-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

Journal of Scheduling (2021) 24:209-221
https://doi.org/10.1007/510951-020-00668-1

®

Check for
updates

Scheduling coupled tasks with exact delays for minimum total job

completion time
Bo Chen'® - Xiandong Zhang?

Accepted: 12 September 2020 / Published online: 3 November 2020
© The Author(s) 2020

Abstract

In this paper, we fill in a conspicuous gap in research on scheduling coupled tasks. We draw a full complexity picture for
single-machine scheduling of coupled tasks with exact time delays in between with the objective of minimizing the total of

job completion times.

Keywords Scheduling - Coupled task - Exact delay

1 Introduction

The problem of scheduling coupled tasks with exact delays
was first introduced by Shapiro (1980), who modeled the
scheduling of a radar tracking system in which the system
transmits pulses and receives their reflections once every
specified update period. The system cannot transmit a pulse
at the same time that a reflected pulse is arriving. The trans-
mission and reception of a radar pulse are modeled as a
pair of coupled tasks with a fixed length of time lag in
between. This basic model of scheduling coupled tasks has
been studied for various radar tracking systems of multiple
targets and/or multiple functionalities with various objec-
tive functions (Elshafei et al. 2004; Farina and Neri 1980;
Izquierdo-Fuente and Casar-Corredera 1994; Orman et al.
1996, 1998). This scheduling model has also found many
other applications, ranging from improving performance of
submarine torpedoes to chemistry manufacturing processes,
to scheduling systems of robotic cells and to patient appoint-
ments in a chemotherapy outpatient clinic, as documented
by Khatami et al. (2020). Various solution approaches have
been proposed. Elshafei et al. (2004) presented integer pro-

B Xiandong Zhang
xiandongzhang @fudan.edu.cn

Bo Chen
b.chen@warwick.ac.uk

Warwick Business School, University of Warwick, Coventry
CV4 7AL, UK

2 School of Management, Fudan University, Shanghai 200433,
China

gramming models for the multi-target tracking system. More
recently, Zhang et al. (2019a) developed a hybrid genetic
algorithm for scheduling a phased array radar, and Zhang
et al. (2019b) provided an online algorithm for a radar sys-
tem having multiple inputs and multiple outputs.

It has been about 40 years since the problem of scheduling
coupled tasks was introduced to the scheduling community.
As pointed out recently by Khatami et al. (2020) in their sur-
vey, the early years witnessed only a few studies on this topic,
and the majority of works have been developed in the last few
years. In concluding their survey, Khatami et al. (2020) state
that “there has been no published research investigating the
single-machine setting with an objective function other than
the makespan, except for those in the cyclic setting.” They
place “computational complexity under different objective
functions” first in their list of suggested future directions. In
this paper, we address this very issue and draw a full complex-
ity picture for the problems of single-machine scheduling of
coupled tasks, with the objective of minimizing the total of
job completion times.

In what follows, we start with a brief literature review in
Sect. 2 on the studies related to complexity status of coupled
task scheduling problems, followed in Sect. 3 by a detailed
description of the scheduling problem under investigation
in this paper, together with a full complexity picture we
complete in this paper. In Sects.4 and 5 we present tech-
nical details of our complexity picture to identify NP-hard
problems and polynomially solvable problems, respectively.
Finally, we provide some concluding remarks in Sect. 6.

@ Springer

https://core.ac.uk/display/334413742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-020-00668-1&domain=pdf
http://orcid.org/0000-0001-7605-9453
http://orcid.org/0000-0003-1442-3859

210

Journal of Scheduling (2021) 24:209-221

2 Literature review

In this section, we briefly review the literature of studies
related to complexity status of coupled task scheduling prob-
lems. We adopt the standard three-field representation «| 8|y
introduced by Graham et al. (1979) for a machine schedul-
ing problem, where «, 8 and y represent, respectively, the
machine environment, job characteristics and objective func-
tion. For example, we denote by 1[(a;j, Lj, b;)|Cpax the
single-machine scheduling problem of coupled tasks with
the objective of minimizing the makespan, where each job
J consists of a pair of tasks of processing times a; and b,
respectively, and with an exact time delay L; between the
completion time of its first task and the start time of its sec-
ond task.

2.1 Single-machine problems

Shapiro (1980) pointed out that the basic scheduling prob-
lem 1|(aj, Lj, bj)|Cmax is NP-hard, a view strengthened
by Orman and Potts (1997), who established that even the
restricted problems 1{(p;, pj, p;j)|Cmax, 1(a;j, L, b)|Crax,
and 1|(p, Lj, p)|Cnax are all strongly NP-hard, and by Yu
et al. (2004), who proved that problem 1|(1, L;, 1)|Cax
is strongly NP-hard. The view was further strengthened
by Condotta and Shakhlevich (2012), who demonstrated
that the more restricted problem 1|(1, L;, 1, 74)|Cmax is
already strongly NP-hard, where 7, means that the process-
ing sequence of the first tasks of all jobs is fixed. On the other
hand, Orman and Potts (1997) and Hwang and Lin (2011)
provided polynomial-time algorithms for various other spe-
cial cases of problem 1|(a;, L, b;)|Cmax. Consequently, the
complexity picture for single-machine scheduling problems
with the objective of minimizing the makespan has been com-
pleted. In this paper, we draw a new and complete picture for
the complexity of the single-machine scheduling problems
with a different objective, which is to minimize the total of
job completion times.

2.2 Shop problems

Let us review the literature on scheduling coupled tasks
with more than one machine. Studies have been focused
on the environment of two-machine flow shops, denoted by
F2, in which the two tasks of each job need to be pro-
cessed on two dedicated machines in the same machine
sequence. As pointed out by Khatami et al. (2020), prob-
lem F2|(1, L, 1)|Cmax was shown by Yu et al. (2004) to
be strongly NP-hard, even if only two distinct values are
used for the exact delays of the coupled tasks. Problem
F2|(aj, L,bj)| Y C; was proved by Leung et al. (2007)
to be strongly NP-hard. Some polynomially solvable cases
were also provided by Leung et al. (2007) for problems

@ Springer

F2|(a,L,b,a >b)|) C;and F2|(a,L,b,a <b)|)_C;.
Huo et al. (2009) provided several polynomial-time algo-
rithms for multiple variants of the two-machine flow-shop
problem of minimizing the total of job completion times.

2.3 Additional constraints and more

Simonin et al. (2011) generalized the standard schedul-
ing problems of coupled tasks by introducing the so-called
compatibility constraints when they studied the problem of
scheduling submarine torpedoes. In this scenario, two jobs
are compatible if and only if a task of one job can be processed
during the time lag of the other job. They established some
complexity results with approximation algorithms. Bessy
and Giroudeau (2019) considered the scheduling problem
with compatibility constraints with the objective of maxi-
mizing the number of jobs that can be completed by a given
due date.

Recently, Khatami et al. (2020) provided an updated sur-
vey of research on scheduling coupled tasks with exact time
delays. An earlier survey was given by Blazewicz et al.
(2012). We refer the reader to these two reviews for more
details.

3 Problem description and preliminaries

Our generic problem can be stated as follows in terms
of machine scheduling terminology. There is a set J =
{1, ..., n} of n independent jobs and they need to be sched-
uled on a single machine that is continuously available
from the start. Each job j € J consists of two operations
{Oj1, Oj2}, which require processing on the single machine
for an uninterrupted a; and b time units, respectively. There
should be an exact time delay of L ; between the completing
of operation O ;1 and the starting of operation O ;. The single
machine can process no more than one operation at any time.
Our objective is to find a feasible schedule that minimizes the
total of job completion times, where the completion time of
ajob j € J is when its second operation O j; is completed.

When we say a job is scheduled before another job, we
mean that both operations of the former job are scheduled
before the latter job starts. We say job j is interleaved with
job k if the first operation of job k is processed in the time
lag of job j (regardless of when the second operation of job
k is processed), or more generally we simply say these two
jobs are interleaved with each other. Given a schedule o,
a block of o is a partial schedule o’ of a subset 7' € J
of jobs such that (a) it includes both operations of each job
Jj € J’ and (b) both operations of any job k € J\J’ are
completed before the starting time s of the first operation
in o/, or are started after the completion time ¢ of the last
operation in o’. The length of the block ¢’ is defined as t —s.

Journal of Scheduling (2021) 24:209-221

211

Table 1 Summary of new

results Problems 1[(---)|)" C;

(p,Lj, p)
(a,Lj,b)
(a,Lj,bj)
(aj, Lj,b)
(aj. Lj,bj)
(aj, L, b)
(a,L,bj)
(aj,L,bj)
(pj»pj>Pj)
(pjspj,bj)
(aj, pj, pj)
(pjsLj, pj)
(p, p. b))
(p, p.b)
(p,p.p)
(aj, p, p)
(a,p.p)
(p. L, p)
(a, L, b)

Complexity Location in the paper
Strongly NP-hard Theorem 1
Strongly NP-hard v
Strongly NP-hard v
Strongly NP-hard v
Strongly NP-hard v
Strongly NP-hard Theorem 2
Strongly NP-hard Theorem 3
Strongly NP-hard v
Strongly NP-hard Theorem 4
Strongly NP-hard v
Strongly NP-hard v
Strongly NP-hard v
Polynomially solvable Theorem 5
Polynomially solvable v
Polynomially solvable v
Polynomially solvable Theorem 6
Polynomially solvable v
Polynomially solvable Theorem 7
Polynomially solvable® Theorem 8

4 where a, L and b are fixed values

Hence, the length of job j € J viewed as a block is equal
toaj + Lj + bj. Since we wish to minimize the total job
completion time, we assume without loss of generality that
all blocks are scheduled contiguously without machine idle
time in between. If block o’ viewed as a (full) schedule of
jobs J’ contains no block other than itself, then we say it
is a minimal block. In this paper, a block is assumed to be
minimal.

Given any schedule, let us use n; to denote the number
of jobs processed in block k and ¢ the length of the block.
Define the density of block k as Ay = ny/ly. It is easy
to verify the following lemma, which we call the density
property of optimal schedules.

Lemma 1 (Density Property) Given any optimal schedule, if
blocks ki and ky are adjacent, with the former immediately
before the latter in any optimal schedule, then we must have
Ak = Ap,.

In the next two sections, we determine the computa-
tional complexity of all special cases of our general problem
I[(aj, L;j, bj)| > C;, in terms of imposing restrictions on
the three parameters a;, b; and L ; if they are in the form of
constants. Our findings can be summarized in Table 1, where
(and thereafter) if more than one parameter of {a;, L;, b;}
share a common value, we use p or p; to denote the value,
and where a symbol “v"” in the last column indicates that
the corresponding result is implied by the one immediately
above with an explicit location in the paper. The relationships
between different problems can be illustrated in Fig. 1, where

A — A indicates that problem A is a special case of problem
A, and the dotted circle and two dotted arrows correspond to
the footnote in Table 1.

In establishing strong NP-hardness, we use a reduc-
tion from a strong NP-complete problem, known as 3-
PARTITION, which is stated as follows: given a non-empty
finiteset Q = {e¢; : i € I ={l,...,3q}} of 3¢q positive inte-
gers and another positive integer E, such that £/4 < ¢; <
E/2foralli € I and) ;. ;e; = qE, can I be partitioned
into g disjoint subsets Iy, ..., I, such that Zie]k e¢; = E for
alk=1,...,q9?

4 Proofs of NP-hardness

In this section, we identify all NP-hard problems. It turns
out that all these problems are actually strongly NP-hard.
We establish strong NP-hardness in each subsection for a
problem based on a reduction from 3- PARTITION to the cor-
responding decision version of the problem.

4.1 Problem 1|(p, L;, p)| }_ G

This subsection establishes the following result.

Theorem 1 Problem 1|(p,L;, p)|Y_ C; is strongly NP-
hard.

Given an instance of 3- PARTITION as specified in Sect. 3,
we construct an instance Z; of the decision version of prob-

@ Springer

212

Journal of Scheduling (2021) 24:209-221

Fig.1 Relationships between
problems

(aj,L, b])

Strongly
NP-hard

(:\a, Lg___) \)
Class P

lem 1|(p, Lj, p)| Y C;.Denote w = 40q(2q + 1) E, let the
common operation size p = 2E and define w + 6¢ jobs in
three sets as follows: 3¢ small jobs in J; as partition jobs, g
large jobs in 7> as division jobs, and @ + 2g medium jobs in
J3 as accessory jobs. More specifically,

Ji={Jj:Lj=ej, j=1,..., 3q}, (partition jobs)
J=1{Jj:L; =13E, j=3q+1,..., 4q}, (division jobs)
T3 =1{Jj: L =2E—-1, j=49+1,..., + 6g}. (accessory jobs)

We show that there is a 3- PARTITION solution if and only if

there exists a feasible schedule with total job completion time
> Cj <y,wherey = w+a,a = fo+(6E—Dw(w+1)/2
with B = ¢g(29E — 2).

Suppose 3- PARTITION has a solution such that disjoint
index sets {Ix : k = 1,...,q} satisfy };; e; = E (k =
1,...,q). Let us construct the following partial schedule of
jobs in g blocks. Each block k (1 < k < ¢) consists of
one large job (of [J>) with three small jobs of indices in I
scheduled contiguously between the two operations of the
large job, leaving the machine idle for three time lags {e; :
Jj € Ii}. Therefore, each block has a fixed length of 17E.
Following these ¢ blocks without machine idle in between,
we schedule all medium jobs (of [J3) contiguously with 2E —
1 machine idle time between the two operations of each job.
We illustrate the whole schedule in Fig. 2.

The total completion time of the ¢ large jobsis 17 w E,
that of the 3¢ small jobs in the ¢ blocks is less than
3 x 17‘1(‘12—+1)E , that of the first 2¢ medium jobs is equal to

34¢%E + 244+ (6 — 1) with the last one finishing at time

@ Springer

(a,L;, b))

N%’Lj' b) (pj,p; b))

(a,L;b)

\

(ajiL') b])

(rjvj,pj)

(», L, p)

(p,p,p)

B, and that of the last w medium jobs is fw + M (6E —
1) = a. Since 17950 E + 3 x 174D E 4 344%E +
W@E — 1) = w — qg(2q + 1), the total completion
time of all jobs is less than w + «.

Now let us assume that 3- PARTITION has no solution and
show that any optimal schedule o of the 6 + @ jobs will
have a total job completion time) C (o) at least y.

Given an optimal schedule o. Because in any feasible
schedule, medium and small jobs cannot be interleaved and
a large job can have at most two medium jobs between its
two operations, there are at least @ medium jobs that are
scheduled as single-job blocks in optimal schedule o, each
of which has a density of 1 /(6 E — 1). Hence, we can assume
that all these w single-job blocks are scheduled consecutively
to form a composite block B. Let us consider two cases.

Case 1: the densities of all other blocks in ¢ are at least
1/(6E — 1). Then all these blocks can be scheduled before
the composite block B in an optimal schedule. Since these
blocks contain 3¢ small jobs, g large jobs and 2¢ medium
jobs, the total machine time these 6g jobs require is strictly
larger than S since 3- PARTITION has no solution due to the
following facts: in any feasible schedule, (a) all 3¢ small
jobs have a total length of 13g E and all the 2¢ medium jobs
have a total length of 2¢ (6 E — 1); (b) the g large jobs have a
total processing time of 4¢ E. Therefore, these 6g jobs will
occupy at least 8 = 13gE + 2q(6E — 1) + 4q E machine
time. However, when 3- PARTITION has no solution, the time
lags of the large jobs cannot be fully filled, i.e., there is at
least one large job whose time lag of 13E cannot be fully
occupied by small or medium jobs inclusive of their own

Journal of Scheduling (2021) 24:209-221

213

\ \ ‘
N 7Z7ZEEm. . H .

By

7] Partition jobs

Fig.2 A “yes” feasible schedule of instance Z; with two types of blocks

time lags. Therefore, the earliest possible starting time of
the composite block B is § + 1, which implies that the total
completion time of the w medium jobs is at least (8 + 1)w +
(6E — Dow(w+ 1)/2=w+a,ie.,) Cjo) > y.

Case 2: the density of at least one block in schedule o is
less than 1/(6E — 1). All these low-density blocks must be
scheduled after the composite block B in o. Let us focus on
the first such block By. Note that B; must contain at least
one large job, otherwise the density of the block would be
at least 1/(6E — 1). A time slot within the time lag of a
large job is said to be idle if no operation is being processed
during the slot and it is not part of the time lag of any small
or medium job. Without changing the starting time of block
By in schedule o and the sequence of the job operations
in the block, we move forward some operations, including
the last one, in block By to eliminate an amount § > 0 (to
be specified below) of idle time in block By and create a
new block B,/c, which is infeasible (due to smaller time lags
between the two operations of some jobs), but has a smaller
total job completion time.

Let A be the length of block By, which contains n; > 1
large jobs, n,, > 0 medium jobs and n; > 0 small jobs.
Denote by A; the total length of n; small jobs and by A,, the
total length of n,, medium jobs. Let T be the total amount of
idle time in Bg. Then, we have A = n;(4E) + T + A, + Xs.
Since the density of block By is smaller than 1/(6E — 1), we
have

n;+ny, + ng - 1 N 1
m@EY+T+An+is 6E—1 A, 6E—1
Ny 1
B —
As 6E —1

which imply nl“"ﬁ < 6El—_1 andhence T > nj2QE—1) >
2E—1>0

Let§ =T — n;(2E — 1) be the total amount of idle time
to be eliminated from block By to create the new block B,i
defined earlier. Then B; has a density of at least 1/(6E — 1)
and still contains an amount n;(2E — 1) > 0 of idle time. On
the other hand, the schedule o, which is the same as o except

B Division jobs

o

B Accessory jobs

By is replaced by B, is infeasible but clearly has a smaller
total job completion time than o :) C;(01) <) C;(0).

In the same way, by eliminating some idle time of each
low-density block scheduled after the composite block B in
schedule o, we create an infeasible schedule (due to shorter
time lags than required) o1, which satisfies) C;(01) <
>cC j(0). In schedule o1, every block after the composite
block B has a density of at least 1/(6E — 1) and still con-
tains some positive amount of idle time. Next, we move all
these (infeasible) blocks before the composite block B to
create another new (infeasible) schedule o, which satisfies
> Cj(o2) <Y Cj(oy).

Now in schedule o7, the first 6g jobs, which are scheduled
before the last @ medium jobs, contain at least one positive
amount of idle time, which implies that the total completion
time of the first 6g jobs is strictly larger than 8. Therefore,
we obtain

D Cilo)>) Cilo) zw+a=y,
which completes our proof of Case 2.

4.2 Problem 1|(aj, L, b)| }_ C;

This subsection establishes the following result.
Theorem 2 Problem1|(aj, L, b)|)_ Cj is strongly NP-hard.

Given an instance of 3- PARTITION as specified in Sect. 3,
we construct the following instance 7, of the decision version
of problem 1|(a;, L, b)|) C;. Let the common exact time
delay L = E and the common second-operation size b =
min;—1, . 34 e;. There are 4qg + w (with w = 16q2E)j0bs in
three job sets: 3¢ small jobs in [J;, which we call partition
jobs, g identical medium jobs in 7>, which we call division
jobs, and w identical large jobs in 73, which we call accessory
jobs. More specifically,

Ji={j:aj=¢;,j=1,..., 3q}, (partition jobs)
Jzz{Jj taj =E+1,j=3¢+1,..., 4q}, (division jobs)
TJ3={Jj:aj= 32q2E2, j=4q9+1,..., 4q + w}. (accessory jobs)

@ Springer

Journal of Scheduling (2021) 24:209-221

214
¥ B ‘/ a

7NEN T NE

By B,

U] Partition jobs

Fig.3 A “yes” feasible schedule of instance Z, with two types of blocks

Is there a feasible schedule o such that) © C;(0) < y? Here,

w(w+1)
y=qa+Qq+l+w)gpt+—7F—v
and @ = 2E + b+ 1 and y = 32¢g°E> + E + b are the
lengths of a division and accessory job, respectively, while
B = 3E + b+ 1 is the length of a typical block of interest to
be specified below.

First, suppose 3- PARTITION has a solution as specified in
Sect. 3. Let us construct a “yes” feasible schedule as follows:
it starts with ¢ contiguous blocks, followed by w contiguous
accessory jobs as single-job blocks. Each of the first g blocks
consists of one division job and three partition jobs of indices
of Iy fork = 1, ..., g; the first operations of the three par-
tition jobs are scheduled in the time lag of the division job,
which implies that each of these blocks has a fixed length of
B. We illustrate the whole schedule in Fig. 3.

Since each division job has a length of «, the completion
time of the division job in block k is equal to o + (k — 1),
which implies that the total completion time of the first ¢

division jobs is o + q("; D g. Similarly, the total completion
w(w+1)
2

time of the last w accessory jobs is w(gB) + y, given
y is the length of a single accessory job. On the other hand,
the total completion time of the three partition jobs in block &
is less than 3kB(k = 1, ..., q). Hence, the total completion
time of all partition jobs is less than M(Z’)ﬂ). Therefore,
the total job completion time) | C; of the whole schedule is
less than y.

Next, we show that, if there is an optimal schedule o for
problem 1[(a;, L,b)| Y C; with)~ Cj(o) < vy, then 3-
PARTITION must have a solution. First, we can easily verify
the following:

Claim 1 No two accessory and/or division jobs can be inter-
leaved with each other, while an accessory job or a division
job can be interleaved with any two partition jobs, but with
at most three partition jobs.

Claim 2 According to Lemma 1, in any optimal schedule, any
block of one division job and/or one or more partition jobs
must be scheduled before any block of a single accessory job.

Now let us verify the following claim:

@ Springer

B Division jobs

B Accessory jobs

Claim 3 An accessory job is not interleaved with any parti-
tion job(s) in any optimal schedule.

Given any schedule o, assume an accessory job is interleaved
with a single partition job. Let us break the block into two
single-job blocks, starting (at the starting time of the orig-
inal block) with partition job immediately followed by the
accessory job. The partial schedule o’ (if any) after the origi-
nal block is pushed backwards by E + b. Let us calculate the
change of the total job completion time. The completion time
of the partition job decreases by 32¢%E?2, while that of the
accessory job increases by less than % +b. Since the comple-
tion time of each job in partial schedule ¢’ increases by E +b,
the total completion time of these jobs increases by at most
(E +b)(4q + w — 2), which s less than 32¢?E? — (3£ + b).
Therefore, schedule o cannot be optimal. Note that if an
accessory job is interleaved with more than one partition job
(actually at most three according to Claim 1 above), breaking
the block into two and re-scheduling the block of partition
job(s) just before the block of a single accessory job will
decrease the total job completion time even more than in the
previous case with one partition job.

As aresult of Claims 1-3 above, all w accessory jobs will
be scheduled as single-job blocks at the end of any optimal
schedule.

If 3- PARTITION has no solution, then 3¢g partition jobs
and ¢ division jobs cannot be processed to finish by time g8
(Orman and Potts 1997), which implies that the remaining @
accessory jobs will each be completed at least one time unit
later than in the “yes” schedule we constructed earlier when
3- PARTITION had a solution. That is, the total completion
time of these jobs will be at least w = 16¢E time units
greater compared with w (g 8) + M y . Together with w >
ga + (2q + 1) gpB , this implies that Y~ C; (o) > .

4.3 Problem 1|(a, L, bj)| }_ C;

This problem looks very similar to the one we considered in
the preceding section. One might be tempted to use some kind
of symmetry (by viewing the time dimension in an opposite
direction) to claim strong NP-hardness of the current problem
based on Theorem 2. Unfortunately, our objective function of
>cC j» instead of Cpy,x, prevents a potential use of such sym-

Journal of Scheduling (2021) 24:209-221

215

7] Partition jobs

Fig.4 A “yes” feasible schedule of instance Z3 with two types of blocks

metry. Nonetheless, our current problem is indeed strongly
NP-hard, as we show below.

Theorem 3 Problem1|(a, L, bj)|Y_ Cj is strongly NP-hard.

Given an instance of 3- PARTITION as specified in Sect. 3,
we construct the following instance Z3 of the decision
version of problem 1|(a, L, b;)|) C;.Letthe common first-
operation size a = min;—1,._ 3, ¢; and the common exact
time delay L = E. There are 5 + w jobs in two job sets: 3¢
small jobs in Ji, which we call partition jobs, and 2q + @
(withw = 9¢°A and A = 12¢*E) identical large jobs in 7>,
which we call division jobs. More specifically,

JNi={j:bj=ej,j=1,..., 3q}, (partition jobs)
D={Jj:bj=A,j=3q+1,...,5¢ + w}. (division jobs)

Is there a feasible schedule o such that)~ C;(o) < y? Here,

y=39qRE+a)+ 3qg—1+w)qB
G+ow)(g+w+1)
+ 5 o,

and o = E + A + a is the length of each division job, while
B =2E + A + a is the length of a typical block of interest
to be specified below.

First, suppose 3- PARTITION has a solution as specified in
Sect. 3. Let us construct a “yes” feasible schedule as follows:
it starts with g contiguous blocks, followed by g + @ con-
tiguous division jobs as single-job blocks. We illustrate the
whole schedule in Fig. 4.

Each of the first g blocks consists of one division job and
three partition jobs of indices of I} for k = 1,...,q; the
second operations of the three partition jobs are scheduled
in the time lag of the division job, which implies that each
of these g blocks has a fixed length of 8. Since each such
block ends with a division job, the completion time of the
division job in block k is equal to k8, which implies that the
total completion time of the first ¢ division jobs is q(!12_+1) B.
Similarly, the total completion time of the last g + w division
jobs is (¢ + w)(gpB) + W(x, given that « is the
length of a single division job. On the other hand, the total
completion time of the three partition jobs in block k is less
than3(kg — A) =3(k— DB+ RE+a) (k=1,...,9).
Hence, the total completion time of all partition jobs is less

“ Blyg

B Division jobs

than 3¢g(2E + a) + Mﬂ. Therefore, the total job com-
pletion time of the whole schedule is less than the sum of
these three terms, which is equal to y.

Next, we show that, if there is an optimal schedule o for
problem 1[(a, L, bj)|)" C; with)~ Cj(0) < vy, then 3-
PARTITION must have a solution. We can easily verify the
following, which imply that all 3¢ partition jobs are sched-
uled before at least w division jobs as single-job blocks in o

Claim 4 No two division jobs can be interleaved with each
other, while a division job can be interleaved with any two
partition jobs, but with at most three partition jobs. In any
case, the division job always starts and finishes last in an
interleaved block.

Claim 5 In any optimal schedule, if a block consists of only
partition jobs, it must be scheduled before any block contain-
ing a division job.

Claim 6 When a division job is interleaved with one or more
partition jobs, the interleaved block must be scheduled before
any block of a single division job.

Suppose 3- PARTITION has no solution; we are to derive a
contradiction that) C;(o) > y. Let be the time when all
3¢ partition jobs and the first 2¢q division jobs are completed
in 0. Let us consider two cases.

Case 1.7 > 2qa+q E. Thisimplies that the last w division
jobs will each be completed at least one time unit later than in
the “yes” schedule we constructed earlier when 3- PARTITION
had a solution. That is, the total completion time of these jobs
will be at least w more compared with wg (a +) + Ma.
Note that

(g +w)(q +w+1)a q(q+1)a+w(w+1)a

2 = @qet 2 @
(D
which together with
1
0 =924 = 3gQE +a) + 3 — Dgp + L9,

2

implies that)~ C;j(0) > y.

@ Springer

216

Journal of Scheduling (2021) 24:209-221

Case 2. T < 2qa + gE. According to the last part of
Claim 4 above, interleaving any partition job J; € J; into
a block will increase the length of the block by at least e;.
Therefore, the total length of all blocks of the 3¢ partition jobs
and the first 2¢ division jobs is at least 2ga + g E > t if all
partition jobs are interleaved with division jobs. This implies
that in schedule o there is no interleaved block consisting of
only partition job(s), since such a block would additionally
contribute to t by at least E.

On the one hand, all partition jobs (in fact, at most three,
according to Claim 4 above) interleaved with the kth division
job have to be finished before the second operation of the
division job starts (at a time no earlier than (k — 1)A). On
the other hand, at least one partition job has to be interleaved
with a division job after the gth one, because 3- PARTITION
has no solution. We conclude that the total completion time
of all the 3¢ partition jobs is at least A 43 Zzzl (k—1A =
A+ WA. As for the other jobs, the first 2g division
jobs have a total completion time at least Wa and the
remaining division jobs have a total completion time at
least wg (a+B)+ wa. Consequently, with (1) we obtain
a contradiction:

Y Cio)—y=A+ q(3q2+ Do

—q¢Bg — 1B —3¢QE +a)
1
q(3q2+)(E ta)

—qBg +2)2E +a) > 0.

A+

3g(g — 1)
2
= A+

4.4 Problem 1|(p;, pj,)| D_ G

This subsection establishes the following result.

Theorem 4 Problem 1|(pj, pj, pj)| Y. C; is strongly NP-
hard.

Given an instance of 3- PARTITION as specified in Sect. 3,
we construct the following instance Z4 of problem 1|(p;,
Pj,Pj) > Cj. There are 3g + v + w jobs in three job sets
with v = 8¢, w = v + 2¢ + 120¢2, and y = g E*:

T :{J]j:a1j=L]j=b1j=U(V€j+j),

j=1,...,3q}, (partition jobs)
J={hj:aj=Lyj=0byj =3v(yE+9q) +],

j=1,..., 0}, (division jobs)
J3={J3ja3j = L3j =b3; =3v(yE+99)/4+],

j=1,...,v}. (accessory jobs)

To facilitate our calculation, we introduce the following 3¢
shadow jobs:

Jo={Jajrasj=Lsj=0b4; =0, j=1,...,3q).

@ Springer

Please note that shadow jobs should not be scheduled in any
feasible schedule.

Denote by D the total job completion time of all @ divi-
sion jobs in the following partial schedule o7: the jobs in />
are processed as single-job blocks from time O according to
sequence (Ja, ..., Jop) without idle time between succes-
sive blocks.

Denote by S the total job completion time of all shadow
jobs in the following virtual schedule o,: start with schedule
o1, process all shadow jobs in the time lags of the first ¢
division jobs, each time lag containing exactly three shadow
jobs.

Denote by A the total job completion time of all accessory
jobs in the following partial schedule o7: start with schedule
o1, each accessory job J3; is processed in the time lag of
division job Jp 44 for j =1,..., v.

Leta = 3v(y§ + 3¢g), which is a (strict) upper bound
on the length of any partition job. The decision version of
problem 1|(p;, pj, pj)| Y C; is: does there exist a schedule
o of all jobs such that)~ C;(0) < y, where y = D+ S +
A+ 6qa?

Suppose 3- PARTITION has a solution as specified in
Sect.3. We first construct schedule o, as above. Then, we
construct schedule o of all jobs by adding all partition jobs
into oy according to the 3-job groups {I; : k = 1,...,¢q},
processing the three jobs {J1; : j € I} without interleav-
ing in the time lag of division job Jy; fork =1,...,q. We
illustrate the whole schedule in Fig.5.

Consider a 3-job group of partition jobs in groups { I : k =
1,...,g}. If the group of three jobs are scheduled without
interleaving from time 0, then the total job completion time
of the group is less than 6«, where « is known to be an
upper bound of the length of any partition job. The total job
completion time of all partition jobs in schedule o equals
the total job completion time of all shadow jobs in virtual
schedule o plus that of ¢ 3-job groups each scheduled from
time 0, which is therefore less than S + 6g«. Therefore,
> Cj(c) <D+A+(S+6ga)=y.

Now we show that if there is an optimal schedule o such
that " C j(0) <y, then 3- PARTITION has a solution.

Given that the operations of each (non-shadow) job have
a different size from those of any other job, if two jobs are
interleaved, then both operations of one of these two jobs are
processed entirely within the time lag of the other job. Apart
from the shadow jobs, the partition jobs have the smallest
operations, while the division jobs have the biggest opera-
tions. According to the sizes of job operations, we can easily
establish the following claims in any feasible schedule:

Claim 7 At least 2 partition jobs or 1 accessory job can be
scheduled within the time lag of any division job. On the
other hand, at most 3 partition jobs or 1 accessory job can
be scheduled within the time lag of any division job.

Journal of Scheduling (2021) 24:209-221

217

7] Partition jobs

Fig.5 A “yes” feasible schedule of instance Z4 with three types of blocks

Claim 8 No partition job can be scheduled within the time
lag of any accessory job.

Claim9 If 3 partition jobs {J1;,, J1i,, J1i3} are scheduled
within the time lag of a division job, then we must have
€ + €i, + €i3 <E.

If a partition job or an accessory job forms a single-
job block, then such a job is said to be independent. From
Claims 7 and 8 above, all 3¢ partition jobs can be scheduled
within the time lags of 2¢q division jobs and all v acces-
sory jobs can be scheduled within the time lags of v division
jobs. Therefore, according to Lemma 1 in Sect.3, no parti-
tion job or accessory job should be scheduled after the first
2g + v division jobs in optimal schedule o. We claim that
there is no independent job in schedule o. In fact, if this
is not the case, then we reschedule the last independent job
to a time lag of the first 2¢g + v division jobs, each hav-
ing a length at most 81 := 9v(yE + 9¢q) + 3(2qg + v),
which will increase the completion time of this job by at
most (2g + v) 81 and, at the same time, decrease the comple-
tion time of each of the last w — (2¢ + v) division jobs by at
least 3v (y% + 1), a lower bound of the length of any parti-
tion job, while the completion time of any other job cannot
increase. Since (0 —(2¢ +v)) (3v (v 5 + 1)) > Qg +v)pi,
the optimality of schedule o is contradicted.

Therefore, in o all partition and accessory jobs are sched-
uled within time lags of division jobs, which enables us to
easily verify based on Lemma 1 that all accessory jobs are
scheduled after any partition job, and all accessory jobs and
division jobs are scheduled in the order of increasing sizes
of their operations in schedule o.

We further claim that all partition jobs in o occupy the
time lags of at most ¢ division jobs, which implies that
the time lag of each of these ¢ division job accommo-
dates exactly 3-partition jobs, which (together with Claim 9
above) in turn implies that 3- PARTITION has a solution. Sup-
pose to the contrary that our claim is false and the partition
jobs occupy the time lags of at least ¢ + 1 division jobs
in schedule o, which together with Claim 7 listed above
implies that, in comparison with partial schedule o> con-
structed earlier, each accessory job in o is delayed by at least
Bo = Yv(yE + 9q) + 3, which is a lower bound on the
length of any division job, and hence, the total completion
time of all accessory jobs in o is increased by at least vfy.

B Division jobs

. v
v w-q-v

B Accessory jobs

Since vBy > 6g« and noticing that the total completion time
of all partition jobs in ¢ is bounded below by S, we obtain
> Cj(o) = D+(A+vBp)+S > y,whichisin contradiction
to our assumption that)~ C; (o) < y.

5 Polynomially solvable problems

In this section, we establish that, apart from those problems
identified in the preceding section as strongly NP-hard prob-
lems, all remaining problems are polynomially solvable. To
this end, we provide a polynomial-time algorithm for a prob-
lem in each subsection. Let the job setbe J = {1, ..., n}.

5.1 Problem 1|(p, p, bj)| }_ C;

Fix any optimal schedule o and let us derive some properties
for o. First, we observe that any block of o consists of at most
two jobs. We have the following immediate observation.

Observation 1 If a job can be interleaved with another job,
then the two jobs as a block have a smaller total job com-
pletion time than processing them one after another as two
single-job blocks.

We call the two jobs an interleaved pair, denoted by (j, k),
and job j the head of the pair and job k the fail of the pair.
The following lemma is then immediate:

Lemma 2 Job j, as the head of an interleaved pair, has b; <
p. The heads of any two interleaved pairs can be swapped
without changing the total job completion time. O

The following lemma describes a basic structure of sched-
ule o, which is further refined in Lemma 4 according to
Lemma 1.

Lemma 3 In optimal schedule o all single-job blocks are
scheduled after all interleaved pairs.

Proof Suppose to the contrary that job j is scheduled just
before an interleaved pair (j’, k) in o. Then, the makespan
of the partial schedule of these three jobsis Sp+b; + by. Let
us improve the partial schedule while keeping its makespan
unchanged, which directly contradicts the optimality of 0. In
fact, if we form a new interleaved pair (', j) followed by job
k, then the total completion time is decreased by p +b;. 0O

@ Springer

218

Journal of Scheduling (2021) 24:209-221

Partition the job set 7 into two subsets S = {j : b; < p}
and B = {j : b; > p}. According to Observation 1 and
Lemmas 2 and 3, we have the following description for the
structure of optimal schedules.

Lemma 4 Optimal schedule o consists of a sequence of

blocks of the following form:

(G 0 - os Gk JO s Gkt 1o - -0 Jkte) -

where k, £ > 0 are two integers, {j]’,...
ijf"'fbjkfb' < ... <b;

JJiy € S, andbj, <
Furthermore, if

Jk+1 Jk+e°
Jk+1 € S, then £ = 1 and B = (; otherwise, there is 0 <
s < k such that bj, < min{b-lr, ...,bjA(}, and {ji,..., js}U
{jl/,...,jli}=Sand{js+1,...,jk+g}=B. O

If B = {J, an optimal schedule can be found easily by max-
imizing the number of interleaving pairs. If B # #, according
to Lemma 4, we need to find the integer value s. Note that
s must satisfy max{0, | (|S| — |B])/2]} < s < [|S]/2], and
hence, s can be found easily by enumeration. Formally, the
following algorithm finds an optimal schedule.

Algorithm 1

Step 1: Reindex all jobs if necessary so that by < by <
- -+ < by,. Partition the job set 7 into two subsets S = { :
bj < pland B ={j:b; > p}. Lets; = max{0, | (|S|—
|B1)/21}, 85 = |n/2] and 55 = [n/2].

Step 2: If B = (J, thensets =), H ={s+1,...,n}

and T = {1,...,s}; perform Step 3 and stop with
optimal schedule o (s). Otherwise (B # #), iteratively
fors = s),...,s1,set H = {s + 1,...,|S|} and

T = {1,...,s} U B and perform Step 3, and then stop
with optimal schedule o (s*), where s* = arg min{ X (s) :
o 8h)

Step 3 (subroutine): (a) Interleave each job in H with
each of the first | H| jobs in 7 and schedule the | H| inter-
leaved pairs in order of increasing indices in 7', and then
append the remaining |7'| — | H | jobs in T to the end of the
schedule in order of increasing indices in T'; (b) record
the resulting full schedule as o (s) and the corresponding
total completion time as X (s).

s =S1,.

Theorem 5 Algorithm 1 generates an optimal schedule in
O (nlogn + n?) time for problem 1(p, p, b)) Cj. O

5.2 Problem 1|(a;, p, p)|) _ Cj

This problem is seemingly symmetric to the one we have
dealt with in the preceding section. However, as we point
out at the beginning of Sect. 4.3, such a symmetry does not
hold due to the asymmetric nature of our objective func-
tion and hence Algorithm 1 cannot be directly applied here.

@ Springer

Nonetheless, the algorithm can be slightly modified for our
new problem.

First, Observation 1 still holds here. With the same notion
of an interleaved pair there, we have the following lemma,
symmetric to Lemma 2.

Lemma 5 Jobk, as the tail of an interleaved pair, has ap < p.
The tails of any two interleaved pairs can be swapped without
changing the total job completion time. O

As before, we fix any optimal schedule o and derive some
properties for o. It can be verified that Lemma 3 still holds
here. Now partition the job set 7 into two subsets S’ = {j :
aj < p}and B" = {j : a; > p}. According to Observation 1
and Lemmas 5 and 3, we have the following description for
the structure of optimal schedules.

Lemma 6 Optimal schedule o consists of a sequence of
blocks of the following form:
((jla j{)v e (jks j]i)s jk+11 DR jk+€) s

where k,£ > 0 are two integers, {j{,..., j;} € S, and
aj <aj, <---<aj <aj,, <--=<aj,, Furthermore,
if jyi1 € S, thent = 1 and B' = {; otherwise, there is 0 <
s < k such thataj, < min{a.{, .. "a.ilﬁ}’ and {ji,..., js}U
{j{,...,j,é}=S/and{js+1,...,jk+g}=B/. O

Now we can provide a modified version of Algorithm 1
to find an optimal schedule for problem 1|(a;, p, p)|Y_ C;
as follows.

Algorithm 2

Step 1: Reindex all jobs if necessary so that a; <

ay < --- < ay. Partition the job set J into two sub-
sets S = {j :aj < pland B = {j : a; > p}.
Let s; = max{0, [(|S"| — |B'])/2]}, s5 = [n/2] and
sy = n/2].

Step 2: If B’ = (), thensets =57, T ={s+1,...,n}
and H = {1,...,s}; perform Step 3 and stop with
optimal schedule o (s). Otherwise (B’ # @), iteratively
fors = s),....s1,set T = {s +1,...,15} and

H = {1,...,s} U B’ and perform Step 3, and then stop
with optimal schedule o (s*), where s* = arg min{ X (s) :
S =S1,...,8)

Step 3 (subroutine): (a) Interleave each job in 7' with
each of the first |T'| jobs in H and schedule the |T'| inter-
leaved pairs in order of increasing indices in H, and then
append the remaining | H|—|T | jobs in H to the end of the
schedule in order of increasing indices in H; (b) record
the resulting full schedule as o (s) and the corresponding
total completion time as X (s).

Journal of Scheduling (2021) 24:209-221

219

Theorem 6 Algorithm 2 generates an optimal schedule in
O (nlogn + n?) time for problem l|(aj, p, p)IY_Cj. O

5.3 Problem 1|(p, L, p)| X_ (;

In this problem, all operations are of equal length. The algo-
rithm developed by Orman and Potts (1997) for problem
1|(p, L, p)|Cmax can be adapted here to find an optimal solu-
tion to this problem. For the sake of completeness, we restate
their algorithm below.

Algorithm 3 Initialization: Letn = |L/p|andk = [n/(n+
D].

Step 1: Form k blocks of jobs, each consisting of 1 + 1
jobs with their first operations processed contiguously.
Schedule all k£ blocks contiguously.

Step 2: Immediately after the k blocks, process the
remaining jobs (if any) with their first operations sched-
uled contiguously.

Using similar arguments to those in Orman and Potts
(1997), one can easily verify that Algorithm 3 identifies an
optimal schedule. Hence, we have the following theorem.

Theorem 7 Algorithm 3 generates an optimal schedule for
problem 1|(p, L, p)|Y_ Cj in O(n) time. O

5.4 Problem 1|(a, L, b)| > C;

This problem is more general than the one considered in
the preceding section. However, we make it a bit easier by
assuming that the integer parameters a, b and L are fixed. We
assume that max{a, b} < L < (n— 1) max{a, b}. Otherwise,
the problem becomes trivial: the schedule of either n single-
job blocks or one n-job block is optimal.

As can be seen from the solution approach below, we can
assume a > b without loss of generality. We see that all
jobs are identical, and for convenience we index the jobs
according to their sequence of being processed. Let us apply
the idea of pattern used in Ahr et al. (2004) and Baptiste
(2010) for our analysis. For any partial schedule of jobs
{1,...,k} (1 < k < n), the pattern p = p(a,L,b) =
(p[1], ..., p[L]) of the partial schedule is defined as the L-
element sequence of O and 1, which indicates that the machine
is idle or busy, respectively, during the L time slots of the
time lag of job k. That is, we use patterns to describe the
status of machine during the time lag of the last job in the
partial schedule. It is easy to see that, in any such pattern,
all I’s are in blocks of length b and each such block is fol-
lowed by at least (a — b) 0’s. Let P(a, L, b) be the set of
all patterns p = p (a, L, b). The total number of patterns is
bounded: |P(a, L,b)| < y = aiT fora > 1 (Ahr et al.
2004).

When a job is added to a partial schedule, the pattern of
the original partial schedule becomes the pattern of the new
partial schedule. The scheduling decision for scheduling the
additional job is then equivalent to a pattern selection. A
partial schedule of one job has a pattern pg = (0, . .., 0) with
the entire time lag idle. When we append (not interleave) a
job to a partial schedule of pattern p, the pattern of the new
partial schedule becomes py, indicating that the makespan
increases by a + L + b, which we define as the distance from
pattern p to pattern po. On the other hand, if the additional
job is interleaved into the existing partial schedule, resulting
in a new pattern ¢, so that its first operation is processed from
slot L —a + 1 to slot A of the time lag of the last job (A > a),
then

i=1,...,L—2A;
i=1,...,a.

{q[i] = pli + 21, 2

plr—a+il=0,

Consequently, the makespan of the new partial schedule is
that of the original partial schedule plus A. Therefore, we
define the distance from pattern p to pattern g (¢ # po) as
Apgy = min A, where A satisfies (2) and A, = +o0if no A
can satisfy (2). Hence, distance from one pattern to another
can be calculated in O(L?) time.

Any given schedule corresponds to a unique path with n
vertices of patterns and any path with n vertices of patterns
represents a unique schedule. If partial schedule {1, ..., k}
has pattern p and addition of job k + 1 results in pattern g,
then we have Cyy1 = Cr + Apy, where Cy and Cyqq are
completion time of job k and k + 1, respectively. Initially,
we have C; = a + L + b. The total job completion time
of a schedule can therefore be calculated by accumulating
distances between consecutive patterns.

Next, we will show that all paths with n vertices of patterns
can be fully enumerated in polynomial time when a, b, L are
fixed. Similar to Baptiste (2010), we define an elementary
path as a sequence of different vertices and an elementary
cycle as [x, o, x] where x is a vertex and o is an elementary
path. A dominant path is a path of n vertices of patterns in
which all identical elementary cycles (if any) are consecutive.

Lemma7 For problem 1|(a, L, b)| ZC]-, there exists an
optimal path of patterns that is a dominant one.

Proof Suppose there is an optimal path that contains an
identical elementary cycle [x, o, x], which appears more
than once in the path but not consecutive. More specif-
ically, let [m1, x, 0, x, m2, x, 0, x, m3] be an optimal path,
where 7y, m> and 73 are some paths with |7| > 0. Then
it is easy to verify that either [, x, 72, X, 0, x, 0, x, W3] or
[71, x, 0, x, 0, x, m, x, w3] will decrease the total job com-
pletion time (which is impossible due to optimality of the
original path), unless all three paths of n vertices of patterns,

@ Springer

220

Journal of Scheduling (2021) 24:209-221

[m1,x, M0, x,0,x,0,x,n3],[71, %, 0,x,0,x, 72, X, t3]and
[m1, x, 0, x, 2, X, 0, x, W3], have the same total job comple-
tion time. We have therefore constructed an optimal path that
is dominant. O

The following two lemmas are proved by Baptiste (2010).
We list them here for the sake of completeness.

Lemma 8 (Baptiste 2010) An optimal and dominant path has
the following structure:

[nla (Ul)ql s T2, (0'2)(]2, ceey Thy (ah)qlla T[h_l,-]]) (3)

where (a) h < v = yY, (b)n; (j =1,...,h + 1) and
o; i = 1,...,h) are elementary paths and the last vertex
of m; is also the last vertex of o; (i = 1,...,h), (c) q; is
a nonnegative integer value, which stands for the repeating
times of o; (i = 1, ..., h)in the optimal dominant path, and
(d) SI il + Y0y ailoil = n.

Let us call [7y, 01, 712, 02, ..
bone of the path defined by (3).

.y Th, Op, Thy1] the back-

2043

Lemma 9 (Baptiste 2010) There are at most v distinct

backbones, where v = y?.

Lemma 10 Given a backbone [y, 01, ..., 7y, Op, Thitl,
the optimal value of q, ..., qy for [m1, (1)1, 2, (02)%2,
ooy T, (o), Th41] can be found in O (") time. O

Because /4 and the total number of backbones are bounded
by fixed values when a, b, L are fixed, we have the following
theorem.

Theorem 8 Anoptimal schedule of problem 1|(a, L, b)|)" C;
can be generatedin O (n") time, where h is a fixed value given
that a, b, L are fixed. O

6 Concluding remarks

In this paper, we have drawn a full complexity picture for
single-machine scheduling of coupled tasks of exact time
delays in between, with the objective of minimizing the total
of job completion times. We hope our research will serve
as a first step to filling in the blanks on research of the basic
single-machine scheduling of coupled tasks with an objective
function other than the makespan.

Acknowledgements This work is supported to the first author in part
by a Visiting Professorship of the School of Management, Fudan Uni-
versity, and to the second author in part by the National Natural Science
Foundation of China (Grant No. 71971065 and No. 71531005).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

@ Springer

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Ahr, D., Bekesi, J., Galambos, G., Oswald, M., & Reinelt, G. (2004).
An exact algorithm for scheduling identical coupled tasks. Math-
ematical Methods of Operations Research, 59, 193-203.

Baptiste, P. (2010). A note on scheduling identical coupled tasks in
logarithmic time. Discrete Applied Mathematics, 158, 583-587.

Bessy, S., & Giroudeau, R. (2019). Parameterized complexity of a
coupled-task scheduling problem. Journal of Scheduling, 22, 305—
313.

Blazewicz, J., Pawlak, G., Tanas, M., & Wojciechowicz, W. (2012).
New algorithms for coupled tasks scheduling: a survey. RAIRO
Operations Research, 46, 335-353.

Condotta, A., & Shakhlevich, N. V. (2012). Scheduling coupled-
operation jobs with exact time-lags. Discrete Applied Mathemat-
ics, 160, 2370-2388.

Elshafei, M., Sherali, H. D., & Smith, J. C. (2004). Radar pulse inter-
leaving for multitarget tracking. Naval Research Logistics, 51(1),
72-94.

Farina, A., & Neri, P. (1980). Multitarget interleaved tracking for
phased-array radar. IEE Proceedings F (Communications, Radar
and Signal Processing), 127(4), 312-318.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G.
(1979). Optimization and approximation in deterministic sequenc-
ing and scheduling: A survey. Annals of Operations Research, 5,
287-326.

Huo, Y., Li, H., & Zhao, H. (2009). Minimizing total completion time
in two-machine flow shops with exact delays. Computers & Oper-
ations Research, 36(6), 2018-2030.

Hwang, F. J., & Lin, B. M. T. (2011). Coupled-task scheduling on
a single machine subject to a fixed-job-sequence. Computers &
Industrial Engineering, 60(4), 690-698.

Izquierdo-Fuente, A., & Casar-Corredera, J. R. (1994). Optimal radar
pulse scheduling using a neural network. IEEE International Con-
ference on Neural Networks, 7, 4588-4591.

Khatami, M., Salehipour, A., & Cheng, T. C. E. (2020). Coupled task
scheduling with exact delays: Literature review and models. Euro-
pean Journal of Operational Research, 282(1), 19-39.

Leung,J. Y. T.,Li, H., & Zhao, H. (2007). Scheduling two-machine flow
shops with exact delays. International Journal of Foundations of
Computer Science, 18(02), 341-359.

Orman, A. J., Potts, C. N., Shahani, A. K., & Moore, A. R. (1996).
Scheduling for a multifunction phased array radar system. Euro-
pean Journal of Operational Research, 90(1), 13-25.

Orman, A.J., & Potts, C. N. (1997). On the complexity of coupled-task
scheduling. Discrete Applied Mathematics, 72, 141-154.

Orman, A. J., Shahani, A., & Moore, A. (1998). Modelling for the con-
trol of acomplex radar system. Computers & Operations Research,
25(3), 239-249.

Shapiro, R. D. (1980). Scheduling copuled tasks. Naval Research Logis-
tics Quarterly, 28, 489-497.

Simonin, G., Darties, B., Giroudeau, R., & Konig, J. C. (2011).
Isomorphic coupled-task scheduling problem with compatibility

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Scheduling (2021) 24:209-221

221

constraints on a single processor. Journal of Scheduling, 14, 501—
509.

Yu, W., Hoogeveen, H., & Lenstra, J. K. (2004). Minimizing makespan
in a two-machine flow shop with delays and unit-time operations
is NP-hard. Journal of Scheduling, 7, 333-348.

Zhang, H., Xie, J., Ge, J., Zhang, Z., & Zong, B. (2019a). A hybrid
adaptively genetic algorithm for task scheduling problem in the
phased array radar. European Journal of Operationsl Research,
272, 868-878.

Zhang, H., Xie, J., Ge, J., Shi, J., & Lu, W. (2019b). Optimization model
and online task interleaving scheduling algorithm for MINO radar.
Computers & Industrial Engineering, 127, 865-874.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Scheduling coupled tasks with exact delays for minimum total job completion time
	Abstract
	1 Introduction
	2 Literature review
	2.1 Single-machine problems
	2.2 Shop problems
	2.3 Additional constraints and more

	3 Problem description and preliminaries
	4 Proofs of NP-hardness
	4.1 Problem 1|(p, Lj, p)|sumCj
	4.2 Problem 1|(aj, L, b)|sumCj
	4.3 Problem 1|(a, L, bj)|sumCj
	4.4 Problem 1|(pj, pj, pj)|sumCj

	5 Polynomially solvable problems
	5.1 Problem 1|(p, p, bj)|sumCj
	5.2 Problem 1|(aj, p, p)|sumCj
	5.3 Problem 1|(p, L, p)|sumCj
	5.4 Problem 1|(a, L, b)|sumCj

	6 Concluding remarks
	Acknowledgements
	References

