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Abstract

We study the following question: if f is a nonzero measurable function on [0,∞) and m and n
distinct nonnegative integers, does the ratio f̂n/f̂m of the Laplace transforms of the powers fn and fm

of f uniquely determine f? The answer is yes if one of m,n is zero, by the inverse Laplace transform.
Under some assumptions on the smoothness of f we show that the answer in the general case is also
affirmative. The question arose from a problem in economics, specifically in auction theory where f is
the cumulative distribution function of a certain random variable. This is also discussed in the paper.

1 Introduction

Let f ∶ [0,∞) → R be a nonzero measurable function of exponential order, that is, there are positive
numbers C and c such that ∣f(x)∣ ≤ Cecx for all x. Denote by

f̂(λ) ∶= ∫
∞

0
e−λxf(x)dx

the Laplace transform of f , defined and analytic for all λ > c. If n is a positive integer then the
n-th power fn of f is also of exponential order and f̂n denotes its Laplace transform. Let m,n be
nonnegative integers. Define

Hn,m(f, λ) ∶= f̂n(λ)
f̂m(λ)

.

The question of interest in this paper is the following:

Uniqueness question: For given distinct nonnegative integers n and m, does knowledge
of the function Hn,m(f, ⋅) uniquely specify f?
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For m,n > 0, both f̂n(λ) and f̂m(λ) are analytic when λ ranges on the complex plane and the real
part of λ is large enough, see, e.g., [3, Theorem 6.1]. Note that we do not consider the question of
determining the explicit expression of f , which is much harder. Instead, we only study the uniqueness
of f given the function Hn,m(f, ⋅).

Clearly, if m = 0 (and similarly for n = 0) then, by the inverse Laplace transform [14], we know fn

and so we know f if n is odd. But if n and m are distinct positive integers, the problem seems to be
hard. We aim at giving an answer when we restrict f to a certain class of functions.

It is easy to see that uniqueness, in strict sense, is impossible because translations do not affect
Hn,m(f, ⋅). Suppose that, for some a > 0, the function f is identically 0 on an interval [0, a) and let

θ−af(x) ∶= f(x + a).

Then
θ̂−af(λ) = eλaf̂(λ).

Clearly then,
Hn,m(f, ⋅) =Hn,m(θ−af, ⋅).

So Hn,m(f, ⋅) specifies f up to a translation. Hence, to obtain uniqueness, it is necessary to assume

inf{x ∶ f(x) ≠ 0} = 0. (1)

Even under this condition, we cannot answer the problem in general, i.e. under the sole assumption
that the Laplace transform of f exists.

The problem arose as a question in stochastic modeling in economics, in particular in auction theory
[9]. In this case, the function f is the cumulative distribution function of a certain random variable (see
Section 3) and hence it is a nondecreasing function. However, the question of uniquely determining
f from Hn,m(f, ⋅) appears to be much more general and hence of interest independent of the auction
theory model.

Our first result concerns the case where f is a polynomial.

Theorem 1. Let m,n be distinct positive integers and f, g polynomials such that

Hn,m(f, ⋅) =Hn,m(g, ⋅).

If n−m is odd, then f is identical to g. If n−m is even, then either f is identical to g or f is identical
to −g.

For the general case, we shall restrict ourselves to functions f on [0,∞) that are right continuous
and with left limits at each point (the so called càdlàg functions in probability theory) and impose
smoothness on the right.

We say that f is right analytic at a point a if the right derivatives f (i)(a+) exist for all i ≥ 0 and if
there exists h > 0 such that, for all a ≤ x < a + h,

f(x) =
∞

∑
i=0

f (i)(a+)(x − a)
i

i!
.

The series on the right also converges on a − h < x < a + h (see, e.g., [6, Prop. 1.1.1]). By [6, Cor.

1.2.3], the function g(x) ∶= ∑∞i=0 f (i)(a+) (x−a)i

i!
is real analytic on (a − h, a + h). So f is right analytic

at a if and only if there exists a function g (depending on a) which is real analytic on (a− h, a+ h) for
some h > 0 such that f(x) = g(x) for all x ∈ [a, a + h). The right analyticity only imposes smoothness
on the right of a point. A càdlàg and right analytic function f on [0,∞) can have countably many
discontinuous points on a compact interval. For example, take

f(x) = 1

2n
, if x ∈ [1 − 1

2n
,1 − 1

2n+1
) , n = 0,1,2, . . . ; f(x) = 2, if x ≥ 1.
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The f defined above is càdlàg and right analytic on [0,∞) with discontinuities at points 1 − 1
2n

,
n = 1,2, . . ., and at 1.

We state and prove the uniqueness theorem making the additional assumption that f is nondecreas-
ing. We conjecture the theorem remains true even without this assumption. A strong indication for
this is that it is not difficult to extend Theorem 1 from polynomials to entire functions–see Remark 1.
However, for the purposes of the original problem, posed in relation to auction theory, the monotonicity
assumption is natural; see Section 3.

Theorem 2. Let m,n be distinct positive integers. Suppose that f, g are nonnegative nondecreasing
càdlàg functions, both right analytic at every point of [0,∞) and of exponential order, and such that
f(x), g(x) > 0 for all x > 0. If

Hn,m(f, ⋅) =Hn,m(g, ⋅),
then f = g.

The paper is organized as follows. Theorems 1 and 2 are proved in Section 2. The application to
auction theory, whence the problem originally appeared, is presented in Section 3. Open questions are
summarized in the brief last section.

2 The uniqueness question

We start with a preliminary observation. For a nonnegative integer k, denote by C k
0 the class of

functions f that are k times differentiable at the origin; so f ∈ C 0
0 iff f is continuous at 0. Let

I(f) ∶= inf{k ≥ 0 ∶ f ∈ C k
0 , f

(k)(0) ≠ 0}.

The observation is that if f and g have finite I(f) and I(g) then Hn,m(f, ⋅) = Hn,m(g, ⋅) implies that
I(f) = I(g). We explain this in the following lemma. Before that, we recall the definition of the beta
function:

B(α,β) = ∫
1

0
tα−1(1 − t)β−1dt = Γ(α)Γ(β)

Γ(α + β) , α > 0, β > 0, (2)

noting that Γ(n) = (n − 1)! when n is a positive integer.

Lemma 1. Suppose that f and g are of exponential order with I(f) <∞, I(g) <∞. Let m,n be distinct
positive integers. Assume Hn,m(f, ⋅) = Hn,m(g, ⋅). Then I(f) = I(g). Let k = I(f) = I(g). If n −m is
odd then f (k)(0) = g(k)(0). If n −m is even then ∣f (k)(0)∣ = ∣g(k)(0)∣.

Proof. The assumption Hn,m(f, ⋅) =Hn,m(g, ⋅) is equivalent to

f̂n(λ) ĝm(λ) = ĝn (λ) f̂m(λ), for sufficiently large λ,

which is further equivalent to
fn ∗ gm = fm ∗ gn, (3)

where ∗ denotes convolution of functions on [0,∞), namely, (f ∗ g)(t) = ∫
t
0 f(t − s)g(s)ds. Write the

left-hand side as

(fn ∗ gm)(t) = ∫
t

0
f(s)ng(t − s)mds = t∫

1

0
f(tu)ng(t(1 − u))mdu. (4)

Define
k ∶= I(f), ` ∶= I(g), a ∶= f (k)(0), b ∶= f (`)(0).
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Divide both sides of (4) by tkn+`m+1. Then, as t→ 0,

(fn ∗ gm)(t)
tkn+`m+1

= ∫
1

0
(f(tu)

tk
)
n

(g(t(1 − u))
t`

)
m

du

→ ∫
1

0
(au

k

k!
)
n

(b(1 − u)
`

`!
)
m

du = anbm

k!n`!m
B(kn + 1, `m + 1), (5)

where B is the beta function; see (2). To obtain this, we used the assumption that the first nonzero
derivative of f at zero is the derivative of order k, so that f(tu)/tk → f (k)(0)uk/k! and, similarly,
g(t(1 − u))/t` → g(`)(0)(1 − u)`/`!. Reversing the roles of n and m, we obtain

(fm ∗ gn)(t)
tkm+`n+1

→ ambn

k!m`!n
B(km + 1, `n + 1), (6)

as t→ 0. Comparing (5) and (6), and in view of (3), we are forced to conclude that

p1 ∶= kn + `m = km + `n =∶ p2.

Indeed, by (3), we have fn∗gm = fm∗gn = h. The function h satisfies t−p1h(t)→ C1 and t−p2h(t)→ C2,
as t→ 0, where C1,C2 are the constants appearing on the right-hand sides of (5) and (6), respectively.
These constants are nonzero. If p1 > p2 we obtain t−p1h(t) = tp1−p2(t−p1h(t))→ 0. Hence C1 = 0, which
is impossible. Similarly, p1 < p2 is impossible, and thus p1 = p2, whence k(n −m) = `(n −m), and so

k = `.

But then C1 and C2 are equal and this entails ambn = anbm, or

(a/b)n−m = 1.

If n −m is odd we have a = b. If n −m is even we can only deduce that ∣a∣ = ∣b∣.

The next lemma shows equality of higher derivatives.

Lemma 2. Suppose that f and g are of exponential order with I(f) = I(g) = k < ∞ and f (k)(0) =
g(k)(0). Let m,n be distinct positive integers. If Hn,m(f, ⋅) = Hn,m(g, ⋅) then f (`)(0) = g(`)(0) for all
` ≥ k for which the two derivatives exist.

Proof. We prove that, for all ` ≥ k, f, g ∈ C `
0 ⇒ f (`)(0) = g(`)(0), by induction on `. Fix an integer

` > k. The induction hypothesis is that

for all integers j ∈ [k, ` − 1], f, g ∈ C j
0 ⇒ f (j)(0) = g(j)(0).

Assume that f, g ∈ C `
0 . To complete the inductive step, it remains to show that f (`)(0) = g(`)(0). For

k ≤ j ≤ ` − 1, use the abbreviations

cj ∶= f (j)(0)/j!, a ∶= f (`)(0)/`!, b ∶= g(`)(0)/`!,

to write

f(x) =
`−1

∑
i=k

cix
i + ax` + f1(x), g(x) =

`−1

∑
i=k

cix
i + bx` + g1(x),

where f1(x) = o(x`) and g1(x) = o(x`) as x→ 0. We will show that a = b. We have

fn ∗ gm(t)
t

= ∫
1

0
f(tu)ng(t(1 − u))mdu

= ∫
1

0
(
`−1

∑
i=k

ciu
iti + au`t` + f1(ut))

n

× (
`−1

∑
i=k

ci(1 − u)iti + b(1 − u)`t` + g1((1 − u)t))
m

du. (7)
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Note that the integrand in the last integral of (7) is a product of n +m terms. Let1

d = k(n +m − 1) + `.

After multiplication and integration, we shall keep track of the monomial terms of degree at most
d and combine everything else into terms of order o(td). Notice that if f1 or g1 is involved in the
multiplication and integration, the resulting term must be of order o(td). This means that if we keep
track of the monomial terms of degree at most d then f1 and g1 are not involved. These observations
allow us to write

fn ∗ gm(t)
t

= Pn,m(t) + o(td).

Note that Pn,m(t) can be obtained as follows: set f1 and g1 to zero in the last integral of (7), integrate
so that we obtain a polynomial in t of degree n` +m`, and keep only the monomials up to power td.
We now split Pn,m(t) into a polynomial Qn,m(t) of degree at most d − 1 and a monomial of degree d
whose coefficient is split into two parts:

Pn,m(t) = Qn,m(t) + (Cn,m(a, b) +Dn,m)td.

The first coefficient Cn,m(a, b) contains all terms that depend on a or b. Explicitly,

Cn,m(a, b)td = ∫
1

0
au`t`(n

1
)(ckuktk)n−1(ck(1 − u)ktk)mdu

+ ∫
1

0
b(1 − u)`t`(m

1
)(ck(1 − u)ktk)m−1(ckuktk)ndu

= tk(n+m−1)+`

`!(k!)n+m−1 ∫
1

0
(anuk(n−1)+`(1 − n)km + bm(1 − u)k(m−1)+`ukn)du

= td

`!(k!)(d−`)/k
(anB(d − km + 1, km + 1) + bmB(d − kn + 1, kn + 1)). (8)

The coefficient Dn,m is obtained as the coefficient in td when we set a and b to zero. In other words,
Dn,m is the coefficient of td in the following polynomial (in t)

∫
1

0
(
`−1

∑
i=k

ciu
iti)

n

(
`−1

∑
i=k

ci(1 − u)iti)
m

du.

Notice that Qn,m(t) does not involve a or b either, because when a or b is involved in the multiplication
and integration, the resulting term must be at least of order td. So Dn,m is the coefficient of td in the
above polynomial. By symmetry, Dn,m = Dm,n, Qn,m = Qm,n. Reversing the roles of m and n we
obtain

fm ∗ gn(t)
t

= Pm,n(t) + o(td) = Qm,n(t) + (Cm,n(a, b) +Dm,n)td + o(td),

as t→ 0. The assumptions imply that fn ∗ gm = fm ∗ gn. We thus have

Qn,m(t) + (Cn,m(a, b) +Dn,m)td + o(td) = Qm,n(t) + (Cm,n(a, b) +Dm,n)td + o(td),

in a neighbourhood of 0. Since Dn,m =Dm,n,Qn,m = Qm,n, we obtain

Cn,m(a, b) = Cm,n(a, b).

Looking at the expression for Cn,m from equation (8) we further obtain

(a − b)[nB(k(n − 1) + ` + 1, km + 1) −mB(k(m − 1) + ` + 1, kn + 1)] = 0.

1Ignoring for the moment the terms f1 and g1, so that the integrand is a polynomial, we can easily see that the term td

of this polynomial has a coefficient that depends on a or b, whereas all smaller degree terms do not.
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To conclude that a = b we only have to show that the coefficient in the bracket is nonzero. The ratio
of the two terms in the bracket is

nB(k(n − 1) + ` + 1, km + 1)
mB(k(m − 1) + ` + 1, kn + 1) = n

m

(km)!
(kn)!

(kn + ` − k)!
(km + ` − k)!

= n

m

(l − k + 1)(l − k + 2)⋯(l − k + kn)
(l − k + 1)(l − k + 2)⋯(l − k + km) .

Since n ≠m, assuming that n >m we see that this ratio is strictly bigger than 1. Similarly, when n <m
the ratio is strictly smaller than 1.

We complement Lemma 2 with the comparison of derivatives of all orders at zero.

Corollary 1. Suppose that f and g are of exponential order. Let m,n be distinct positive integers.
Suppose Hn,m(f, ⋅) = Hn,m(g, ⋅). Assume k = I(f) = I(g) < ∞. If f (k)(0) = g(k)(0), then f (j)(0) =
g(j)(0) for all j ≥ 0 for which the two derivatives exist. If f (k)(0) = −g(k)(0), then f (j)(0) = −g(j)(0)
for all j ≥ 0 for which the two derivatives exist.

Proof. If f (k)(0) = g(k)(0), by Lemma 2, f (j)(0) = g(j)(0) for all j ≥ k and hence for all j ≥ 0
for which the derivatives exist. If f (k)(0) = −g(k)(0), by Lemma 1, n − m must be even. Then
Hn,m(f, ⋅) = Hn,m(−g, ⋅). Using f (k)(0) = (−g)(k)(0) and Lemma 2, f (j)(0) = (−g)(j)(0) for any j ≥ 0
for which the derivatives exist.

Proof of Theorem 1. Since f, g are polynomials they are infinitely differentiable and are of expo-
nential order. Moreover, I(f) < ∞, I(g) < ∞. By Lemma 1, I(f) = I(g) =∶ k, say. Moreover, we have
f (k)(0) = g(k)(0), if n−m is odd; ∣f (k)(0)∣ = ∣g(k)(0)∣, if n−m is even. Suppose first that n−m is odd.
By Corollary 1, f (j)(0) = g(j)(0) for all j ≥ 0. Since polynomials are determined by their derivatives of
all orders at zero, we have f identical to g. Suppose next that n−m is even. We have two possibilities,
i.e., either f (k)(0) = g(k)(0) or f (k)(0) = −g(k)(0). Consequently, we have either f (j)(0) = g(j)(0) for
all j ≥ 0, or f (j)(0) = −g(j)(0) for all j ≥ 0. Hence f is identical to g or identical to −g.

Remark 1. The conclusion of Theorem 1 remains true if we replace the assumption that f, g be
polynomials by the assumption that they can be analytically extended to entire functions on the complex
plane. In this case, f, g are equal to their Taylor series which are constructed in the same way for
both f, g by the derivatives of all orders at 0. By Corollary 1, f, g have the same derivatives of any
order at 0. So f = g. So, for example, we know that there is a unique entire function f such that
H2,1(f, λ) = 2(λ2 + 1)/λ(λ2 + 4), and this is, as can be checked, f(t) = sin t.

We now aim at proving Theorem 2. We need the preliminary result of Lemma 3 below. This lemma
is inspired by the approach taken in [10].

Lemma 3. Suppose that f and g are of exponential order, càdlàg and nondecreasing with f(x) >
0, g(x) > 0 for any x > 0. Let m,n be distinct positive integers and assume that Hn,m(f, ⋅) =Hn,m(g, ⋅).
Assume further that there exists a > 0 such that f(x) = g(x) for any x ∈ [0, a) and that f (i)(a+),
g(i)(a+) exist for some i ≥ 0. Then f (i)(a+) = g(i)(a+).

Proof. We first prove that f(a+) = g(a+). Suppose this is not the case. Without loss of generality,
suppose that f(a+) − g(a+) > 0. Then there is positive δ such that

f(x) − g(x) > 0, for all a < x < a + δ. (9)

We can assume that δ < a (else replace δ by its minimum with a). The assumption that Hn,m(f, ⋅) =
Hn,m(g, ⋅) implies that

Q ∶= fn ∗ gm − fm ∗ gn = 0.
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That is, Q, is identically equal to 0. Suppose, without loss of generality, that n >m and write

0 = Q(a + δ) = (∫
δ

0
+∫

a+δ

δ
) [f(a + δ − u)ng(u)m − g(u)nf(a + δ − u)m] du

Let I1, I2 denote the two integrals. We have

I1 = ∫
δ

0
f(a + δ − u)mg(u)m [f(a + δ − u)n−m − g(u)n−m] du.

The quantity in the bracket is nonnegative because, when 0 < u < δ, we have a < a + δ − u < a + δ and,
by (9),

f(a + δ − u) > g(a + δ − u);
furthermore, since we have chosen δ < a we also have a + δ − u > a > δ > u and so, by the monotonicity
of g, g(a + δ − u) ≥ g(u); these inequalities show the nonnegativity of the bracketed term. Hence the
integrand in I1 is bounded below by g(a + δ − u)mg(u)m [f(a + δ − u)n−m − g(u)n−m]. Hence

I1 > ∫
δ

0
g(a + δ − u)mg(u)m [f(a + δ − u)n−m − g(u)n−m]du

> ∫
δ

0
g(a + δ − u)mg(u)m [g(a + δ − u)n−m − g(u)n−m]du. (10)

On the other hand, since f = g on [0, a),

I2 = ∫
a+δ

δ
f(a + δ − u)mg(u)m [f(a + δ − u)n−m − g(u)n−m]du

= ∫
a+δ

δ
g(a + δ − u)mg(u)m [g(a + δ − u)n−m − g(u)n−m]du. (11)

It is easy to see that the last integral in (10) and the last integral in (11) add up to zero, obtaining
that I1 + I2 > 0. So 0 = Q(a + δ) > 0, which is a contradiction.

Having proved that f(a+) = g(a+) we now show that f (i)(a+) = g(i)(a+) for all i ≥ 1 (provided
the two derivatives exist). Assume that this is not the case. Let i0 ≥ 1 be the least i such that
f (i)(a+) ≠ g(i)(a+). We then have

f (i0)(a+) ≠ g(i0)(a+), f (j)(a+) = f (j)(a+), for all j = 0, . . . , i0 − 1.

We can assume, without loss of generality, that f (i0)(a+) > g(i0)(a+). By Taylor’s theorem we then
obtain that there is δ > 0 (which can be taken to be smaller than a) such that (9) holds. Using exactly
the same arguments we arrive at a contradiction. We thus conclude the proof of the lemma.

We now pass on to the proof of the main theorem.

Proof of Theorem 2. If f (i)(0) = 0 for all i ≥ 0 then, by right analyticity, there exists a > 0 such that
f(x) = 0 for all x ∈ [0, a). This is in contradiction to the assumption that f(x), g(x) > 0 for all x > 0.
Hence f (j)(0) ≠ 0 for some j. Similarly, g(j)(0) ≠ 0 for some j. As f, g are nonnegative functions,
applying Lemma 1 and Corollary 1, we have

f (i)(0) = g(i)(0), i ≥ 0.

Due to right analyticity, there exists a > 0 such that f(x) = g(x) for any x ∈ [0, a). Let

A ∶= sup{a ∶ f(x) = g(x) for all x ∈ [0, a)}.

Assume that A <∞. By Lemma 3 and right analyticity

f (i)(A) = g(i)(A), i ≥ 0.

Again by right analyticity, there exists h > 0 such that f(x) = g(x) for any x ∈ [A,A + h). This fact is
in contradiction to the definition of A. So we have A =∞ which means f(x) = g(x) for all x ≥ 0.
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3 An application: the identification problem in auction theory

There are N bidders for a single item. Bidder i bids Xi units of money. We assume that X1, . . . ,XN

are random variables. It is important to assume that they are not independent because there is a tacit
common understanding about the value of the item. A simple model for this situation, favored by
economists (see [10]), requires that

Xi =X∗ + εi, i = 1, . . . ,N,

where X∗ is a random variable representing the common understanding of the item value. In auction
theory, X∗ is called “unobserved heterogeneity”. The random variable εi is the additional value of the
item as perceived by bidder i. It is called the “idiosyncratic part” of the bid. Since the bidders act
independently, it is reasonable to assume that ε1, . . . , εN are independent random variables. We also
assume that they are independent of X∗. Moreover, we assume that bidders behave identically which
means that the idiosyncratic parts have a common distribution denoted by

F (x) = P(ε ≤ x).

The identification problem appearing in auction theory [10] is this: Given the distributions of the two
highest bids can we find the distribution of ε? For more information on the identification problem in
auction theory, we refer to, among others, [8, 9, 7, 2, 4, 11, 5].

If a = (a1, . . . , aN) is a finite sequence of real numbers, let (a(1), . . . , a(N)) be the sequence obtained
by putting the elements of a in increasing order, that is,

{a1, . . . , aN} = {a(1), . . . , a(N)}, a(1) ≤ ⋯ ≤ a(N).

The notation is common in probability theory and mathematical statistics; see, e.g., [13, p. 321]. Thus,
X(N) represents the highest and X(N−1) the second highest bid.

The question above then becomes: if we know the distributions of X(N−1) and X(N) can we find
F? Quite clearly, knowledge of the distribution of XN (which is the same as the distribution of XN−1)
does not imply knowledge of F . The catch here is that we have information about the highest and
second highest bid, rather than two arbitrary bids; and this is what can possibly lead to an affirmative
answer.

To give evidence for the fact that knowledge of the distributions of X(N) and X(N−1) uniquely
specify the distribution of ε we look at a very simple model:

Example 1 Suppose ε is an exponential random variable, that is, P(ε > x) = e−θx, x > 0, with
unknown parameter θ. It is known (and not difficult to see, thanks to the so-called memoryless
property enjoyed by the exponential random variable) that

P(ε(N) > x) = P(ε(N−1) + η > x), x > 0, (12)

where η is an independent copy of ε; see [12] for a more general version of this result. Since X(i) =
X∗ + ε(i), for all i, we have

Ee−λX(N) = Ee−λX
∗

Ee−λε(N) = Ee−λX
∗

Ee−λε(N−1)Ee−λη = Ee−λX(N−1)Ee−λε.

We can thus find the Laplace transform of ε, and thus the unknown parameter θ, by dividing the
Laplace tranform of X(N) with that of X(N−1). However, this simple argument is possible only for this
simple model, due to the fact that the only continuous random variable with memoryless property (and
thus the only random variable which gives rise to (12)) is the exponential random variable.

In general, the problem is not as trivial. Theorem 2 answers the identification question affirmatively
under some conditions. We explain this below.
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Theorem 3. Let X∗, ε1, . . . , εN be independent positive random variables where the εi, i = 1, . . . ,N have
a common (unknown) cumulative distribution function F such that F is right analytic and F (x) > 0 for
all x > 0. Let X(N), respectively X(N−1), be the two largest, respectively second largest, of the random
variables Xi =X∗ + εi, i = 1, . . . ,N . Set

K(F,λ) ∶= Ee−λX(N)
Ee−λX(N−1)

, λ > 0.

Then the function K(F, ⋅) uniquely determines F .

Proof. Ordering the Xi is equivalent to ordering the εi:

X(i) =X∗ + ε(i).

From this we obtain

K(F,λ) = Ee−λX(N)
Ee−λX(N−1)

= Ee−λε(N)
Ee−ε(N−1)

. (13)

Integrating by parts in a Lebesgue-Stieltjes integral we obtain

Ee−λε(N) = ∫
[0,∞)

e−λxP(ε(N) ∈ dx) = ∫
∞

0
λe−λxP(ε(N) ≤ x)dx

= ∫
∞

0
λe−λxF (x)Ndx = λF̂N(λ), (14)

where F̂N is the Laplace transform of the function x↦ F (x)N . Since

P(ε(N−1) ≤ x) = P(ε(N) ≤ x) − P(ε(N−1) < x < ε(N))
= F (x)N −NF (x)N−1(1 − F (x))
= NF (x)N−1 − (N − 1)F (x)N ,

we similarly have

Ee−λε(N−1) = ∫
∞

0
λe−λx(NF (x)N−1 − (N − 1)F (x)N)dx

= λNF̂N−1(λ) − λ(N − 1)F̂N(λ). (15)

Combining (13), (14) and (15), we obtain

K(F,λ) = HN−1,N(F,λ)
N + (N − 1)HN−1,N(F,λ) .

By Theorem 2, HN−1,N(F, ⋅) uniquely determines F and so the same is true for K(F, ⋅).

Example 2 Suppose ε has a lognormal distribution with parameters the real numbers µ and σ,

that is, ε = exp(σξ − µ), where ξ is a standard normal random variable. Let K(µ,σ, λ) = Ee−λε(N)
Ee−ε(N−1)

. By

Theorem 3, the mapping (µ,σ)↦K(µ,σ, ⋅) is injective. Unlike Example 1, we have no explicit formula
for the inverse of this mapping. The reason is the difficulty in obtaining the Laplace transform of the
lognormal distribution (and hence of its powers); see [1].
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4 Open problems

The question considered in this paper was the injectivity of the map f ↦ Hn,m(f, ⋅), where Hn,m(f, ⋅)
is the ratio of the Laplace transforms of fn and fm. Although we answered the question affirmatively
when f is a polynomial (Theorem 1) or, more generally, an entire function (see Remark 1), and when
f is a nonnegative nondecreasing right analytic function (Theorem 2), we conjecture that the result is
much more general. We can then pose the problem as: show that f ↦ Hn,m(f, ⋅) is injective when f
ranges over a significantly larger class, e.g. the class of càdlàg functions.

Regarding the application of Section 3, we conjecture that Theorem 3, namely, the injectivity of
the function F ↦ K(F, ⋅) remains true when F ranges over the class of all cumulative distribution
functions.

Finally, we ignored completely the inversion problem. An open question then is: is there an analog
of the Laplace inversion formula that determines the function f from Hn,m(f, ⋅) when n −m is odd?
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