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ABSTRACT: In this paper, we analyze the behavior of a monopile under lateral loading. 

Specifically, this work focuses on the examination of the static stiffness coefficients of 

a monopile vertically embedded in a homogeneous or multilayer soil of random 

geometry and random mechanical properties. To solve the problem, a semi-analytical, 

closed form solution is developed, based on Winkler's theory. In this model, simulation 

of the mechanical behavior of the soil is achieved via non-linear "p-y" springs 

positioned along the axis of the pile, in conjunction with shape functions which describe 

the lateral movement of the pile. By iterative application of the proposed method the 

lateral stiffness coefficients at the pile head are calculated with satisfactory accuracy. 
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The results of the proposed method converge satisfactory enough with real data and 

other theoretical results coming from sophisticated numerical analysis methods. 

1. INTRODUCTION 

 

The most simple and popular approach to the mechanical behavior of laterally loaded 

piles, is the Winkler model. According to that theory, the interaction between soil and 

pile takes place via springs placed along the axis of the pile. The force of each spring 

corresponds to the soil reaction at a specific depth. This model, albeit approximate, is 

widely used and provides satisfactory results, comparable to more precise methods, 

such as finite or boundary elements. It has to be noted that lately, a simplified method 

based on this model was used for the analysis of laterally loaded piles in sloping 

ground (Pingbao Yin et all, 2018). 

The assumption of linear elastic homogeneous soil is often an oversimplification of 

reality. Conversely, for inhomogeneous profiles it is rather difficult to come up with 

precise solutions, even when using this simplified theory. 

Subsequently, a simple semi-analytical method is developed, based on the Euler-

Bernoulli beam model, enhanced by non-linear Winkler springs. The model is used in 

conjunction with the principle of virtual work and suitable shape functions, which 

describe the elastic line of a pile under arbitrary force-moment or displacement-rotation 

pairs at the pile head. 

 

2. PROBLEM DESCRIPTION 

 

The model under examination, consists of a laterally loaded pile of length L, diameter 

d, modulus of elasticity Ep and maximum bending moment My. The pile is considered 

to be embedded in a homogeneous or multilayer soil of random geometry and random 

mechanical properties. The soil is characterized by a variable modulus of elasticity 

Es(x) and a variable maximum shear strength ps(x) along with depth (x). At the pile 

head, a horizontal force Po and a moment Mo are both applied, as shown in Figure 1. 

The values of yo and θo, represent the lateral displacement and the rotation of the pile 

head, respectively. 

 
 



 
Fig 1. Model of single pile embedded in an inhomogeneous soil 

 

3. DEVELOPMENT OF THE MODEL 

 

3.1 Homogeneous elastic soil  

 

The equation of motion for a laterally loaded single pile on elastic homogeneous 

foundation, can be easily obtained through equilibrium over a small section of the pile, 

as presented in figure 2: 

 

 

Fig 2. Typical pile segment 

 

According to that, the following eq.1 occurs: 

 



𝑃 − (𝑃 + 𝑑𝑃) + 𝑘𝑠(𝑥)𝑑𝑥 = 0 (1) 

 

Given that: 

 

𝑑𝑃

𝑑𝑥
= 𝑘𝑠 𝑦(𝑥) (2) 

 

and 

 

𝑃 =
𝑑𝑀

𝑑𝑥
 (3) 

 

we obtain easily the following: 

 

𝑑𝑃

𝑑𝑥
=
𝑑2𝑀

𝑑𝑥2
= 𝑘𝑠  𝑦(𝑥) (4) 

 

By considering eq. 5: 

 

𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2
= −𝑀 (5) 

 

and double differentiation, we get: 

 

𝐸𝑝𝐼
𝑑4𝑦

𝑑𝑥4
= −

𝑑2𝑀

𝑑𝑥2
 (6) 

 

by replacing eq. 4 into eq. 6, we obtain: 

 

𝐸𝑝𝐼
𝑑4𝑦

𝑑𝑥4
= −𝑘𝑠 𝑦(𝑥) (7) 

 

which is the differential equation of a laterally loaded pile: 

 

𝐸𝑝𝐼
𝑑4𝑦

𝑑𝑥4
+ 𝑘𝑠 𝑦(𝑥)=0 (8) 

 

where:  

y(x) is the horizontal displacement of the pile at depth x,  

ks is the modulus of Winkler springs (dimensions: force/ square length),  



Ep is the modulus of elasticity of the pile’s material and  

I is the moment of inertia of the pile's section. 

 

Differential eq. 8 can be transformed into eq. 10 by substituting the well known eq. 9 

(Hetenyi, 1946): 
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Constant λ has dimensions [1 / length] and is known as Winkler "wavenumber" or 

"characteristic length". The general solution of eq. 10 is as follows (Hetenyi, 1946): 

 

   )(sin)(cos)(sin)(cos)( xDxCexBxAexy xx   +++= −
 (11) 

 

where: A, B, C and D represent arbitrary constants depending on boundary conditions, 

at the base and at the tip of the pile. 

 

Specifically, by setting a unit horizontal displacement at the pile head and zero rotation 

at the same point, we obtain: 

 

Displacement : 1)0( =y  (12a) 

Rotation : 0)0(' =y  (12b) 

Moment : 0)('' =LyIE pp
 (12c) 

Shear : 0)(''' =LyIE pp
 (12d) 

 

Solving the 4x4 system of equations 12a-d, bearing in mind that: 
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and 
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we obtain the values of A, B, C and D: 
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The stiffness matrix, at the pile head, is described below: 

 

{
𝑃𝑜
𝑀𝑜
} = [

𝐾ℎℎ 𝐾ℎ𝑟
𝐾𝑟ℎ 𝐾𝑟𝑟

] {
𝑢𝑜
𝜃𝑜
} (19) 

 

where: Khh, Krr and Khr (=Krh) are the coefficients in swaying, rocking and cross 

swaying-crossing respectively. By setting zero rotation and unit displacement at the 

pile head, according to eq. 19, we obtain: 

 

𝑃𝑜 = 𝐾ℎℎ 𝑦(0) = 𝐾ℎℎ𝑢𝑜
𝑢𝑜=1
⇒   𝑃𝑜 = 𝐾ℎℎ (20) 

 

and 

 

𝑀𝑜 = 𝐾𝑟ℎ 𝑦(0) = 𝐾𝑟ℎ𝑢𝑜
𝑢𝑜=1
⇒   𝑀𝑜 = 𝐾𝑟ℎ (21) 

 

substituting eqs 3 and 5 into eqs 20 and 21, the latter are transformed, into: 

 



𝑃𝑜 = 𝐸𝑝𝐼
𝑑3𝑦(𝑥)

𝑑𝑥3
= 𝐾ℎℎ (22) 

 

and 

 

𝑀𝑜 = 𝐸𝑝𝐼
𝑑2𝑦(𝑥)

𝑑𝑥2
= 𝐾𝑟ℎ (23) 

 

Replacing coefficients A, B, C and D from eqs 15 to 18 into the general solution of eq. 

11 and subsequently differentiating two and three times respectively, using eqs 22 and 

23, we get: 
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In the same way, by setting zero displacement at the pile head and unit rotation at the 

same point, the following system of equations is obtained: 

 

Displacement : 0)0( =y  (26a) 

Rotation : 1)0(' =y  (26b) 

Moment : 0)('' =LyIE pp
 (26c) 

Shear : 0)(''' =LyIE pp
 (26d) 

 

Solving again the 4x4 system, we get new values for A, B, C and D: 
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(30) 

 

As previously, using the stiffness matrix at the pile head (eq. 19) and by imposing zero 

displacement and unit rotation, we obtain: 

 

𝑃𝑜 = 𝐾ℎ𝑟𝜃𝑜
𝜃𝑜=1
⇒   𝑃𝑜 = 𝐾ℎ𝑟 (31) 

 

and 

 

𝑀𝑜 = 𝐾𝑟𝑟𝜃𝑜
𝜃𝑜=1
⇒   𝑀𝑜 = 𝐾𝑟𝑟 (32) 

 

by substituting eqs 3 and 5 into eqs 31 and 33, the latter are transformed into: 

 

𝑃𝑜 = 𝐸𝑝𝐼
𝑑3𝑦(𝑥)

𝑑𝑥3
= 𝐾ℎ𝑟 (33) 

 

and 

 

𝑀𝑜 = 𝐸𝑝𝐼
𝑑2𝑦(𝑥)

𝑑𝑥2
= 𝐾𝑟𝑟 (34) 

 

The new coefficients, A, B, C and D as obtained from eqs 27 to 30, are introduced into 

the general solution given by eq. 11 and then. We then, differentiate two and three 

times respectively the aforementioned equation and by the use of eqs 33 and 34, we 

finally get: 

 

λLλL

λLλL
IEK prr

2cosh2cos2

2sinh2sin
2

++

+−
=   (35) 

 

λLλL

λLλL
IEK phr

2cosh2cos2

2cosh2cos
2 2

++

+−
=   (36) 

 



In this way, the stiffness matrix of a monopile of length L (free at the tip), embedded 

into a homogeneous soil profile, is given by the matrix (Mylonakis, 1995; Mylonakis 

and Gazetas, 1999): 

 

[
𝐾ℎℎ = 4𝐸𝑝𝐼 𝜆

3 sin2𝜆𝐿+sinh2𝜆𝐿

2+cos2𝜆𝐿+cosh2𝜆𝐿
𝐾ℎ𝑟 = 𝐾𝑟ℎ = 2𝐸𝑝𝐼 𝜆

2 −cos2𝜆𝐿+cosh2𝜆𝐿

2+cos2𝜆𝐿+cosh2𝜆𝐿

𝐾𝑟ℎ = 𝐾ℎ𝑟 = 2𝐸𝑝𝐼 𝜆
2 −cos2𝜆𝐿+cosh2𝜆𝐿

2+cos2𝜆𝐿+cosh2𝜆𝐿
𝐾𝑟𝑟 = 2𝐸𝑝𝐼 𝜆

−sin2𝜆𝐿+sinh2𝜆𝐿

2+cos2𝜆𝐿+cosh2𝜆𝐿

] (37) 

 

3.2 Inhomogeneous elastic soil 

 

The assumption of a linear, elastic and homogeneous soil is definitely an 

oversimplification of reality. In most cases, the stiffness of soil profiles increases with 

depth. In this case of an inhomogeneous elastic soil, the eq. 8, which describes the 

deflection of the pile, is transformed as follows: 

 

𝐸𝑝𝐼
𝑑4𝑦

𝑑𝑥4
+ 𝑘𝑠(𝑥) 𝑦(𝑥)=0 (38) 

 

For arbitrary variation of soil stiffness ks(x) with depth x, a number of solutions have 

been published using finite and boundary element formulations by Banerjee and Davis 

(1978), Poulos and Davis (1980), Randolph (1981), etc. Unfortunately, very few 

analytical solutions exist in the nternational bibliography. In fact, exact solutions have 

been derived only from Hetenyi (1946), Barber (1953) and Franklin & Scott (1979), for 

the special case in which stiffness increases linearly with depth, starting from zero 

value at the free surface. These solutions are power-series of infinite terms, which are 

not suitable for use in practical problems. 

An easy-to-use solution for inhomogeneous elastic soil, of stiffness parabolically 

increasing with depth, has been proposed by Mylonakis (1995). The type of soil profile 

considered is presented in Figure 3 and described by equation 39. 

 



 
Fig 3. Model of soil stiffness increasing with depth 

 

𝑘𝑠(𝑥) = 𝑘𝑠𝑑 [𝑎 + (1 − 𝑎)
𝑥

𝑑
]
𝑛

 (39) 

 

where:  

ksd denotes the value of k(x) at depth of one pile diameter d,  

α is a dimensionless parameter of the stiffness coefficient at the soil surface, and  

n is a dimensionless shape factor. 

 

The proposed solution (Mylonakis, 1995), is based on replacing the unknown 

displacement function y(x) (eq. 11), with approximate shape functions ψ(x) and φ(x), 

which describe the lateral displacement of the pile with depth. Specifically, the function 

ψ(x) describes the displacement of the pile for a unit movement of the head at zero 

torsion, whereas the φ(x) function describes the movement of the pile for unit torsion 

(1 rad) of the head, at zero displacement, as shown in Figure 4.  

By implementation of the aforementioned method, in the case of an inhomogeneous 

soil profile, we get λ, varying with depth and consequently it is calculated via the 

following equation: 
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Thus, the group of the solutions of eq. 38 can be approximated by eq. 41, based on 

the general solution of eq. 11: 



 

   ))((sin))((cos))((sin))((cos)( )()( xxDxxCexxBxxAexy xxxx   +++ −  (41) 

 

In order to obtain the shape function ψ(x), constants: A, B, C and D need to be 

determined, by setting unit horizontal displacement at the pile head and zero rotation 

at the same point: 

 

Displacement : 1)0( =y  (42a) 

Rotation : 0)0(' =y  (42b) 

Moment : 0)('' =LyIE pp
 (42c) 

Shear : 0)(''' =LyIE pp
 (42d) 

 

Solving the system of equations 42a-d, by bearing in mind equations 13 and 14, we 

obtain the values of A, B, C and D: 
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By replacing eqs 43, 44, 45 and 46 into eq. 41, the general solution is transformed into 

the shape function ψ(x): 
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In the same way, by imposing a unit rotation (1 rad) at the pile head at zero 

displacement, we obtain: 

 

Displacement : 0)0( =y  (48a) 

Rotation : 1)0(' =y  (48b) 

Moment : 0)('' =LyIE pp
 (48c) 

Shear : 0)(''' =LyIE pp
 (48d) 

 

and subsequently, we get new values for constants A, B, C and D: 
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By replacing again, eqs 49, 50, 51 and 52 into eq. 41, the shape function φ(x) is 

structured as following: 
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Both of the above shape functions (ψ(x), φ(x)) correspond to a floating pile with zero 

moment and shear at the tip. 

Replacing λ(x) by μ, defined as “shape” parameter equal to the average value of λ(x) 

along the “active” length, (La) of the pile, we obtain: 
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Parameter μ in a homogeneous soil is equal to the wavenumber λ (eq. 9). In non-

homogeneous soil profiles, μ is approximated by the mean value of λ within an “active” 

length (La) of the pile (eq. 55). “Active” length (La) is defined as the length beyond 

which the pile behaves as a semi-infinite long beam (Poulos & Davis, 1980; Randolph, 

1981). That is, any increase of the pile length beyond La, does not affect the stiffness 

at the pile head. Usually "active" length is of the order of 10 to15 pile diameters (Velez 

et al., 1983). There have been many expressions for La in various types of soil profiles 

(Randolph, 1981; Gazetas,1991;). In the present case the “active” length is calculated 

by an iterative process using eqs 55 and 56. 
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starting from a reasonable initial hypothesis e.g. La = 10d. The active length of the pile 

depends mostly on the ratio (Ep / Es). Recommended values for parameters χ and n 

are presented in Table 1. 

 

Table1. Recommendations for parameters χ and n for inhomogeneous 

soil layers 

Reference 
Inhomogeneous soil profile 

χ n 

Davies & Budhu (1986) 1.3 0.22 



Gazetas (1991) 2.0 0.2 

Fleming et al. (1993) 2.2 0.25 

Syngros (2004) 2.5 0.2 

 

The total displacement of a pile, can be calculated by the sum of the products of each 

unit function multiplied by the horizontal movement (uo) and rotation (θo) at the pile 

head: 

 

𝑦(𝑥) = 𝑢𝑜𝜓(𝑥) + 𝜃𝑜𝜑(𝑥) (57) 

 

Assuming that a theoretical approximate function – solution g(x), describes the lateral 

displacement of the pile, this function should satisfy the following conditions: 

 

• be at least thrice differentiable 

• fulfil the boundary conditions 

 

Multiplying eq. 38 by this approximate function – solution g(x) and then integrating 

along the pile, we get equation (58): 

 

∫ 𝐸𝑝𝐼
𝑑4𝑦

𝑑𝑥4

𝐿

0
𝑔(𝑥)𝑑𝑥 + ∫ 𝑘𝑠(𝑥)

𝐿

0
𝑦(𝑥) 𝑔(𝑥)𝑑𝑥 = 0  (58) 

 

Integrating by parts the first term of the latter equation, it is transformed into a simpler 

form: 

 

∫ 𝐸𝑝𝐼 (
𝑑3𝑦

𝑑𝑥3
)
′

𝐿

0
𝑔(𝑥)𝑑𝑥 + ∫ 𝑘𝑠(𝑥)

𝐿

0
𝑦(𝑥) 𝑔(𝑥)𝑑𝑥 = 0 ⇒ (59) 

 

𝐸𝑝𝐼
𝑑3𝑦

𝑑𝑥3
𝑔(𝑥)|

𝑥=0

𝑥=𝐿

− ∫ 𝐸𝑝𝐼
𝑑3𝑦

𝑑𝑥3

𝐿

0
𝑔′(𝑥)𝑑𝑥 + ∫ 𝑘𝑠(𝑥)

𝐿

0
𝑦(𝑥) 𝑔(𝑥) 𝑑𝑥 = 0 ⇒ (60) 

 

𝐸𝑝𝐼
𝑑3𝑦

𝑑𝑥3
𝑔(𝑥)|

𝑥=0

𝑥=𝐿

− ∫ 𝐸𝑝𝐼 (
𝑑2𝑦

𝑑𝑥2
)
′

𝐿

0
𝑔′(𝑥)𝑑𝑥 + ∫ 𝑘𝑠(𝑥)

𝐿

0
𝑦(𝑥) 𝑔(𝑥) 𝑑𝑥 = 0 ⇒ (61) 

 

𝐸𝑝𝐼
𝑑3𝑦

𝑑𝑥3
𝑔(𝑥)|

𝑥=0

𝑥=𝐿

−𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2
𝑔′(𝑥)|

𝑥=0

𝑥=𝐿

+ ∫ 𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2

𝐿

0
𝑔′′(𝑥)𝑑𝑥 +

+∫ 𝑘𝑠(𝑥)
𝐿

0
𝑦(𝑥) 𝑔(𝑥) 𝑑𝑥 = 0 ⇒ (62) 



 

Provided that shear and moment across the pile are given by equations: 

 

𝐸𝑝𝐼
𝑑3𝑦

𝑑𝑥3
= 𝑄(𝑥) (63) 

 

and 

 

𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑄(𝑥) (64) 

 

we replace the above equations into eq. 62 and thus, we get: 

 

𝑄(𝑥)𝑔(𝑥)|𝑥=0
𝑥=𝐿 −𝑀(𝑥)𝑔′(𝑥)|𝑥=0

𝑥=𝐿 + ∫ 𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2
𝑔′′(𝑥)𝑑𝑥

𝐿

0
+ (65) 

+∫ 𝑘𝑠(𝑥)𝑦(𝑥)
𝐿

0

𝑔(𝑥)𝑑𝑥 = 0 ⇒ 

 

[𝑄(𝐿)𝑔(𝐿) − 𝑄(0)𝑔(0)] − [𝑀(𝐿)𝑔′(𝐿) − 𝑀(0)𝑔′(0)] + (66) 

+∫ 𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2
𝑔′′(𝑥)𝑑𝑥

𝐿

0

+∫ 𝑘𝑠(𝑥)𝑦(𝑥)
𝐿

0

𝑔(𝑥)𝑑𝑥 = 0 ⇒ 

 

𝑄(𝐿)𝑔(𝐿) − 𝑄(0)𝑔(0) − 𝑀(𝐿)𝑔′(𝐿) + 𝑀(0)𝑔′(0) + (67) 

+∫ 𝐸𝑝𝐼
𝑑2𝑦

𝑑𝑥2
𝑔′′(𝑥)𝑑𝑥

𝐿

0

+∫ 𝑘𝑠(𝑥)𝑦(𝑥)
𝐿

0

𝑔(𝑥)𝑑𝑥 = 0 ⇒ 

 

Bearing in mind that moment and shear at the pile tip are equal to zero and that at the 

pile head M(0)=Mo and Q(0)=Qo, we get: 

 

−𝑄𝑜𝑔(0) + 𝑀𝑜𝑔′(0) + ∫ 𝐸𝑝𝐼𝑦′′(𝑥)𝑔′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝑦(𝑥)

𝐿

0
𝑔(𝑥)𝑑𝑥 = 0 (68) 

 

Now, assuming that g(x) is equal to y(x): 

 

𝑔(𝑥) = 𝑦(𝑥) = 𝑢𝑜𝜓(𝑥) (69) 

 

and setting unit displacement at the pile head (g(0)=y(0)=1) and zero rotation at the 

same spot (g’(0)=y’(0)=0), eq. 68 is transformed into equation 70: 



 

𝑄𝑜𝑢𝑜 = ∫ 𝐸𝑝𝐼𝑢𝑜𝜓′′(𝑥)𝑢𝑜𝜓′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝑢𝑜𝜓(𝑥)𝑢𝑜

𝐿

0
𝜓(𝑥)𝑑𝑥 ⇒ (70) 

 

𝑄𝑜𝑢𝑜 = 𝑢𝑜
2 [∫ 𝐸𝑝𝐼𝜓′′(𝑥)𝜓′′(𝑥)𝑑𝑥

𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝜓(𝑥)

𝐿

0
𝜓(𝑥)𝑑𝑥] ⇒ (71) 

 

𝑄𝑜 = 𝑢𝑜 [∫ 𝐸𝑝𝐼𝜓′′(𝑥)𝜓′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝜓(𝑥)

𝐿

0
𝜓(𝑥)𝑑𝑥]⏟                              

𝐾ℎℎ

⇒ (72) 

 

𝐾ℎℎ = 𝐸𝑝𝐼 ∫ [𝜓′′(𝑥)]
2𝑑𝑥

𝐿

0
+ ∫ 𝑘𝑠(𝑥)[𝜓(𝑥)]

2𝐿

0
𝑑𝑥  (73) 

 

In the same way, by imposing zero displacement at the pile head (g(0)=y(0)=0) and a 

unit rotation (g’(0)=y’(0)=1), assuming again that g(x) is equal to y(x): 

 

𝑔(𝑥) = 𝑦(𝑥) = 𝜃𝑜𝜑(𝑥) (74) 

 

eq. 68 is transformed into: 

 

−𝑀𝑜𝜃𝜊 = ∫ 𝐸𝑝𝐼𝜃𝜊
2[𝜑′′(𝑥)]2𝑑𝑥

𝐿

0
+ ∫ 𝑘𝑠(𝑥)

𝐿

0
𝜃𝜊
2[𝜑(𝑥)]2𝑑𝑥 ⇒ (75) 

 

−𝑀𝑜𝜃𝜊 = 𝜃𝜊
2 [∫ 𝐸𝑝𝐼[𝜑′′(𝑥)]

2𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)

𝐿

0
[𝜑(𝑥)]2𝑑𝑥] ⇒ (76) 

 

−𝑀𝑜 = 𝜃𝜊 [∫ 𝐸𝑝𝐼[𝜑′′(𝑥)]
2𝑑𝑥

𝐿

0
+ ∫ 𝑘𝑠(𝑥)

𝐿

0
[𝜑(𝑥)]2𝑑𝑥]⏟                          

𝐾𝑟𝑟

⇒ (77) 

 

𝐾𝑟𝑟 = ∫ 𝐸𝑝𝐼[𝜑′′(𝑥)]
2𝑑𝑥

𝐿

0
+ ∫ 𝑘𝑠(𝑥)

𝐿

0
[𝜑(𝑥)]2𝑑𝑥 (78) 

 

Finally, by replacing y(x)=uoψ(x) and g(x)=θoφ(x) and considering a unit displacement 

at the pile head (uo=1) while setting free the rotation (θo), simulating thus a free head 

pile under lateral load, eq. 68 is transformed into: 

 

𝑄𝑜𝑢𝑜 −𝑀𝑜𝜃𝑜 = ∫ 𝐸𝑝𝐼𝑢𝑜𝜓
′′(𝑥)𝜃𝑜𝜑

′′(𝑥)𝑑𝑥
𝐿

0

+ 

+∫ 𝑘𝑠(𝑥)𝑢𝑜𝜓(𝑥)𝜃𝑜
𝐿

0
𝜑(𝑥)𝑑𝑥

𝑢𝑜=1
⇒    (79) 



 

𝑄𝑜 −𝑀𝑜𝜃𝑜 = ∫ 𝐸𝑝𝐼𝜓′′(𝑥)𝜃𝑜𝜑′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝜓(𝑥)𝜃𝑜

𝐿

0
𝜑(𝑥)𝑑𝑥 ⇒ (80) 

 

Due to free head boundary condition, as far as the rotation is concerned, Mo=0: 

 

𝑄𝜊 = 𝜃𝜊 ∫ 𝐸𝑝𝐼𝜓′′(𝑥)𝜑′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝜓(𝑥)

𝐿

0
𝜑(𝑥)𝑑𝑥⏟                              

𝐾ℎ𝑟

⇒ (81) 

 

𝐾ℎ𝑟 = ∫ 𝐸𝑝𝐼𝜓′′(𝑥)𝜑′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝜓(𝑥)

𝐿

0
𝜑(𝑥)𝑑𝑥 (82) 

 

Also, because of the symmetric matrix, we get Khr=Krh 

 

Using the aforementioned stiffness parameters, the following expression is obtained 

which describes the piles waying, rocking and cross swaying-rocking head stiffness of 

a floating pile (Mylonakis, 1995): 

 

𝐾𝑖𝑗 = 𝐸𝑝𝐼 ∫ 𝜒𝑖
′′(𝑥)𝜒𝑗

′′(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝑘𝑠(𝑥)𝜒𝑖(𝑥)

𝐿

0
𝜒𝑗(𝑥)𝑑𝑥 (83) 

 

The two terms in the right-hand side of eq.86 stand for the contributions to the overall 

stiffness of the pile. The first term of the same equation stands for the pile flexural 

stiffness, whilst the second, for the soil stiffness. 

The two subscripts i and j refer to swaying and rocking stiffness respectively. When 

χi(x)=χj(x)=ψ(x) the swaying stiffness Khh is obtained. When χi(x)=χj(x)=φ(x) the 

rocking stiffness Krr is obtained. Finally, when χi(x)=ψ(x) and χj(x)=φ(x) the cross 

swaying-rocking stiffness Khr(=Krh) is calculated. 

 



 
Fig 4. Shape functions φ(x) and ψ(x) 

 

4. NON-LINEARITIES OF THE PROBLEM 

 

The problem of the laterally loaded monopile, involves two main non-linearities. The 

first refers to soil behavior, while the second refers to the behavior of the pile material. 

 

4.1 Soil non-linearity 

 

To simulate soil behavior, at small lateral displacements, the “p-y” curves are used. 

These curves were derived experimentally by analyzing load tests on piles, mainly by 

McClelland & Focht (1958), Matlock (1970), Reese and Van Impe (2001), and Cox et 

al. (1974). A typical curve is shown in Figure 5. The initial part of the curve consists of 

a small segment which describes the behavior of soil micro-movements (elastic 

behavior) and its stiffness is defined as δEs, where δ is a dimensionless constant 

ranging between 1 and 1.5 (Novak et al., 1978; Roesset, 1980; Scott, 1981; Dobry et 

al., 1982), and Es, is the modulus of elasticity of the soil at a specific depth. The final 

(horizontal) part of the curve defines the maximum response of the soil in large 

horizontal displacements (pmax), and is calculated based on limit equilibrium analysis. 

The slope and the shape of the curve depends on the depth (near the pile head or in 

greater depth), the soil type (clay, sand, soft rock), the loading conditions (monotonic 

or cyclic) and the diameter of the pile.  

 



 

Fig 5. Typical “p-y” curve 

 

4.2 Pile non-linearity  

 

The second source of nonlinearity is detected in the behavior of the pile material. 

Based on materials theory, the secant stiffness (EpI) of the pile section is reduced as 

the bending moment applied increases. To understand this phenomenon, a typical 

moment-curvature diagram is presented in Figure 6. In the following trilinear moment-

curvature diagram, there are three points that define the flexural behaviour of the cross 

section: (A) Concrete crack, (B) Yield of tensile steel rods (C) Section collapse. 

 

 

Fig 6. Typical moment curvature diagram of concrete pile section 

5. DEVELOPMENT OF NON-LINEAR SOLUTION 

 

For the development of a nonlinear model, Mylonakis solution (1995) was used 

incorporated with “p-y” springs, describing soil non-linearity and moment-curvature 



diagram, representing the stiffness of the pile material. Based on the stiffness matrix 

at the head of the pile (eq. 19) and throughout trial and error iterative process, by 

adjusting each of the two non-linearities (soil non-linearity through “p-y” curves, 

through M-1/R diagram) convergence is reached (Psaroudakis, 2013). The eleven 

steps of the process are presented one by one, below: 

 

Fig 7. Flowchart of iterative process 

 

The aforementioned “algorithm”, in case of inhomogeneous soil, converges in less 

than 15 loops and remains stable even for lateral loads close to failure.  

 



6. RELIABILITY OF THE PROPOSED METHOD 

 

Hereafter are presented three case studies where theoretical results from the 

proposed method are compared to real field data from in-situ pile load tests. 

 

6.1 Case study No 1 

 

A monotonic lateral pile load test took place in 2005 for the construction of a bridge at 

Aliakmon River, Greece (Comodromos and Pitilakis, 2005).The pile was of length 

L=52m, diameter d=1.0m, made of concrete C30/35 and steel bars S500 (in 

longitudinal direction16Φ25).The soil layers are shown in Table 2 and during the test, 

the groundwater table was located at the ground surface. The horizontal load was 

applied through a hydraulic jack which was placed at the surface level. 

 

 

Fig 8. Moment curvature diagram of diameter d=1.0m circular pile, calculated by 

software Response-2000 

 
 

Table2. Stratigraphy and geotechnical parameters used in 1st example 

Layer Soil Type Soil Characteristics Top-Bottom 

Layer 1 
Soft clay  

(CL) 
G=90cu, cu=5-50kPa, φ’=0o, γ=20.0kN/m3 0.0-36.0m 

Layer 2 
Hard clay  

(CL) 
K=8.33MPa, G=3.35MPa, cu=110kPa, 
γ=20kN/m3, φ’=0o, γ=20.0kN/m3 

36.0-48.0m 

Layer 3 
Thick gravel  

(GW) 
K=40MPa, G=24MPa, φ’=40ο, 
γ=22.0kN/m3, k=50.0MN/m3 

48.0-52.0m 

φ' 
γ 
k 
cu 
G 

: Friction angle (deg) 
: Eff. unit weight (kN/m3) 
: Lat. Subgrade modulus (MN/m3) 
: Undrained shear strength (kPa) 
: Shear modulus (MPa) 
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K 
Es 

qu 

: Bulk modulus (MPa) 
: Modulus of elasticity (MPa) 
: Unconfined compressive strength (kPa) 

 

After the completion of the field test, numerical analyses were followed using the 

software FLAC3D (finite difference software by ITASCA, 2005), COM623 (finite 

difference software; Sullivan,1977) and EPile (software implementing the proposed 

solution with the use of Davies & Budhu parameters χ and n, for the calculation of 

“active” length (Psaroudakis, 2013). For the analysis, the pile's section nonlinearity 

was implemented through moment-curvature diagram presented above (Figure 8) and 

the soil non-linearity through "p-y" curves (Reese and Van Impe, 2001). The results of 

the analyses are presented in force-displacement (at the pile head) diagrams, 

normalized by the marginal load (Broms, 1964a-b; PB≈803.0kN) and the diameter (d) 

of the pile. In Figure 9 the analysis results for elastic pile and non-linear soil are 

depicted, whereas in Figure10 the analysis results for both non-linear pile and soil 

behavior are also presented. Additionally, in these diagrams the ultimate lateral 

resistance of the pile is presented, calculated via the method proposed by Loukidis 

and Vavourakis (2014). The latter method estimates the pile limit lateral resistance in 

elastic-perfectly plastic soil under plane strain conditions. An equation, based on FE 

analysis results, is used for the estimation of limit lateral pile resistance, in non-dilative 

cohesionless and cohesive frictional soils. 

 

 

Fig 9. Force - displacement normalized diagram, on the head of an elastic pile 
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Fig 10. Force - displacement normalized diagram, on the head of an inelastic pile 

 

6.2 Case study No 2 

 

The 2ndpile test was carried out at the area located between the harbour of 

Thessaloniki (Northern Greece) and the intersection of the main motorway and the ring 

road, 10km southwest of city center (Comodromos et al, 2009). Likewise, the previous 

example, the groundwater table was located at the ground surface. The stratigraphy 

of the area is presented in Table 3. The pile was of length L=32m, diameter d=0.8m 

and was made of concrete C20/25 and steel bars S500 (longitudinal direction 16Φ18). 

 

 

 

Fig 11. Moment curvature diagram of diameter d=0.80m circular pile, calculated by 

software SOFISTIK 

 

Table3. Stratigraphy and geotechnical parameters used in 2nd example 

Layer Soil Type Soil Characteristics Top-Bottom 
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Layer 1 
Loose Sand 

(SM/ML) 

φ’=30ο, 
γ=20.0kN/m3,Es=25.0MPa,c’=3.0kPa, 
k=30.0MN/m3 

0.0-6.0m 

Layer 2 
Dense Sand 

(SM/ML) 

φ’=35ο, 
γ=20.0kN/m3,Es=35.0MPa,c’=5.0kPa, 
k=40.0MN/m3 

6.0-12.0m 

Layer 3 
Soft Clay 

(OH) 
qu=30-50kPa, γ=17.0kN/m3, 
c’=25±10kPa, φ’=5±5ο, Es=30.0MPa 

12.0-25.0m 

Layer 4 
Hard Clay  

(CL) 
qu=170±70kPa, γ=21.0kN/m3, 
c’=110±20kPa, φ’=0-5ο, Es=80.0MPa 

25.0-35.0m 

φ’ 
c’ 
γ 
k 
Es 

qu 

: Friction Angle (deg) 
: Cohesion (kPa) 
: Effective unit weight (kN/m3) 
: Lateral subgrade modulus (MN/m3) 
: Modulus of elasticity (MPa) 
: Unconfined compressive strength (kPa) 

 

The numerical simulation of the pile load test was performed using the finite difference 

code COM623 (Sullivan, 1977) and EPile (with the use of Davies &Budhu parameters 

χ and n; Psaroudakis, 2013). In Figure 11 the moment-curvature diagram of the section 

is presented, used for the non-linear analysis, whilst the soil response is simulated 

through “p-y” springs (Reese and Van Impe, 2001). The results of the analyses are 

presented in force-displacement (at the pile head) diagrams, normalized to the 

marginal load (Broms 1964a-b; PB≈459.0kN) and the diameter (d) of the pile. In Figure 

12 the analysis results for elastic pile and non-linear soil are depicted, whereas in 

Figure 13 the analysis results for both non-linear pile and soil behavior are presented. 

In the aforementioned diagrams is also presented the limit lateral resistance of the pile, 

calculated via the method proposed by Loukidis and Vavourakis (2014).  

 

 

 

Fig 12. Force - displacement normalized diagram, on the head of an elastic pile 
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Fig 13. Force -displacement normalized diagram, on the head of an inelastic pile 
 

6.3 Case study No 3 

 

This pile test took place on Treasure Island in San Francisco Bay, California. Although 

the testing program was designed to evaluate the lateral load behavior of piles and pile 

groups in liquefied sand produced by controlled blasting, the lateral behavior of the 

piles, prior to liquefaction was also determined for comparison purposes (Rollins et al., 

2005). The groundwater table was found at a depth of 0.5m below the ground surface. 

The pile was a 0.324m outside diameter, A252 Grade 3 steel pipe with 9.5mm wall 

thickness and length equal to L≈11.5m. The moment of inertia of the section was 

I=1.16×10-4 m4. However, an angle iron was attached to opposite sides of the pile in 

the direction of loading to protect the strain gages, which increased the moment of 

inertia to I=1.43×10-4 m4, modifying the stiffness of the section to EpI≈28.600 kNm2. 

The horizontal load was applied at a height of 0.69m above the ground surface, through 

a hydraulic pump. 

 

Table 4. Stratigraphy and geotechnical parameters used in 3rd example according to API (1987) 

Layer Soil Type Soil Characteristics Top-Bottom 

Layer 1 
Sand 
(SP) 

φ’=33ο, γ=19.50kN/m3,c’=0kPa, 
k=24.4MN/m3 

0.0-0.51m 

Layer 2 
Sand 

(SP-SM) 
φ’=33ο, γ=10.3kN/m3,c’=0kPa, 
k=15.4MN/m3 

0.51-2.59m 

Layer 3 
Sand 

(SP-SM) 
φ’=32ο, γ=10.3kN/m3,c’=0kPa, 
k=13.6MN/m3 

2.59-4.73m 

Layer 4 
Sand 
(SM) 

φ’=30ο, γ=10.3kN/m3,c’=0kPa, 
k=10.8MN/m3 

4.73-7.49m 

Layer 5 
Soft Clay 

(CL) 
φ’=0ο, 
γ=9.5kN/m3,e50=0.01,c’=19.2kPa 

7.49-9.25m 
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Layer 6 
Sand 
(SP) 

φ’=30ο, γ=10.3kN/m3,c’=5.0kPa, 
k=10.8MN/m3 

9.25-10.16m 

Layer 7 
Soft Clay 

(CL) 
φ’=0ο, 
γ=9.5kN/m3,e50=0.01,c’=19.2kPa 

10.16-11.84m 

φ’ 
c’ 
γ 
k 
e50 

: Friction Angle (deg) 
: Cohesion (kPa) 
: Effective unit weight (kN/m3) 
: Lateral subgrade modulus (MN/m3) 
: Strain corresponding to one-half of the compressive strength of clay 

 

The numerical simulation of the pile test was performed using the software LPile Plus 

v.3.0 (Finite difference code, Reese et al.,1997), SWM v.3.2 (Finite difference code, 

Ashour et al., 2002) and EPile (Psaroudakis, 2013).The results of the analyses are 

presented in force-displacement (at the pile head) diagrams, normalized to the 

marginal load (Broms 1964a-b; PB≈113.5kN) and the diameter (d) of the pile. For the 

geotechnical site characterization, a number of in situ tests were performed (SPT, 

CPT, etc.). For the present case study, two soil profiles are available (Bolton, 1986; 

API, 1987) and are respectively presented in Tables 4 and 5. 

 

 

Table 5. Stratigraphy and geotechnical parameters used in 3rd example according to Bolton 

(1986) 

Layer Soil Type Soil Characteristics Top-Bottom 

Layer 1 
Sand  
(SP) 

φ’=39ο(38o), γ=19.50kN/m3,c’=0kPa, 
k=60.0MN/m3 

0.0-0.51m 

Layer 2 
Sand  

(SP-SM) 
φ’=39ο(38o), γ=10.3kN/m3,c’=0kPa, 
k=35.2MN/m3 

0.51-2.97m 

Layer 3 
Sand  

(SP-SM) 
φ’=37ο(36o), γ=10.3kN/m3,c’=0kPa, 
k=29.8MN/m3 

2.97-3.99m 

Layer 4 
Sand  

(SP-SM) 
φ’=36ο(33o),γ=10.3kN/m3,c’=0kPa, 
k=24.4MN/m3 

3.99-6.00m 

Layer 5 
Sand  
(SM) 

φ’=35ο(34o),γ=10.3kN/m3,c’=0kPa, 
k=21.7MN/m3 

6.00-7.49m 

Layer 6 
Soft Clay  

(CL) 
φ’=0ο, 
γ=9.5kN/m3,e50=0.01,c’=19.2kPa 

7.49-9.25m 

Layer 7 
Sand  
(SP) 

φ’=34ο(33o),γ=10.3kN/m3,c’=5.0kPa, 
k=19.0MN/m3 

9.25-10.16m 

Layer 8 
Soft Clay  

(CL) 
φ’=0ο, 
γ=9.5kN/m3,e50=0.01,c’=19.2kPa 

10.16-11.84m 

φ' 
c' 
γ 
k 
e50 

: Friction Angle (deg) 
: Cohesion (kPa) 
: Effective unit weight (kN/m3) 
: Lateral subgrade modulus (MN/m3) 
: Strain corresponding to one-half of the compressive strength of clay 

*In parenthesis is the friction angle used for the analysis with SWM 

 

Figures 14 and 15 present the results from this pile test, as well as the analysis results 

by the three software (EPile, SWM and LPile) according to API and Bolton correlations 



respectively. From the analysis coming from EPile software, it is concluded that the 

best convergence of theoretical results with the pile test, was achieved with the 

combined use of parameters χ and n, according to Gazetas (1991) and API profile (see 

Table 4). Additionally, in these diagrams the limit lateral resistance of the pile is also 

presented, calculated using both methods proposed by Broms (1964a-b) and Loukidis 

& Vavourakis (2014). Non-linear pile behavior was not taken into account in this case 

study. 

 

 

Fig 14. Force - displacement normalized diagram, on the head of an elastic pile, based on API 
profile 

 

 

Fig 15. Force - displacement normalized diagram, on the head of an elastic pile, based on 
Bolton’s profile 

 

In all three examples (case studies), the results of the proposed solution are in good 

agreement with the experimental measurements. Specifically, it is obvious that the 

analysis of both non-linear pile and non-linear soil follows closely the results of the pile 



test contrary to the one in which only the soil is considered as non-linear. The analysis 

with COM623 (elastic pile, finite difference analysis) shows greater deviation even for 

low load values. In the third example, the calculation is performed for elastic pile 

behavior, whilst the results of the method, using API correlation seems to be closer to 

the real field data. In the first example, Loukidis and Vavourakis (2014) method 

overestimates the limit lateral resistance of the pile compared to Broms method, 

whereas in the second example seems to be more conservative and accurate than 

Broms. This explains the reason why Loukidis and Vavourakis (2014) method is 

proposed mostly for limit lateral pile resistance estimation in cohesionless soils. 

 

7. PRACTICAL APPLICATION OF THE PROPOSED METHOD 

 

Unlike numerical solutions, which demand discretization of the pile into finite elements 

and afterwards, resolution of a system of complicated linear equations, the proposed 

innovative method, requires only discretization of the pile into "cells", in order to 

integrate with depth, using a simple worksheet. The results of the method are 

considered satisfactory, as they converge fairly well with those coming from more 

rigorous methods based on complicated numerical analyses. The practical application 

of the method is based on its simplicity and accuracy and it is considered ideal for 

aquick, yet reliable evaluation of experimental data and results from numerical 

analyses. 

8. CONCLUSIONS 

 

1. A numerical model has been developed, for the analysis of non–linear problem 

of a laterally loaded single pile avoiding use of finite elements or finite 

differences and consequently resolution of numerous linear systems. 

2. The method calculates displacement and rotation directly based on the shape 

functions, while shear stresses and moments are calculated by consecutive 

integrations of soil deflection along the pile. 

3. Since the proposed method is not based on matrix inversion, it is extremely 

stable even for loads close to failure. 

4. If soil is simulated by linear springs, then the proposed solution is entirely 

identical to the already existing solutions in bibliography. In the case of a 



homogeneous soil, convergence is achieved without iterative process, while in 

the case of inhomogeneous soil, convergence is usually achieved in less than 

ten (10) iterations. 

5. The suggested method has also been compared to real field data, in three 

cases (USA & Greece), with a noticeable success. 

6. Due to the combined advantages, such as, stability, accuracy, economy and 

ease of use, it is our belief that the proposed method can be reliably applied for 

the evaluation of experimental data and results from numerical analyses. 

 

 

REFERENCES 

 

[1] American Petroleum Institute (1987) Recommended Practice for Planning, 

Designing and Constructing Fixed Offshore Platforms. API Recommended 

Practice, 2A (RP 2A), 17th Ed. 

[2] Ashour M., Norris G. and Pilling P. (2002), Strain Wedge Model Capability of 

Analyzing Behavior of Lateral Loaded Isolated Piles, Drilled Shafts and Pile 

Groups. Journal of Bridge Engineering, Vol. 7, No. 4, pp. 245-254 

[3] Banerjee P.K., Davis T.G. (1978), The behavior of axially and laterally loaded 

single piles embedded in non-homogeneous soils. Géotechnique, Vol. 28, No. 

3, pp. 309-326 

[4] Barber E.S. (1953), Discussion to Paper by SM Gleser. ASTM, SPT 154, pp. 

96-99 

[5] Bolton M.D .(1986), The Strength and Dilatancy of Sands. Géotechnique, Vol. 

36, No. 1, pp. 65-78 

[6] Broms B.B. (1964a), Lateral Resistance of Piles in Cohesive Soils. 

Proceedings of the American Society of Civil Engineers, Journal of the Soil 

Mechanics and Foundations Division, Vol. 90, SM2 

[7] Broms B.B. (1964b), Lateral Resistance of Piles in Cohesionless Soils. 

Proceedings of the American Society of Civil Engineers, Journal of the Soil 

Mechanics and Foundations Division, Vol. 90, SM3 

[8] Comodromos E.M. and Pitilakis K.D. (2005), Response Evaluation for 

Horizontally Loaded Fixed-Head Pile Groups Using 3-D Non-Linear Analysis. 

International Journal for Numerical and Analytical Methods in Geomechanics, 

Vol. 29, No. 6, pp. 597-625 



[9] Comodromos E.M., Papadopoulou M.C. and Rentzeperis I.K. (2009), Pile 

Foundation Analysis and Design using Experimental Data and 3D Numerical 

Analysis. Computers and Geotechnics, Vol. 36, No.5, pp. 819-836 

[10] Cox W.R., Reese L.C. and Grubbs B.R. (1974), Field Testing of Laterally 

Loaded Piles in Sand. Proceedings of the 6th Annual Offshore Technology 

Conference, Huston, Texas, pp. 459-487 

[11] Davies T.G., Budhu M. (1986), Nonlinear Analysis of Loaded Piles in Heavily 

Overconsolidated clays. Géotechnique, Vol. 36, No. 4, pp. 527-538 

[12] Dobry R., O’Rourke J.M., Roesset M.J. and Vicente E. (1982), Stiffness and 

damping of single piles. Journal of Geotechnical Engineering, Division 108, pp. 

439-459 

[13] Franklin J.F. and Scott R.F. (1979), Beam Equation with Variable Foundation 

Coefficient. J. Eng. Mech., ASCE, 105, 5, pp. 811-827 

[14] Gazetas G. (1991), Foundation Vibrations. Foundation Engineering Handbook. 

2nd Edition, HY Fang, ed., Van Nostrand Reinholds, Chapter 15, pp. 553-593 

[15] Hetenyi M. (1946) Beams on Elastic Foundations. Univ. of Michigan Press: 

Michigan 

[16] ITASCA Consulting Group: FLAC3D (2005) Fast Lagrangian Analysis of 

Continua. Minneapolis 

[17] Loukidis D. and Vavourakis V. (2014), Limit Lateral Resistance of Vertical Piles 

in Plane Strain. 8th European Conference on Numerical Methods in 

Geotechnical Engineering, pp. 681-685 

[18] Matloc H. (1970), Correlation for Design of Laterally Loaded Piles in Soft Clay. 

Proceedings of the 2nd Offshore Technology Conference. Dallas, Texas, pp. 

577-594 

[19] McClelland B. and Focht J. (1958), Soil Modulus for Laterally Loaded Piles. 

Transactions of the American Society of Civil Engineers. Vol. 123, pp 1049-

1086 

[20] Mylonakis G. (1995), Contributions to the Static and Seismic Analysis of Piles 

and Pile-Supported Bridge Piers. PhD Dissertation, State University of New 

York 

[21] Mylonakis G., and Gazetas G. (1999), Lateral Vibration and Internal Forces of 

Grouped Piles in Layered Soil. Journal of Geotechnical and Geoenviromental 

Engineering, ASCE, Vol. 125, No. 1, pp. 1-10 

[22] Novak M., Nogami T. and Aboul-Ella F. (1978), Dynamic soil reaction for plane-

strain case. Journal of Engineering Mechanics, ASCE, Vol. 104, No. 4, pp. 953-

959 



[23] Pingbao Yin, Wei He and Zhaohui Joey Yang (2018), A Simplified Nonlinear 

Method for a Laterally Loaded Pile in Sloping Ground. Advances in Civil 

Engineering, Vol. 2018, ID. 5438618 

[24] Poulos H.G. and Davis E.H. (1980), Pile Foundation Analysis and Design. John 

Willey & Sons 

[25] Psaroudakis E. (2013), Non-Linear Analysis of Laterally Loaded Piles Using ''p-

y'' Curves. MSc Dissertation, University of Patras 

[26] Randolph M.F. (1981), The Response of Flexible Piles to Lateral Loading. 

Géotechnique, Vol. 31, No. 2, pp. 247-259 

[27] Reese L.C. and Van Impe W.F. (2001), Single Piles and Pile Groups under 

Lateral Loading. Balkema, Rotterdam, The Netherlands 

[28] Reese L.C., Wang S.T., Arrellaga J.A. and Hendrix J. (1997), LPile Plus 3.0 for 

Windows, Ensoft Ink., Austin, Texas 

[29] Response-2000 (2001) Reinforced Concrete Sectional Analysis using the 

Modified Compression Field Theory. Evan Bentz at Department of Civil 

Engineering, University of Toronto, Canada, V.0.8.5 

[30] Roesset J.M. (1980), Stiffness and damping coefficients of foundations. Proc. 

ASCE Geotechnical Engineering Division National Convention, pp. 1-30 

[31] Rollins K.M., Lane J.D. and Gerber T.M. (2005), Measured and Computed 

Lateral Response of a Pile Group in Sand. Journal of Geotechnical and 

Geoenviromental Engineering, Vol. 131, No. 1, pp. 103-114 

[32] Scott R.F. (1981), Foundation Analysis. Prentice Hall, Englewood Cliffs 

[33] Sullivan W.R. (1977), Development and evaluation of a unified method for the 

analysis of laterally loaded piles in clay. Unpublished MSc Dissertation, 

University of Texas, Austin 

[34] Syngros C. (2004), Seismic Response of Piles and Pile-Supported Bridge Piers 

Evaluated Through Case Histories. PhD Dissertation, The City College and the 

Graduate Center of the City University of New York 

[35] Velez A., Gazetas G. and Krishnan R. (1983), Static and dynamic lateral 

deflection of piles in non-homogeneous soil stratum. Géotechnique, Vol. 33, 

No. 3, pp. 307-325 


