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Abstract 

Hypothesis-free Mendelian randomization studies provide a way to assess the causal relevance of a trait 

across the human phenome but can be limited by statistical power, sample overlap or complicated by 

horizontal pleiotropy. The recently described latent causal variable (LCV) approach provides an alternative 

method for causal inference which might be useful in hypothesis-free experiments across human 

phenome. We developed an automated pipeline for phenome-wide tests using the LCV approach 

including steps to estimate partial genetic causality, filter to a meaningful set of estimates, apply 

correction for multiple testing and then present the findings in a graphical summary termed causal 
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architecture plot.  We apply this pipeline to BMI and lipid traits as exemplars of traits where there is strong 

prior expectation for causal effects, and to dental caries and periodontitis as exemplars of traits where 

there is a need for causal inference. The results for lipids and BMI suggest that these traits are best viewed 

as contributing factors on a multitude of traits and conditions, thus providing additional evidence that 

supports viewing these traits as targets for interventions to improve health.  On the other hand, caries 

and periodontitis are best viewed as a downstream consequence of other traits and diseases rather than 

a cause of ill health.  The automated pipeline is implemented in the Complex-Traits Genetics Virtual Lab 

(https://vl.genoma.io) and results are available in (https://view.genoma.io). We propose causal 

architecture plots based on phenome-wide partial genetic causality estimates as a new way visualizing 

the overall causal map of the human phenome.  
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Introduction 

Associations between causal risk factors and disease can suggest new ways to improve health. 

Conventional epidemiological studies may uncover correlations but cannot easily disentangle non-causal 

or reverse-causal relationships where interventions on the putative risk factor will be ineffective. In this 

article, risk factors are described as “upstream” if they have effects on disease, or “downstream” if the 

putative risk factor is a marker of or a consequence of the disease.  

Dental diseases are good examples of complex diseases which are associated with a range of poor health 

outcomes and are hypothesized to be both a cause and consequence of ill health(1), but these associations 

could be confounded  due to limitations of conventional epidemiological methods and may not reflect 

true causal relationships. In the context of recent calls to prioritize prevention and early interventions, 

address the global health problem of dental diseases and overcome isolation between dentistry and 

medicine(2, 3), there is a need to locate dental diseases in the context of causal flow through the human 

phenome. Conversely, lipid biomarkers such as low-density lipoprotein cholesterol (LDL-C) are good 

examples of complex traits which are known to have effects on human health including cardiovascular 

disease(4, 5) and may act as a positive control for contemporary epidemiological methods which aim to 

identify causal relationships. 

In recent years, various techniques have been proposed which use genetic data to assess causality in 

observational studies(6) and these are particularly valuable in situations where large scale interventional 

studies would be impractical or unethical. One example is Mendelian Randomization (MR), an analytical 

paradigm which uses genetic variants as proxies for a putative risk factor to test for causal effects on an 

outcome(7). In dental epidemiology, this method has been used to examine the effects of potentially 

modifiable risk factors like Vitamin D and body mass index on caries and periodontitis(8, 9), to assess the 

possible impact of periodontitis on hypertension(10) and undertake bi-directional analysis to test for 
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causal relationships between dental diseases and cardio-metabolic traits in both directions(11). To date, 

these studies have only explored on a small number of traits and the bespoke experimental design used 

for each study makes it difficult to compare estimates for different diseases. Dental diseases may 

therefore serve as a model for complex traits where it would be helpful to perform a causal inference 

analysis in a systematic manner across the whole phenome.  

There are practical challenges meaning that MR may not be the preferred approach for a phenome-wide 

causal experiment in this context.  At its heart, MR experiments rely of vertical pleiotropy, that is to say a 

genotype with effects on trait A is associated with trait B because trait A affects trait B. It can be difficult 

to distinguish this from horizontal pleiotropy, where a genetic variant has biological effects on both trait 

A and trait B. Many genetic variants have horizontally pleiotropic effects, leading to false positive findings 

or over-estimation in effect sizes at true positive associations in classical MR experiments (11, 12). Several 

estimation techniques have been developed which use the distribution of causal effect estimates across 

multiple variants in an attempt to detect and account for (13-15) or at least reduce the impact of 

horizontal pleiotropy (16). These methods may however introduce additional assumptions about the 

distribution of effect estimates(17, 18) and run into problems when these assumptions are not met(19), 

suggesting each estimate produced using these methods may need interpretation on a case by case basis 

to assess whether the assumptions are reasonable. In addition, MR experiments can produce spurious 

findings due to sample overlap (20) which can be problematic in phenome-wide studies, as the same 

underlying population in a consortium or biobank may contribute to the available genome-wide 

association studies (GWAS) for many different traits. Finally, MR experiments use information from a small 

number of genetic variants and discard information from most of the genome, meaning that statistical 

power to detect causal relationship may be limited for a phenome-wide experiment for traits such as 

dental diseases which have relatively few robust single variant association signals. 
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An alternative analytical paradigm – the latent causal variable (LCV) method – has recently been proposed. 

LCV uses information aggregated across the whole genome to infer potential causal relationships between 

complex human traits and diseases(21). In conjunction with large-scale genetic association studies made 

possible by resources such as UK Biobank(22) and automated pipelines for quality control and analysis 

such as the Complex-Traits Genetics Virtual Lab (CTG-VL)(23), this method now provides an opportunity 

to evaluate  potentially causal relationships efficiently and at phenome-wide scale. Here we introduce a 

pipeline implemented in CTG-VL to perform a phenome-wide scan across hundreds of traits using the LCV 

method and the visualization of the results using causal architecture plots. We showcase this method 

using publicly available genome-wide association studies (GWAS) data for body mass index, lipid levels, 

dental caries and periodontitis (11). 

 

Methods 

Conceptual overview  

The genetic correlation between two traits represents the correlation in genetic effect sizes at common 

genetic variants across traits(24). The latent causal variable (LCV) approach initially estimates the genetic 

correlation between two traits using a modified linkage disequilibrium score regression technique, which 

can detect and account for sample overlap in genetic association studies(24). Next, when there is evidence 

of genetic correlation, the model fits a single unobserved variable (termed L) which is causal for trait A 

and trait B and that mediates the observed genetic correlation (Figure 1). To distinguish between 

horizontal and vertical pleiotropy, the LCV model compares the correlation between L and trait A with the 

correlation between L and trait B, and estimates a parameter termed genetic causality proportion (GCP). 

Positive values of GCP suggest the presence of vertical pleiotropy where trait A lies upstream of trait B 

and interventions on trait A are likely to affect trait B while negative GCP values indicate that B lies 
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upstream of trait A. GCP values near 0 imply that the genetic correlation between traits A and B is likely 

to be mediated by horizontal pleiotropy (where trait A and trait B are influenced by shared pathways but 

trait A and trait B don’t lie in same pathway) and interventions on traits A or B are less likely to affect the 

other trait. A detailed description of the LCV method is provided in the original publication(21).  

Using the distribution of GCP estimates to infer the causal architecture of a trait. 

If traits A and trait B are swapped, the GCP estimate is unchanged in magnitude but the sign is reversed. 

In an experiment involving all pairwise comparisons between n traits this creates symmetry, which is to 

say for every positive signed GCP estimate observed in the experiment there must be an equal but 

negatively signed GCP estimate corresponding to the same pair of traits but with the order of traits 

reversed. If a randomly selected trait from group n has predominantly positive GCP estimates, this implies 

that the trait is an upstream factor of the majority of other traits in group n. Conversely, if the GCP 

estimates are predominantly negative, this implies that the trait is a downstream factor of most other 

traits in group n and interventions on this trait are less likely to change the other straits in group n.  

We suggest that if two or more target traits are compared against the same panel of anchor traits, then 

differences in the distribution of GCP estimates between those traits provide an indication of which target 

traits may have a greater or lesser causal relevance (assuming GWAS of anchor traits are equally powered 

– see Discussion) for the human phenome, which traits represent upstream determinants of health and 

which are downstream consequences of other traits. We propose an automated pipeline for obtaining 

GCP estimates for trait A (hereafter the target trait) against a shared panel of traits B (hereafter the anchor 

traits) and visualizing the results in a causal architecture plot.  

Pipeline stages and implementation 

All traits conducted in studies of European ancestry that are available in CTG-VL catalogue were selected. 

CTG-VL is a curated resource of genome-wide association (GWA) summary statistics and downstream 
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analysis (23). The complete list of GWA summary statistics and references are available in CTG-VL. Briefly, 

these data were derived from various international genetics consortia and UK Biobank, where the 

inclusion criteria was a nominally significant (P<0.05) single nucleotide polymorphism (SNP) based 

heritability derived from LD-score regression(25). In total, 1389 GWAS are currently available in CTG-VL. 

References for each of these GWAS are available in CTG-VL.  

Traits selection 

As a positive control, the analyses were first performed on GWAS summary statistics for high density 

lipoprotein cholesterol (HDL-C, n=188,577), low density lipoprotein-cholesterol (LDL-C, n=188,578), total 

cholesterol (TC, n=188,579), triglycerides (TG, n=188,580) (26) and body mass index (BMI) (n=339,224) 

(27) where we expected to observe effects of these traits on a multitude of traits and conditions. We then 

showcase this pipeline using GWAS summary statistics of dental caries and periodontitis due to a paucity 

of existing causal evidence. Genetic association data for dental disease traits were taken from genome-

wide association studies which combined clinical data from the GLIDE consortium with genetically 

validated proxy phenotypes from UK Biobank as previously described(11). Data were combined using a z-

score genome-wide meta-analysis weighted by effective sample size. The traits were a) decayed, missing 

and filled tooth surfaces (n=26,792 from nine studies in GLIDE) and dentures (ncases=77,714, 

ncontrols=383,317 in UK Biobank) and b) periodontitis (ncases=17,353, ncontrols=28,210 from seven studies) and 

loose teeth (ncases=18,979, ncontrols=442,052).  

Analysis 

The R version (URL: https://github.com/lukejoconnor/LCV) for the LCV method made available by the 

original authors (21) was implemented in CTG-VL to carry out phenome-wide scans (URL: 

https://vl.genoma.io). LCV models were fitted in a pairwise manner comparing each target trait against 

each of the up to 1,389 anchor traits using the automated implementation of the LCV method in CTG-VL. 

https://vl.genoma.io/
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For the analysis we used genetic variants present in the HapMap3 dataset (28) and LD-scores obtained 

from European ancestry samples within the 1000 genomes project data (phase 3, 2018 release, provided 

by provided by Alkes Price’s group (URL: https://data.broadinstitute.org/alkesgroup/LDSCORE/ ).  

Post-processing 

LCV estimates are only informative when there is evidence for genetic correlation between the target trait 

and the anchor trait. First, traits with evidence for a non-zero genetic correlation (Benjamini-Hochberg’s 

FDR < 5%) were carried forward. Next, we ran LCV analyses to estimate GCP in the remaining traits and 

again applied a Benjamini-Hochberg’s FDR < 5% to the GCP p-value (H0: GCP =0).  

Causal architecture plots 

To visualize a target trait in the context of the human phenome, we propose a visual summary termed a 

causal architecture plot (Figure 2). Each marker indicates an anchor trait where there is detectable genetic 

correlation with the target trait so plots with a complex target trait with few markers may indicate low 

heritability or an underpowered GWAS. The Y axis represents the strength of evidence for causal 

relationship between the target trait and anchor trait with a red line indicating which relationships pass 

multiple test correction, allowing differences between traits with limited causal relevance or widespread 

causal relevance to be identified. A symmetrical funnel plot indicates equal numbers of upstream and 

downstream factors for the target trait (e.g. Figure 2A, Figure 2D), while an asymmetrical funnel indicates 

the causal direction is predominantly from the anchor traits to the target trait (e.g. Figure 2E) or from the 

target trait to the anchor traits (Figure 2F). The markers are colored to show the direction of genetic 

correlation, which also indicates whether causal relationships are in a trait-increasing or trait-decreasing 

direction. Finally, the size of markers provides an indication about the precision of the LCV estimates. 

Results 
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Lipid traits 

We observed that LDL, HDL, TG and TC produced causal architecture plots showing only downstream 

effects on several traits (Figure 3). Table 1 summarizes the number of causal relationships estimated by 

LCV per each trait and Supplementary Table 1-4 show the complete list of results. HDL had trait-decreasing 

effects on many traits while TG had predominantly trait-increasing effects. TC and LDL had relatively few 

genetic correlations however a large proportion of these were partially due to causal effects, again, 

predominantly in a downstream direction. 

BMI, caries and periodontitis 

In part, the ability of LCV to resolve clear differences between the four lipid traits might be helped by the 

relatively simple genetic architecture of these traits. By contrast, complex traits such as BMI which are 

affected by many different biological processes may provide a more realistic control for comparison 

against caries and periodontitis. 

For BMI, genetic correlations with 647 anchor traits were identified, of which 133 were partially due to 

causal relationships. The majority of GCP estimates were positively signed, suggesting that BMI may 

impact many other traits (Figure 4A) however there were also several negatively signed relationships, 

suggesting that BMI itself could potentially be amenable to several different interventions. The upstream 

trait with the greatest evidence on BMI “employment as a heavy goods vehicle driver”, while the 

downstream trait with greatest evidence was ‘vascular/heart problems diagnosed by doctor’, where a 

lower BMI was associated with greater odds of reporting no vascular or heart problems (Figure 4A and 

Supplementary Table 5). 

For dental caries proxied by DMFS/dentures, there were detectable genetic correlations with 527 anchor 

traits, of which 71 supported partially causal relationships (Figure 4B). All GCP estimates were negatively 

signed, suggesting that DMFS/dentures is more likely a downstream consequence of these traits rather 
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than an upstream risk factor. Traits with evidence for partial genetic causality included harmful effects of 

variables capturing dietary habits, smoking, hypertensive diseases and obesity while a protective effect 

was observed for variables representing skilled employment and education (Figure 4B and Supplementary 

Table 6).  

For periodontitis proxied by the combination of periodontitis/loose teeth 398 genetic correlations were 

detected at FDR < 5%, of which a relatively small faction (32 anchor traits) were modelled to be partially 

due to causal relationships. The directions of causal relationship were predominantly negatively signed 

(29 out of 32 traits) suggesting periodontitis was more likely the downstream consequence of these traits 

(Figure 4C). The 5 traits with the strongest evidence for partial genetic causality were a) a harmful effect 

of drug or alcohol use for anxiety on periodontitis b) a protective effect of fairer skin color on periodontitis 

c) a harmful effect of peripheral artery disease on periodontitis, d) an effect of periodontitis on dietary 

preference (proxied by preferred type of milk) and e) a protective effect of a variable representing absence 

of problematic alcohol consumption. Periodontitis appeared to have a causal effect on other dental 

problems and increase in the use of dentures. 

Discussion 

Previous approaches to obtaining phenome-wide causal maps have been based around the Mendelian 

Randomization paradigm(29). The LCV method has attractive properties for phenome-wide analysis as it 

is robust to sample overlap, has greater statistical power than MR(17) and is unconfounded by horizontal 

pleiotropy(21). We implemented a pipeline to automate LCV analysis and visualize results in causal 

architecture plots, and applied this to lipid traits and BMI as positive controls, and to caries and 

periodontitis as exemplars of complex traits where there is a need for additional causal evidence. The 

results suggest that, at a high level, dental diseases are embedded in the human phenome but best viewed 

as a downstream marker of biological events and a consequence of other diseases rather than as a driver 
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of biological changes which lead to large or widespread changes in other traits. The results therefore 

support the current drive to target upstream determinants of dental diseases(3) and potentially provide 

a framework for prioritizing subsets of traits which have shown  causal relevance for further validation or 

translational research. Specifically, the results for caries and periodontitis prioritize socio-economic 

status, cardiovascular health, diet and mental health/alcohol use as traits which could be targeted to 

improve dental health. Conversely, the results for HDL-C confirm that interventions on HDL-C are likely to 

have protective effects on many traits and diseases, and that BMI is a trait with many causal relationships 

in both upstream and downstream directions. We suggest that this pipeline may be helpful to researchers 

undertaking initial characterization of a phenotype, and have implemented it as part of CTG-VL, a freely 

available online resource (URL : https://vl.genoma.io) 

The LCV method requires GWAS summary statistic data and needs to identify a genetic correlation 

between the target trait and anchor trait for the results to be meaningful. It was therefore only possible 

to examine traits which have been studied using a large enough GWAS to yield a stable heritability 

estimate. While this captures many important diseases, risk factors and intermediate traits reflected by 

the large number of anchor traits, there are natural limitations to the results which are available at this 

moment in time. For example, risk factors or outcomes such as the oral microbiota composition, oral 

health quality of life, dental anxiety and satisfaction with dental appearance and function may be causally 

related to dental diseases but are not represented by current genome-wide association studies. For dental 

diseases specifically, this illustrates the need to ensure that oral and dental health is represented in 

epidemiological studies using current methods to avoid perpetrating the under-representation of 

dentistry in the next generation of epidemiological research. As the number of curated GWAS summary 

statistics in CTG-VL catalogue increases over time, this limitation will become less important. It will 

become possible to construct more detailed causal architecture plots for any given target trait, and it may 

https://vl.genoma.io/
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be possible to move from single-trait causal profiles towards multi-trait profiles which present an overall 

causal map of the human phenome. 

This pipeline is primarily intended to give an overview of a trait’s putative causal profile and to help 

identify novel and interesting relationships that can then be investigated further through additional 

epidemiology and statistical genetics methods including MR. In this study, one interesting pair of findings 

were that hair colour appears to be an upstream determinant of dental caries and that skin colour appears 

to be a risk factor for periodontitis. These findings may have a biological explanation (for example both 

ancestry and skin colour are associated with periodontitis in observational studies(30, 31), skin color is 

associated with caries in children with a possible mechanism related to vitamin D(32) and hair keratins 

have a role in enamel formation which might predispose to caries(33, 34)). Alternatively, the findings may 

also reflect complexity introduced by the scale and sampling frame of UK Biobank. Although the LCV 

model is more robust than MR to biases due to horizontal pleiotropy and sample overlap, the LCV model 

may become biased by correlation between genetic variation and environmental factors which affect 

disease(17, 35). This aggregation might be due to factors such as ancient ancestry(36), genetic nurture 

effects(37) or sampling phenomena(38) and is a concern in the UK Biobank sample(39) where much of the 

data used in this experiment were obtained. Interpreted in this light, it is possible that environmental 

factors which are more prevalent in groups of people with certain hair type or skin color are a cause of 

dental diseases. This example may therefore illustrate some of the challenges created by population 

stratification but also the opportunities for genetic information to inform research about social and 

environmental factors which may affect disease.  

Previous studies using MR methods have found some evidence for causal effects of caries and 

periodontitis on cardiovascular health traits(10, 11) which was not recapitulated using the LCV method. 

In part, this may be because LCV aims to captures the overall or predominant direction of causality 

mediated by a single latent variable and may therefore be a poor fit to systems with complex features 
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such as polytonicity, non-linear effects or bidirectional causality. We suggest that the causal architecture 

plots are used to provide an overall causal context to a trait as an adjunct to other methods to assert 

causality which have different strengths and limitations. Despite this, profiles for lipid traits were obtained 

under the same analytical conditions but appear strikingly different, providing a clear indication that the 

method can resolve major differences in causal architecture between diseases.  

It is important to recognize the limitations of this work. Here, we presented a pipeline to do a phenome-

wide scan of potential causal associations. However, it is important to note that the current set of GWAS 

do not encompass the complete phenome and this is biased towards well powered GWAS and thus 

restricted to common diseases and traits. As the range of GWAS studies increases with time, this limitation 

will become less prominent. It is also important to recognize that GCP estimates are also tied to the 

statistical power of the GWAS, thus impacting the ability to detect causal associations for specific traits. 

Low statistical power of GWAS does not however bias the model towards positive or negative values of 

GCP, so the distribution of positive or negative values of GCP estimates will still be informative even when 

there are relatively few causal associations identified. Another limitation is that in contrast to MR 

methods, the LCV approach does not infer the magnitude of effects of risk factors on a trait. Finally, the 

model assumes that the GWAS for both traits and reference LD data are drawn from the same underlying 

population, which at present limits this pipeline to analysis of studies of European ancestry participants. 

As the number of GWAS studies in diverse populations increases and additional reference datasets 

become available, it may be possible to extend this method to non-European populations. 

In summary, we present a pipeline to estimate and visualize genetic causality proportions across traits 

with GWAS summary statistics implemented in CTG-VL. All the results are freely available for download in 

https://view.genoma.io. 
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Figure 1: Use of a latent variable for causal inference. The genetic effects on trait A and B (purple arrows) 

are correlated in all scenarios. This could be due to horizontal pleiotropy (1A, true causal pathway drawn 

in black), vertical pleiotropy (1B, true causal pathway drawn in black) or a combination of both processes. 

In LCV analysis an inferred causal pathway is created which mediates the observed genetic correlation 

between traits A and B and must always pass through L. Where horizontal pleiotropy mediates the genetic 

correlation between traits A and B, the genetic correlation between L and traits A and B is similar in 

magnitude giving a GCP estimate near zero (Figure 1C, inferred causal pathway drawn in yellow, true 

causal pathway shown in 1A). In situations where L has a perfect genetic correlation with trait A, the only 

effects of genotypes on trait B must be through their effects on trait A, (1D, inferred causal pathway drawn 

in yellow, true causal pathway shown in 1B), analogous to a positive finding in a classical MR experiment 

using a valid instrument and resulting in a GCP estimate of 1.   

 

Figure 2: Interpretation of causal architecture plots. Each panel represents phenome-wide LCV scan of a 

target trait (trait A), against each of hundreds anchor traits (trait B). Each dot represents a target trait 

tested against an anchor trait and the red line represents the statistical significance threshold (FDR < 5%). 

The size of each dot is proportional to GCP Z score, blue dots correspond to traits with positive genetic 

correlation (rG) while red dots correspond to traits with negative rG. A) Schematic showing regions of the 

plot which represent non-causal relationships (grey), upstream (pink) and downstream (yellow) causal 

relationships, B) Under-powered experiment, C) well-powered experiment for a trait with limited causal 

relevance, D) The trait has many causal relationships in both upstream and downstream directions, E) A 

trait which is causally affected by other upstream traits F) A trait with downstream effects. 
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Figure 3: Comparison of the causal architecture of lipid traits. Each dot represents a target trait tested 

against an anchor trait and the red line represents the statistical significance threshold (GCP FDR < 5%). 

The size of each dot is proportional to GCP Z score, blue dots correspond to traits with positive genetic 

correlation (rG) while red dots correspond to traits with negative rG. Only traits with a genetic correlation 

at FDR < 5% are shown.  

 

Figure 4. Comparison of the causal architecture of BMI (A), DMFS/dentures (caries) (B), and periodontitis 

(C). Each dot represents a target trait tested against an anchor trait and the red line represents the 

statistical significance threshold (GCP FDR < 5%). The size of each dot is proportional to GCP Z score, blue 

dots correspond to traits with positive genetic correlation (rG) while red dots correspond to traits with 

negative rG. All the statistically significance results (FDR < 5%) are shown in Supplementary Tables 5-7 and 

can be queried at https://view.genoma.io. 
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