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Synopsis  Identification and investigation of a new olanzapine phenol co-crystal. 

Abstract A previously unknown co-crystal of olanzapine and phenol was identified from a 

volatile deep eutectic solvent as the intermediate species in the crystallization of olanzapine. 

This new nanocrystalline phase was investigated by electron diffraction, powder X-ray 

diffraction and differential scanning calorimetry. The structure was determined by simulated 

annealing using 3D electron diffraction data and confirmed using DFT-D optimizations. 

Olanzapine phenolate crystallizes in the triclinic space group 𝑃1̅, supporting the hypothesis of 

a dimeric growth unit, where a centrosymmetric dimer is stabilized by multiple weak C–H···π 

interactions and forms double N–H···N hydrogen bonding with adjacent dimers. 

Keywords: olanzapine; eutectic solvents; electron diffraction; crystal structure; 
centrosymmetric dimers. 

1. Introduction 

Olanzapine (2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno-[2,3-b][1,5]benzodiazepine) is 

an atypical antipsychotic drug that has proven efficacy against the positive and negative 

symptoms of schizophrenia, bipolar disorder and related psychoses (Fulton & Goa, 1997; 

Bhana et al., 2001). Olanzapine was first discovered while searching for a chemical analogue 

of clozapine that would not require haematological monitoring (Bitter et al., 2004). However, 

increasing experience with atypical antipsychotics in real-world clinical environments 

demonstrated that these drugs have a strong correlation with certain metabolic side effects, 

including weight gain, diabetes and dyslipidaemia (Rojo et al., 2015). Switching or combining 

different agents may be sufficient in some cases for reducing these undesired side effects, but 

in most instances, additional drug treatments are required. Therefore, the development of 

antipsychotic medications that offer the efficacy of olanzapine but reduce the associated risks 

could address a major unmet need in the treatment of different schizophreniform disorders 

(Citrome et al., 2019). Olanzapine phenolate represents a typical case of an intermediate 

product obtained during drug manufacturing. The detailed investigation of intermediate 
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phases allow for a better understanding of crystallization pathways and may play a 

prominent role in the future development of organic and inorganic (Andrusenko et al., 

2011) chemistry. 

Olanzapine is a molecule that crystallises with rich structural variety, having over 60 related 

structures reported in the Cambridge Structural Database. There are several olanzapine 

anhydrous polymorphic forms (Wawrzycka-Gorczyca et al., 2004; Thakuria & Nangia, 2011; 

Askin et al., 2019) as well as many hydrates (Capuano et al., 2003; Reutzel-Edens et al., 2003), 

solvates (Bojarska et al., 2013), co-crystals (Nanubolu & Ravikumar, 2017) and salts (Sarmah 

et al., 2016), obtained by diverse manufacturing processes. Additionally, computed crystal 

energy landscape screenings, have shown that other forms of olanzapine are possible (Bhardwaj 

et al., 2013). 

Volatile deep eutectic solvents (VODES) have recently demonstrated their potential in 

reaching hard-to-access crystal polymorphs in other pharmaceutical systems (Andrusenko et 

al., 2019; Potticary et al., 2020), often under ambient conditions. In accordance with typical 

eutectic solvents, VODES are a mixture made of a hydrogen bond donor and an acceptor. 

However, unlike typical eutectic solvents, one of these co-formers is volatile and easily escapes 

the system, while the remaining, stable component forms a crystalline product. When a new 

polymorph is formed via VODES, it is common for the crystal size to be in the micro and 

nanometer range, making standard crystallographic investigations for structure solution a 

challenge. 

The most efficient method for recognizing and understanding the intermolecular interactions 

that produce a given polymorph consists in the determination of its three-dimensional (3D) 

atomic structure. For crystals of 0.1 mm or larger, single crystal X-ray diffraction (XRD) is the 

method of choice, while for smaller crystals, powder XRD often appears as the only feasible 

option. However, powder XRD may fail due to accidental and systematic overlap of 

independent reflections even at medium resolution, which is emphasized if coherent crystalline 

areas are small or if the sample contains multiple phases. For poorly crystalline organic 

compounds, powder diffraction patterns often show only few intense peaks at low angles, while 

the diffraction intensity decays quickly, even at medium resolutions, eventually becoming part 

of the noise. Consequently, polymorphic modifications associated with nanocrystals are hard 

to identify. In these cases, 3D electron diffraction (3D ED) has proved to be a reliable method 

for the structure determination, even when only micrometric or sub-micrometric single crystals 

are available (Gemmi et al., 2019).  

To fully exploit the potentialities of both powder XRD and 3D ED, we have adopted the 

following protocol: i) any new synthesis is first characterised by powder XRD; ii) if the pattern 

cannot be fully indexed with known structures, 3D ED data are collected from several crystals 



to identify the phase (or phases) present in the sample and to measure the related unit cell(s); 

iii) if unknown phases are detected, their crystal structure are determined by 3D ED and refined 

by Rietveld refinement against powder XRD. This method was also used in case of olanzapine 

phenolate.   

The olanzapine molecule consists of three fused rings (benzene, diazepine and thiophene) 

and one additional, satellite piperazine ring (Fig. 1). The boat conformation of the central 7-

membered diazepine ring defines the overall shape of the molecule. The disparity between 

hydrogen bond donors to acceptors makes olanzapine highly amenable for the inclusion of 

solvents in the crystal lattice in order to balance hydrogen bonds (Infantes et al., 2007). Phenol 

is a simple molecule that has been widely explored and often used in eutectic systems for 

pharmaceutical applications. It can act as hydrogen bond donor and acceptor (Duarte et al., 

2017). 

 

 

Figure 1 Molecular diagrams of (a) olanzapine and (b) phenol. Donor and acceptor groups are 

highlighted. 

 

In the search for new olanzapine polymorphs by crystallization from VODES, we obtained 

a new intermediate crystalline complex of olanzapine and phenol. This phase appeared as 

submicrometric grains and therefore was structurally characterized by 3D ED. 

2. Experimental 

2.1. Crystallization 

Olanzapine phenolate crystals were grown using the VODES method (Potticary et al., 2020). 

Solid olanzapine and phenol were mixed at a ratio of 1:8, respectively and left to spontaneously 

form a liquid at room temperature. This liquid was then dropped onto a glass surface and left 

to crystallize over 24 hours in a well-ventilated area, resulting in a white crystalline powder. 



Initially, the crystallinity of the sample was ascertained using an optical microscope with cross-

polarized filters. 

2.2. Proton NMR 

1H-NMR analysis was conducted using a JEOL ECS 400 NMR spectrometer. Spectra were 

obtained from about 10 mg of sample dissolved in 1 mL of dimethyl sulfoxide-d6 (Sigma-

Aldrich, 99.5 %). All spectra were analysed using MestReNova software (version: 14.0.1-

23559). 

2.3. Thermal investigation 

Melting points were recorded using differential scanning calorimetry (DSC) and was carried 

out using a TA Instruments Discovery DSC25. The cell was purged with N2 gas at a rate of 50 

mL·min-1. Samples weighing between 2-10 mg were sealed in hermetic Tzero aluminum pans. 

Starting at 30 °C, samples were heated to temperatures at least 10 °C above observed 

endotherms. TRIOS software (version:  4.5.0.42498) was used for analysis of thermograms. 

Temperature and cell constant calibrations were carried out using a certified indium standard 

(verification: Temperature = 156.6 ± 0.5 °C, Enthalpy = 28.72 J·g-1 ± 4%). 

2.4. Electron microscopy and 3D electron diffraction 

Scanning electron microscopy (SEM) micrographs were taken on a JEOL IT300 using an 

accelerating voltage of 30 kV, samples were sputter coated with 15 nm of silver. High-angle 

annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and 

electron diffraction (ED) data were recorded with a Zeiss Libra TEM operating at 120 kV and 

equipped with a LaB6 source. 

3D ED was performed in the same microscope in STEM mode after defocusing the beam in 

order to have a pseudo-parallel illumination on the sample, as described in Lanza et al. (2019). 

ED patterns were collected in Köhler parallel illumination with a beam size of about 150-200 

nm in diameter, obtained using a 5 µm C2 condenser aperture. Data were recorded by a single-

electron ASI MEDIPIX detector (Georgieva et al., 2011). An extremely low dose illumination, 

corresponding to 0.01 el. Å-2 s-1, was adopted in order to avoid beam damage. The total dose 

during data collection depends from many experimental parameters, like number of frames, 

exposure time and image tracking mode, and is therefore different for each data collection. A 

rough estimation of the total dose during a step-wise data collection is in the 1-5 el. Å-2 range, 

provided that the data are recorded with a single electron detector. With standard CCD the dose 

should be at least one order of magnitude higher.  

The sample was gently crushed and directly loaded on a carbon-coated Cu TEM grid without 

any solvent or sonication. 3D ED acquisitions were performed when rotating the sample around 



the TEM goniometer axis in steps of 1°, in total tilt ranges from 65° to 100°. Exposure time per 

frame was 1s. Camera length was 180 mm, allowing resolution in real space up to 0.7 Å. After 

each tilt, a diffraction pattern was acquired and the crystal position was tracked by STEM 

imaging (Gemmi & Lanza, 2019). During the experiment, the beam was precessed around the 

optical axis by an angle of 1°. Precession was obtained using a Nanomegas Digistar P1000 

device. All data acquisitions were performed at room temperature. 

3D ED data were analysed using the software PETS (Palatinus et al., 2019). Structure 

determination was obtained by simulated annealing (SA) as implemented in the software 

SIR2014 (Burla et al., 2015). Resolution limit was set to 1.0 Å. SA is a stochastic algorithm 

that searches for the minimum of the cost function, gradually reducing the degrees of freedom 

(Kirkpatrick et al., 1983). This global optimization method works especially well for organic 

compounds, where the symmetry is generally low, no atoms are in special positions and there 

are strict geometrical constrains imposed by intra-molecular chemical bonding. For SA 

structure determination, the molecular model can be built considering the known chemical 

fragments or deduced from known polymorphic forms already reported in crystal structure 

databases. Each molecule can be modelled as a unique fragment, where atomic distances and 

coordination are known. This method was successfully applied to 3D ED data for the 

determination of covalent organic framework (Zhang et al., 2013) and important 

pharmaceuticals (Das et al., 2018). The olanzapine phenolate appears as an ideal case for SA 

because the olanzapine molecule has only one free torsion angle, while the phenol molecule is 

entirely rigid. 

Data were treated with a fully kinematical approximation, assuming that Ihkl was 

proportional to |Fhkl|2. The model determined by SA was refined with least-squares procedures 

embedded in the software SHELXL (Sheldrick, 2015). Geometrical ties were added stepwise to 

check the consistency of the model. All hydrogen atoms were generated in geometrically 

idealized positions. 

2.5. Powder X-ray diffraction 

Powder XRD data were acquired in Debye-Scherrer geometry using a STOE Stadi P equipped 

with Cu-Kα1 radiation (λ = 1.5406 Å), a Ge (111) Johansson monochromator from STOE & Cie 

and a MYTHEN2 1 K detector from Dectris. The sample was loaded in a borosilicate glass 

capillary (0.5 mm external diameter) and data were acquired in the range 5-50° 2θ with an 

interval of 0.003° between consecutive points. Data were processed with GSAS-II (Toby & Von 

Dreele, 2013). 



2.6. Density functional theory optimization 

Density functional theory (DFT) calculations were performed on CRYSTAL17 (Dovesi et al., 

2017) at the 6-31G level, using Perdew-Burke-Enzerhof (PBE0-d3) exchange correlation 

functional with semi-empirical dispersion corrections (DFT-D) to account for van der Waals 

interactions. Van der Waals radii were used as suggested by Federov et al. (2006). Both the 

space group and atomic coordinates obtained from the 3D ED were used as the input geometry. 

3. Result and Discussion 

3.1. Crystallization of a new co-crystal 

Growth of olanzapine phenolate from a VODES resulted in a white powder with a needle 

diameter size between 5 - 30 μm (Fig. 2a). The powder is visible under cross-polarized light 

and undergoes extinction at 90° intervals, revealing an anisotropic, crystalline nature (Fig. 2b). 

SEM analysis shows that the needles are themselves layered (Fig. 2c) implying that an 

individual needle, if correctly isolated, would still be unsuitable for single crystal structure 

solution. 

 

Figure 2 (a) Optical image of the white polycrystalline sample, (b) the same sample viewed through 

an optical microscope with cross-polarized filters (c) SEM micrograph of a typical crystal showing the 



layered structure and (d) HAADF-STEM image of typical olanzapine phenolate crystals used for 3D 

ED data collections. 

 

Analysis using 1H-NMR shows a molar ratio of olanzapine to phenol of 1:1 phenol hydroxyl 

and thiophene protons integrating to 1.00 and 0.99, respectively (Fig. 3). 

 

 

Figure 3 1H-NMR in DMSO-d6 analysis showing the 1:1 ratio of the (A) phenol hydroxyl and (B) 

olanzapine single sp2-bound thiophene proton. 

 

Thermal analysis of the co-crystal (Fig. 4) shows a single melting point of 114.3 °C with no 

evidence of a phenol melt at the expected 40.5 °C. Unfortunately, due to the boiling point of 

phenol being 180.7 °C, temperatures at which olanzapine is expected to melt (195 °C) were not 

reached. This melt sits almost exactly between the melting points of the components (phenol 

and olanzapine melt at 40.5 and 195 °C, respectively). This linear trend in physical properties 

is not unexpected in a co-crystal of ratio 1:1, which distinguishes the structure from other 

disordered multi-component solids like typical solvates or clathrates. 

 



 

Figure 4 DSC thermogram of olanzapine phenolate. 

 

3.2. 3D ED structure analysis 

3D ED data were recorded from three crystal fragments with size less than 1 µm (Fig. 2d). 

Unfortunately, we cannot provide an accurate estimation of the crystal thickness. Taking into 

consideration that all observed crystals were not truly flat, their thickness was roughly estimated 

in about 50 nm. All 3D ED data sets were consistent with a triclinic cell with approximate 

parameters a = 9.0 Å, b = 10.5 Å, c = 12.0 Å, α = 95°, β = 95°, γ = 103° (Fig. 5). Cell parameters 

were refined and validated with a Pawley fitting against powder XRD data from which we 

obtained the refined lattice parameters:  a = 9.4051(9) Å, b = 10.4236(11) Å, c = 11.999619(8) 

Å, α = 96.686(4)°, β = 95.2878(27)°, γ = 104.474(3)°. Taking into consideration the ratio 

between olanzapine and phenol (1:1), such a cell would conveniently host two pair of molecules 

(Z = 2). A close look at 3D ED reconstructions revealed no extinction features, pointing 

convincingly, to a triclinic space group: 𝑃1 (1) or 𝑃1̅ (2). 

 

 

Figure 5 Reconstructions of 3D ED volume viewed along the main crystallographic directions. 



 

Structure solution was performed by SA using the highest quality (the most complete with 

highest angular range and greatest resolution) 3D ED data set as an input. This global 

optimization method is the most frequently used, and the only one so far to applied to 

tomographic ED data (Zhang et al., 2013; Das et al., 2018). The two other data sets have lower 

quality, therefore the merging data was not applied in order to not reduce the quality of the 

merged intensities. To merge initially relatively poor 3D ED data makes sense only when taken 

alone each 3D ED data set misses a sufficient completeness for structure determination. Data 

completeness of 55% was enough for the obtaining a stable SA solution in a resolution range 

from 1.0 Å to 2.0 Å. This is also consistent with results reported by Das et al. (2018) for other 

organic structures. Therefore, we avoided to merge our three individual data sets in a unique 

one, which would be anyway affected by random noise introduced by the different contribution 

of dynamical effects related with the different dimension and shape of the crystals. After the 

SA runs, the best crystallo-chemical model in space group 𝑃1̅ (2) was taken as an initial model 

for further refinements. 

The structure of olanzapine phenolate was eventually, least-squares refined against 3D ED 

data imposing constraints on the aromatic ring and all hydrogen positions. Additionally, 

restraints for other interatomic distances and the planarity of the three major flat blocks that 

make up the molecules were imposed. More details about structure determination and 

refinement are reported in Table 1. The high values of agreement parameters can be explain by 

the relatively poorness of 3D ED data, not suitable for performing an ab-initio structure 

solution. Rietveld refinement, starting from the model obtained from the 3D ED data, 

converged to Rwp = 3.019%, RF = 3.849%, RF2 = 3.512% without any significant modification 

(Fig. 6). The final structural model is shown in Fig .7. 

The high difference between the measured value of the cell parameter a by 3D ED and the 

value refined by powder XRD can be explained by vacuum effect on phenol molecules that are 

oriented along [100] and partially evaporated upon heating under vacuum. 

 

Table 1 Selected parameters from structure determination (SIR2014) and refinement (SHELXL) 

based on the 3D ED data. 

Crystallographic information   

Asymmetric unit content C17H20N4S·C6OH 

Z 2 

Space group P1̅ 

a, Å 9.4051(9) 

b, Å 10.4236(11) 



c, Å 11.9619(8) 

α, ° 96.686(4) 

β, ° 95.2878(27) 

γ, ° 104.474(3) 

Volume, Å3 1118.75(5) 

Structure solution   

Data resolution, Å 1.0 

Sampled reflections, No. 2489 

Independent reflections, No. 1271 

Independent reflections coverage, % 55 

Global thermal factor U iso, Å2 0.04053 

R int (F), % 17.81 

CF, % 56.426 

Structure refinement  

Data resolution, Å 1.0 

R int (F2), % 15.11 

Reflections (all), No. 1269 

Reflections (> 4σ), No. 720 

R1 (4σ), % 31.40 

R1 (all), % 38.96 

GooF 3.016 

 

 

 

Figure 6 Final fit of 3D ED structural model against powder XRD data. 

 



 

Figure 7 The final structural model of olanzapine phenolate. Phenol molecules are in green. N–

H···O hydrogen bonds between olanzapine and phenol molecules are shown in red. Double hydrogen 

bonding (N–H···N) between two adjacent dimers, involving each olanzapine molecule in two N–H···N 

hydrogen bonds are shown in blue. 

 

3.3. Optimization 

DFT-D calculations correctly describe the structure with only minor structural differences 

expected of calculations done with zero thermal component. Comparison of the experimental 

and optimized structures show minor differences in the H-bond lengths, relative ring angle and 

phenol position but leave the overall structure intact indicative of a structural energy minima 



(Fig. 8). Output details of DFT-D calculations are summarized in Table 2. 

 

 

Figure 8 Overlay of powder XDR refined (blue) and optimized (red) structures of the olanzapine 

phenolate. 

 

Table 2 Selected parameters from the experimental (3D ED), refined (powder XRD) and optimized 

(DFT-D) structures. 

 3D ED 

experimental 

structure 

Powder XRD 

refined 

structure 

DFT-D 

optimized 

structure 

Optimization steps, No. – - 98 

N···O H-bond length, Å 

N···N H-bond length, Å 

2.891 

3.241 

2.695 

4.224 

2.734 

2.962 

 

 

3.4. Crystal packing and hydrogen bonding 

In almost all known forms (anhydrous and hydrates), olanzapine adopts mirror-related 

conformations, which rapidly interconvert in solution by the inversion of the diazepine ring 

(Petcher & Weber, 1976). The two enantiomers are packed around the crystallographic 

inversion centres, compel olanzapine to crystallize in centrosymmetric space groups. 

Interestingly, no specific intermolecular interactions are needed to stabilize this dimer. 

According to Reutzel-Edens et al. (Reutzel-Edens et al., 2003), packing appears to be spatially 

driven, complementarity of the opposite enantiomers (electrostatic interaction). Conversely, 

other researchers (Wawrzycka-Gorczyca et al., 2004; Ravikumar et al., 2005; Thakuria & 



Nangia, 2011) associated the pair stability with three types of multiple C–H···π contacts 

(Malone et al., 1997). Independently from the character of the intermolecular interactions, the 

centrosymmetric dimer observed in most of olanzapine crystal structures is generally 

considered the crystal building block from which different solid-state structures of olanzapine 

may assemble. 

Ayala et al. (Ayala et al., 2006) showed that the intermolecular distances in olanzapine 

structures range from 4.665 Å to 5.120 Å. The shortest distance corresponds to the pure 

olanzapine polymorphs, while for hydrates the extra molecules placed among the 

centrosymmetric dimers expand their packing. Conversely, in olanzapine phenolate described 

in this paper, no expansion was observed and the intermolecular distance is comparable with 

the ones of the pure olanzapine polymorphs. 

There are four known anhydrous forms of olanzapine. Three of them have been structurally 

resolved by XRD. The last, labelled as form III, has never been synthesized as pure phase and 

is only has associated with a theoretically predicted model (Askin et al., 2019). In anhydrous 

form I, (Wawrzycka-Gorczyca et al., 2004) dimers have a parallel packing (Fig. 9a), while in 

the anhydrous form II (Thakuria & Nangia, 2011) dimers have a herringbone arrangement (Fig. 

9b). Both crystal structures are sustained by an N–H···N hydrogen bond. 

The structural model of anhydrous form IV is the only one that does not contain dimer 

motifs. This structure was first predicted by energy minimization (Bhardwaj et al., 2013) and 

has been only recently crystallized and refined by Askin et al. (Askin et al., 2019). Here, single 

olanzapine molecules are ladder-like, packed by two N–H···N hydrogen bonds, which connect 

the diazepine N–H donor and the piperazine N acceptor (Fig. 9c). 

 



 

Figure 9  Comparison of molecular packing in different crystalline forms of olanzapine: (a) 

anhydrous form I, (b) anhydrous form II, (c) anhydrous form IV and (d) olanzapine phenolate (phenol 

molecule is not visualized). N–H···N hydrogen bonds between two adjacent dimers are sketched in 

blue. 

The hydrogen bonding arrangements in hydrates are significantly different from that in pure 

crystal forms. By incorporating water into the crystal lattice, the donor-acceptor ratio becomes 

balanced, enabling both the acceptors on the olanzapine molecule to participate in hydrogen 

bonding. In all hydrated systems, the water molecules are held by two or three hydrogen 

bonding interactions (Reutzel-Edens et al., 2003). 

The only reported “olanzapine-co-former” structure is olanzipinium nicotinate (Ravikumar 

et al., 2005). The coulombic interaction between olanzapine and nicotinic acid ions is 

supplemented by intermolecular N–H···O hydrogen bonds, forming catameric chains along the 

one main axis (Fig. 10a). Olanzapine dimers here are further stabilized by weak C–H···π 

interactions. No direct hydrogen bonding between dimers is present. 

 



 

Figure 10 Comparison in molecular interaction between two “olanzapine-co-former” structures: (a) 

intermolecular N–H···O hydrogen bonds in olanzipinium nicotinate and (b) phenol compensation of 

one olanzapine acceptor in new olanzapine phenolate. 

In the case of olanzapine phenolate, as in most of known olanzapine structures, the 

centrosymmetric dimers are present. Additionally, phenol acts as hydrogen bond donor for 

diazepine N, one of two potential olanzapine acceptors (Fig. 10b). In this way, phenol 

compensates for the disparity in the ratio of hydrogen bond donors-to-acceptors and allows for 

double hydrogen bonding (N–H···N) between two adjacent dimers. Consequently, interdimer 

connections are guaranteed by double N–H···N hydrogen bonds between two adjacent 

olanzapine molecules (Fig. 9d). Therefore, the structure consists of continuous dimeric chains 

stacked along [100]. Additionally, the presence of phenol appears to stabilize the structure in 

the other directions. Upon heating under vacuum for 7 days, the material assumes the 

characteristic yellow colour, adopting the structure of anhydrous olanzapine form I. 

4. Conclusions 

A new olanzapine phenolate was discovered as an intermediate product during the 

crystallization of olanzapine from volatile deep eutectic solvents. The ability of 3D ED to 

investigate nanocrystalline intermediate forms paves the way for a thorough understanding of 

crystallization pathways in pharmaceutical chemistry. Structure solution by single crystal XRD 

was not possible due to limited crystals sizes and morphologies, something pervasive 

throughout organic crystallization. Nevertheless, the structure was solved from electron 

diffraction data collected from single nanocrystal using the 3D ED approach. The stability of 

the result was confirmed by DFT-D structural optimization and the molecular ratio of the co-

crystal confirmed via NMR. The dimeric packing of olanzapine phenolate resembles the one 

observed in the three known anhydrous olanzapine polymorphs and differs from hydrated and 

other co-crystallized forms. Complete information about the intermediate structure of co-

crystals during the formation process is essential for discovery of possible new polymorphs, 



not just of olanzapine but in any organic system. 
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