treatment types and trapping methods.  
1 total numbers of trap nights represent the sum of chemical knockdown (KD) events inside 

sleeping huts; a single CDC light trap (LT) set per household at outdoor sites per night, and a set 

of 10 sticky traps (ST) set at each outdoor and peridomestic site per night. Each set of 10 STs is 

considered a single trap-night. 

 

Experiment 1  

The initial experiment was conducted to assess the feasibility of ODRS as a vector control 

option. P. orientalis were trapped 1-4 days pre-ODRS, and 1-4 days post-ODRS application. 

Accounting for study design characteristics, P. orientalis abundance was reduced by 83% (95% 

CL: 70.1%-90.9%) and 87% (95% CL: 76.3%, 93.0%) at outside and peridomestic ST locations, 

respectively, relative to in control clusters (Table 2, Figure 4).  

 

Table 2. Effects of outdoor residual spraying of insecticides (ODRS) on the numbers of P. 

orientalis in Jebel-Algana village, Gedarif state, Sudan. Sand fly trapping was conducted 

between 9th-16th June 2016. 

Trap type1 Trap location2 IRR (95% C.L.) P< N Trap 

nights 

ST O 0.17 (0.091, 0.299) 0.0001 128 

ST P 0.13 (0.070, 0.237) 0.0001 128 



Effect estimates are presented as incidence risk ratios (IRR) according to trap type and trap 

location.  
1 Trap types for monitoring: ST sticky traps 
2 Trap site locations: O outdoors, P peridomestic. 

 

 

Fig. 4. Effects of outdoor residual spraying of insecticide (ODRS) on the numbers of P. 

orientalis sand flies  in Jebel-Algana village, Gedarif state, Sudan. Sand flies were captured by 

sticky traps (ST) set at outdoor sites (A), and at peridomestic sites (B) during 1-4 days pre-

intervention and 1-4 days post-intervention. Each bar represents the median numbers of P. 

orientalis from 32 trap nights (i.e. 4 trap nights at 4 houses in two clusters each). Error bars 

represent the interquartile range. Sand fly trapping was conducted between 9th -16th June 2016. 

 

ST captures at outdoor and peridomestic trap locations were not dissimilar (test of intervention  

trap site interaction term: z=1.53, p=0.125, N=256 trap nights) (Table 2). 

P. orientalis captures in sleeping huts collected by chemical knockdown (KD), and by LTs in 

outdoor locations, were few but showed significant reductions: inside huts, 4 and 7 specimens 

were collected in control and ODRS clusters respectively by pre-intervention sample, versus 13 

and 2 specimens post intervention (Fisher's exact: p=0.014; N=16 trap nights). In outdoor LTs, 

17 and 42 specimens were collected pre-intervention compared to 7 and 0 flies post-intervention 

(Fisher’s Exact, P<0.001, N=16 trap nights). 

Experiment 2 

The effects of a single ODRS application over 43 days follow-up was assessed. ODRS reduced 

ST numbers by an average 96% (95% CL: 92.0%, 97.2%) and 92% (95% CL: 88.7%, 94.9%) in 

outdoor and peridomestic locations, respectively, and by 99% (95% CL: 99.2%, 99.5%) in LT 



outdoor locations, relative to control clusters (Table 3; Figure 5). Few sand flies were captured in 

either intervention arm at 43 days post intervention (Figure 5). 

 

Fig. 5. Effects of outdoor residual spraying of insecticides (ODRS) on the numbers of P. 

orientalis in Umsalala village, Gedarif state, Sudan. Sand flies were captured by sticky traps set 

at outdoor sites (A) and peridomestic sites (B), and by CDC light traps set at outdoor sites (C). 

Each point represents the median numbers of P. orientalis from 10-14 trap nights (A & B), or 

15-16 trap nights with exception of 23-24 trap nights on day 43 (C). Error bars represent the 

interquartile range. Note differences in the Y-axis range. Sand fly trapping was conducted 

between 2nd May-16th June 2017. 

 

Table 3. Effects of outdoor residual spraying of insecticide (ODRS) on the numbers of P. 

orientalis over 43 days follow-up between 2nd May-16th June 2017 in Umsalala village, Gedarif 

state, Sudan.  

Trap type1 Trap local2 IRR (95%C.I.) P< N trap 

nights 

ST O 0.04 (0.028, 0.080) 0.001 180 

ST P 0.08 (0.051, 0.113) 0.001 180 

LT O 0.01 (0.005, 0.008) 0.001 238 

Effect estimates are presented as incidence risk ratios (IRR) according to trap type and trap 

location 
1 Trap types for monitoring: ST sticky traps, LT light trap 
2 Trap site locations: O outdoors, P peridomestic. 

 



Accounting for the trial design, the ODRS effect was significantly greater measured by the single 

LT, than by the set of 10 STs at outdoor trap locations (test of intervention  trap type interaction 

term: Z=2.57, P=0.010, N=418). The effect estimate was also greater measured at outdoor ST 

compared to at peridomestic ST locations (test of intervention  ST site-code interaction term: 

z=3.65, P=0.001, N=360) (Table 3).   

 

Experiment 3 

The third experiment measured the insecticide effects over 76 days follow-up of a variant of 

ODRS, namely where insecticide application was restricted to only household boundary fences 

(RODRS). Since there was no difference in effect estimates between outdoors and peridomestic 

ST sites under either RODRS or ODRS interventions (test of intervention  trap location: 

Z<0.76, P>0.393), the data for these two trap locations were combined. Across ST sites, RODRS 

reduced vector numbers by a mean 60% (95% CL: 19.7, 80.5%) compared to 85% (95% CL: 

70.7%, 92.5%) by ODRS, both relative to in control clusters (Table 4; Figure 6). In outdoor LTs, 

the equivalent estimates were 88% (95% CL: 75.7%, 94.6%) and 93% (95% CL: 84.5%, 96.6%) 

respectively (Table 4; Figure 6).  

 

Table 4. Effects of full (ODRS) and restricted (RODRS) outdoor residual spraying of insecticide 

on the numbers of P. orientalis captured over 76 days follow-up between 1st April-17th June 

2017 in Jebel-Algana village, Gedarif state, Sudan. 

Treatment 

comparisons 

IRR (95%C.I.) P< Trap 

type 

Trap 

local 

N trap 

nights1 

ODRS vs control 0.15 (0.075, 0.293) 0.001 ST O, P 670 



RODRS vs control 0.40 (0.195, 0.803) 0.010 ST O, P 670 

ODRS vs control 0.07 (0.034, 0.155) 0.001 LT O 349 

RODRS vs control 0.12 (0.054, 0.243) 0.001 LT O 349 

Effect estimates are presented as incidence risk ratios (IRR) by trap type and trap location. 

Trap types and trap site location abbreviations are as shown in Table 3. 

 

 

Fig. 6. Effects of full (ODRS) and restricted (RODRS) outdoor residual spraying of insecticide 

on the numbers of P. orientalis in Jebel-Algana village, Gedarif state, Sudan. Sandflies were 

captured by sticky traps set at outdoor sites (A) and peridomestic sites (B) and by CDC light 

traps set at outdoor sites (C). Each point represents the median numbers of P. orientalis from 16 

trap nights, except 32 trap nights on days -4 and +4, and 19-21 trap nights on day 76 in (C). Error 

bars represent the interquartile range. Note differences in the Y-axis range. Sand fly trapping was 

conducted between 31st March-20th June 2017. 

 

Comparing RODRS to ODRS intervention outcomes directly (i.e. not compared to control 

clusters), the RODRS effect estimates on ST catches were on average 58% (95% CL: 43.6%, 

74.1%, N=446) lower than achieved by ODRS (Z= -4.09, P<0.001, N=446). In contrast RODRS 

proved 100% as effective as ODRS when measured by outdoor LT captures (Z=0.76, P=0.449, 

N=223).  

 

Economic costs of ODRS and RODRS delivery 

The commercial cost of the insecticide was $15.15 USD per litre. Based on the total surface area 

to cover, the price per household was $3.49 USD for ODRS, and $1.89 USD for RODRS. The 

spray team delivered ODRS to 40 households in a single day. The joint labour costs for the three 



technicians was $90.91 USD per day, or $2.27 USD per household. To deliver RODRS, the 

labour costs fell to $1.59 USD per household. Excluding expenses of transport and 

administration, the relative sum costs of ODRS and RODRS delivery per household was 

3.49+2.27= $5.76 USD, and 1.89+1.59= $3.48 USD, respectively. Thus, RODRS resulted in an 

average saving of 39.6% over ODRS. 

 

DISCUSSION 

The reported VL case incidence in East Africa (Sudan, South Sudan, Ethiopia, Somalia, Kenya, 

and Uganda) is now greater than that recorded in the Indian subcontinent, which was 

traditionally considered to suffer the heaviest VL burdens [5,33,47]. The lack of sustainable 

community-wide methods to reduce exophilic/exophagic disease vectors such as P. orientalis is 

a serious hindrance to efforts to reduce VL burdens in East Africa.  This is despite recent 

international investment to scale-up early case detection and treatment as the only currently 

employed methods to combat the disease. At the time of study, the regional VL case incidence 

was 26‒37/1000/year (2014‒2017 MoH data), which is not dissimilar to published historical 

values of 38‒39/1000/year (1991‒1993) [35], 20‒42/1000/year (1994‒1996) [38], and 20‒

25/1000/year (2010‒2011) [37] in the same region.   

The results of the current study demonstrate that Outdoor Residual Spraying (ODRS) with 

pyrethroid insecticide can significantly reduce vector numbers in the outdoor compound, and in 

proximate peridomestic locations outside the boundary fence, where high vector numbers are 

known to occur [20,36]. Despite the variation in prevailing vector numbers between the two 

villages in this study, and the general seasonal decline in sand fly abundance, the intervention 

effects were consistent across experiments showing, importantly, that a single application of 

outdoor insecticide early in the transmission season could impact on outdoor and peridomestic 



sand fly vector numbers with lasting effects until the end of the transmission season, which starts 

in March and ends in June. Overall reductions of 83%-99% were achieved and remained more or 

less constant for the duration of the study period (maximum 76 days follow-up). The longitudinal 

experiments (Experiments 2 and 3) were conducted from April/May to June, representing a large 

fraction of the peak sand fly season (March to June) in east Sudan, NW Ethiopia and South 

Sudan. ODRS also reduced vector abundance in sleeping huts, though the numbers collected 

were few and insufficient to calculate robust IRR estimates.  

In an attempt to reduce the quantity of insecticide and spraying effort required for ODRS, we 

investigated the entomological efficacy of RODRS by restricting spraying to the household 

boundary fence only (Experiment 3). The rationale for this alternative was based on prior 

observations of large numbers of vectors on the proximate exterior side of the fences. Relative to 

control clusters, RODRS caused an immediate suppression of outdoor and peridomestic P. 

orientalis abundance, with overall reductions during follow-up of 60% and 88% by ST and LT 

estimation respectively. These values compared to 85% and by 93% for ODRS in the parallel 

treatment arm. Direct comparisons of RODRS and ODRS effect estimates (i.e. not compared to 

control clusters) gave mixed results: RODRS was an average 58% as effective as ODRS based 

on ST captures (P=0.001), and 100% as effective based on LT captures (P>0.05). Here, P. 

orientalis numbers captured by the two trapping methods refer to a single LT located 0.5 m 

above ground, as compared to an individual ST comprising 10  A4 white paper sheets treated 

with sesame oil placed horizontal on the ground surface. We did not detect a consistent 

distinction in trap numbers (trapping efficiency) between LT and ST methods, or trapping 

success between outdoor versus peridomestic trap locations (Table S2), by which to explain the 



inconsistency in relative effectiveness of RODRS. Additional experiments would be useful to 

increase the precision of the RODRS effect estimate. 

The LT and ST methods used in the current study are standard tools for random sampling of sand 

flies [48].  To avoid the LT attraction of P. orientalis from outside the sentinel sites, we 

restricted the use of these traps to the courtyards of the houses, where presence of fences will 

prevent transmission of their light between clusters of houses.   In contrast, we used the ST on 

both peridomestic and the inside of the houses.   In the past, these traps were commonly placed 

vertically to intercept a presumed flight path of sand flies [48]. However, recently we 

demonstrated that for trapping P. orientalis, ST placed horizontally on the ground resulted in an 

8-fold increase in sand fly numbers compared to located vertically [45]. Here we report the 

absolute numbers, rather than the density of, P. orientalis captured per trap night, which for ST 

consisted of a series of 10 ST in place from 18:00-06:00 h.  If required, the numbers can be 

converted to a density per m2 based on the surface area of the A4 paper (0.6237 m2), thus 

requiring multiplication by 1.6 to represent the 10 ST. 

 

The boundary fences sprayed in this study are 1.5-2 m high constructed of tightly woven reed, 

which surround individual household compounds to provide privacy. The fences are likely to act 

as a physical barrier to blood-seeking P. orientalis incoming from more distant peridomestic and 

sylvatic habitats. Their significance as a target for ODRS/RODRS can be explained by how sand 

fly locomotion behaviour facilitates contact with the non-repellent pyrethroid insecticide. Sand 

fly vector species tend to stay close to the ground at <1 m height, and traverse the ground, flat or 

sloping surfaces, by a series of “hop-like” motions [49]. Observations also show that when they 

encounter a vertical obstacle, they proceed upwards close to the obstacle, landing on the 

substrate in between short flight steps [49]. Our controlled experiments indicate that vectors 



indeed landed on the insecticide-treated fences resulting in a lethal insecticide dose causing 

significant reductions in sand fly abundance. Repellence (diversion) from treated surfaces was 

not observed. 

Such boundary fences are common across the VL endemic villages in Gedarif, Sinnar and Blue 

Nile states, in addition to other endemic regions of Sudan, where ODRS / RODRS could be 

applied to control transmission. The findings may be relevant also to other high VL incidence 

regions of East Africa where P. orientalis is the vector, for example, amongst the vast 

populations of seasonal migrant agricultural workers e.g. on farms along the Sudan/Ethiopian 

border, where 60 % of transmission of VL in Ethiopia occurs [21,50]. These notoriously mobile 

populations work in the agricultural farms during two periods; May-July to prepare land for 

planting crops, and September-November for harvesting [50]. During the VL transmission 

season (May – July), the majority of workers sleep in small shelters made of grass [21]. We 

suggest that insecticide-impregnated fences erected around existing, or as newly built, night-time 

shelters could provide significant protection from the blood-seeking P. orientalis. In essence, 

insecticide sprayed fences represent sandfly barriers that can also be utilized to protect semi-

nomadic populations such as cattle herders or agricultural farmers who tend to stay in temporary 

camping grounds. 

One potential concern for the development of ODRS programmes is the expected short (e.g. 2-3 

month) residuality of pyrethroids sprayed onto outdoor surfaces exposed to intense UV radiation 

[51]. Fortunately, the sand fly season in eastern Sudan is short (3 months) and abruptly ends with 

the heavy rains that occur at the end of June [17]. The heavy rains seals cracks in the soil where 

the vector is thought to reside [41]. The fall in the numbers of P. orientalis observed in 



unsprayed households, at the end of May 20-43 days in experiment 2 and 45-76 days in 

experiment 3, coincided with the beginning of the rainy season.   

 

One shortcoming of the current study was that we did not test the residuality of the deltamethrin 

a.i. more formally by performing sand fly exposure bioassays and/ or quantitative chemical 

analyses (e.g. IQK [52] and/or HPLC). Such evaluations also would be informative. 

 

Sand fly control 

At the time of writing, the IVM program in Sudan recommends IRS using pyrethroid or 

Bendiocarb insecticide applied twice per year (December and June), and distribution of long-

lasting insecticide-impregnated bednets (LLINs, Vestergaard Frandsen, Lausanne, Switzerland) 

(Mr Anwar Osman Banaga Gedaref State Ministry of Health, pers. comm.). IRS and LLINs 

principally target endophilic vectors (modelled on endophilic malaria transmitting mosquitoes), 

thus precluding full effectiveness against this exophilic sand fly vector. Furthermore, IRS 

deployment does not coincide with the season of sand fly activity. The collective studies in 

Sudan and NW Ethiopia lead to the consensus that P. orientalis has a low propensity to enter 

household buildings [17,21,25,26,27,28,53,54], which is corroborated by the current data 

showing that comparatively few P. orientalis were captured inside sleeping huts as measured by 

chemical knockdown (KD) methods. To our knowledge, there are no peer-reviewed evaluations 

of IRS against P. orientalis in East Africa. An unpublished observational study concluded that 

the biannual IRS campaigns conducted in Gedaref villages by the health authorities during 2008-

2016 failed to have an impact on VL incidence; the authors related the findings to the outdoors 



biting and resting behaviour of P. orientalis, whereby they had limited contact with treated walls 

targeted by IRS [35].   

 

Previous attempts to reduce P. orientalis abundance and/or L. donovani transmission include 

ultra-low volume (ULV) fogging of A. seyal thickets [55], provision of insect repellents [20], and 

ITNs [9,56,57]. Whilst the community-wide distribution of ITNs was retrospectively associated 

with protection against VL under epidemic conditions [9], ITNs are not generally used in 

resident communities during the P. orientalis biting season which is characterised by particularly 

high temperatures. During this period, people habitually sleep outside in the compound without a 

bednet. ITNs tend to be used more inside huts during the rainy / cooler season (late June to 

October) when nuisance / malarial mosquito vectors are most abundant, but P. orientalis is no 

longer active. In a previous ITN study, which took place in Sudan, bednets were set up at 9-

11pm, leaving children unprotected during a significant period of peak sand fly biting time at 6-9 

pm [9]. Furthermore, the study reported bednet use by <10% of the sample population during the 

hot dry months (sand fly season), only rising to 55% during the beginning of the rainy season 

(end of sand fly season).   

 

Intervention costs 

The relative costs of RODRS and ODRS were estimated to be USD $3.48 and USD $5.76 per 

household, respectively, with a saving of about 40% by RODRS versus ODRS. These represent 

simple calculations for labour and insecticide, assuming similar implementation costs (transport, 

equipment and administration) for the two vector control strategies. A recent study in the region 

suggested that the cost of IRS using deltamethrin or Bendiocarb was about USD $2.2-$2.85 per 

person year, based on more sophisticated health economic models, concluding that IRS + LLINs 



were highly cost-effective for malaria control [34] as defined by WHO [58]. Direct cost 

comparisons with values calculated in the present study are not strictly valid, especially with 

variation in methods of insecticide procurement, and the rapidly declining exchange rate of the 

Sudanese pound. The latter may have resulted in an overestimation of the actual costs of ODRS 

(data not shown), nonetheless, considering 5 persons per endemic household in the region [9], 

ODRS and RODRS per person year would appear relatively low cost per household. Prevention 

is clearly less costly than VL management, with estimated direct and indirect costs of treatment 

for a single VL episode being $450 USD [59] The cost-benefit is likely to be even greater 

considering that a proportion of subsequent post-Kala azar dermal leishmaniasis (PKDL) cases 

would also be avoided. Governmental and non-governmental agencies provide treatment drugs 

free of charge, but households are reported to bear 53% of the total costs, accounting for 40% of 

the median annual household income in Gedarif state [59].   

In conclusion, these pilot studies establish the feasibility and potential entomological 

effectiveness of ODRS and RODRS as novel vector control options in Gedarif state and other 

endemic regions of Sudan. A key finding was that the observed levels of impact were achieved 

by a single application of insecticide. These community-wide interventions are likely to have 

high levels of social acceptability as they address the compliance issues around bednet use, and 

the populations are already accustomed to insecticide spraying. Although the critical threshold in 

sand fly abundance to achieve protection against transmission and VL is not yet known, the 

collective results of these pilot studies suggest that ODRS/RODRS are strong candidates for a 

more sustainable community-wide vector control approach in endemic regions in Sudan, and 

possibly elsewhere where sand fly vectors are particularly exophilic and exophagic and where 

building such fences may be feasible. Intervention trials to assess the effectiveness and cost-



effectiveness of this approach on L. donovani transmission and VL incidence are now warranted.  

In addition to monitoring disease incidence, P. orientalis abundance and man-biting rates, future 

trials should also assess the intervention effects on the infection rates of L. donovani in the 

vector.    

 

 

Supporting Information  

Table S1. Total numbers of P. orientalis captured in the three Experiments pre- and post-

intervention according to trap type and trap location. 

 

Table S2. Median (IQR) numbers of Phlebotomus orientalis sand flies captured per trap night 

before and after outdoor residual insecticide spraying of exterior walls of sleeping huts, and 

household boundary fences (ODRS), or boundary fences alone (RODRS), in Gedarif state, 

eastern Sudan. (a) Experiment 1 conducted in June 2016 in Jebel-Algana village; (b) Experiment 

2 conducted in May-June 2017 in Umsalala village; (c) Experiment-3 conducted in March-June 

2017 in Jebel-Algana village. For Experiments 2 and 3, median values were calculated over 43 

and 76 days follow-up respectively. 
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