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Abstract 
This paper presents a method which allows for a reduced portion of a particle image velocimetry (PIV) image to be analysed, 
without introducing numerical artefacts near the edges of the reduced region. Based on confidence intervals of statistics of 
interest, such a region can be determined automatically depending on user-imposed confidence requirements, allowing for 
already satisfactorily converged regions of the field of view to be neglected in further analysis, offering significant compu-
tational benefits. Temporal fluctuations of the flow are unavoidable even for very steady flows, and the magnitude of such 
fluctuations will naturally vary over the domain. Moreover, the non-linear modulation effects of the cross-correlation operator 
exacerbate the perceived temporal fluctuations in regions of strong spatial displacement gradients. It follows, therefore, that 
steady, uniform, flow regions will require fewer contributing images than their less steady, spatially fluctuating, counterparts 
within the same field of view, and hence the further analysis of image pairs may be solely driven by small, isolated, non-
converged regions. In this paper, a methodology is presented which allows these non-converged regions to be identified and 
subsequently analysed in isolation from the rest of the image, while ensuring that such localised analysis is not adversely 
affected by the reduced analysis region, i.e. does not introduce boundary effects, thus accelerating the analysis procedure 
considerably. Via experimental analysis, it is shown that under typical conditions a 44% reduction in the required number of 
correlations for an ensemble solution is achieved, compared to conventional image processing routines while maintaining a 
specified level of confidence over the domain.
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�u , �v	� Population standard deviation of the displacement
hk	� Spacing between vectors for the kth iteration, in 

pixels
K	� Total number of WIDIM iterations
N	� Number of images in the ensemble
Su , Sv	� Sample standard deviation of the displacement
t	� Critical value from the Student’s t distribution
u, v	� Displacement components
z∗	� Critical value from the standard normal 

distribution
CDF	� Cumulative density function
CI	� Confidence interval
PDF	� Probability density function

1  Introduction

Particle image velocimetry (PIV) is used extensively to 
experimentally investigate the characteristics of fluid 
dynamics. By analysing a pair of images of tracer particles 
separated by a small time delay, �t , an instantaneous dis-
placement field may be obtained. While such instantaneous 
displacement measurements may be of interest by them-
selves, PIV is also extensively used to acquire time-averaged 
solutions of a wide variety of flows around objects such as 
rotorcraft (Jenkins et al. 2009), formula 1 cars (Michaux 
et al. 2018), or cyclists (Jux et al. 2018). Typically, time-
averaging is applied to many instantaneous displacement 
fields, providing the mean solution as well as other statistics 
about the flow, for example, the standard deviation or kurto-
sis. Alternatively, ensemble cross-correlation can be utilised, 
wherein the cross-correlation operator is applied to all N 
pairs of images in the ensemble, resulting in N correlation 
maps for each sample location within the image. At each 
location, all N correlation maps are averaged and a single 
displacement vector, equivalent to the time-averaged solu-
tion, is retrieved (Meinhart et al. 2002). This approach is fre-
quently used in micro-PIV or when experimental conditions, 
such as seeding, are poor and would result in instantaneous 
cross-correlation failing (Wereley et al. 2002). The limita-
tion of this approach, however, is that it can only produce 
the mean displacement field. While both approaches have 
their advantages and disadvantages, the primary benefit to 
the former is the ability to easily obtain statistical quantities 
about the flow.

Such statistics may be of interest to the experimentalist 
but must be reliable, i.e. converged to the user’s require-
ments. Satisfactory convergence of the mean displace-
ment field may be obtained using relatively few, N < 100 , 
image pairs for reasonably steady or straightforward flows, 
although the number of images may be several times larger 
for more unsteady flows. Conversely, (Ullum et al. 1998) 
note that reliable convergence of higher order statistics may 

require a dramatic increase in the required number of image 
pairs towards N = 20, 000 , posing significant demands on 
computational resources. While the computational cost to 
obtain a single mean displacement field may not be sig-
nificant in and of itself, it is often desirable to test many 
parameter configurations, which can rapidly increase the 
number of mean displacements to be analysed. Meanwhile, 
access to wind tunnels (WT) is often restricted due to their 
running costs, availability, or regulatory bodies, as is the 
case in Formula 11 FIA (2019). As such, the experimental-
ist must often decide which parameter configurations are 
likely to be the most informative in advance, to maximise 
WT utilisation. Reductions in computational requirements 
to obtain the desired results may, conversely, enable the user 
to adjust model-parameter configurations on the fly, based 
upon results obtained concurrently with WT run-time, thus 
offering a considerable benefit towards maximising the effi-
ciency of WT usage.

When calculating ensemble-averaged solutions, the 
underlying displacement field (i.e. flow) is required to be 
quasi-stationary, although some temporal fluctuations are 
unavoidable and the magnitude of such will naturally vary 
over the domain due to the underlying flow behaviour. Fur-
thermore, flow features captured within the field of view 
typically vary spatially, presenting a range of displacement 
gradients, which have been previously shown to be detrimen-
tal to the accuracy of the correlation outcome (Westerweel 
2008), adding increased uncertainty in the form of artificial 
displacement fluctuations. In addition, it has been previously 
demonstrated that cross-correlation response is non-linear 
and is biased towards regions of curvature (Theunissen and 
Edwards 2018). While this produces a constant bias to the 
mean, it also influences the measured temporal variance; the 
amount of bias per-image basis will vary depending upon the 
realisation of particle images within the correlation window. 
Due to these factors, the number of image pairs required for 
local statistical convergence will vary over the field of view 
(FOV). To exemplify, the captured FOV may contain regions 
of little temporal variance (e.g. laminar flow), requiring 
only few velocity samples to reach statistical convergence 
in the temporal average, whereas more turbulent regions 
will demand a large number of realisations, implying that 
in some image regions statistical convergence might have 
been reached while additional data analyses are driven by 
isolated, non-converged, image portions.

Spatially adaptive sampling strategies may ameliorate 
the situation by reducing locally the number of correlation 
windows (Theunissen et al. 2007; Edwards and Theunissen 

1  Formula 1 teams are restricted to a certain combined total hours 
WT run-time or equivalent CPU time for CFD. It is thus the preroga-
tive of the team to decide how to split their allocated hours between 
experimental and numerical.
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2019), although such approaches do not consider the local 
convergence and will continue to place correlation win-
dows, albeit fewer of them, in regions which may already 
be satisfactorily converged. Confidence intervals provide an 
insight into the convergence of a statistic, by indicating the 
bounds within which there is a certain confidence that the 
true statistic value lies. If the width of the interval is smaller 
than some user-defined threshold value, then the solution 
at that location can be considered sufficiently accurate for 
the user’s needs. Figure 1 shows the magnitude of the 95% 
confidence interval (CI) for a turbulent jet flow, as provided 
with the Second International PIV Challenge (Stanislas et al. 
2005), as the number of images contributing to the ensemble 
increases. Regions in which confidence in the solution is 
sufficient, i.e. regions in Fig. 1 where the CI ≤ 0.1, can be 
considered to have reached statistical convergence. Since 
confidence intervals can be easily computed per pixel, it is 
possible to determine only those pixels which require further 
sampling to reach the target threshold, herein referred to as 
the region of interest (ROI).

In theory, the image outside of the ROI need not be sam-
pled any further, which could be achieved by imposing a 
sampling mask in a similar methodology as image masks 
are applied. Referring again to Fig. 1, the regions in dark 
green represent the regions which do not need further analy-
sis, whereas the central turbulent jet region represents the 
ROI. Applying a mask immediately surrounding the ROI, 
however, would artificially truncate information along the 
flow-mask boundary, something which has repeatedly been 
found to influence correlation (Masullo and Theunissen 
2017; Gui et al. 2003; Ronneberger et al. 1998). Provided 
a global interpolant is not used to interpolate displacement 
vectors, then beyond some distance, which shall be referred 

to as the analysis support radius (ASR), changes to the solu-
tion will no longer influence the point in question. Therefore, 
a sampling mask could be imposed around the ASR, in turn 
reducing computation, without adversely affecting the solu-
tion within the ROI in any way.

In the following section, this paper explains how con-
fidence intervals can be calculated efficiently, and subse-
quently how they allow automatic detection of the ROI 
within the image. Following this, a novel methodology is 
introduced which allows calculation of the sampling sup-
port radius for arbitrary analysis configurations, and details 
on how to implement this within a typical image analysis 
routine are given. The methodology is then proven on a set 
of experimental images of the flow over a blunt trailing edge, 
showing the potential computational savings which can be 
achieved by the proposed method.

2 � Background theory

The level of convergence in a particular statistic can 
be inferred by considering its confidence interval (CI). 
Broadly speaking, the CI represents the range around the 
observed statistic mean within which there is a certain 
probability, � , typically 0.95 in engineering applications, 
of the true statistic mean occurring. More accurately, 
the confidence level indicates the proportion of calcu-
lated confidence intervals which would contain the true 
value, if infinitely many intervals were calculated from 
the same underlying distribution (Neyman 1937). Increas-
ing the required confidence level for a given distribution 
will increase the width of the interval—thus giving more 
chance of the true value being within the calculated bands; 

Fig. 1   Evolution of the confidence interval (95% confidence level) of 
the mean displacement for an axisymmetric turbulent jet, provided for 
the second PIV challenge (Stanislas et  al. 2005), using a 20 image 

pairs, b 50 image pairs, c 100 image pairs. The confidence interval 
lower limit is capped at 0.1 for the purpose of illustration. Units in 
pixel
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a 100% confidence level, � = 1 , although not realistic, 
would result in an infinitely large interval to be certain 
of containing the true value. The CI is proportional to a 
scaling term which varies depending on the underlying 
distribution of the data; if the underlying data are normally 
distributed, and the true standard deviation of the popula-
tion, i.e. �u , is known, then the critical value, denoted by 
z∗ in this case, is obtained from the standard normal dis-
tribution. However, if the sample size is very small, or the 
standard deviation must be estimated from the observed 
data, then the Student’s t distribution should be used to 
obtain the critical value, denoted by t. The equation to cal-
culate the confidence interval of the mean of the horizontal 
displacement is shown in Eqs. (1a) and (1b), where N is 
the number of samples, �u is the true population standard 
deviation, and Su is the observed sample standard devia-
tion. The critical values z∗ = f (�) and t = f (�,N) will be 
covered in more detail in the remainder of this section. 
To clarify, the calculated interval would be u ± CIu where 
u is the observed mean of the data. A similar equation is 
obtained for the vertical displacement.

CIu =
z∗ · σu√

N
, if σu is known (1a)

t · Su√
N

if σu is estimated with Su (1b)

Attention now turns to the critical values, z∗ and t. These 
values represent the width, in terms of the number of stand-
ard deviations either side of the mean such that the contained 
cumulative probability is equal to the imposed confidence 
level, � . In other words, the area under the PDF curve (see 
Fig. 2a) between � = ± z∗ , or � = ± t , equals � . For the 
standard normal distribution, with � = 0 and � = 1 , depicted 
in Fig. 2a by the solid line, this critical value is purely a 
function of � . Common values of � are 0.68, 0.95, and 0.997 
which correspond to z∗ values of 1, 1.96, and 3, respectively. 
The solid vertical lines in Fig. 2a represent z∗ ± 1.96 , i.e. 
� = 0.95 , and, therefore, contain 95% of the distribution 
within these bounds. Alternative values can be found in 
lookup tables, or by numerically solving the cumulative 
density function (CDF) of the standard normal distribution 
for some target � , for which functions are readily available 
in most public statistics libraries.

The Student’s t distribution, on the other hand, depends 
on the number of degrees of freedom, � = N − 1 . When there 
are few degrees of freedom, there is more uncertainty in the 
estimate of the standard deviation; the t distribution accounts 
for this uncertainty by having larger tails, allowing for more 
samples further from the mean. This can be seen in Fig. 2a 
by the increased probability for large � , and decreased prob-
ability for low � . Consequently, the critical value t, which 
is to contain some proportion � of the distribution, must be 

Fig. 2   Comparison of the normal- and Student’s t distributions, and the effect of the number of degrees of freedom, � , on calculating the confi-
dence interval
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larger, and this can also be seen in Fig. 2a. Similar to the 
above, values of t for various degrees of freedom can be 
found in lookup tables or calculated with functions from 
readily available libraries. It should be noted that as the 
degrees of freedom, � , increases, the Student’s t distribution 
tends towards the normal distribution, and in turn t → z∗ , 
as shown in Fig. 2b, allowing t to be approximated with z∗ 
when � is sufficiently large.

Calculation of the confidence interval requires the stand-
ard deviation of the displacement to be estimated. A simple 
implementation to estimate the standard deviation is to store 
all the displacement fields, ui(x, y), vi(x, y) , for i = 1, 2, ...N 
where x and y are the coordinate locations in the image. 
As a new image is analysed, the standard deviation may be 
updated using Eq. (2), where Su,N is the sample standard 
deviation for the horizontal displacement, calculated from of 
N displacement fields. The notation (x, y) has been dropped 
for clarity.

This implementation, however, requires re-calculating 
for every additional displacement field and, furthermore, 
requires all previous displacement fields to be stored in 
memory. Efficient and stable updating algorithms exist for 
both the mean and variance, which can calculate these val-
ues without the need to store all contributing data (Chan 
et al. 2017). In Eq. (3), uN signifies a component of the Nth 
displacement field, uN is the mean of all N samples ( ui with 
i = 1…N ) and S∗2

u,N
 is the sum of squared differences to the 

mean, which estimates the variance, S2
u,N

 , via the relationship 
S2
u,N

= S∗2
u,N

∕(N − 1) . 

Having estimated the sample standard deviation, Su , the 
confidence interval can then be calculated for each vector 
location using (1b), as in Fig. 1. Comparison of this confi-
dence interval to some threshold value is then used to indi-
cate convergence. For PIV applications, a suitable thresh-
old value for the confidence interval of the mean could be 
0.1px, in line with the commonly assumed uncertainty of 
PIV (Westerweel and Scarano 2005). Although this uncer-
tainty level depends on many parameters, both experimen-
tally and in regard to the analysis procedure, it serves as a 
reasonable threshold to demonstrate the presented methodol-
ogy and is generally appropriate for uncertainty in the mean 
displacement. It should be emphasised, however, that this 

(2)Su,N =

√√√√ 1

N − 1

N∑

i=1

(ui − u)2.

(3a)uN =uN−1 + (uN − uN−1)∕N,

(3b)S∗
2

u,N
=S∗2

u,N−1
+ (uN − uN−1) ⋅ (uN − uN).

parameter should be selected by the user depending on the 
particular conditions of the experiment, analysis procedure, 
and on the statistic of interest. While this paper focuses on 
confidence intervals of the mean, it is worth noting that the 
aforementioned methodology can be extended to essentially 
arbitrary statistic properties. Doing so requires calculating 
the standard deviation of the statistic in question, which can 
be obtained formally, using standard expressions of variance 
(Benedict and Gould 1996), or may be approximated using 
techniques such as bootstrapping (Efron and Tibshirani 
1986; Theunissen et al. 2008). However, further discussion 
of such is beyond the intended scope of this paper.

In the extensive paper by Sciacchitano and Wieneke 
(2016), the authors discuss how instantaneous uncertainty 
propagates to ensemble statistical uncertainty. In their 
paper, the uncertainty of the mean is shown to decrease 
with increasing effective number of independent samples, 
Neff , and increase as the local, spatial, standard deviation2 
relative to the displacement magnitude increases, i.e. as the 
instantaneous uncertainty increases. In this context, Neff ≤ N 
and accounts for any time-dependency between successive 
snapshots, such as in time-resolved data sets. Understand-
ing the increase in temporal uncertainty of the mean due 
to instantaneous uncertainty can, and should, be used to 
aid selection of the user-imposed threshold in the currently 
proposed methodology. Since the proposed methodology 
considers only the measured temporal fluctuations, which 
contains both the actual flow fluctuations and measurement 
error, the imposed threshold should be appropriately reduced 
if a certain confidence in just the underlying flow fluctua-
tions is desired. The amount to reduce the threshold can be 
approximated by the uncertainty mean square, which can 
be found using accurate uncertainty quantification methods 
such as those in Sciacchitano et al. (2015).

3 � Methodology

Using the theory introduced previously, the ROI can be 
determined by comparing the CI, for each vector location, to 
the user-defined threshold. The subsequent goal is to mini-
mise the computation required to resolve the displacement 
at these locations, without artificially introducing numeri-
cal artefacts associated with image masks. Each sample, i.e. 
correlation window, will have a support radius, termed the 
analysis support radius, within which changes to the sam-
pled value will influence the final solution in some way, yet 
beyond such distance, there will be no effect on the solution. 

2  This refers to the amount of displacement fluctuation within a 
region of space, as opposed to the level of fluctuation over time for a 
particular pixel.
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A typical analysis algorithm, e.g. WIDIMScarano and Rieth-
muller (2000), can be roughly divided into four steps: (1) 
interrogating the image at pre-defined locations, (2) validat-
ing the results of such interrogation by comparing each vec-
tor to its neighbours, (3) interpolating the validated vectors 
onto a pixelwise grid, called the dense predictor, (4) deform-
ing the raw images according to the dense predictor. Steps 
1–4 are then repeated several times to improve the spatial 
resolution, by reducing the interrogation window sizes, and/
or inter-sample spacing, i.e. vector-pitch. The methodology 
presented herein aims to minimise the number of correla-
tion locations in step 1, while ensuring that the solution at 
step 3, within some arbitrary region, is unaffected. Note that 
although the initial ‘region’ of interest is defined only at 
vector locations, intermediate steps in the algorithm must be 
able to handle a pixel-wise defined ROI, as will be explained 
in the remainder of this section. Accordingly, an overview of 
the methodology, for an arbitrary circular ROI, is depicted 
in Fig. 3, with each component being further broken down 
and discussed in isolation. Due to the forward dependency 
of PIV analysis algorithms, i.e. that later iterations in the 
analysis rely on the output of previous iterations, the pro-
posed method obtains sampling masks in reverse order. In 
other words, the minimum region that must be sampled in 
the first analysis iteration cannot be determined until it is 
known which regions are required in the second iteration, 
which in turn relies on the third iteration, and so on. To 
avoid confusion, that the first sampling mask obtained is 
to be used in the last analysis iteration, any references to a 
particular ‘iteration’ refer exclusively to the analysis itera-
tion in which the mask is applied.

3.1 � Interpolation

The methodology proceeds by working backwards, step-by-
step, from the desired final solution to the very first correla-
tion. Referring to the previously described steps 1–4, it is 
noted that in the final iteration of a typical PIV algorithm 
steps 3 and 4 may often be neglected, provided the interpo-
lated displacement field is not required, e.g. for post-process-
ing, nor the final deformed image required, e.g. for particular 
uncertainty quantification (Sciacchitano et al. 2013). While 
dilation of the sampling mask to account for interpolation 
may be omitted if the displacements are only required at vec-
tor locations, in the case that the ROI is defined per pixel, as 
it is for intermediate iterations (see Sect. 3.3), the sampling 
mask must be dilated to consider the spatial requirements 
of interpolation. Typically, bi-cubic interpolation is used to 
obtain the dense predictor from vector information, balanc-
ing speed and accuracy (Astarita 2008), as well as being 
simple to implement. More accurate schemes, such as car-
dinal sin or FFT interpolation, can be used at the expense of 
computation, whereas bi-linear interpolation may be used 
to accelerate analysis at the expense of accuracy. While the 
choice of scheme is ultimately left to the user, the principles 
described herein can be applied to any scheme, provided 
that the interpolation kernel can be determined a-priori, i.e. 
is not data dependent, and is finite in nature. Due to their 
popularity, this paper shall focus on bi-linear and bi-cubic 
interpolants.

The first step in finding the ASR is, therefore, to find the 
vectors whose interpolation kernel overlaps with the ROI. 
For bi-linear interpolation, each pixel is only influenced by 

Fig. 3   Depiction of the analysis support radius for an arbitrary region 
of interest (yellow) showing the interpolation kernel A, the vector val-
idation kernel B, image deformation kernel C, and finally the region 
with no influence over the ROI, D, for both bi-linear, (b), and bi-

cubic, (c), interpolation kernels. Red dots represent sample locations 
for a 50% overlap ratio, while the red square depicts an individual 
correlation window
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the four immediate neighbouring vectors, which form a 2 × 
2 stencil. Dilating the ROI by the inter-sample distance, hk , 
where k is the iteration number, in both x and y, therefore, 
ensures that all vectors which would influence the interpola-
tion within the ROI are contained within the dilated region. 
This region is depicted by region A in Fig. 3b. In contrast, 
bi-cubic interpolation requires a 4 × 4 stencil and hence the 
ROI must be dilated by 2hk to ensure all influencing vectors 
are contained within the new region. This is depicted by 
region A in Fig. 3c. These regions indicate all the samples 
which are needed to obtain the correct interpolation within 
the ROI.

3.2 � Vector validation

Prior to interpolation, vectors are typically subject to valida-
tion, using schemes such as the normalised median thresh-
old test (NMT) (Westerweel and Scarano 2005) to detect 
outliers. Since validation may influence the values of sam-
ples within the region A, all of the information required 
for this step must be collected. Vector validation can be 
broken down into two steps; invalid vector detection, and 
vector replacement. The NMT compares each vector to its 
eight surrounding neighbours from a 3 × 3 grid, if the vec-
tor disagrees with its neighbours beyond some pre-defined 
threshold, then it is replaced by the analysis routine. The 
replacement vector is typically calculated as the mean of the 
valid eight neighbours, or zero if all are invalid. Therefore, to 
correctly detect outliers within region A, the sampling mask 
must be extended to include the immediately neighbouring 
vectors, i.e. dilate region A by a further hk . This intermediate 
region shall be denoted as region B’. However, if a vector at 
the edge of region A is determined to be an outlier, it must 
be replaced by the average of its neighbours, excluding any 
outliers. This, of course, is logical; values that have been 
identified as being erroneous should not be considered. Yet 
this requires validation of vectors at the limit of region B’, 
which itself requires the neighbouring eight vectors to be 
present. As such, for uninhibited validation, region A must, 
in fact, be dilated by 2hk . The resulting region, region B, can 
be seen in Fig. 3b and c3.

While dilation by 2hk , to obtain region B, is required 
to guarantee numerical equivalence to an equivalent con-
ventional solution, dilating by hk is generally sufficient for 
approximate results. This is for two reasons: first, the final 
solution for instantaneous image analysis is only affected if a 
vector at the perimeter of region A is identified as an outlier, 

which represents only a small proportion of the samples. 
Samples not on the edge of region A would have access to 
vectors 2hk away and would be unaffected. Second, vectors 
along the perimeter of region B are still guaranteed to have 
at least three immediate neighbours, and typically at least 
five, which can be used for an approximate vector validation 
attempt. Furthermore, the influence of outliers on the solu-
tion is likely to be corrected, at least partially, by subsequent 
iterations, and therefore, only outliers on the perimeter of 
region A in the final iteration are likely to cause any signifi-
cant disturbance to the ensemble solution. Herein, dilation 
by 2hk for vector validation, ensuring numerical equiva-
lence, will be referred to using NMT, whereas dilation by 
hk , accepting some numerical differences, will be referred 
to as NMT*. Differences of the ensemble mean values using 
NMT compared to NMT* are typically < 1% , i.e. at least two 
orders of magnitude smaller than the imposed ‘acceptable’ 
threshold, yet, require fewer correlations to obtain.

Start, k = K

Region of Interest
(ROI) for iteration k

Dilate ROI by
amount dependent on
interpolation. h for

linear, 2h for cubic (A)

Vector
validation?

Dilate sample
mask by 2h (NMT)
or h (NMT*) to

include neighbours
for validation (B)

Does k==1?

Stop

Dilate mask by the
WS for current
iteration (C)

Current sample mask
represents the ROI
for iteration k-1, to
allow for correct

image deformation

Set k = k − 1

yes
no

yes

no

Fig. 4   Flowchart showing masking process. Note that k corresponds 
to the iteration number in the WIDIM analysis, and that masks are 
created working backwards from the final WIDIM iteration, due to 
the forward dependency of iterations. Letters in parentheses reflect 
the regions depicted in Fig. 3

3  It is sometimes the case that invalid vectors in the final iteration are 
not replaced with interpolation, but simply omitted from statistics. In 
such a case, dilation by h

k
 , to obtain region B’, would be sufficient in 

the final iteration.
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3.3 � Image deformation

Considering that many PIV analyses make use of iterative 
routines to obtain improved spatial resolution (Scarano 
2002), the implications of image deformation must also be 
considered. For each of the locations which must be cor-
related in iteration k, i.e. region B, the correlation response 
must be identical to an equivalent complete analysis routine. 
Accordingly, each pixel within each correlation window in 
region B, iteration k, must be appropriately deformed. This 
region can be found by convoluting each sample location in 
region B with the current window size (WS), as indicated 
by region ‘C’ in Fig. 3b and c. Since image deformation, 
following the methodology of Unser et al. (1993), requires 
the predictor for iteration k − 1 at each of these pixels to 
be correct, region C effectively serves as the ROI for itera-
tion k − 1 . The process is repeated until the first iteration 
is reached and a sample mask is obtained for each itera-
tion. The described approach is presented as a flowchart in 
Fig. 4, and with each specific sampling region graphically 
highlighted in Fig. 3 for clarity. A standard image analysis 
routine can then be modified to correlate only sample loca-
tions which lie within this region and ignore everything else, 
i.e. region ‘D’, with no negative effects on the solution in 
the ROI.

3.4 � Implementation

In its simplest form, the proposed sampling masks may be 
imposed in the same way that a conventional image mask is 
applied, i.e. skipping correlations where the window is in the 
inactive region, requiring minimal code modifications. Yet, 
further modifications to various components of the analysis 
process, e.g. interpolation and image deformation, which 
continue to operate on the entire image, can yield further 
optimisations. It is relatively straightforward to modify vec-
tor validation and structured interpolation codes to consider 
only the ‘active’ region. In doing so, the computational cost 
for these processes is proportional to the number of vector 
locations, i.e. the number of cross-correlation operations. 
Image deformation requires interpolating the image based 
on the predictor values over the image. This image interpo-
lation operates pixel-wise and hence the code can be easily 
modified to exclude pixels outside of the sampling mask 
from the deformation process, resulting in a computational 
cost scaling with the number of pixels in the ROI. When 
using B-Spline image interpolation, as recommended by 
Astarita for the best accuracy (Astarita and Cardone 2005), 
efficient implementation relies on a finite-impulse response 
(FIR) filter, which is applied to the entire raw image con-
currently (Unser et al. 1993). Such filtering is not easily 
reduced to arbitrary sub-regions; however, this step is only 
required once per image and yields a marginal computational 

overhead. Finally, calculation of the sampling mask can be 
obtained through a series of binary image dilations, wherein 
the ROI or sampling region is denoted by True (1) and False 
(0) elsewhere, which can be optimised using bitwise logical 
operators and are computationally cheap (van den Boom-
gaard and van Balen 1992). Hence, the method computa-
tional savings scale roughly linearly with decreasing ROI 
extent.

Since the calculation of the standard deviation requires 
at least two data points, this methodology can, in theory, be 
implemented from the third image pair onwards. In practice, 
however, confidence intervals calculated with such few sam-
ples are likely to be large, and would accordingly necessitate 
ubiquitous sampling. To mitigate unnecessary computation, 
the first Nt ≈ 10 timesteps are, therefore, obtained using a 
conventional structured approach, without computing confi-
dence intervals. This number effectively represents the low-
est number of images which are expected to be required for 
convergence of any pixel. Values of Nt = 10 − 30 are reason-
able if mean displacements of reasonably steady flows are 
sought. When the flow is more turbulent Nt may be closer to 
100, further still, if higher order statistics are to be obtained, 
Nt may be in the thousands. Furthermore, it is generally not 
worth proceeding with the adaptive approach if the size of 
the ROI is >≈ 95% of the entire image. In part, the over-
head to calculate the sampling masks must be considered, 
although this is small. Though more importantly, the ASR is 
typically larger than the ROI, particularly in the intermediate 
iterations of the analysis, implying that the vast majority of 
the domain is likely to be sampled anyway and, therefore, 
computational savings are likely to be small.

4 � Results

4.1 � Numerical investigation

According to this methodology, the ASR is influenced by the 
following parameters: correlation window size (WS), win-
dow overlap ratio (WOR), number of iterations wherein the 
WS and vector spacing is refined ( Nk ), number of iterations 
wherein the WS and spacing are kept constant, ( Nkr ), inter-
polation methodology (linear or cubic), vector validation 
methodology and parameters (for example, NMT or NMT*) 
Changing such PIV interrogation parameters will naturally 
affect the extent of the resulting sampling masks. For exam-
ple, cubic interpolation requires dilation by 2h, instead of h 
for linear interpolation, therefore demanding more correla-
tions to be performed for a given region of interest (ROI) 
(Fig. 3). In addition to the parameter configuration, the 
constitution, i.e. the size and shape, of the ROI will also 
influence the total number of correlations. Figure 5 demon-
strates this by comparing the number of samples required 
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for a single block of pixels acting as the ROI, to the num-
ber of samples that would be required if the same number 
of pixels were to represent a more distributed ROI. Due to 
the practically infinite number of ways to compose the ROI, 
quantifying this behaviour is difficult, yet a generally valid 
tendency is that fewer, larger, contiguous ROIs (which are 
typically encountered in practical situations) will be more 
effective at reducing the required number of correlations 
than many scattered regions.

To better understand the extent to which each param-
eter affects the total number of correlations required for a 
given ROI size, a parameter study was conducted, within 
which the shape of the ROI was kept as a single central 
square. This parametric study intends to identify which 
analysis parameters have the most impact on the size of the 
sampling mask. To investigate, a default parameter con-
figuration was constructed, as shown in Table 1. For each 
parameter, a range of typical values were then applied 
while keeping the other parameters fixed, over a range of 
ROI sizes. The resulting number of correlations were then 
recorded and compared to the total number of correlations 
required for full analysis with the same settings.

To simplify the discussion, the dilation of the ROI 
per iteration can be approximated as some scalar mul-
tiple of the sample spacing, i.e � ⋅ h . For example, a sin-
gle iteration with linear interpolation (dilation by h) and 
NMT validation (dilation by 2h) would result in � = 3 . 
When varying the interpolation kernel or vector valida-
tion method, � is modified, whereas h remains constant. 
Accordingly, there is an approximately constant increase 
in the fractional number of correlations, i.e. the number 
of correlations performed as a fraction of the total pos-
sible for that particular parameter configuration, shown 
in Fig. 6c and f. Similarly, the more iterations there are, 
the more times that the ROI is dilated by ≈ � ⋅ h , thus 
we see again a steady increase in the fractional number 

of samples as the number of iterations increases.4 Con-
versely, parameters such as the WS and overlap ratio alter 
the spacing, h, instead of � , and can have a much more 
significant impact on the fraction of correlations which 
need to be performed for a given ROI, as shown by Fig. 6a 
and b. The spatial dependency of the analysis is reduced, 
and hence the computational cost more closely correlates 
with the amount of domain to be analysed. Put differently, 
the smaller spacing increases the total number of sample 
locations in the entire domain, yet the absolute number of 
samples required for a particular ROI remains approxi-
mately the same5, increasing the number of samples which 
are now not needed to be correlated, significantly improv-
ing its efficiency. The key corollary from this study is that 
more computationally intensive interrogation parameters, 
with fewer analysis iterations, will benefit the most from 
the presented methodology.

4.2 � Experimental analysis

To verify the methodology in a real application, it was 
applied to the flow behind a blunt trailing edge, investigated 
by Elsahhar et al. (2018) for its aeroacoustic properties. In 
this study, the effect of trailing edge bluntness on the gen-
eration of wake-vortex noise was investigated using particle 
image velocimetry. The case treated in the following is that 
of a bluff body with a bluntness thickness, hb , of 46 mm and 

Fig. 5   Influence of the composi-
tion of the ROI on the number 
of samples required for a a 
single contiguous ROI, requir-
ing 56 samples (red dots) using 
the proposed method, and b sev-
eral distributed ROIs, requiring 
150 samples, for an equivalent 
cumulative extent of ROI. Note 
that colours are the same as in 
Fig. 3. To simplify the illustra-
tion, a linear interpolation is 
imposed, which results in the 
interpolation kernel (which 
would be orange) being identi-
cal to the ROI in this case, since 
the linear kernel does not extend 
beyond sample locations

4  The value of � would vary slightly here since an additional dilation 
based on the WS is required to deform the image correctly, see Fig. 3.
5  The number of samples required will only increase if, due to the 
increased sampling density, there are more contained within the ROI 
itself.
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freestream velocity of approximately 11.6 m/s, equivalent 
to a chord-length (350 mm)-based Reynolds number of 2.75 
× 105 . Shown in Fig. 7 is the reference flow field for this 
particular case. Experiments were performed by means of 
Dantec Dynamics planar PIV system in the low-turbulence 
wind tunnel of the University of Bristol, which produces 
background RMS turbulence levels below 0.03%. It is worth 
noting that the exemplary PIV recording shown in Fig. 8 

combines image recordings of two, simultaneously trig-
gered, FlowSense EO cameras, each with a sensor of 2072 
× 2072 px. The time delay between snapshots was chosen 
to achieve a freestream displacement of approximately 4 px. 
The first field of view (FOV) observed the boundary layer 
near the trailing edge while the second covered the near-
wake region. Each FOV corresponded to an observed field 
of view of 161 mm × 161 mm, equivalent to approximately 
3.5hb × 3.5hb . The reader is referred to Elsahhar et al. (2018) 
for further details regarding the PIV setup and experimental 
parameters.

Since the FOV contains both uniform flow and regions 
of more turbulence, these images serve as ideal candidates 
to test the proposed method. Figure 8 shows one of the (in 
total) 115 raw images and highlights the strong reflection 
present in nearly all of the images. While the presence of 
such reflections would not adversely affect the methodology 
presented within, reflections may still influence the solution 
accuracy. Since the reflection varies slightly in time, correla-
tions in this region will be influenced to a varying degree per 

Table 1   Values used for each setting as part of the parameter sweep

Parameter Default Parameter sweep values

Initial window size 97 N/A
Final window size 25 (15, 35, 55)
Window overlap ratio 0.5 (0, 0.5, 0.75, 0.85)
Number of main iterations 3 (2, 3, 4)
Number of refinement iterations 1 (0, 1, 2, 3, 4)
Interpolation method Linear (Linear, cubic)
Vector validation method NMT (None, NMT, NMT*)

Fig. 6   Comparison of the speedup effect of a locally selective WIDIM approach for changing a final WS. b WOR. c Vector validation approach. 
d Number of iterations. e Number of refinement iterations. f Interpolation method
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snapshot—leading to increased RMS, or temporal standard 
deviation. Furthermore, it is expected that some correla-
tions in this vicinity would fail, producing outliers. While 
the majority of these outliers should be captured by the out-
lier detection algorithm, some will persist—further increas-
ing the RMS at these locations. Referring back to (1b), this 
would increase the number of samples required for a given 
CI; therefore, if the reflections can be mitigated with simple 
pre-processing, then both the solution and computational 
performance improve. An ensemble-minimum background 
subtraction (Wereley et al. 2002) was, therefore, applied to 
all images, which removed the majority of the reflections 
(Fig. 8b). Nevertheless, remnants remain in the images due 
to the temporally fluctuating nature of the reflection. While 
more advanced pre-processing techniques could certainly 
have been employed to further improve image quality, how-
ever, since it does not adversely affect the demonstration 
of the proposed methodology’s efficacy, these techniques 
were not investigated any further. It can be seen in Fig. 9 
that more samples are required to contribute to the solution 
where these artefacts remain, corroborating the expected 
influence of reflections on the methodology described above.

The ensemble of images was analysed according to three 
different schemes. First, a reference conventional solution 
was established using conventional WIDIM (Scarano 2002) 
adopting the default parameters as in Table 1.

However, the discrete displacement data (following the 
cross-correlation of interrogation windows) were interpo-
lated pixel-wise using bi-cubic kernels rather than the bi-
linear scheme listed in Table 2. Subsequently, the presented 
methodology was used to obtain the ensemble mean at a 
95% confidence, of being within 0.1 px and 0.05 px, using 
the same parameter configuration as the reference solution. 
Due to the relatively small number of samples (115) and the 
unknown standard deviation, (1b) was used to obtain the 
pixel-wise confidence interval after each time step, using 
the Student’s t distribution to calculate t. Regions where the 
adaptive method uses all 115 images, e.g. regions where 
the CI exceeds the threshold, such as in the wake region of 
Fig. 7, the solution is numerically equivalent to the reference 
solution. Outside of these regions, where less than the full 
115 images have been considered, the solution is expected 
to differ from the reference to some degree, depending on 
the threshold level. Figure 10 shows how much the adaptive 
solutions differ from the reference WIDIM solution. Plot-
ting the histogram of the magnitude of such differences, 
i.e. |Ul − Uw| , where Ul is the solution from the proposed 
methodology, and Uw is the reference WIDIM solution, 
over the domain, Fig. 11 shows how these follow roughly 
a normal distribution. In the limit as the number of images 
increases, this distribution will tend towards a normal distri-
bution with properties equivalent to the imposed conditions, 
e.g. for 95% confidence of 0.1 px, the distribution will have 

zero mean and a standard deviation of ≈ 0.05 , such that 2� 
corresponds to 0.1 px. The distribution presented within is 
expected to have a bias towards zero since the solution in 
the proposed methodology’s solution represents a consider-
able proportion of the reference solution. Consider a region 
wherein 100/115 images contribute to the reduced solution. 
For quasi-steady flow, variations in the final 15 images are 
unlikely to have a significant impact on the reference solu-
tion, yet it is expected that if the reference solution contained 
many more snapshots, for example in the order of thousands, 
from the same underlying statistical distribution, then the 
histogram of differences would tend to the normal distribu-
tion as described previously.

The number of samples contributing to the ensemble 
mean, over the entire domain, for each threshold setting is 
shown in Fig. 9. In both cases, the freestream requires rela-
tively few samples to reach convergence compared to the 
wake. This is in line with the expressions for the confidence 
levels in (1b). As the local standard deviation increases, 
the number of independent samples required to reach a 
pre-defined confidence level increases quadratically. It can 
also be seen that the stricter tolerance requires more sam-
ples in the fringes of the wake, relative to the more relaxed 
threshold. Although the majority of the image reflection was 
removed, its influence can still be observed by the increase 
in the number of contributing samples in Fig. 9. Compar-
ing the total number of correlations for the entire ensemble, 
Table 2, the strength of the proposed method is made appar-
ent. A reduction of 44% and 28% in the number of cor-
relations is achieved for the 0.1 px and 0.05 px thresholds, 
respectively. While overheads exist beyond the correlations, 

Fig. 7   Ensemble averaged, reference flow field obtained by averag-
ing all 115 measured displacement fields in their entirety. The contour 
represents the vertical displacement component. Units in pixel
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such as interpolation and image deformation, these typically 
represent a small proportion of the overall computational 
cost. The number of total correlations is further reduced 
using the NMT* approach as described previously, reducing 
the number of correlations by ≈ 5% in both cases.

5 � Conclusions

A method has been proposed which automatically reduces 
the interrogation domain subject to satisfactory convergence 
of the flow field statistics. The method has been demon-
strated based on the mean flow field, and the concept may 
be easily extended to arbitrary flow statistics. Convergence 

is determined by calculating the confidence interval and 
comparing to a user-defined threshold value, for example, a 
95% confidence of 0.1 px difference to the expected mean. 
A region of interest (ROI) is obtained automatically and 
efficiently based on the flow statistics and used to develop 
a sampling mask for each iteration. Generation of the sam-
pling masks considers the imposed interrogation parameters, 
e.g. WS and overlap ratio, and determines the minimum 
region of the image which must be analysed to avoid intro-
ducing artificial numerical artefacts, known to be associated 
with image or mask boundaries.

This approach significantly reduces the computational 
cost required to obtain domain-wide ensemble statistics con-
verged to a pre-defined level by reducing the total number of 

Fig. 8   Exemplary PIV image 
from Elsahhar et al. (2018). a 
Raw image with zoom inset 
showing reflection, b pre-
processed image with inset 
showing diminished reflection. 
Contrast enhanced for clarity

Fig. 9   Number of contributing samples for a threshold of a 0.1 px, and b 0.05 px
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correlations required. The method was applied to the flow 
behind a blunt trailing edge, being investigated for its aero-
acoustic properties. A numerical assessment revealed that 

for typical PIV settings, the number of correlations to obtain 
the ensemble mean was reduced by 44%. The method is 
expected to be particularly of use when rapid mean solutions 
are required, i.e. analysing images concurrently with wind 
tunnel utilisation, or when processing higher order statistics. 
Notably, computational savings are made by a reduction in 
the number of correlations performed, which represents the 
most time-consuming process in a typical PIV analysis algo-
rithm. Therefore, regardless of the particular hardware con-
figuration, e.g. the use of graphical processing units (GPUs) 
to accelerate the computation of each individual FFT, or the 
use of large clusters to distribute computations, the proposed 
methodology still offers potential computational savings as 
fewer correlations must be computed.
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Table 2   Comparison of the number of correlations performed for 
each of the approaches

Number of correlations

Reference full solution 11,867,770 (1.00)
0.05 px threshold 8,583,713 (0.72)
0.1 px threshold 6,689,502 (0.56)

Fig. 10   Effect of changing confidence interval threshold on the magnitude difference to a reference full solution, for a 0.1 px threshold and b 
0.05 px threshold. Units in pixel

Fig. 11   Histogram of the delta to the reference WIDIM solution from 
all pixels where the number of contributing samples is less than that 
of the reference
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