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The Synthetic Biology Open Language (SBOL) is a community-developed data

standard that allows knowledge about biological designs to be captured using a

machine-tractable, ontology-backed representation that is built using Semantic Web

technologies. While early versions of SBOL focused only on the description of DNA-

based components and their sub-components, SBOL can now be used to represent

knowledge across multiple scales and throughout the entire synthetic biology workflow,

from the specification of a single molecule or DNA fragment through to multicellular

systems containing multiple interacting genetic circuits. The third major iteration of the

SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model

with a focus on real-world applications, based on experience from the deployment of

SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3

specification both in comparison to previous versions of SBOL and through practical

examples of its use.

Keywords: synthetic biology, data standards, data exchange, knowledge representation, SBOL

1. INTRODUCTION

Synthetic biology builds upon advances in genetics, molecular biology, metabolic engineering, and
other related disciplines by applying principles such as modularization, standardization, and a
design-build-test-learn workflow to enable the engineering of biological systems, just as software
engineering does to the design of computer programs (Endy, 2005). The design-build-test-learn
workflow is heavily dependant on data exchange. A standardized knowledge representation, or
data standard, for exchanging information is critical from the initial stage of knowledge gathering—
where data about existing biological parts and systems must be integrated into a common model—
through to the entire design-build-test-learn lifecycle. Data standards are also crucial for the
effective dissemination of final products or the publication of novel designs to ensure precise
and unambiguous details of a system are accessible for oversight, management, and potential
future re-use.
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The unique requirements of synthetic biology present a
major barrier to the development of such standards. Biological
designs often involve engineering activities across a wide range
of scales, from single molecules to genes, pathways, strains,
and complex multi-cellular systems. Consequently, synthetic
biologists need to exchange a wide variety of information,
including the intended behavior of the system and actual
experimental measurements. Information being exchanged also
often covers multiple aspects of a design, including nucleic
acid sequences (e.g., the sequence that encodes an enzyme
or transcription factor), molecular interactions that a designer
intends to result from the introduction of a chosen sequence
(e.g., chemical modification of metabolites or regulation of gene
expression), as well as details regarding the construction of the
final engineered strain (e.g., nucleic acid synthesis, assembly,
and the transformation of a chosen cell type) and associated
experiments and data. All of these diverse perspectives need to
be effectively integrated to facilitate the effective engineering of
biological systems.

While there already exist many computational representations
of biological entities, these are almost all designed for the
annotation of natural systems and therefore struggle to describe
the specifics of engineered designs. For example, simple
formats for representing sequences such as FASTA (Pearson,
1990) are focused purely at the scale of nucleic or amino
acid sequences and cannot capture higher-level aspects of a
design (e.g., a sequence composition from constituent sub-
sequences/parts). More sophisticated formats such as GenBank
(Benson et al., 2013) or GFF (Stein, 2013) provide a flat
representation of sequence features that is well-suited to
describing natural systems, but again are fundamentally focused
on annotation at the nucleic or amino acid level and are therefore
unable to effectively represent functional relationships between
regions of a sequence (e.g., description of protein-protein
interactions) and localization (e.g., intracellular transport, cell-
to-cell communication), not to mention engineering concepts
such as interfaces and specifications or information capturing the
intent of the designer.

The Synthetic Biology Open Language (SBOL) has been
developed to address these challenges. SBOL is a standard to
support the specification and exchange of biological design
information in synthetic biology (Galdzicki et al., 2014),
following an open community process involving both “wet”
bench scientists and “dry” scientific modelers and software
developers across academia, industry, and other institutions (see
Methods). One of the primary aims motivating the development
of SBOL is the need to make the knowledge involved in
the synthetic biology lifecycle computationally tractable and
therefore amenable to process automation. The research question
of how domain knowledge can be decomposed into a form
accessible to computational methods is long-established in
computer science. The Resource Description Framework (RDF)
(W3C, 2014) is a data model formalized by the World Wide
Web Consortium (W3C) to describe named properties and
their values that is already widely used by the bioinformatics
community, with some of the largest biological datasets such
as UniProt and PubChem publishing official RDF versions

(Redaschi and UniProt Consortium, 2009; Fu et al., 2015).
SBOL is built upon RDF, and is also backed by a formally
defined ontology (Misirli et al., 2019), allowing design data to be
machine-navigable as a knowledge graph.

Since its initial publication in 2011, SBOL has become the
recommended format for engineered nucleic acid constructs in
ACS Synthetic Biology (Hillson et al., 2016), and is supported by
many biological design tools. For instance, Eugene (Bilitchenko
et al., 2011; Oberortner et al., 2014; Oberortner and Densmore,
2015), GEC (Pedersen and Phillips, 2009; Dalchau et al., 2019),
Cello (Vaidyanathan et al., 2015; Nielsen et al., 2016), GenoCAD
(Czar et al., 2009), ShortBOL (Crowther et al., 2020), and
GeneTech (Baig and Madsen, 2017) provide computational
frameworks for combinatorial design space exploration, where
users can specify structural, functional, and performance
constraints. The outputs generated by these tools in SBOL can
then be directly used by DNA assembly planning software tools
such as BOOST (Oberortner et al., 2017), Raven (Appleton
et al., 2014), j5 (Hillson et al., 2012), and DeviceEditor (Chen
et al., 2012) to automate the process of physically building DNA
constructs. Tools such as iBioSim (Myers et al., 2009; Watanabe
et al., 2018), MoSeC (Misirli et al., 2011), and SBOLDesigner
(Zhang et al., 2017) support the same SBOL data format and
support the modeling, analysis, and simulation of biosystems.
There are also a number of data repositories, registries, and
databases that support and store data in the SBOL format, such
as SynBioHub (McLaughlin et al., 2018), SBOLme (Kuwahara
et al., 2017), JBEI-ICE (Ham et al., 2012), and the Virtual
Parts Repository (VPR) (Cooling et al., 2010; Hallinan et al.,
2014; Misirli et al., 2014). The SBOL community has also
developed a graphical language for the visualization of biological
designs (Quinn et al., 2015; Beal et al., 2019), which has been
used in combination with the data standard in tools such as
Pigeon (Bhatia and Densmore, 2013), DNAPlotlib (Der et al.,
2017; Bartoli et al., 2018), VisBOL (McLaughlin et al., 2016),
Constellation, and SBOLCanvas. These tools help to visualize
constructs in the computational synthetic biology space such as
genetic circuits, biochemical components, and possible design
spaces based on structural or functional constraints. There are
many other examples that highlight the utility of the SBOL
data exchange format to connect and integrate data to create a
seamless computational workflow. For instance, Cello (Nielsen
et al., 2016) adopted the concept of a User Constraint File (UCF)
used in digital logic design to specify the library of genetic
gates and the associated properties and meta-data required to
synthesize combinational Boolean logic circuits. In addition
to this UCF file, the same library is also available in SBOL
format, which allows the data from Cello to be used in other
tools and workflows as highlighted in a recent effort to use
the Cello library and Virtual Parts Repository API to build
computational models encoded in the Systems Biology Markup
Language (SBML) (Hucka et al., 2003) that could be simulated
using iBioSim (Misirli et al., 2018).

The first version of SBOL (Galdzicki et al., 2011) defined
a simple data model for the description of engineered DNA
components and their sequences. Since then, SBOL has evolved
to support the capture of information at many different levels
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of representation across entire synthetic biology workflows
(Figure 1). In particular, the previous major revision, SBOL2
(Bartley et al., 2015; Roehner et al., 2016), generalized the
data model to allow for designs to include not only DNA
components, but also other molecular species such as RNAs,
proteins, larger components of a system such as whole cells,
and links to models encoded using complementary standards
such as SBML (Hucka et al., 2003). The standard was also
incrementally expanded with several minor revisions (Beal
et al., 2016; Cox et al., 2018; Madsen et al., 2019b) to capture
information about combinatorial design libraries, external file
attachments, sequence construction, experimental tests, and
measurements. Furthermore, by leveraging the Provenance
Ontology (PROV-O) (Lebo et al., 2013), SBOL2 can capture
provenance information to link and trace information and
processes throughout the entire design-build-test-learn cycle.

The incremental expansion in the scope of SBOL2 over the
past few years has resulted in a significant increase in the
complexity of the SBOL data model and has revealed aspects of
the representation that limited future developments.While SBOL
Enhancement Proposals (SEPs) to address this complexity had
been accepted by the community, they were considered toomajor
for a 2.x release, and therefore the need for a new major iteration
of SBOL became apparent.

Here, we present SBOL version 3 (SBOL3), a substantially
simplified standard that addresses these limitations, building
upon the experience of the SBOL community applying SBOL
across scientific and industrial settings. This new version (Baig
et al., 2020) provides for a more direct and elegant expression
of the diverse types of biological design information in use today,
while at the same time reducing the complexity of the data model,
which helps simplify the development of supporting libraries
and data exchange with compatible tools. SBOL3 is an attempt
to learn from the application of the previous SBOL standards,
take stock of new developments and directions in the field, and
establish a strong foundation for improved data exchange and
computational-accessibility across synthetic biology.

2. RESULTS

SBOL3 contains ten main top-level classes to support the various
aspects of the design-build-test-learn workflow (Figure 2). In
particular, designs can be expressed using the Component,
Sequence and CombinatorialDerivation classes. The
Component class is intended to be widely applicable across
all scales of biodesign, and can be used to describe not only
genetic designs, but also the design of other biological entities
such as proteins, functional RNAs, strains, multicellular systems,
media, and experimental samples. For those Components that
have a defined primary structure, such as nucleic acids and
proteins, an instance of the Sequence class can be assigned. A
CombinatorialDerivation allows one to specify a design
pattern where individual SubComponents can be selected from
a set of variants.

Beyond design, the Implementation class corresponds to
the build stage of the synthetic biology lifecycle and is used

to represent physical entities such as a sample of plasmid, a
stab of transformed bacteria, or an aliquot of liquid culture.
The Experiment and ExperimentalData classes support
the test stage, allowing for the linking of data generated during
an experiment. The Model class associates learned information
with a design. All of this information can be linked together
using the Activity class from PROV-O (Lebo et al., 2013). For
example, a design Activity may describe how a Component
is designed from a Model description. A build Activity
describes how an Implementation is constructed to the
specification of a Component description. A test Activity
describes how an Experiment is conducted using an
Implementation artifact. Finally, a learn Activity may
describe how a Model is updated using information from
an Experiment. The Collection class has members
which can be of any of these types or even Collections
themselves. Finally, all of these objects can refer to objects of
the Attachment class, which is used for links to external
data (images, spreadsheets, textual documents, experimental
instrument outputs, etc.).

2.1. SBOL3 Components
The main design entity in SBOL3 is the Component class.
Figure 3 provides an overview of the classes used by or linked
to by the Component class. The “structural” classes have
existed in various forms since the original SBOL1 specification.
SBOL2 introduced the “functional” classes of Interaction,
Participation, and Model. When SBOL2 introduced these
classes, they were intentionally kept separated from structural
information in a parallel “module” class hierarchy, with the aim
of allowing a simpler core “component” hierarchy to focus on
the construction of nucleic acid sequences and to be largely
shared with SBOL1. As SBOL has been applied to an expanding
range of designs, engineering scales, and workflows, however,
it has become clear that this dichotomy often tended to create
additional complexity by separating elements of a design that
would more naturally exist in the same scope. A summary of the
changes to the “component” hierarchy is provided in Table 1.

For example, consider a simple auto-regulatory device: a
transcriptional unit comprising a promoter, ribosome binding
site (RBS), coding sequence (CDS), and terminator, where a
transcription factor encoded by the CDS represses the activity
of the promoter (Figure 4). In SBOL1 (or an annotation format
such as GenBank or GFF), only the genetic structure of the
transcriptional unit can be represented, omitting the regulatory
relationship. An SBOL2 representation begins similarly, with a
ComponentDefinition to represent the transcriptional unit
as a whole, with its parts each a Component instantiations of
the ComponentDefinition for the respective constituent
promoter, RBS, CDS, and terminator parts, with these
functions identified using terms from the Sequence Ontology
(SO) (Eilbeck et al., 2005). The auto-regulatory interaction must
then be expressed separately in a ModuleDefinition
which, like the ComponentDefinition, describes
the transcriptional unit, but this time, from a functional
perspective. To do this, the transcriptional unit must
be instantiated in the ModuleDefinition using a
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GenBank

FASTA TATAATAGGATT CCGCAATG GATTACAGGGTTAGC AAATGGCAGC CTGATTA CAGG GTTAGCAA ATGGCAGCCT

TATAATAGGATT CCGCAATG GATTACAGGGTTAGC AAATGGCAGC CTGATTA CAGG GTTAGCAA ATGGCAGCCT

Promoter RBS CDS Terminator Promoter RBS CDS Terminator

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT
version 1

version 2

version 3

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT

Combinatorial designs

Add information for the entire

Design-Build-Test-Learn cycle

Connect to external data

sources and knowledge

graphs via semantic web

D

B

T

L

Simplified components,

interactions and hierarchy

FIGURE 1 | The evolution of SBOL from earlier FASTA and GenBank formats. FASTA was developed to capture pure sequence information. GenBank extends upon

this allowing sequences to have annotations, thereby capturing some structural and functional information. SBOL1 adds the ability to use hierarchical composition

when describing a design as well as only partially specifying sequences. The complementary SBOL Visual standard (Beal et al., 2019; Madsen et al., 2019a) enables

the visual representation of biological design information in an unambiguous way (SBOL version 1, 2, and 3 designs are all shown using SBOL Visual). SBOL2 added

the ability to specify modules and functional interactions between parts. Finally, SBOL3 simplifies the SBOL2 data model and greatly improves interoperability with

other computational tools through the use of a standardized knowledge graph representation.

FunctionalComponent, but its parts are still contained
within the ComponentDefinition and are not exposed
at the level of the ModuleDefinition. To document
the interaction, therefore, it is also necessary to create
promoter and CDS FunctionalComponent objects at
the level of the ModuleDefinition and a MapsTo
relation for each that identifies the promoter and CDS in the

ModuleDefinition as being the same promoter and CDS
in the ComponentDefinition. Finally, an Interaction
can be created in the ModuleDefinition to indicate that
the CDS has a regulatory effect on the promoter. While this
representation does capture all of the information desired,
synthetic biologists do not typically separate their thinking in
this manner: the promoter and CDS are being composed as
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Implementation

Collection

Model

Component

Sequence

Combinatorial 

Derivation
Experiment

Experimental Data

Attachment

Build

Test

Learn

Activity

Design

FIGURE 2 | Main top-level classes of SBOL3 and their relationships. The color of each class corresponds to its role in the design (green), build (orange), test (pink),

and learn (yellow) stages of the synthetic biology workflow. Additional utility classes are represented by gray boxes.

Constraint Feature

Component Interaction

Model

Location

Sequence

Participation

Structure

Function

FIGURE 3 | The SBOL3 Component object and related objects. Solid arrows indicates ownership and dashed arrows represent a reference to an object of another

class. Red and blue boxes represent structural and functional objects, respectively. To represent structural aspects, a Component can include Features, which may

refer to Locations within a Sequence. A Component can also include Constraints between these features. To represent functional aspects, a Component can

include Interactions that can refer to relationships between participating Features. A Component can also have its behavior described using a Model.

they are in the sequence structure precisely because of their
expected interaction. As a result, rather than deriving advantage
from the separation, SBOL tools instead tend to try to hide the
distinction from the user, further increasing both complexity and
opportunity for error.

In SBOL3, structural and functional aspects are both
captured using a single Component class (Figure 3). Namely,
to represent structural aspects, a Component can include
Features, some of which may be at some Location within
a Sequence, and which may have Constraints expressing
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TABLE 1 | Table of usage scenarios and their corresponding classes in SBOL version 1, 2, and 3.

SBOL1 SBOL2 SBOL3

DNA part DnaComponent ComponentDefinition Component

Non-DNA part N/A ComponentDefinition Component

Part uses SequenceAnnotation Component SubComponent

Functional groups N/A ModuleDefinition Component

Func. group uses N/A Module SubComponent

Sequence features SequenceAnnotation SequenceAnnotation SequenceFeature

References N/A MapsTo ComponentReference

External definitions N/A N/A ExternallyDefined

Placeholders N/A N/A LocalSubComponent

other relations in identity or space. To represent functional
relationships a Component can include Interactions that
can refer to relationships between participating Features.
Finally, a Component can refer to an externally defined
model using the Model class. The SBOL3 representation in
Figure 4 shows how much simpler this unified approach can
be, with the functional information added through a single
Interaction rather than an entire parallel construct and set
of identity mappings.

A more complex example illustrating the advantage of
this approach is shown in Figure 5 for the classic genetic
toggle switch (Gardner et al., 2000). As with the auto-
regulatory device, the SBOL2 representation has compact
structural representations of each transcriptional unit, but
the functional representation “explodes” these back into a
collection of copies and identity mappings for all of the
elements that participate in interactions. In SBOL3, on the
other hand, the combination of structural and functional
information into a single Componentmeans that every element
of the system appears precisely once and no identity mappings
are necessary.

The generalization of Component in SBOL3 enables a single,
unified hierarchy to capture designs comprising components
across multiple scales of a design, from individual molecules
to entire cells. For example, the system depicted in Figure 6

illustrates how the SBOL3 Component class can be used to
represent a multicellular system where a signaling molecule
(AHL) is used for communication between “sender” and
“receiver” cells. Moving to these larger scales is also enabled by
expanding Component type information beyond the Sequence
Ontology to additionally use appropriate classes of terms from
the Systems Biology Ontology (SBO) (Courtot et al., 2011) and
Gene Ontology (GO) (Harris et al., 2004). In this multicellular
system, for example, each cell is assigned the roleSBO:0000290
(physical compartment) and type GO:0005623 (cell), while
the subsystems for the sender and receiver are each assigned
the role SBO:0000289 (functional compartment). Constraints
are then used to express the spatial structure of the systems,
with the sender cells acting to produce AHL molecules initially
contained within those cells, the receiver cells responding to
the AHL molecules contained within those cells, and the fact
that AHL is being shared between the two types of cells is

represented by an identity relation between the two instances of
the molecule.

Finally, to better support the expanded range of design
elements that can be represented, SBOL3 also changes the
ontology used for specifying the type of a Component.
Previous versions of SBOL used the BioPAX (Demir et al.,
2010) definitions for molecular species, such as DNA and
protein ComponentDefinition instances. However, this
set of species is restricted, making it difficult to describe
designs across different molecular scales. The Systems Biology
Ontology (SBO) (Courtot et al., 2011) provides a much richer
and more extensible set of terms, already used by SBOL2
in the Interaction and Participation classes and by
SBOL Visual. SBOL3 standardizes the definition of molecular
species on SBO in order to have a more expressive and
consistent specification of component types. For example,
a DNA Component can be labeled using the SBO term
SBO:0000251 (Deoxyribonucleic acid), while a complex can
be labeled using SBO:0000254 (Non-covalent complex). A
Component used to represent primarily functional rather than
structural relationships, on the other hand, such as a metabolic
synthesis pathway spanning multiple integration sites, uses the
SBO:0000241 (Functional entity) term.

2.2. Features
In SBOL3, the Feature class is used to specify elements of
interest within a Component. SBOL3 introduces several other
classes of Feature to enable simpler representation of synthetic
biology designs.

2.2.1. SubComponents and SequenceFeatures
The original SBOL1 and SBOL2 structural representations
focused on the hierarchical composition of parts, such as the
inclusion of the pBAD promoter in the design of an arabinose
sensor. This was accomplished in SBOL2 using a Component
(now a subclass of Feature called SubComponent in SBOL3)
to refer to a definition of the included part, while its location
or locations on the sequence (if known) were expressed using a
SequenceAnnotation.

However, there are many simpler features (such as a
restriction site or -35 region) which are useful to annotate
but do not have any meaningful separate hierarchical existence
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DnaComponent

Autoregulatory device

SBOL1

SubComponents

Component

Autoregulatory device

SBOL3

SubComponents

Interaction

ComponentDefinition

Autoregulatory device

Components

ModuleDefinition

Autoregulatory device

FunctionalComponent

Autoregulatory device

MapsTo MapsTo

Interaction

FunctionalComponents

SBOL2

FIGURE 4 | A simple auto-regulatory device represented using SBOL versions 1, 2, and 3. In the SBOL1 example, the structure of the unit is captured, but the

regulatory function is not. In the SBOL2 example, the structure is captured using a ComponentDefinition, the function is captured in a separate

ModuleDefinition, and the two objects are connected using MapsTo relations. In the SBOL3 example, both the structure and function are captured by a single

Component, under which the SubComponent and Interaction objects can co-exist. Diagrams are drawn using SBOL Visual notation (Beal et al., 2019).

within a design. As SBOL2 evolved, such annotations were
simplified by allowing a SequenceAnnotation to provide
feature information about a sequence directly, without the need
to link the annotation to a Component, but the two classes could
not be separated fully without breaking backward compatibility.

In SBOL3, sub-components and feature annotation are now
fully refactored into two separate subclasses of Feature. The
SubComponent subclass describes a hierarchical part-subpart
relationship, with the option to directly specify its location on a
sequence if known and relevant, while the SequenceFeature
subclass describes a feature that must be associated with a
location, but does not indicate a part-subpart relationship.

2.2.2. Local and External Design Elements
SBOL3 also simplifies the handling of two other common cases
where defining a full Component is not useful. First, similar
to SequenceAnnotation, a LocalSubComponent is used
to represent components whose only purpose is to be local
placeholders or composites that only really make sense within
the context of their parent Component, being defined in terms
of their relationships with other Features. For example, a
LocalSubComponent may be used to specify a variable
in a template for a combinatorial library, with the local
subcomponent indicating information such as “put a promoter
in this location” and “put a barcode in that location.” In another
example, a LocalSubComponent can be used to specify a
plasmid assembled from several SubComponents, which then
goes on to be transformed into a cell strain.

Another important case is when an established collection
of knowledge is better kept outside of SBOL entirely. For
example, knowledge about small molecules or proteins is already
thoroughly encoded in a standard format in databases such
as ChEBI (Degtyarenko et al., 2007) or UniProt (UniProt
Consortium, 2007). In SBOL3, an ExternallyDefined
feature allows such elements to be included in a design by
pointing to the canonical non-SBOL definition, while still giving
sufficient information to reason about its use within a design
via type and role properties from ontologies such as SBO
and GO. In SBOL2, by contrast, such elements were required to
be mirrored in “empty” ComponentDefinition objects that
still essentially just served as a link to the definition while tending
to obfuscate the sharing of common design elements.

2.2.3. Simplified References
Finally, SBOL3 also introduces a ComponentReference class
that allows a Feature within a SubComponent to be used
directly in an Interaction or Constraint relationship.
For example, a ComponentReference can be used in an
Interaction indicating that the TetR protein represses the
pTet promoter on a plasmid that is included in a design as
a SubComponent.

This greatly simplifies such representations relative to SBOL2.
In SBOL2, such a reference was constructed by importing
a copy of the element as an immediate child of the object
where the relationship was expressed and then linking this
copy to the original with a MapsTo identity relation. The
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FIGURE 5 | Gardner et al. (2000) toggle switch represented using SBOL versions 2 and 3. In the SBOL2 representation, the structure of the lacI and tetR units are

defined in ComponentDefinitions and instantiated in a ModuleDefinition as FunctionalComponents. Their function-linked sub-structures are then

mapped into the ModuleDefinition using MapsTo to assign corresponding FunctionalComponents for the promoter and CDS components, which can then

(Continued)
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FIGURE 5 | be used as participants in Interactions. In the SBOL3 representation, the creation of a ModuleDefinition and MapsTo relations as in the SBOL2

example is no longer necessary as sequence information and interactions can co-exist in the same parent Component object. Diagrams are drawn using SBOL

Visual notation (Beal et al., 2019). A serialized SBOL3 representation of this construct is available on GitHub at https://github.com/SynBioDex/SBOLTestSuite/tree/

master/SBOL3/toggle_switch.
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FIGURE 6 | A multicellular communication system represented using SBOL3. Two different organisms implement a sender and receiver system, which uses a small

molecule (AHL) as a signal. The sender and receiver systems are represented by Components and use constraints to show that each of these cell types contains

AHL (not shown are details of the genetic system and its interactions with the molecule). These sender and receiver systems are SubComponents of the overall

multicellular system, which is also represented by a Component. The fact that AHL is shared between the two systems is captured using an identity constraint. A

serialized SBOL3 representation of this construct is available on GitHub at https://github.com/SynBioDex/SBOLTestSuite/tree/master/SBOL3/multicellular.

ComponentReference approach also enables multi-layer
references, which were not possible in SBOL2 without also
modifying the description of the intermediate layer designs.

2.3. Generalized Constraints
While the Interaction class can be used to express functional
relationships between biological components, it is also often
useful to be able to express information about the non-functional
design relationship between components. Such relationships
include identity (e.g., replacing a placeholder in a template with a
complete definition), relative positions in a sequence (e.g., “pLac
precedes tetR”), and general spatial relations (e.g., containment

of a plasmid in the chassis strain it transforms). The incremental
growth of SBOL2 resulted in this information being expressed in
a limited manner across a mixture of different classes: identity
relationships were expressed using a mix of MapsTo and
SequenceConstraint objects, while spatial relationships
were expressed with a mix of SequenceConstraint and
Interaction objects. SBOL3 combines and generalizes these
into a unified Constraint class, in which two components (a
subject and an object) are linked using a restriction to express
their relationship.

In SBOL3, identity relationships between components are
expressed with the verifyIdentical, differentFrom,
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and replaces relationships. The SBOL2 relationships for
expressing relative positions in a sequence—precedes,
sameOrientationAs, and oppositeOrientationAs—
are expanded with additional restrictions that cover
the full range of sequential relationships (Allen, 1983):
strictlyPrecedes, meets, overlaps, contains,
strictlyContains, equals, finishes, and starts.

Likewise, the set of constraints is further expanded to deal with
the spatial relationships of physical objects in general, rather than
just the special case of directional linear sequence. In particular,
these relations are based on the set of all topological relationships
between two spatial regions without holes (Egenhofer and
Herring, 1991), including common unions and omitting
symmetric relations that can be expressed by swapping subject
and object. These new topological restrictions include:

• isDisjointFrom – subject and object do not overlap in
space. Example: a plasmid is disjoint from a chromosome.

• strictlyContains – subject entirely contains object: they
do not share a boundary. Example: a cell contains a plasmid.

• contains – subject contains object and they might or might
not share a boundary. Example: a cell contains a protein that
may or may not bind to its membrane.

• meets – subject and object are connected at a shared
boundary. Example: two strains of adherent cells meet at
their membranes.

• covers – subject contains object but also shares a boundary.
Example: a bacterial cell encloses its transmembrane proteins.

• overlaps – subject and object overlap in space, but portions
of each are outside of the other. Example: a transmembrane
protein overlaps the cell membrane.

Taken all together, these three sets of relationships provide a
much simpler and more expressive system for expressing design
constraints in SBOL3 than existed in SBOL2.

2.4. Interfaces
In SBOL2, information about the recommended interface
for a component/module was dispersed into the “access”
field of ComponentInstance and the “direction” field of
FunctionalComponent. This makes the interfaces implicit
rather than explicit, scatters the information, and forced
premature definition of information about interfaces. As SBOL
is now being used to build designs that comprise more complex
devices on a larger scale, a clear specification of how components
work together is highly important.

In SBOL3, this information is instead collected into an
explicit Interface object with input, output, and
non-directional properties. Each of these properties refers
to a set of Feature objects in the same Component
that owns the Interface. Specifying any Interface is
optional, however, so this information only need be added to
systems where it makes sense and at an appropriate stage of
engineering. For example, a NOR gate from (Gander et al.,
2017) could be described as an SBOL3 Component with four
SubComponents: two gRNA inputs, the DNA component that
they regulate (comprising two binding sites, a promoter, and a
gRNA coding sequence), and the gRNA output. It would then be

assigned an Interface with two input relations (to the input
gRNA SubComponents) and one output relation (to the output
gRNA SubComponent).

2.5. Relationship With RDF and the
Semantic Web
All versions of SBOL have used RDF as a serialization format.
However, the relationship between SBOL and its underlying
Semantic Web representation has previously been unclear.
SBOL3 addresses these issues by following Semantic Web related
best practices where possible, enabling better integration with
existing Semantic Web tools.

2.5.1. Consistent Property Names
SBOL uses many terms from existing ontologies, such as Dublin
Core and PROV-O. The SBOL1 and SBOL2 specifications were
written in a manner such that those terms were given a new
“SBOL alias” that was sometimes, but not always, distinct from
the name assigned to them by the ontology. For example,
instead of defining the concept of a “title” or “description,”
the SBOL2 specification used the dcterms:title and
dcterms:description properties from the Dublin Core
ontology. However, the dcterms:title property is first
introduced as the “SBOL alias” of name, and then later
“mapped” to an ontology term in the serialization section of
the specification.

This makes serialized SBOL confusing to read, because
the ontologically-defined names used in the serialization
do not always match the specification-defined names
used by SBOL libraries. For example, SBOL2 renames the
prov:wasDerivedFrom property to wasDerivedFroms for
consistency with other aliases used in the specification. This also
meant that integrating terms from other ontologies into SBOL2
required a two-step process of writing their description as SBOL
“aliases” and then writing their “serialization.”

In SBOL3, the use of external ontologies has been made
explicit and consistent throughout the specification. For example,
dcterms:title has been replaced with an sbol:name
property, and all of the diagrams in the specification have
been updated to display the singular, prefixed form of property
names (e.g., prov:wasDerivedFrom) rather than an “SBOL-
adjusted” version (wasDerivedFroms).

2.5.2. Differentiating SBOL Entities (Concepts) and

Properties
The SBOL2 data model has several labels that are both used
to refer to entities and property names. In SBOL2, they were
differentiated by using the uppercase letter when referring
to entities and using the lowercase letter when referring to
property names. However, not all RDF tools are case-sensitive.
Moreover, referring to the data model makes it more difficult
to explain in papers. In SBOL3, this ambiguity is removed and
the labels are made as unique as possible. Additionally, prefixing
and suffixing is applied to property names, e.g., “has...” or
“is...Of,” as is the Semantic Web convention. For example, the
SBOL2 interaction property is now hasInteraction in
SBOL3. Additionally, all entities that are represented as RDF
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resources now begin with an uppercase letter, again following
RDF convention. For example, the public specifier in SBOL2
is now Public in SBOL3.

2.5.3. Serialization
Before SBOL3, the standard specified a bespoke file format used
for data exchange. This file format required the development of
libraries specifically for serializing and parsing SBOL data. In
contrast, SBOL3 no longer specifies a particular file format for
data exchange. Rather, it specifies how SBOL data structures map
to an RDF graph representation. This graph may then be easily
serialized to and parsed from a number of file formats, such
as XML, Turtle, N-Triples, and JSON, using standard software
packages. In addition to simplifying the underlying software
implementation, different serialization formats may provide
advantages for certain users. For example, Turtle increases
human-readability of SBOL documents, and even allows them to
be edited manually, while JSON is particularly convenient when
developing web applications using JavaScript, and N-Triples is
better for minimal difference detection version control systems.

2.6. Namespaces and Identifiers
Finally, one of the important considerations for enabling design
data interoperability is the need for consistent and compatible
identifiers. As SBOL is built upon RDF, it inherits theWorldWide
Web concept of a Uniform Resource Identifier (URI), a superset
of the Uniform Resource Locator (URL) standard. Consequently,
most SBOL resources, whether in a local SBOL file or in an online
repository, have an identifier that resembles a Web address.

In SBOL1, the format of these URIs was left unspecified,
meaning there is little consistency in the URIs created by
different SBOL1-enabled tools. SBOL2 introduced the concept
of “compliant URIs,” which comply with a set of optional
best practice rules. Broadly, compliant URIs take the form
of <URI prefix>/<displayId>/<version>, where the
URI prefix of child objects must be prefixed with the persistent
identity of their parent.

While SBOL2 compliant URIs are an improvement over the
lack of specification in SBOL1, they also suffer from several
practical issues. First, the positioning of the version at the end
of the URI is contrary to the established RDF convention of
positioning the identifier at the end, meaning existing RDF
tooling often displays the version of SBOL2 resources in place of
the identifier. Second, URI-suffix versioning is too granular (at
object level, when changes are often made across many objects
in a design) but also too contagious (changing an object version
requires making duplicate copies of everything that points to it
as well). Finally, these rules remain optional, meaning there is no
guarantee that SBOL2 data has compliant URIs, and it is unclear
when implementing tooling how to handle the case of mixed
compliant and non-compliant URIs.

SBOL3 addresses these issues by replacing the best practice
of compliant URIs with a required SBOL3 URI structure of the
form <URI prefix>/<displayId>, leaving the handling
of versioning and placement (if any) of the version up to the
tooling. For example, the version could become part of the
prefix (e.g., http://example.com/toggleswitch/1/lacI, part of the

displayId (e.g., http://example.com/toggleswitch/lacI_1, or even
omitted entirely (e.g., handled instead via git versioning).

Another challenge in SBOL2 was determining which portion
of a URI to rewrite when moving it from one namespace to
another. This often occurs when an SBOL document is migrated
from hosting on one server to a new location on a different server,
due to the dual role of a URI as both identifier and Web locator.
SBOL3 addresses this by introducing a Namespace class that
can be used to explicitly encode which portion of a set of URIs
should change and which should be retained.

3. DISCUSSION

SBOL supports the representation of abstraction hierarchies
across multiple scales of bioengineering, from individual
molecules to multi-cellular compositions and complete synthetic
genomes (Bartley et al., 2020). The SBOL data model supports
a wide variety of important use cases for synthetic biology and
bioengineering, including visualization (McLaughlin et al., 2016),
sequence design automation (Zhang et al., 2017), sharing of
genetic design information (McLaughlin et al., 2018), metabolic
engineering (Kuwahara et al., 2017), and generation of dynamical
models from sequence representations (Misirli et al., 2018).
Additionally, SBOL can be used to capture information about
the workflows used to engineer biological systems, supporting
reproducibility and automation of these processes.

As described in this paper, the SBOL community has
drawn upon several years of experience with the real-world
use of SBOL in scientific and industrial settings to produce
a specification for SBOL3 that is simultaneously simpler and
more expressive. Improvements to the standard in SBOL3
generally fall into one of two categories: simplification of the
data model, or closer conformance with Semantic Web best
practices. Major simplifications in the data model include the
unification of structural and functional compositions into a single
component hierarchy; simplification of the description of sub-
components and sequence features; and simplifying connections
between inputs and outputs across modular interfaces (e.g.,
transcriptional logic gates).

The other category of improvements in SBOL3 adjust the
standard to take better advantage of Semantic Web technologies.
By embracing existing developments, this shift will enable more
rapid development of SBOL tools and libraries and simplify
their maintenance. It will also enable users of SBOL to more
easily integrate biological knowledge in the context of their tools
through the use of ontologies, which are already widely used in
the life sciences to explicitly define biological entities and their
relationships. In addition to building upon existing ontologies
wherever possible such as the Sequence Ontology (Eilbeck et al.,
2005) and the Systems Biology Ontology (Courtot et al., 2011),
SBOL itself is now represented as a machine-readable ontology,
SBOL-OWL (Misirli et al., 2019). Similar to how ontologies are
built upon the RDF layer to provide the meaning of RDF graphs,
SBOL-OWL defines data model entities that are used to build
SBOL graphs. Formal representation of the data model as an
ontology opens up the possibility of using different Semantic
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Web tools, such as using existing reasoners to infer information,
or validating SBOL data against a schema. Logical axioms are
then used to constrain how different SBOL entities can be used
together. SBOL-OWL is also embedded into the SBOL Visual
Ontology (Misirli et al., 2020), which has been developed as a
machine-accessible catalog of glyphs. This integration further
facilitates searching for standard SBOL glyphs using ontological
terms, and a web service layer enables accessing these glyphs via
the Internet.

Overall, these improvement produce a new version of SBOL
that provides for a more direct and elegant expression of a broad
range of bioengineering information, while at the same time
reducing the number of complex classes and rules to a functional
minimum, thus providing a significantly improved means of data
exchange. These improvements will thus facilitate easier adoption
by new users and more rapid development of software tools and
datasets that make use of the standard.

3.1. Future Work
The dramatic expansion in scope from the simple DNA
components of SBOL1 to the complex systems across multiple
scales captured by SBOL3was driven by the needs of the synthetic
biology community, as the field of synthetic biology matured
and its applications became both more widespread and more
complex. The SEP process by which SBOL3 was developed
ensures the standard can continually adapt to the changing
requirements of an evolving discipline, while ensuring that
proposed changes are ratified by the community. For example,
proposals for SBOL 3.0.1 have already been made to improve
internationalization by adopting a file encoding and replacing
Uniform Resource Identifiers (URIs) with Internationalized
Resource Identifiers (IRIs).

While the nature of future requirements can only be
speculated, there are many aspects of the synthetic biology
lifecycle which remain largely unspecified by SBOL. For example,
while SBOL recommends the use of the prov:Plan class, it
does not yet recommend any domain-specific properties for its
annotation. Equally, while the concept of an experiment can be
captured in SBOL, it does not yet standardize metadata about
the experiment or experimental data. Future revisions of the
SBOL standard will therefore undoubtedly concern not only
its expressiveness in describing design elements, but also its
ability to capture and formalize the synthetic biology lifecycle as
a whole.

4. METHODS

Since its inception, the SBOL Standard has been developed as a
community effort by the SBOL Development Group, which is
open to any interested person. However, the development process
was largely informal until the SBOL Enhancement Proposal
(SEP)mechanismwas introduced in 2015 (Grünberg and Bartley,
2015), shortly after the finalization of the SBOL2 specification.
Development of SBOL3 has been driven by this formal process
of documenting user experiences, developing proposals, and
constructively debating the merits of these proposals.

Under this process, any SBOL user can propose a change by
drafting a document with a specific format (an SEP), which is
then discussed by the community on the mailing list and in
GitHub issues associated with the SEP. Once the current elected
editors of the standard judge that an SEP has been discussed
sufficiently and an approximate consensus achieved, a voting
form is posted, and any member of the SBOL Developers Group
can vote for or against it. The SEP is immediately accepted if at
least a two-thirds majority of votes cast are in favor. Otherwise,
there is a further period of discussion, during which the SEP
can be modified or withdrawn by its original author(s), followed
by a second vote in which only a simple majority is required
for acceptance.

Since the publication of SBOL2 in 2015, 46 SEPs have been
opened, as community experience in deployment of SBOL
revealed some of the practical challenges and opportunities
for enhancement. Of these SEPs, twelve were implemented as
incremental updates to SBOL2, resulting in significant milestones
in SBOL version 2.1.0 (Beal et al., 2016), which introduced feature
annotation and the encoding of provenance information to trace
the history of designs; SBOL version 2.2.0 (Cox et al., 2018),
which introduced support for combinatorial designs; and SBOL
version 2.3.0 (Madsen et al., 2019b), which introduced extensions
to support measurements, parameters, and the organization and
attachment of experimental data.

Other SEPs were deemed too major to be integrated into a 2.x
release of SBOL, since they would create backwards compatibility
problems. Therefore, they were scheduled for SBOL version
3. After a series of community votes, a working group met
to assemble the SBOL3 specification at the HARMONY 2020
Workshop at EMBL-EBI in Cambridge, UK. The resolution of
conflicts between these SEPs resulted in a final SEP summarizing
all changes in the SBOL3 data model. After voted acceptance
of this SEP by the community, the SBOL3 specification
was finalized.

Though there are not yet any complete software
implementations of SBOL3, the SBOL community has established
an SBOL3 implementation working group comprising many
of the developers of libraries for previous SBOL versions
and other interested parties. The first software libraries are
expected to be released within the coming months for Java,
Python, and JavaScript. Preliminary support for SBOL3 has been
implemented in ShortBOL (Crowther et al., 2020), a tool for
composing SBOL using a shorthand syntax.
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