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Abstract

A probabilistic model is proposed that uses observation data to estimate failure probabilities during excavations. The model integrates
a Bayesian network and distanced-based Bayesian model updating. In the network, the movement of a retaining wall is selected as the
indicator of failure, and the observed ground surface settlement is used to update the soil parameters. The responses of wall deflection
and ground surface settlement are accurately predicted using finite element analysis. An artificial neural network is employed to construct
the response surface relationship using the aforementioned input factors. The proposed model effectively estimates the uncertainty of
influential factors. A case study of a braced excavation is presented to demonstrate the feasibility of the proposed approach. The update
results facilitate accurate estimates according to the target value, from which the corresponding probabilities of failure are obtained. The
proposed model enables failure probabilities to be determined with real-time result updating.
Keywords: Failure probability; Braced excavation; Bayesian networks; Stochastic model updating; Sensitivity analysis
1 Introduction

As urban construction activities increase, so does foun-
dation pit excavation, as this is the first step of most con-
struction projects. However, this activity often has
unfavorable consequences in urban areas. During the exca-
vation process, deformation of the diaphragm wall and
ground surface elevation can occur, which can cause col-
lapse of the adjacent building structures and sometimes
results in human casualties. Many numerical models have
been proposed to compute maximum wall displacement
and maximum ground surface settlement. Do, Ou, and
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Chen (2016) studied the failure mechanism of excavation
in soft clay using finite element (FE) analysis. They showed
that the FE method could effectively estimate excavation
stability. Kung, Juang, Hsiao, and Hashash (2007) pro-
posed a simplified semi-empirical model, named the KJHH
(for Kung–Juang–Hsiao–Hashash) model, to estimate the
deformation behavior of a braced excavation. The KJHH
model incorporated three models that assessed wall deflec-
tion, ground surface settlement, and deformation rate.
These studies provide empirical or semi-empirical methods
to predict the response values of deformation and failure
threshold using various input parameters.

Furthermore, FE analysis is a popular approach for
addressing problems associated with sophisticated excava-
tions, wherein two-dimensional (2D) plane strain problems
are utilized to predict the stability of excavation with the
purpose of simplification. However, three-dimensional
ehalf of KeAi Communications Co. Ltd.
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(3D) effects are more suitable and more accurate for the
analysis of certain geotechnical problems (such as tunnel
excavations) in practical situations. Several 3D FE analyses
have been studied (Ou, Chiou, & Wu, 1996; Zdravkovic,
Potts, & John, 2005; Lee, Hong, Gu, & Zhao, 2011). Addi-
tionally, Janin et al. (2015) compared the relative ability of
both 2D and 3D approaches. They found that the 3D
approach enabled representation of the reinforcements,
ground reaction, and the 3D phenomenon of tunnel exca-
vations, while the 2D simulation failed to represent these
complex effects fully. Therefore, given the case studied in
this paper, the 3D FE method was applied using the soft-
ware package ABAQUS 6.13. This software package was
selected because it has been proven effective for 3D FE
analyses (Lee et al., 2011; Liu, Lee, Quek, Chen, & Yi,
2015; Li & Gang, 2018).

Owing to the unavoidable model errors associated with
insufficient knowledge of the reality of a situation and its
complex excavation conditions, discrepancies between
design parameters and observation parameters are quanti-
fied using an updating method. In situations in which field
measurements are provided, it is common practice to update
geotechnical parameters with back analysis or inverse anal-
ysis based on modeling functions (Ledesma &Alonso, 1996;
Finno & Calvello, 2005; Calvello & Finno, 2004; Hashash,
Levasseur, Osouli, Finno, & Malecot, 2010; Zhang,
Zhang, Zhang, & Tang, 2011). For trial-and-error calibra-
tion methods, inverse model algorithms are initially consid-
ered. For supported excavations, Finno and Calvello (2005)
handled design prediction updates using UCODE (a com-
puter code) to assign identification numbers to physical
objects. They were able to minimize model errors using their
proposed numerical procedure. Juang, Luo, Atamturktur,
and Huang (2013), attempted to present the maximum like-
lihood method for updating soil parameters in a stage-by-
stage manner. The likelihood function was obtained accord-
ing to the bias factor of the KJHH model, wherein the bias
factor was often assumed to have a normal or lognormal dis-
tribution based on expert knowledge. It is considered
impractical to implement updating for wall and ground sur-
face deformation prediction using back analysis by way of
implicit probability distribution, mass functions of the
model, or black-box methods.

Approximate Bayesian computation (ABC) (Beaumont,
Zhang, & Balding, 2002; Turner & Zandt, 2012) can reveal
discrepancies by checking the distance, rather than likeli-
hood function. Bi, Broggi, and Beer (2018) developed an
ABC model updating framework that considered both
Euclidian and Bhattacharyya in quantifying uncertainty.
The study revealed an efficient and capable metric for
stochastic model updating. In geotechnical updating prob-
lems, when the likelihood function is intractable or cannot
be approached in a closed form (as a likelihood-free
method), an ABC approach is typically used. Nonetheless,
there remains scant research on updating geotechnical
materials using distance-based ABC approaches. Accord-
ingly, the method presented in this paper incorporates dis-
tance metrics for material parameter updating in the
supported excavation.
Regardless of whether it is from the perspective of
design considerations or risk management, prediction
of excavation stability enables the implementation of
crucial pre-failure controls. The risks and causes of
potential failures in the excavation process are compli-
cated, various, and interactional. Numerous dynamic
factors such as soil structure and strength, excavation
width, and workmanship affect surface settlement and
the movement of braced walls. As a diagnostic tool,
Bayesian networks possess the powerful capability of
being able to analyze multiple causal failures. The flexi-
bility of network structures contributes to their applica-
tion in many fields for risk analysis, risk management,
and decision analysis.

Zhang, Wu, Ding, Skibniewski, and Yan (2013) pre-
sented a decision support Bayesian network (BN) model
to predict ground settlement for safety control. Influential
factors in this network were all defined by discrete nodes
with three states. A dynamic BN model (Spackova &
Straub, 2013) was utilized to assess the risk of human fac-
tors and other external events in the tunnel construction
process. Zhou, Li, Zhou, and Luo (2018) used a BN for
the analysis of risk classification for diaphragm wall
deflection based on field data. Their model combined
the field data of the diaphragm wall with other data as
evidence input to validate the predicted results. In these
application of BNs, the prior probabilities of each node
were highly dependent on collected data and expert
opinion.

The primary objective of this study is to present a
real-time probabilistic model that will use updated infor-
mation to predict the possibility of collapse during the
excavation process. To accomplish this, we focus on cap-
turing the uncertainty of material parameters, and on
characterizing their effect on a diaphragm wall using a
BN model. To overcome the difficulty of monitoring wall
deformation in tandem with ground surface settlement,
ground settlement is accounted for as a field observation.
Hence, it is incorporated into the BN model as an input
used to update the material parameters. The proposed
method combines Bayesian networks with a model
updating approach. Not only does the proposed model
incorporate information based on expert judgment and
limited data from direct and indirect factors, it also
captures the propagation of uncertainty throughout the
network components. Thus, the proposed model charac-
terizes the relationship between uncertain parameters and
the safety states of the excavation process, and identifies
the influence of induced-factors on the stability of the
excavation.
2 The Bayesian network of excavation evaluation by

integrating field observation

2.1 Structure of Bayesian networks

A BN is a graphical statistical model that realizes pow-
erful probability theory. In this directed acyclic graph, a
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visible cause-effect relationship can be shown with a set of
variables linked by an arc that shows their conditional
dependency, while the indirect edges indicate the indepen-
dent conditional relations among the nodes. A detailed
overview of BNs can be found in Pearl (1988) and Jensen
(2001). Bayesian updating for braced excavation is usually
conducted in stages. The use of a BN model addresses the
complexities of stepped excavations for multiple layers
while providing estimates of the real-time failure state of
the excavation.

Additionally, BNs are well suited to capturing uncer-
tainty propagation. Because of this, a general network
for braced excavations by steps is constructed by consider-
ing the material parameters Xi (as root nodes in the model)
and the parent nodes of deformation parameters Di of the
different layers. The discrete nodes Yi present the states of
safety or failure for diverse materials of each layer, while
Ytotal represents the final failure events. Additionally, mon-
itor parameters Mi: (i = 1, 2, ∙∙∙, n) in the excavation pro-
cess are integrated into the network. Per Fig. 1, a BN is
built considering two material layers and one monitor
parameter.

According to the chain rule, the factorization of partial
variables in this network is written as

f D2;X 2;X 3;X 4;M1ð Þ
¼ f X 2ð Þf X 3ð Þf X 4ð Þf D2jX 2;X 3;X 4ð Þf M1jX 3;X 4ð Þ; ð1Þ

where f D2;X 2;X 3;X 4;M1ð Þ is a joint probability distribu-
tion, and the probability of node D2 can be obtained with
the marginal computation of Eq. (1). The probability of
excavation failure Y2 is given by

Pr Y 2jD2ð Þ ¼
Z
XD2

f D2jX 2;X 3;X 4ð Þd D2ð Þ; ð2Þ

where the domain XD2
of variable Y2 is divided by safe and

failure domain. Likewise, the conditional probability distri-
bution (CPD) of node D1 and the conditional probability
of node Y1 also can be computed. Furthermore, the events
of Y1 and Y2 are independent and both exist in a binary
state. The event Ytotal is the joint event of Y1 and Y2.
Fig. 1. Bayesian network (BN) incorporating field measurements.
2.2 Quantitative components of a Bayesian network

In a BN, each node should be defined by the corre-
sponding prior probabilities. In this work, we employ a
neural network to quantify the inter-relationship among
the main parameters. Artificial neural networks (ANN)
are an efficient tool to simulate the response of output asso-
ciated with input variables (Anjum, Tasadduq, & AlSultan,
1997; Yuan & Bai, 2011; Mia & Dhar, 2016). Hashash,
Jung, and Ghaboussi (2004) demonstrated complex
stress–strain behavior of engineering materials could be
effectively captured using an ANN.

A neural network is designed using three layers: input,
hidden, and output. Two response relationships comprise
the required input to provide a single output. The displace-
ment of the wall is taken as an indicator parameter for
detecting failure in the excavation process. As previously
mentioned, the response of ground surface settlement is
selected as observation data. Furthermore, the response
of wall deflection has four material variable inputs, while
two variable inputs represent ground surface settlement.
For the training and test data, we adopted the simulated
values from a dataset calculated using the FE method in
the software package ABAQUS 6.13. The amount of train-
ing was defined by full factorial designs. The ANN compu-
tation was run in the MATLAB R2017 ‘nnstart’ toolbox,
and the network was trained using Bayesian regularization
(MacKay, 1992). The performance of the training was eval-
uated by mean square error (MSE) as given in Eq. (3).

MSE ¼ 1

2

X
Actual� Predictedð Þ2: ð3Þ

Note that the response surface built via an ANN is a
black-box. In the next step, we integrate this black-box
with the BN model. From this point forward in the process,
information updating and sensitivity analysis are executed
based on this integrated model.

2.3 Bayesian updating

Soil parameters will vary as the excavation is conducted,
which makes direct measurement intractable in current
practice. Therefore, soil parameters are generally updated
with monitor parameters. This article considers ABC as a
likelihood-free method. The recently developed ABC
updating framework utilizing various statistical distances
(Bi et al., 2018) is employed to update the soil parameters
in the proposed approach. Given the problem addressed
by this paper, this model updating approach is applied to
update the key soil parameters: a Bayesian updating frame-
work is presented with the distance-based ABC approach,
including Euclidian and Bhattacharyya distances. The
entire update process will be briefly presented in the next
section.

Let h be the uncertain parameters, and D be the
observed data. Then, from Bayes’ theorem, the computa-
tion of the posterior probability density function (PDF):
f ðhjDÞ improves the accuracy of the predictions of the
model given the data D; and is expressed as
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Fig. 2. Proposed update framework with distance-based approximate
Bayesian computation (ABC) method.
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f ðhjDÞ ¼ f ðDjhÞf ðhÞR
f ðDjhÞf ðhÞdh ; ð4Þ

where f ðhÞ is the priori distribution and f ðDjhÞ is equal to
the likelihood distribution;

R
f ðDjhÞf ðhÞdh represents nor-

malization and should be constant, but can be intractable
to compute because of the high-dimension of the parameter
space or multimodal distribution. In this regard, the transi-
tional Markov Chain Monto Carlo (TMCMC) method
(Ching & Chen, 2007) is proposed to overcome the diffi-
culty in evaluating the target PDF.

Briefly, the TMCMC method is an effective simulation
to support sampling from a set of the intermediate PDFs
and converge to the target PDF. Generally, the sampling
from the posterior distribution with the TMCMC method
is estimated based on the following Eq. (5).

f ðhjDÞ / f ðDjhÞ � f ðhÞ: ð5Þ
Accordingly, these intermediate PDFs are constructed:

f j / f ðDjhÞPj � f ðhÞ; ð6Þ
where j is the stage number, and Pj denotes the exponent of
the likelihood, ranging from 0 to 1 (Ching & Chen, 2007).
In the updating framework, f ðDjhÞ is estimated by approx-
imate distance-based likelihood based on the Gaussian
function,

f ðDjhÞ / e �d2
e2ð Þ; ð7Þ

where d is the distance metric, which can be either the
Euclidian distance or the Bhattacharyya distance; eis the
width factor with a range between 0.001 and 0.1. The smal-
ler the value of e, the more likely that the result converges
to the true value, but the increasing likelihood brings a cor-
responding requirement for more calculation (Bi et al.,
2018).

The formula for calculating the Euclidian distance
between two n-dimension vectors x (predicted data) and
y (observed data) is delineated in Eq. (8).

d ¼
Xn
i¼1

xi � yið Þ2: ð8Þ

The Bhattacharyya distance is defined in Eq. (9).

d ¼ �log

Z
n
ppre xð Þpobs xð Þdx

� �
: ð9Þ

In the Bhattacharyya distance, ppre xð Þ and pobs xð Þ are the
PDF of the prediction and observation samples, respec-
tively. This stochastic distance metric is especially suitable
for measuring the overlap of the sample set. However,
without an overlap situation, it is insensitive to the center
of mass of the sets. Therefore, as described in the frame-
work depicted in Fig. 2, we first conduct the updating with
Euclidian distance to measure the likelihood and then use
the results as the new prior distribution of h and execute
the next update using the Bhattacharyya distance-based
ABC.
2.4 Moment-independent sensitivity analysis using Monte

Carlo simulation

The sensitivity analysis of a BN contributes to the pro-
cess of building the BN from data, and is especially useful
for large and complex networks. Several types of methods
have been studied to determine how causal nodes influence
the target node in traditional BNs (Laskey, 1995; Chan &
Darwiche, 2004). In these approaches, the evidence is
inserted by querying the different states of each variable.
The characteristic of the sensitivity is then estimated based
on the changes of the posterior probabilities for the target
node. However, this is not suitable for complex networks.
Given the problem addressed in this paper, a sensitivity
approach for identifying the critical inputs before network
updating is proposed.

The variance-based sensitivity analysis method is a sum-
mary measure of sensitivity that studies how the variance
of the output changes when an input variable is fixed. Li
and Mahadevan (2017) applied the first-order Sobol’ index
to BNs to analyze the sensitivity and proposed an approx-
imated algorithm to reduce the computational cost. For
problems of risk analysis, the robust sensitivity measure
for a BN should enable to capture the entire distribution
of an output node, rather than only a single moment.

Moment-independent sensitivity analysis enables cap-
ture of the entire distribution of output referring to varying
input parameters. Therefore, in this paper, we employ the
PDF-based sensitivity approach to measure the contribu-
tion of the uncertain parameters in the deformation of a
retaining wall. Using this method, we attempt to select
the key factors to update. Generally, the moment-



Fig. 3. Lateral cross section of basement excavation in Singapore.
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independent sensitivity index di is evaluated to identify the
effect of any of an input Xi on the PDF of model output Y.
According to the definition of the delta index (Borgonovo,
2007), the formulation of the computation is written as

di ¼ 1

2
EXi s X ið Þ½ � ¼ 1

2

Z
s X ið Þf X i

xið Þdxi; ð10Þ

where s X ið Þ denotes the area difference between the uncon-
ditional PDF of output Y and its conditional distribution
given the individual input X i,

s X ið Þ ¼
Z

f Y yð Þ � f Y jX i
yð Þ

��� ���dy; ð11Þ

where f �ð Þ denotes the PDF. Note that di 2 [0,1], where 0
means input Xi has no effect on the PDF of Y and the con-
tribution of all the inputs are the same to the PDF of Y
when di ¼ 1. Additionally, the computation of the delta
index using the single-loop Monte Carlo simulation (Wei,
Zheng, & Yuan, 2013) is employed. Based on Eq. (11),
the form of di can be further considered by

di ¼ 1

2
f X i

xið Þf Y yð Þ � f Y ;X i
y; xið Þ�� ��dydxi

¼ 1

2
EY ;X i

f X i
xið Þf Y yð Þ

f Y ;X i
y; xið Þ � 1

 !
: ð12Þ

So, for a group of input parameters R = (Xi1, Xi2, � � �,
Xin), similarly, we can obtain

di ¼ 1

2
EY ;R

f R xi1; xi2; � � � ; xinð Þf Y yð Þ
f Y ;R y; xi1; xi2; � � � ; xinð Þ � 1

 !
: ð13Þ

In this paper, the PDF of output f Y yð Þis estimated with
the kernel density estimator (KDE) method (Botev,
Grotowski, & Kroese, 2010), while a bivariate KDE tool-
box (Botev, 2015) is used to achieve the joint PDF of Y
and R. Thus, the sensitivity index diis easily calculated by
means of Monte Carlo simulation.

3 Example application

The braced excavation for the tunnel was conducted in
the Marina Bay area of Singapore. The pit excavation,
depicted in Fig. 3(a), consisted of three layers of material:
Table 1
Properties of soils and cement stabilized soil layer (CSSL) (Lee et al., 2011).

Soil type Marine clay

Bulk unit weight (kN/m3) 16
Isotropic swelling index 0.093
Isotropic compression index 0.27
Critical state friction coefficient 0.87
Effective Poisson’s ratio 0.3
Earth pressure coefficient 0.7
Coefficient of permeability 1�10�9

Void ratio 1.9
Friction angle (�) –
Effective Young’s modulus –
Angle of dilation (�) –
Effective cohesion –
sand fill, marine clay, and Old Alluvium. The marine clay
was modelled using the Cam Clay model, while the sand fill
and Old Alluvium were modelled as Mohr–Coulomb mate-
rials with effective stress parameters. The model shown in
Fig. 3(b) is 24 m width along the Y direction. At the two
surfaces, i.e., Y = 0 and Y = 24, vertical rollers were set,
and only vertical movement was allowed.

In this study, the cement-treated soil was modelled as a
Mohr–Coulomb material. The properties of the soil layers
and cement stabilized soil layer (CSSL) used in this analysis
are listed in Table 1. The height and width of the pit
excavation were 100 m. The excavation had a total of six
stages using the top-down construction method. The final
excavation depth was 18.6 m. A retaining wall with a thick-
ness of 0.8 m was supported by cross-struts and walers. The
maximum movement of the retaining wall was 162.2 mm.
The diaphragm wall was modelled as an elastic material
with an equivalent Young’s modulus of 10.5 GPa and Pois-
son’s ratio of 0.2. The cross-struts and walers supporting
the retaining wall were simplified to a rectangular section
(400 mm�400 mm), with equivalent bending stiffness. This
equivalent was derived by equating the product of Young’s
modulus and cross-sectional area for struts. The Young’s
modulus and Poisson’s ratio for the walers were 47.5
GPa and 0.2, respectively. The groundwater table was
assumed stable and located 1 m below the ground surface.
The magnitude of the wall movement, as well as ground
surface settlement, was measured with the FE package
ABAQUS 6.13.

According to the conditions described above, a BN
model, shown in Fig. 4, was constructed to analyze the fail-
ure state, i.e., safe or failure, during the excavation process.
In this paper, we only considered the potential risk of the
excavation process in the layer of marine clay, as this is
where potential failure is most likely to occur. On this
basis, we selected three key material parameters: k, M,
and k; where k is the logarithmic hardening constant
defined for the clay plasticity material behaviour, k is the
logarithmic bulk modulus of the material defined for the
porous elastic material behavior, and M is the ratio of
the shear stress. These factors exert substantial influence
on the displacement of the wall. The proposed network
also considered the effect of different excavation depths.
In the BN model, node H represented the varying height
of the pit excavation from the ground surface, mainly from
Sand fill Old alluvium CSSL

19 20 16
– – –
– – –
– – –
0.3 0.3 0.2
0.5 1.0 0.7
1�10�6 1�10�7 1�10�10

– – –
30 37 41
10 130 272
0 10 0
2 20 400



Fig. 4. The Bayesian network for braced excavation.

Fig. 5. Neural network training regression.

Table 3
The results of the prediction with the artificial neural networks (ANN).

Parameter MSE R-square (%)

Wtraining 3.84 � 10–15 99.99
Wtesting 1.45 � 10–3 93.85
Straining 2.71 � 10–15 99.99
Stesting 1.54 � 10–3 94.32
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stages 4 to 6 of excavation in the marine clay, approxi-
mately 11.0–18.6 m, as this is a crucial factor in the stability
of excavation. Given the difficulty of monitoring the wall
deformation, ground surface settlement was incorporated
as a field observation used to update the material parame-
ters. Furthermore, the sensitivity analysis in the BN was
used to identify the key objects to update.

This paper regards the whole process of excavation as a
continuous process. We assumed that node H followed the
uniform distribution between [11, 18.6] and other parame-
ters were also defined with the known distributions, per
Table 2. Based on the sensitivity analysis, k and H have
the greatest effect on the deformation of retaining wall.
So, only parameter k was selected as the update target used
herein to demonstrate the proposed method. Moreover, the
initial values of mean lk and standard variation rk for vari-
able k were initially estimated with an interval from the
limited information, though the true value is provided as
a reference to validate the credibility of the outcome.
Hence, they were assumed to be known with the exact val-
ues of 0.1 and 0.03, respectively, and were then compared
with the updated results of lk and rk.

Given the preceding factors, the observed samples of
ground subsidence were generated by Monte Carlo sam-
pling from the input variables H and k in the built input-
output model. The distribution parameters of variable k
used the target mean and standard deviation listed in the
3rd column of Table 2. The size of the observation sample
was set to 100.

4 Results

Before updating, the sensitivity indices of input param-
eters of wall movement were computed to identify the
Table 2
Inputs of the parameters for the Bayesian network (BN) model.

Parameter Prior distribution*

k Normal, l ¼ 0:27;r ¼ 0:04
M Normal, l ¼ 0:87;r ¼ 0:07
K Normal, l 2 0; 0:3½ �;r 2 0; 0:05½ �
H Uniform, H 2 11; 18:6½ �
* l and r denote the distribution parameter mean and standard deviation, r
key factors. As shown in the last column of Table 2, the
ranking of importance was H > k > M >k. Given their
uncertain influence on wall movement, we mainly consider
k andH for the purpose of parameter updating. The depen-
dency relation of nodes W and S with the causal nodes
were quantified with the FE method, respectively. Then,
the response of wall movement and ground subsidence on
uncertain input parameters were predicted using the
ANN method.

Figure 5 shows the regression plots of the retaining wall
and ground surface settlement, and the results of the ANN
prediction are detailed in Table 3. We note that both exhi-
bit strong linear relationships with the input parameters.
The associated mean square error for each parameter was
also calculated. The model results indicate that the ANN
models can be employed to predict wall defection and
ground surface settlement. The next step used the input-
output black-boxes, and then estimated the uncertainty
quantification in the BN.

As the depth of excavation H is a random variable with
aleatory uncertainty, only two statistic parameters of k as
Target value of epistemic input Sensitivity index, di

– 0.1398
– 0.1694
l ¼ 0:1; r ¼ 0:03 0.3286
– 0.3575

espectively.



Table 4
Values of posterior distributions.

Parameter lk rk

Target value 0.1 0.03
Updated with Euclidian distance 0.1067 –
Updated with Euclidian distance 0.1052 0.0381
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inputs were used in the distance-based updating procedure.
The observed values of variable S were defined as previ-
ously described, and used as monitoring data for variable
S. In this example, the prior distributions of distribution
parameters lk and rk were set with an interval, following
the uniform distributions. Based on each distribution
parameter, a group of prior values of variable S can be
obtained by the model evaluation and comprise the pre-
dicted samples seen in Fig. 2. Subsequently, the distance
metric for ABC updating can be computed based on Eqs.
(8) and (9). After executing the first step of updating using
the Euclidian distance metric, the posterior distributions of
variable k’s mean and standard deviation are shown in
Fig. 6(a), where the proper width coefficient e was set as
0.0015, and 13 TMCMC iterations were executed to reach
the convergence. Table 4 shows the mean values of their
posterior distributions. Comparing with the prior uniform
distribution, the posterior distribution of lk accurately con-
verged to the target value, where the updated value of lk
was 0.1067.
(a) Euclidian distance results

(b) Bhattacharyya distance results

Fig. 6. The posterior distribution of distribution parameters in variable k
after updating with distance-based approximate Bayesian computation
(ABC).
From the histogram plot of rk in Fig. 6(a), we observe
that the posterior distribution of rkwas still nearly uniform.
This indicates that the standard deviation of variable k was
incapable of updating using the Euclidian distance metric.
Therefore, further updating based on Bhattacharyya dis-
tance must be conducted.

In the second update step, six TMCMC iterations were
implemented with a width coefficient of e = 0.08 in the
ABC update process. As seen in Fig. 6(b), the posterior dis-
tributions of lk and rk are dramatically more peaked than
those in Fig. 6(a), while both remained close to their
respective targets (lk = 0.1 and rk = 0.003). In the last
row of Table 4, the updated values lk and rk are 0.1052
and 0.0381, respectively. Thus, the second update step
reduced the discrepancy between the initial sample and
the observation sample. This also demonstrated that the
Bhattacharyya distance improved prediction accuracy,
where the update results from the Euclidian distance were
used as the prior distribution of input in the second update
step. Thus, the distributions of lk and rkwere distinctly
more centralized to the target values. Using the soil param-
eter update results, the corresponding failure probability of
the excavation was then obtained accordingly in the net-
work. The failure probability of the braced excavation
can be obtained in real-time within a few seconds using
the BN software. In this paper, OpenCossan (Edoardo,
Broggi, Tolo, & Sadeghi, 2017) software was used to exe-
cute the computation. The failure probability of the exam-
ined excavation was determined to be 95.02%. The updated
failure state was provided to the appropriate decision-
makers.
5 Summary

This paper introduced a novel framework for incorpo-
rating a Bayesian network with a distance-based ABC
real-time update method. The proposed framework esti-
mates real-time failure probabilities using ground surface
settlement as observation data collected during the excava-
tion process. The distanced-based ABC approach updates
the soil parameters for the model using an input-output
black-box. This update method overcomes the limitation
of the complex likelihood function and proved effective in
reducing the discrepancy between the updated soil param-
eters and pre-design. Both Euclidian and Bhattacharyya
distance-based ABC update methods are computed in the
example. The results in the example demonstrate that the
mean value of the distribution of a soil parameter approx-
imates the true value using the distance-based ABC updat-
ing. However, for the variance of this soil parameter, only
the updated value that used Bhattacharyya distance-based
ABC was close to the target value. That being said, the
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prior distribution is also a key factor in the accuracy of this
update approach, and must be defined reasonably.

Given the reduced number of calculation points,
moment-independent sensitivity analysis applied prior to
updating can provide the vital information about which
factors exert the greatest influence on the safety or failure
state of the excavation. Furthermore, the sensitivity analy-
sis approach captures the dependency relations amongst
the nodes in the network. Moreover, it is especially suitable
for estimating the variables in the large structure of the BN.
With the ranking information, the key parameters can be
selected to link with the monitor parameters in the BN
model. Based on the updated soil parameters, the uncer-
tainty of the induced-factors is then captured by the BN
model. The real-time updated probabilities of the failure
in the excavation process can then be estimated, the results
of which provide valuable information to support decision-
makers.
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