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Abstract
A generalisation of Kingman’s model of selection and mutation has been made in a previous
paper which assumes all mutation probabilities to be i.i.d.. The weak convergence of fitness
distributions to a globally stable equilibrium was proved. The condensation occurs if almost
surely a positive proportion of the population travels to and condensates on the largest fitness
value due to the dominance of selection over mutation. A criterion of condensation was given
which relies on the equilibrium whose explicit expression is however unknown. This paper
tackles these problems based on the discovery of amatrix representation of the randommodel.
An explicit expression of the equilibrium is obtained and the key quantity in the condensation
criterion can be estimated.Moreoverwe examine how the design of randomness inKingman’s
model affects the fitness level of the equilibrium by comparisons between different models.
The discovered facts are conjectured to hold in other more sophisticated models.

Keywords Population dynamics · Mutation–selection balance · House of cards · Random
matrices · Size-biased distribution · Bose–Einstein condensation

1 Motivation

The evolution of a population involves various forces. Kingman [14] considered the equilib-
rium of a population as existing because of a balance between two factors, other phenomena
causing only perturbations. The pair of factors he chose was mutation and selection. The
most famous model for the evolution of one-locus haploid population of infinite size and
discrete generations, proposed by Kingman [14], is as follows:

Let the fitness value of any individual take values in [0, 1].Higher fitness values represent
higher productivities. Let (Pn) = (Pn)n≥0 be a sequence of probability measures on [0, 1],
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and denote the fitness distribution of the population at generation n. Let b ∈ [0, 1) be a
mutation probability. Let Q be a probability measure on [0, 1] serving as mutant fitness
distribution. Then (Pn) is constructed by the following iteration:

Pn(dx) = (1 − b)
x Pn−1(dx)
∫

y Pn−1(dy)
+ bQ(dx), n ≥ 1. (1)

Biologically it says that a proportion b of the population are mutated with fitness values
sampled from Q and the rest will undergo the selection via a size-biased transformation.
Kingman used the term “House of Cards” for the fact that the fitness value of a mutant is
independent of that before mutation, as the mutation destroys the biochemical “house of
cards” built up by evolution.

House-of-Cards models, which includes Kingman’s model, belong to a larger class of
models on the balance ofmutation and selection. Variations and generalisations of Kingman’s
model have been proposed and studied for different biological purposes, see for instance
Bürger [4–7], Steinsaltz et al. [17], Evans et al. [12] and Yuan [18]. We refer to [19] for a
more detailed literature review.

But tomy best knowledge, no random generalisation has been developed except inmy pre-
vious paper [19], in which we assume that the mutation probabilities form an i.i.d. sequence.
The randomness of the mutation probabilities reflects the influence of a stable random envi-
ronment on the mutation mechanism. The fitness distributions have been shown to converge
weakly to a globally stable equilibrium distribution for any initial fitness distribution. When
selection ismore favoured thanmutation, a condensationmay occur, whichmeans that almost
surely a positive proportion of the population travels to and condensates on the largest fitness
value. We have obtained a criterion of condensation which relies on the equilibrium whose
explicit expression is however unknown. So we do not know how the equilibrium looks like
and whether condensation occurs or not in concrete cases.

As a continuation for [19], this paper aims to solve the above problems based on the
discovery of a matrix representation of the randommodel which yields an explicit expression
for the equilibrium. The matrix representation also allows to examine the effects of different
designs of randomness by comparing themoments and condensation sizes of the equilibriums
in several models.

2 Models

This section is mainly a summarisation of Sect. 2 in [19], in addition to the introduction of a
new random model where all mutation probabilities are equal but random.

2.1 Two Deterministic Models

Let M1 be the space of probability measures on [0, 1] endowed with the topology of weak
convergence. Let (bn) = (bn)n≥1 be a sequence of numbers in [0, 1), and P0, Q ∈ M1.
Kingman’s model with time-varying mutation probabilities or simply the general model has
parameters (bn), Q, P0. In this model, (Pn) = (Pn)n≥0 is a (forward) sequence of probability
measures in M1 generated by

Pn(dx) = (1 − bn)
x Pn−1(dx)
∫

y Pn−1(dy)
+ bn Q(dx), n ≥ 1, (2)
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where
∫
denotes

∫ 1
0 . We introduce a function S : M1 �→ [0, 1] such that

Su := sup{x : u([x, 1]) > 0}, ∀u ∈ M1.

Then Su is interpreted as the largest fitness value of a population of distribution u. Let
h := SP0 and assume that h ≥ SQ . This assumption is natural because in any case we have
SP1 ≥ SQ .

We are interested in the convergence of (Pn) to a possible equilibrium, which is however
not guaranteed without putting appropriate conditions on (bn). To avoid triviality, we do not
consider Q = δ0, the dirac measure on 0.

Kingman’s model is simply themodelwhen bn = b for any n with the parameter b ∈ [0, 1).
We say a sequence of probability measures (un) converges in total variation to u if the total
variation ‖un − u‖ converges to zero. It was shown by Kingman [14] that (Pn) converges to
a probability measure, that we denote by K, which depends only on b, Q and h but not on
P0.

Theorem 1 (Kingman’s theorem, [14]) If
∫ Q(dx)

1−x/h ≥ b−1, then (Pn) converges in total vari-
ation to

K(dx) = bθb Q(dx)

θb − (1 − b)x
,

where θb, as a function of b, is the unique solution of
∫

bθb Q(dx)

θb − (1 − b)x
= 1. (3)

If
∫ Q(dx)

1−x/h < b−1, then (Pn) converges weakly to

K(dx) = bQ(dx)

1 − x/h
+

(
1 −

∫
bQ(dy)

1 − y/h

)
δh(dx).

We say there is a condensation on h in Kingman’s model if Q(h) = Q({h}) = 0 but
K(h) > 0, which corresponds to the second case above. We callK(h) the condensate size on
h in Kingman’s model if Q(h) = 0.The terminology is due to the fact that ifwe let additionally
P0(h) = 0, then any Pn has nomass on the extreme point h; however asymptotically a certain
amount of mass K(h) will travel to and condensate on h.

2.2 Two RandomModels

We recall the notation of weak convergence for random probability measures. Let (μn) be
random probability measures supported on [0, 1]. The sequence converges weakly to a limit
μ if and only if for any continuous function f on [0, 1] we have

lim
n→∞E [ f (x)μn(dx)] = E [ f (x)μ(dx)] .

Next we introduce two randommodels which generalise Kingman’s model. Let β ∈ [0, 1)
be a random variable. Let (βn) be a sequence of i.i.d. random variables sampled from the
distribution of β. If bn = βn for any n we call it Kingman’s model with random mutation
probabilities or simply the first random model. It has been proved in [19] that (Pn) converges
weakly to a globally stable equilibrium, that we denote by I whose distribution depends on
β, Q, h but not on P0.
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For comparison we introduce another random model. If bn = β for any n, we call it
Kingman’s model with the same random mutation probability or the second random model.
Conditionally on the value of β, it becomes Kingman’s model. So we can think of this model
as a compound version of Kingman’s model, with b replaced by β. We denote the limit of
(Pn) by A which is a compound version of K.

In this paper, we continue to study the equilibrium and the condensation phenomenon in
the first random model. By Corollary 4 in [19], if Q(h) = 0, then I(h) > 0 a.s. or I(h) = 0
a.s.. We say there is a condensation on h in the first random model if Q(h) = 0 but I(h) > 0
a.s.. We call I(h) the condensate size on h if Q(h) = 0. A condensation criterion, which
relies on a function of β and I, was established in [19]. As the equilibrium has no explicit
expression, the condensation criterion cannot be used in concrete cases. This paper aims to
solve these problems based on a matrix representation of the general model which can be
inherited to the first random model. The objectives include an explicit expression of I, and
finer properties ofI on themoments and condensation. The comparisons ofKingman’smodel
and the two random models will be performed and to this purpose we assume additionally
that

E[βn] = E[β] = b ∈ (0, 1), ∀ n ≥ 1 .

The case with b = 0 is excluded for triviality.

3 Notations and Results

3.1 Preliminary Results

In this section, we again recall some necessary results from [19]. We introduce

Qk(dx) := xk Q(dx)
∫

yk Q(dy)
, mk :=

∫
xk Q(dx), ∀ k ≥ 0.

We introduce the notion of invariant measure. A random measure ν ∈ M1 is invariant, if
it satisfies

ν(dx)
d= (1 − β)

xν(dx)
∫ 1
0 yν(dy)

+ βQ(dx)

with β independent of ν. Note that I, the limit of (Pn) in the first random model, is an
invariant measure.

In the general model a forward sequence (Pn) does not necessarily converge. But the
convergence may hold if we investigate the model in a backward way. A finite backward
sequence (Pn

j ) = (Pn
j )0≤ j≤n has parameters n, (b j )1≤ j≤n, Q, Pn

n , h with h = SPn
n
and

satisfies

Pn
j (dx) = (1 − b j+1)

x Pn
j+1(dx)

∫
y Pn

j+1(dy)
+ b j+1Q(dx), 0 ≤ j ≤ n − 1. (4)

Consider a particular case with Pn
n = δh . Then Pn

j converges in total variation to a limit,
denoted by G j = G j,h (and G = G0,GQ = G0,SQ ), as n goes to infinity with j fixed, such
that

G j−1(dx) = (1 − b j )
xG j (dx)
∫

yG j (dy)
+ b j Q(dx), j ≥ 1 (5)
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where G : [0, 1)∞ → M1 is a measurable function, with G j = G(b j+1, b j+2,...) which is
supported on [0, SQ] ∪ {h} for any j . Moreover, (5) can be further developed

G0(dx)=G0δh(dx) +
∞∑

j=0

j∏

l=1

(1 − bl)∫
yGl(dy)

b j+1m j Q j (dx). (6)

where G0 = G0,h = 1 − ∑∞
j=0

∏ j
l=1

(1−bl )∫
yGl (dy)

b j+1m j . Then G0 can be considered as a

convex combination of probability measures {δh, Q, Q1, Q2, . . .}. We introduce also G j =
G j,h for G j,h for any j and G = G0, G Q = G0,SQ .

The above results hold regardless of the values of (bn). So they hold also in the other three
models. In particular, we replace the symbol G, G by I, I in the first random model (i.e., the
terms involving G, which are G,GQ,G j ,G j,h,G j,SQ , are replaced by I, IQ, I j , I j,h, I j,SQ .
The change from G to I is done in the same way. The same rule applies to the other two
models), by A, A in the second random model and by K, K in Kingman’s model.

For the first random model, (I j ) is stationary ergodic and I is the weak limit of (Pn).

Moreover E
[
ln (1−β)∫

yIQ(dy)

]
∈ [−∞,− ln

∫
yQ(dy)] is well defined, whose value does not

depend on the joint law of (β, I). This term is the key quantity in the condensation criterion.

Note that we neither have an explicit expression of IQ nor an estimation of E
[
ln (1−β)∫

yIQ(dy)

]
.

Theorem 2 (Condensation criterion, Theorem 3 in [19])

1. If h = SQ, then there is no condensation on SQ if

E

[

ln
SQ(1 − β)
∫

yIQ(dy)

]

< 0. (7)

2. If h > SQ, then there is no condensation on h if and only if

E

[

ln
h(1 − β)
∫

yIQ(dy)

]

≤ 0. (8)

3.2 Notations onMatrices

The most important tool in this paper is the matrix representation in the general model. We
need to firstly introduce some notations and functions related to matrix. One can skip this
part at first reading.

(1). Define

γ j = 1 − b j

b j
, γ = 1 − b

b
, Γ j = 1 − β j

β j
, Γ = 1 − β

β

where the 4 terms all belong to (0,∞]. For any 1 ≤ j ≤ n ≤ ∞ (except j = n = ∞),
define

W j,n
x :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x x2 x3 · · · xn− j+2

−γ j m1 m2 · · · mn− j+1

0 −γ j+1 m1 · · · ...

0 0
. . .

. . .
...

0 0 · · · −γn m1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9)
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and

W j,n :=
∫

W j,n
x Q(dx) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1 m2 m3 · · · mn− j+2

−γ j m1 m2 · · · mn− j+1

0 −γ j+1 m1 · · · ...

0 0
. . .

. . .
...

0 0 · · · −γn m1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

Introduce

W n
x = W 1,n

x ; Wx = W 1,∞
x ; W n+1,n

x = (x); W m,n
x = (1),∀m > n + 1

and

W n = W 1,n; W = W 1,∞; W n+1,n = (m1); W m,n = (1),∀m > n + 1.

(2). For a matrix M of size m × n, let ri (M) be the i th row and c j (M) be the j th column,
for 1 ≤ i ≤ m, 1 ≤ j ≤ n. If the matrix is like

M =

⎛

⎜
⎜
⎜
⎝

ma1 ma2 · · · man−1 man

· · · · · · man+1
...

...
. . .

...
...

· · · · · · man+m

⎞

⎟
⎟
⎟
⎠

,

define, for any k ≥ 0

Ur
k M :=

⎛

⎜
⎜
⎜
⎝

mk+a1 mk+a2 · · · mk+an−1 mk+an

· · · · · · man+1
...

...
. . .

...
...

· · · · · · man+m

⎞

⎟
⎟
⎟
⎠

.

Here Ur
k increases the indices of the first row by k, with r referring to “row”, and U to

“upgrade”. Similarly define

U c
k M :=

⎛

⎜
⎜
⎜
⎝

ma1 ma2 · · · man−1 mk+an

· · · · · · mk+an+1
...

...
. . .

...
...

· · · · · · mk+an+m

⎞

⎟
⎟
⎟
⎠

which increases the indices of the last column by k, with c referring to “column”. In particular
we write

Ur = Ur
1 , U c = U c

1 .

(3). Let | · | denote the determinant operator for square matrices. It is easy to see that, if none
of γ j , γ j+1, . . . , γn is equal to infinity,

|Ur
k W j,n | > 0, |U c

k W j,n | > 0, ∀ k ≥ 0, 1 ≤ j ≤ n + 1.

Define

L j,n := |W j+1,n |
|W j,n | , Rn

j,k := |Ur
k W j,n |

|W j,n | , Rn
j := Rn

j,1, ∀ 1 ≤ j ≤ n, k ≥ 1. (11)
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Specifically, let Ln+1,n = 1
m1

, Rn
n+1,k = mk+1

m1
. In the above definition, if one or some of

γ j , γ j+1, . . . , γn are infinite, we consider L j,n, Rn
j,k as obtained by letting the concerned

variables go to infinity. As a convention, we will not mention again the issue of some γ j ’s
being infinite, when the function can be defined at infinity by limit.

Notice that expanding W j,n along the first column, we have

L j,n = |W j+1,n |
|W j,n | = |W j+1,n |

m1|W j+1,n | + γ j |Ur W j+1,n | = 1

m1 + γ j Rn
j+1

. (12)

If γ j = ∞, let

L j,n = 0, γ j L j,n = 1

Rn
j+1

.

Lemma 1 In the general model, Rn
j,k increases strictly in n to a limit that we denote by R j,k

(and R j = R j,1) which satisfies

R j,k = mk+1 + γi R j+1,k+1

m1 + γi R j+1
. (13)

And γ j L j,n decreases strictly in n to a limit that we denote by γ j L j which satisfies

γ j L j =
⎧
⎨

⎩

1/R j+1, if γ j = ∞;

γ j/(m1 + γ j R j+1), if γ j < ∞.

(14)

Moreover

γ j

m1 + γ j
< γ j L j <

γ j

m1(1 + γ j )
, m1 < R j+1 < 1. (15)

3.3 Main Results

(1). Matrix Representation
We set a convention that for a term, say α j , in the general model, we use α̃ j to denote the
corresponding term in the first random model and α̂ j in the second random model, α j in
Kingman’s model. If the corresponding term does not depend on the index j , we just omit
the index.

Consider a finite backward sequence (Pn
j ) in the general model:

Pn
n = Q, Pn

j (dx) = (1 − b j+1)
x Pn

j+1(dx)
∫

y Pn
j+1(dy)

+ b j+1Q(dx), 0 ≤ j ≤ n − 1. (16)

The previous sequence used in Sect. 3.1 starts with Pn
n = δh and this one starts with Pn

n = Q.
The advantage of this change is that the latter enjoys a matrix representation, which is the
most important tool in this paper.

Lemma 2 Consider (Pn
j ) in (16). For any 0 ≤ j ≤ n,

x Pn
j (dx)

∫
y Pn

j (dy)
= |W j+1,n

x |
|W j+1,n | Q(dx), (17)
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and

Pn
j (dx) = (1 − b j+1)

|W j+2,n
x |

|W j+2,n | Q(dx) + b j+1Q(dx). (18)

Letting n go to infinity, we obtain the following.

Theorem 3 For j fixed and n tending to infinity, Pn
j converges weakly to a limit, denoted by

H j . If we denote H = H0, then H : [0, 1)∞ → M1 is a measurable function such that

H j = H(b j+1, b j+2, . . .), (19)

and

H j (dx) = (1 − b j+1)
xH j+1(dx)
∫

yH j+1(dy)
+ b j+1Q(dx). (20)

Moreover

1 − b j+1∫
yH j (dy)

= γ j+1L j+1. (21)

Note that (H j ) is the limit of (Pn
j )with Pn

n = Q, and (G j ) is the limit of (Pn
j )with Pn

n = δh .
When h = SQ, it remains open whether H = GQ or not. But the equality holds in the first
random model.

Corollary 1 It holds that

(I j,SQ )
d= (H̃ j

)
.

(2). Condensation Criterion
A remarkable application of the matrix representation is that the condensation criterion in
Theorem 2 can be written into a simpler and tractable form using matrices.

Corollary 2 (Condensation criterion)

1. If h = SQ, then there is no condensation on {SQ} if

E
[
ln SQΓ1 L̃1

]
< 0. (22)

2. If h > SQ, then there is no condensation on {SQ} if and only if

E
[
ln hΓ1 L̃1

] ≤ 0. (23)

Note that the key quantity E
[
ln (1−β)∫

yIQ(dy)

]
in Theorem 2 is now rewritten as E

[
lnΓ1 L̃1

]
.

An estimation of it is highly necessary to make the criterion applicable. To achieve this, we
introduce the second important tool of this paper in the following lemma, which is interesting
by itself.

Lemma 3 Let f (x1, . . . , xn) be a C2 bounded real function with xi ∈ R, 1 ≤ i ≤ n. For
1 ≤ i, j ≤ n, let fxi be the first-order partial derivative of f with respect to xi , and fxi x j

the second-order partial derivative with respect to xi , x j . Assume that
∑

1≤i �= j≤n fxi x j ≤ 0.
Let (ξ1, . . . , ξn) be n exchangeable random variables in R. Then

E[ f (ξ1, . . . ξn)] ≥ E[ f (ξ1, . . . , ξ1)].
The estimation of E[lnΓ1 L̃1] is given as follows.
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Theorem 4 We have

E[lnΓ L̂] ≤ E[lnΓ1 L̃1] ≤ ln γ L (24)

where

γ L = 1 − b
∫

yKQ(dy)
=

⎧
⎪⎨

⎪⎩

1−b
θb

, if
∫ Q(dx)

1−x/SQ
> b−1;

1
SQ

, if
∫ Q(dx)

1−x/SQ
≤ b−1,

(25)

and

Γ L̂ = 1 − β
∫

yAQ(dy)
.

Remark 1 The two inequalities in (24) are not strict in general. Here is an example. By
Theorem 1, if

∫ Q(dx)
1−x/SQ

≤ b−1, one can obtain by simple computations that γ L = 1/SQ .

For the same reason, if
∫ Q(dx)

1−x/SQ
≤ β−1 almost surely, then Γ L̂ = 1/SQ almost surely. So

taking β and b small enough, the two inequalities in (24) become equalities.

As Kingman’s model is a special kind of the first random model, Corollary 2 applies to
Kingman’s model as well. The second inequality in (24) implies that Kingman’s model is
easier to have condensation than the first random model in general. This is made more clear
in the next Theorem 5.
(3). Comparison Between the First Random Model and the Other Models

For succinctness, the results that we present in this part are only in the case h = SQ .
However all the results can be easily proved for h > SQ , if we do not stick with strict
inequalities. The main idea is to take a newmutant distribution (1− 1

n )Q + 1
n δh and consider

the limits of equilibriums as n tends to infinity.
We consider an equilibrium to be fitter if it has higher moments and bigger condensate

size. In the following, we provide three theorems on the comparisons of moments and/or
condensate sizes.

Theorem 5 Between Kingman’s model and the first random model, if P(β = b) < 1, we
have

1. in terms of moments,

E

[∫
ykIQ(dy)

]

<

∫
ykKQ(dy), ∀ k = 1, 2, . . . .

2. in terms of condensate size, if Q(SQ) = 0 and IQ > 0, a.s., then

E[IQ] < K Q .

Theorem 6 Between the two random models, the following inequality holds

E

[

ln
∫

yIQ(dy)

]

≤ E

[

ln
∫

yAQ(dy)

]

.

Theorem 7 Between Kingman’s model and the second random model, it holds that

E[AQ] ≥ K Q, if Q(SQ) = 0.

But there is no one-way inequality between E[∫ yAQ(dy)] and
∫

yKQ(dy).
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It turns out that the first random model is completely dominated by Kingman’s model in
terms of condensate size and moments of all orders of the equilibrium. We conjecture that
the first random model is also dominated by the second random model in the same sense,
as supported by a different comparison in Theorem 6. The relationship between Kingman’s
model and the second random model is more subtle.

4 Perspectives

Recently, the phenomenon of condensation has been studied a lot in the literature. Biaconi
et al. [3] argued that the phase transition of condensation phenomenon is very close to Bose-
Einstein condensation where a large fraction of a dilute gas of bosons cooled to temperatures
very close to absolute zero occupy the lowest quantum state. See also [2] for another model
which can bemapped into the physics context. Under some assumptions,Dereich andMörters
[9] studied the limit of the scaled shape of the travelingwave ofmass towards the condensation
point in Kingman’s model, and the limit turns out to be of the shape of some gamma function.
A series of papers [1,8,10,11,15] were written later on to investigate the shape of traveling
wave in othermodels where condensation appears and have proved that gamma distribution is
universal. Park andKrug [16] adaptedKingman’smodel to afinite populationwith unbounded
fitness distribution and observed in a particular case emergence of Gaussian distribution as
the wave travels to infinity.

The first random model, as a natural random variant of Kingman’s model, provides an
interesting example to study condensation in detail. The matrix representation can be a handy
tool to study the shape of the traveling wave to verify if the gamma-shape conjecture holds.
On the other hand, we can also ask the question: will the relationships between the three
models revealed and conjectured in this paper be applicable to other more sophisticated
models under the competition of two forces, particularly to those models on the balance of
selection and mutation? It is very tempting to say yes. The verification of the universality
constitutes a long term project.

5 Proofs

5.1 Proof of Lemma 2

Proof of Lemma 2 Note that

x Pn
n (dx)

∫
y Pn

n (dy)
= x Q(dx)

m1
= |W n+1,n

x |
|W n+1,n | Q(dx).

Assume that for some 0 ≤ j ≤ n − 1,

x Pn
j+1(dx)

∫
y Pn

j+1(dy)
= |W j+2,n

x |
|W j+2,n | Q(dx).

Then

Pn
j (dx) = (1 − b j+1)

|W j+2,n
x |

|W j+2,n | Q(dx) + b j+1Q(dx).
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Consequently

x Pn
j (dx)

∫
y Pn

j (dy)
=

(1 − b j+1)x |W j+2,n
x |

|W j+2,n | + b j+1x

(1 − b j+1)
∫

y
|W j+2,n

y |
|W j+2,n | Q(dy) + b j+1m1

Q(dx)

= γ j x |W j+2,n
x | + x |W j+2,n |

γ j |Ur W j+2,n | + m1|W j+2,n | Q(dx) = |W j+1,n
x |

|W j+1,n | Q(dx).

The last equality is obtained by expanding W j+1,n
x and W j+1,n on the first column. By

induction, we prove (17). As a consequence, we also get (18). �
Lemma 2 allows us to express Pn

j using {Q j , Q j+1, . . . , Qn− j }. To write down the explicit
expression, we introduce

Φ j,l,n :=
(

l−1∏

i=0

γi+ j Li+ j,n

)

L j+l,nml+1, n ≥ j ≥ 1, l ≥ 0.

Corollary 3 For (Pn
j ) with Pn

n = Q

Pn
j (dx) =

n− j∑

l=0

Cn
j,l Ql(dx), 0 ≤ j ≤ n − 1 (26)

where Cn
j,0 = b j+1; Cn

j,l = (1 − b j+1)Φ j+2,l−1,n, 1 ≤ l ≤ n − j .

Proof Let 0 ≤ j ≤ n − 1. Note that for any 1 ≤ l ≤ n − j

|W j+l,n |
|W j,n | =

l−1∏

i=0

|W i+ j+1,n |
|W i+ j,n | =

l−1∏

i=0

Li+ j,n .

Expanding the first row of W j,n
x and using the above result, we get

|W j,n
x |

|W j,n | = 1

|W j,n |
n− j+2∑

l=1

(
l−2∏

i=0

γi+ j

)

|W j+l,n |xl

=
n− j+2∑

l=1

(
l−2∏

i=0

γi+ j Li+ j,n

)

L j+l−1,n xl =
n− j+2∑

l=1

Φ j,l−1,n
xl

ml
. (27)

Then we plug it in (18), changing j to j + 2. �

5.2 Proof of Lemma 1

We need to prove first a fewmore results on monotonicity. The following Hölder’s inequality
will be frequently used:

m j+1

m j+2
<

m j

m j+1
<

1

m1
, ∀ j ≥ 1. (28)
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Lemma 4 For j ≥ 1, n ≥ j − 1, Rn
j increases strictly in n to R j ∈ (0, 1], as

m1 < Rn
j < Rn+1

j < 1.

Proof By Hölder’s inequality, for j = n + 1,

m1 < Rn
n+1 = m2

m1
<

m1m2 + γn+1m3

m2
1 + γn+1m2

= Rn+1
n+1 < 1.

Consider n ≥ j . Without loss of generality let j = 1. Using (11)

Rn
1 = |Ur W n |

|W n | .

The two matrices Ur W n, W n differ only on the first row, which is (m2, . . . , mn+2) for the
former, and (m1, . . . , mn+1) for the latter. Again by Hölder’s inequality, we have

m1 < Rn
1 < 1, ∀ n ≥ 1.

For the comparison of Rn
1 and Rn+1

1 , we use Lemma 9 in the Appendix where the values
xn
0 , xn+1

0 are exactly Rn
1 and Rn+1

1 . �
Simply applying the above lemma and (12), we obtain the following Corollary.

Corollary 4 For any j ≥ 1, γ j L j,n decreases strictly in n to γ j L j . Define

Φ j,l :=
(

l−1∏

i=0

γi+ j Li+ j

)

L j+lml+1, ∀ j ≥ 1, l ≥ 0.

Then Φ j,l,n = Φ j,l = 0 if γ j+l = ∞, otherwise Φ j,l,n decreases strictly in n to Φ j,l .

Corollary 5 For any j ≥ 1, l ≥ 1, Rn
j,k increases strictly in n to R j,k .

Proof The case k = 1 has been proved by Lemma 4. We consider here k ≥ 2. Without loss
of generality we let j = 1. The idea is to apply Lemma 8 in the Appendix. Following the
notations in Lemma 8 we set

al =
∫

yk+1Ql(dy) = ml+k+1

ml
, bl =

∫
yQl(dy) = ml+1

ml
, ∀ 0 ≤ l ≤ n;

and

cl = Cn−1
0,l , c′

l = Cn
0,l , ∀ 0 ≤ l ≤ n − 1; cn = 0, c′

n = Cn
0,n .

Then by the definition of Rn
1,k and Lemma 2

Rn−1
1,k = |Ur

k W n−1|
|W n−1| =

∫
yk+1Pn−1

0 (dy)
∫

y Pn−1
0 (dy)

. (29)

So by (26)

Rn−1
1,k =

∑n
l=0 clal∑n
l=0 clbl

, Rn
1,k =

∑n
l=0 c′

lal
∑n

l=0 c′
l bl

.

For any n ≥ 1, by Hölder’s inequality

al

bl
= ml+k+1

ml+1
<

mn+k+1

mn+1
= an

bn
,
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and

al = ml+k+1

ml
<

mn+k+1

mn
= an, bl = ml+k+1

ml
<

mn+k+1

mn
= bn, ∀ 0 ≤ l ≤ n − 1.

Moreover a0, . . . , an, b0, . . . , bn are all strictly positive numbers.
Next we consider the cl ’s and c′

l ’s. Note that c0 = c′
0 = b1. By Corollary 4, for 1 ≤

l ≤ n − 1, if cl > 0, then cl > c′
l , otherwise cl = c′

l = 0. Moreover c′
n = Cn

0,n =
(1 − b1)

mn+1
m1

∏n−1
i=0 γi Li,n > 0. So we have the following

ci ≥ c′
i ≥ 0, ∀ 0 ≤ l ≤ n − 1; 0 = cn < c′

n;
n∑

i=1

ci =
n∑

i=1

c′
i = 1.

Now we apply Lemma 8 to conclude. �
Proof of Lemma 1. As we have already proved Corollaries 4 and 5, it remains to tackle (13)
and (15). Expanding Ur

k W j,n and W j,n on the first column, we get

Rn
j,k = |Ur

k W j,n |
|W j,n | = mk+1|W j+1,n | + γ j |Ur

k+1W j+1,n |
mk+1|W j+1,n | + γ j |Ur W j+1,n | = mk+1 + γ j Rn

j+1,k+1

m1 + γ j Rn
j+1

.

Letting n → ∞, we obtain (13).
To show (15), without loss of generality, let j = 1. By Lemma 4

m1 < Rn
2,1 < 1.

As Rn
2,1 decreases to R2,1, we have also R2,1 < 1 which gives the strict upper bound for

R2,1. Using (12), the above display yields

γ1

m1 + γ1
< γ1L1,n <

γ1

m1(1 + γ1)
. (30)

Since γ1L1,n decreases strictly to γ1L1, we obtain the following using again (12)

γ1L1 = γ1

m1 + γ1R2,1
<

γ1

m1(1 + γ1)
.

Then we get R2,1 > m1. Moreover as R2,1 < 1,

γ1L1 = γ1

m1 + γ1R2,1
>

γ1

m1 + γ1
.

So we have found the strict lower and upper bounds for R2,1 and γ1L1. �

5.3 Proofs of Theorem 3 and Corollary 1

For measures u, v ∈ M1, we write

u ≤ v

if u([0, x]) ≥ v([0, x]) for any x ∈ [0, 1].
Proof of Theorem 3 Note that Q j ≤ Q j+1 for any j . Then using Corollary 3 and Lemma 1,
Pn

j ≤ Pn+1
j . So Pn

j converges at least weakly to a limit H j . The weak convergence allows
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to obtain (20) from (4). Expanding (20), we obtain

H j (dx) = HjδSQ (dx) + b j+1Q(dx) +
∞∑

l=1

(1 − b j+1)Φ j+2,l−1Ql(dx), 0 ≤ j < n.

(31)

where Hj = 1 − b j+1 − ∑∞
l=1(1 − b j+1)Φ j+2,l−1. To prove (21), we firstly use (18) and

definition (11) to obtain that

∫
x Pn

j (dx) = (1 − b j+1)
|Ur W j+2,n |
|W j+2,n | + b j+1m1

= (1 − b j+1)Rn
j+2 + b j+1m1 = b j+1(γ j+1Rn

j+2 + m1) = b j+1

L j+1,n
.

A reformulation of the above equality reads

1 − b j+1∫
y Pn

j (dy)
= γ j L j+1,n .

Using the convergences as n → ∞, we obtain (21). �

Proof of Corollary 1 By (19), H̃ j is equal in distribution for all j’s. By (20), H̃ j is an invariant
measure on [0, SQ]with SH̃ j

= SQ a.s.. Recall that I j,SQ is also invariant on [0, SQ]. Then by
Theorem 4 in [19], H̃ j

d= I j,SQ . By (5) and (20), for both sequences, the multi-dimensional
distributions are determined in the same way by one dimensional distribution. So the two
sequences have the same multi-dimensional distributions, and the multi-dimensional distri-
butions are consistent in each sequence. ByKolmogorov’s extension theorem (Theorem 5.16,
[13]), consistent multi-dimensional distributions determine the distribution of the sequence,
which yields the identical distribution for both two sequences. �

5.4 Proof of Corollary 2

Proof of Corollary 2 Recall that E
[

1−β∫
yIQ

]
exists and does not depend on the joint law of

β, IQ . Using (21) in the first random model, together with Corollary 1, we can rewrite
Theorem 2 into Corollary 2. �

5.5 Proof of Lemma 3

Proof of Lemma 3 Since (ξ1, . . . , ξn) is exchangeable, we can directly take a symmetric func-
tion f and prove the inequality under fx1x2 ≤ 0. For any a > b, we first show that

f (a, b, . . . , b
︸ ︷︷ ︸

n−1

) + f (b, a, . . . , a
︸ ︷︷ ︸

n−1

) ≥ f (a, . . . , a
︸ ︷︷ ︸

n

) + f (b, . . . , b
︸ ︷︷ ︸

n

),
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which is proved as follows.

f (a, . . . , a
︸ ︷︷ ︸

n

) + f (b, . . . , b
︸ ︷︷ ︸

n

) − f (a, b, . . . , b
︸ ︷︷ ︸

n−1

) − f (b, a, . . . , a
︸ ︷︷ ︸

n−1

)

=
∫ a

b
( fx1(x1, a, . . . , a

︸ ︷︷ ︸
n−1

) − fx1(x1, b, . . . , b
︸ ︷︷ ︸

n−1

))dx1

=
n∑

i=2

∫ a

b
( fx1(x1, b, . . . , b

︸ ︷︷ ︸
i−2

, a, a, . . . , a
︸ ︷︷ ︸

n−i

) − fx1(x1, b, . . . , b
︸ ︷︷ ︸

i−2

, b, a, . . . , a
︸ ︷︷ ︸

n−i

))dx1

=
n∑

i=2

∫ a

b

∫ a

b
fx1xi (x1, b, . . . , b

︸ ︷︷ ︸
i−2

, xi , a, . . . , a
︸ ︷︷ ︸

n−i

)dx1dxi

=
n∑

i=2

∫ a

b

∫ a

b
fx1x2(x1, x2, b, . . . , b

︸ ︷︷ ︸
i−2

, a, . . . , a
︸ ︷︷ ︸

n−i

)dx1dx2 ≤ 0

Applying the above proved result, for any 1 ≤ i ≤ n − 1,

f (ξ1, . . . , ξ1︸ ︷︷ ︸
i

, ξi+1, ξi+2, . . . , ξn) + f (ξi+1, . . . , ξi+1︸ ︷︷ ︸
i

, ξ1, ξi+2, . . . , ξn)

≥ f (ξ1, . . . , ξ1︸ ︷︷ ︸
i+1

, ξi+2, . . . , ξn) + f (ξi+1, . . . , ξi+1︸ ︷︷ ︸
i+1

, ξi+2, . . . , ξn).

Using the above inequality, we obtain

E[ f (ξ1, . . . , ξ1︸ ︷︷ ︸
i

, ξi+1, ξi+2, . . . , ξn)]

= 1

2
E[ f (ξ1, . . . , ξ1︸ ︷︷ ︸

i

, ξi+1, ξi+2, . . . , ξn) + f (ξi+1, . . . , ξi+1︸ ︷︷ ︸
i

, ξ1, ξi+2, . . . , ξn)]

≥ 1

2
E[ f (ξ1, . . . , ξ1︸ ︷︷ ︸

i+1

, ξi+2, . . . , ξn) + f (ξi+1, . . . , ξi+1︸ ︷︷ ︸
i+1

, ξi+2, . . . , ξn)]

= E[ f (ξ1, . . . , ξ1︸ ︷︷ ︸
i+1

, ξi+2, . . . , ξn)].

Letting i travel from 1 to n − 1, we prove the lemma. �

5.6 Proof of Theorem 4

Define

Ψn :=
∏n

j=1 γ j

|W n | , n ≥ 1.

Lemma 5 For the three models, we have

lim
n→∞

lnΨ n

n
= ln γ L, lim

n→∞
ln Ψ̂n

n
= lnΓ L̂, lim

n→∞E

[
ln Ψ̃n

n

]

= E
[
lnΓ1 L̃1

]
.
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Proof We prove only the case in the first random model. Note that

E[ln Ψ̃n] = E

⎡

⎣ln

⎛

⎝ 1

m1

n−1∏

j=1

Γ j
|W̃ j+1,n |
|W̃ j,n |

⎞

⎠

⎤

⎦

=
n−1∑

j=1

E[ln(Γ j L̃ j,n)] − lnm1 =
n−1∑

j=1

E[ln(Γ1 L̃1,n− j+1)] − lnm1.

Here we use the fact that Γ j L̃ j,n
d= Γ1 L̃1,n− j+1. Then we apply Lemma 1. �

Lemma 6 lnΨn is strictly concave down in every b j , 1 ≤ j ≤ n.

Proof By basic computations we obtain for b j ∈ (0, 1),

∂2 lnΨn

∂b2j
= 1

b4j

(

1/γ j − d|W n |
dγ j

/|W n |
)(

2b j − 1/γ j − d|W n |
dγ j

/|W n |
)

.

By Lemma 11 in the Appendix, ∂2 lnΨn
∂b2j

< 0. �

Proof of Theorem 4 To prove (24), we can use Lemma 5 and show instead

E[ln Ψ̂n] ≤ E[ln Ψ̃n] ≤ lnΨ n . (32)

For any 1 ≤ j < i ≤ n, due to Proposition 1 in the Appendix,

∂2 lnΨn

∂bi∂b j
= −∂2 ln |W n |

∂bi∂b j
< 0.

Then we apply Lemma 3 to obtain the first inequality of (32). Next we apply Lemma 6 and
Janson’s inequality for the second inequality of (32). To prove (25), we use (21), and Theorem
1. �

5.7 Proof of Theorem 5

We need two preparatory results before proving the theorem.

Lemma 7 For any k, n, Rn
1,k is strictly concave down in every bi , 1 ≤ i ≤ n.

Proof Let bi ∈ (0, 1). Let

f = |Ur
k W n |, g = |W n |.

So Rn
1,k = f

g . Let f ′, f ′′, g′, g′′ be derivativeswith respect to γi ∈ (0,∞). Then byCorollary
8 in the Appendix

d Rn
1,k

dγi
= f ′g − f g′

g2 > 0

Notice that

g′

g
> 0,

f ′′

g
= g′′

g
= 0.
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The above statements are not difficult to see if it is clear how f , g can be computed. Or one
can refer to Lemma 10 in the Appendix. Then we obtain

d2Rn
1,k

d(γi )2
= f ′′g − f g′′

g2 − 2g′

g

f ′g − f g′

g2 = −2g′

g

d Rn
1,k

dγi
< 0.

Moreover,

dγi

dbi
= −1

b2i
,

d2γi

d(bi )2
= 2

b3i
.

Then

d2Rn
1,k

d(bi )2
=

(
−1

b2i

)2
d2Rn

k

d(γi )2
+ 2

b3i

d Rn
1,k

dγi

= 2( f ′g − f g′)
g2b4i

(

bi − g′

g

)

= 2

b4i

d Rn
1,k

dγi

(

bi − g′

g

)

< 0,

where the inequality is due to Lemma 11 in the Appendix. �
Corollary 6 For Hj defined in (31), we have

Hj

1 − b j+1
= SQγ j+2L j+2

Hj+1

1 − b j+2
, (33)

and if Q(SQ) = 0,

Hj

1 − b j+1
= lim

k→∞ S−k
Q R j+2,k . (34)

Proof By (20), we obtain

Hj = 1 − b j+1∫
yH j+1(dy)

SQ Hj+1.

The above display togetherwith (21) lead to (33). If Q(SQ) = 0, then limk→∞ S−k
Q mk+1 = 0.

Using this fact and (18), we obtain

Hj = H j (SQ) = lim
k→∞ S−k

Q

∫
ykH j (dy)

= lim
k→∞ lim

n→∞ S−k
Q

∫
yk Pn

j (dy)

= lim
k→∞ lim

n→∞ S−k
Q

(
(1 − b j+1)Rn

j+2,k + b j+1mk+1

)

= (1 − b j+1) lim
k→∞ lim

n→∞ S−k
Q Rn

j+2,k = (1 − b j+1) lim
k→∞ S−k

Q R j+2,k .

�
Proof of Theorem 5 There are two statements to prove.
1. By (13)

R1,k = mk+1 + γ1R2,k+1

m1 + γ1R2
.
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By Corollary 8 in the Appendix, R1,k is strictly increasing in γ1. Then

R1,k >
mk+1

m1

implying that

mk+1

R2,k+1
<

m1

R2
.

The above inequality entails that for b1 ∈ (0, 1)

∂2R1,k

∂b21
= 2

(
1 + m1

R2
− b1

)3 (1 + m1

R2
)

R2,k+1

R2
(

mk+1

R2,k+1
− m1

R2
) < 0.

So R1,k is strictly concave down in b1.
In the following display, the first equality is due to (18) and the first inequality is by the

above strict concavity. The second equality is due to Lemma 1 and the second inequality is
by Lemma 7. The last equality is a consequence of (18) and Corollary 5.

E

[∫
ykISQ (dy)

]

= (1 − b)E[R̃1,k] + bmk

< (1 − b)E[R̃1,k |β1 = b] + bmk

= (1 − b) lim
n→∞E[R̃n

1,k |β1 = b] + bmk

≤ (1 − b) lim
n→∞ R

n
1,k + bmk

=
∫

ykKQ(dy).

2. By Corollary 1, IQ
d= H̃0. Since IQ > 0 a.s., by assertion 4) of Corollary 4 in [19], we

have Q(SQ) = 0. Note that H̃ j/(1 − β j+1) involves only β j+2, β j+3, . . . . Then by (33),

E[IQ] = E[H̃0] = E

[

(1 − β1)
H̃0

1 − β1

]

= (1 − b)E

[
H̃0

1 − β1

]

= (1 − b)SQE

[

Γ2 L̃2
H̃1

1 − β2

]

.

Moreover for b2 ∈ (0, 1)

γ2L2 = 1 − b2
b2m1 + (1 − b2)R3,1

and by (15)

∂2γ2L2

∂b22
= 2m1(m1 − R3,1)

(b2m1 + (1 − b2)R3,1)3
< 0.
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So the function γ2L2
H1

1−b2
is strictly concave down on b2, as

H1
1−b2

does not depend on b2.
Using (34) and the above strict concavity, together with Lemma 7,

E[H̃0] = (1 − b)E

[
H̃0

1 − β1

]

< (1 − b)E

[
H̃0

1 − β1

∣
∣
∣β2 = b

]

= (1 − b) lim
k→∞ S−k

Q E[R̃2,k |β2 = b]
= (1 − b) lim

k→∞ lim
n→∞ S−k

Q E[R̃n
2,k |β2 = b]

≤ (1 − b) lim
k→∞ lim

n→∞ S−k
Q E[R̃n

2,k |βi = b,∀i ≥ 2] = (1 − b)
H0

1 − b
= H0.

�

5.8 Proof of Theorem 6

Proof of Theorem 6 Note that similarly as in the proof of Lemma 5

E

⎡

⎣ln

⎛

⎝|W̃ n |
n∏

j=1

β j

⎞

⎠

⎤

⎦ = E

⎡

⎣ln

⎛

⎝ 1

m1

n−1∏

j=1

β j
|W̃ j,n |

|W̃ j+1,n |

⎞

⎠

⎤

⎦ =
n−1∑

j=1

E

[

ln
β1

L̃1,n− j+1

]

− lnm1.

For the second random model, similarly

E
[
ln

(|Ŵ n |βn)] =
n−1∑

j=1

E

[

ln
β

L̂1,n− j+1

]

− lnm1.

By Lemma 13 and (21),

lim
n→∞E

⎡

⎣ln

⎛

⎝|W̃ n |
n∏

j=1

β j

⎞

⎠

⎤

⎦ /n = E

[

ln
β1

L̃1

]

= E

[

ln
∫

yIQ(dy)

]

, (35)

and

lim
n→∞E

[
ln

(|Ŵ n |βn)] /n = E

[

ln
β

L̂

]

= E

[

ln
∫

yAQ(dy)

]

. (36)

We compare next E
[
ln

(
|W̃ n |∏n

j=1 β j

)]
and E

[
ln

(|Ŵ n |βn
)]

. Note that

ln

⎛

⎝|W n |
n∏

j=1

bi

⎞

⎠ = ln |W n | +
n∑

j=1

ln b j .

Then second order partial derivative of ln
(
|W n |∏n

j=1 bi

)
with respect to bs, bt equals

∂2 ln |W n |
∂bs∂bt

which is, by Lemma 11 in the Appendix, strictly positive for any 1 ≤ s �= t ≤ n.
Applying Lemma 3, we obtain

E

⎡

⎣ln

⎛

⎝|W̃ n |
n∏

j=1

β j

⎞

⎠

⎤

⎦ ≤ E
[
ln

(|Ŵ n |βn)] .
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Then by (35) and (36) we conclude that

E

[

ln
∫

yIQ(dy)

]

≤ E

[

ln
∫

yAQ(dy)

]

.

�

5.9 Proof of Theorem 7

Proof of Theorem 7 By Theorem 1,

K Q =

⎧
⎪⎨

⎪⎩

1 − ∫ bQ(dx)
1−x/SQ

, if Q(dx)
1−x/SQ

< b−1;

0, if Q(dx)
1−x/SQ

≥ b−1.

So K Q is a concave up function of b, and consequently E[AQ] ≥ K Q .

To show that there is no one-way inequality between E[∫ yAQ(dy)] and ∫
yKQ(dy), we

give a concrete example. Let Q(dx) = dx . In this case,
∫ Q(dx)

1−x/SQ
= ∫ Q(dx)

1−x = ∞ > b−1

for any b ∈ (0, 1). By (25)
∫

yKQ(dy) = θb

which satisfies equation
∫

bθbdx

θb − (1 − b)x
= 1.

We show that d2θb
db2

can be strictly positive and negative for different b′s. The above equation
can be rewritten as

∫
bdx

1 − t x
= 1

with t = 1−b
θb

∈ (0, 1) strictly decreasing in b. Then

b = − t

ln(1 − t)
, θb = 1

t
+ 1

ln(1 − t)
.

So

dθb

db
= dθb/dt

db/dt
= −(1 − t) ln2(1 − t) + t2

−(1 − t)t2 ln(1 − t) − t3
= m(t)

n(t)

with m(t) the numerator and n(t) the denominator. Then

d2θb

db2
= d(dθb/db)

dt
/

db

dt
= m′(t)n(t) − m(t)n′(t)

n(t)2 db
dt

where

m′(t)n(t) − m(t)n′(t)
= −2t(1 − t)2 ln3(1 − t) + (−4t2 + 3t3) ln2(1 − t) − t3(2 + t) ln(1 − t)

= 5t6 + O(t7), t → 0.
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As n(t)2 > 0 and db
dt < 0 for any t ∈ (0, 1), we have

d2θ2b
db2

> 0 for t small enough. However

m′(0.5)n(0.5) − m(0.5)n′(0.5) = −4.184810−4 < 0, implying
d2θ2b
db2

< 0 at t = 0.5. As t

is a strictly decreasing function of b, we have shown that
d2θ2b
db2

can be strictly positive and
negative at different b’s. �
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6 Appendix

6.1 Appendix A

Lemma 8 Let n > 1. Let a0, . . . , an, b0, . . . , bn all be strictly positive numbers such that

al

bl
<

an

bn
, al < an, bl < bn, ∀ 0 ≤ l ≤ n − 1.

Let c0, . . . , cn, c′
0, . . . , c′

n be nonnegative numbers such that

cl ≥ c′
l , ∀ 0 ≤ l ≤ n − 1; cn < c′

n;
n∑

l=1

cl =
n∑

l=1

c′
l > 0.

Then
∑n

l=1 clal∑n
i=1 clbl

<

∑n
l=1 c′

lal
∑n

l=1 c′
lbl

. (37)

Proof Without loss of generality, assume
∑n

l=1 cl = 1. Define

A =
n∑

l=1

clal =
n−1∑

l=1

clal +
(

1 −
n−1∑

l=1

cl

)

an, B =
n−1∑

l=1

clbl +
(

1 −
n−1∑

l=1

cl

)

bn .

and

f (c0, . . . , cn−1) = A

B
, with cl ≥ 0,

n−1∑

l=0

cl ∈ [0, 1].

To prove (37), it suffices to show that for any 0 ≤ l ≤ n − 1

∂ f

∂cl
< 0, ∀ cl ∈ (0, 1).
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Without loss of generality, we consider only l = 0. We have

∂ f

∂c0
= (bn − b0)A − (an − a0)B

B2 .

Note that by the assumptions on al ’s and bl ’s,

an − a0
bn − b0

>
an

bn
>

al

bl
, ∀ 0 ≤ l ≤ n − 1.

That implies

(bn − b0)A < (an − a0)B

which entails ∂ f
∂c0

< 0. �

6.2 Appendix B

Lemma 9 Let Xn = (xn
0 , . . . , xn

n ) be the unique solution of the equation

Xn W n = r1Ur W n = (m2, m3, . . . , mn+1, mn+2). (38)

Then m1 < xn
0 < xn+1

0 < 1 for any n ≥ 1.

Proof By Cramer’s rule and Lemma 4

xn
0 = |Ur W n |

|W n | = Rn
1 ∈ (m1, 1), xn+1

0 = Rn+1
1 ∈ (m1, 1).

For any n ≥ 1, we are going to construct Xn+1 from Xn and compare xn
0 , xn+1

0 . The main
argument is Hölder’s inequality (28).

Note that

xn
0mn+1 + · · · + xn

n m1 = mn+2.

Using (28), we get

xn
0mn+2 + · · · + xn

n m2 < mn+3. (39)

For ε ≥ 0, let xn,ε
0 = xn

0 + ε. Let Cn be the matrix of W n with the last column removed.
Then there exists a unique vector Xn,ε = (xn,ε

0 , . . . , xn,ε
n ) for a given ε such that

Xn,εCn = (m2, m3, . . . , mn+1). (40)

It is clear that if γi = ∞, then xn,ε
i = 0; otherwise xn,ε

i is continuous and strictly increasing
on ε.

To construct Xn+1 from Xn , the idea is to find a number Aε ≥ 0 such that

Y = (xn,ε
0 , . . . , xn,ε

n , Aε)

satisfies

Y W n+1 = r1Ur W n+1 = (m2, m3, . . . , mn+1, mn+2, mn+3).

Then Xn+1 = Y .

To achieve this, let

Aε = γ −1
n+1(xn,ε

0 mn+1 + · · · + xn,ε
n m1 − mn+2)(≡ 0, if γn+1 = ∞).
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Then the dot product of Y and the second last column of W n+1 gives mn+2:

xn,ε
0 mn+1 + · · · + xn,ε

n m1 − γn+1Aε = mn+2.

If Aε �≡ 0, then Aε is continuous and strictly increasing on ε with A0 = 0. Therefore, in
view of (39), there exists a unique ε > 0 such that the dot product of Y and the last column
of W n+1 gives mn+3:

xn,ε
0 mn+2 + · · · + xn,ε

n m2 + Aεm1 = mn+3.

Then together with (40),

Y W n+1 = (m2, m3, . . . , mn+3).

So Xn+1 = Y . As xn,ε
0 is strictly increasing in ε and the ε in the above equality is strictly

positive, we obtain that 0 < xn
0 < xn,ε

0 = xn+1
0 < 1. �

6.3 Appendix C

Proposition 1 For any 1 ≤ j < i ≤ n and bi , b j ∈ (0, 1),

∂2 ln |W n |
∂bi∂b j

> 0, ∀n ≥ i; lim
n→∞

∂2 ln |W n |
∂bi∂b j

> 0.

Proof Notice that

|W n | = γi
d|W n |

dγi
+

∣
∣
∣
∣

W 1,i−1 0
0 W i+1,n

∣
∣
∣
∣ = γi

d|W n |
dγi

+ |W i−1||W i+1,n |.

Dividing both sides by |W n | yields

1 = γi
d|W n |

dγi
/|W n | + |W i−1| |W

i+1,n |
|W n | (41)

Using the above display

∂2 ln |W n |
∂bi∂b j

= − 1

b2i

∂

∂b j

(
∂|W n |
∂γi

/|W n |
)

= −γ −1
i

1

b2i

∂

∂b j
(1 − |W i−1||W i+1,n |/|W n |)

= γ −1
i

1

b2i
|W i+1,n | ∂

∂b j
(|W i−1|/|W n |)

= γ −1
i γ −1

j
1

b2i b2j
|W i+1,n ||W j−1|/|W n |2

(
|W n ||W j+1,i−1| − |W i−1||W j+1,n |

)

= γ −1
i γ −1

j
1

b2i b2j

|W i+1,n ||W j−1||W i−1|
|W n |

( |W j+1,i−1|
|W i−1| − |W j+1,n |

|W n |
)

= 1

(1 − b j )2(1 − bi )2
γ1L1,n · · · γi Li,n

|W j−1|
γ1 · · · γ j−1

|W i−1|
γ1 · · · γi−1

× (γ1L1,i−1 · · · γ j L j,i−1 − γ1L1,n · · · γ j L j,n).
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By Lemma 1, we can conclude ∂2 ln |W n |
∂bi ∂b j

> 0. Letting n → ∞ we get the following

lim
n→∞

∂2 ln |W n |
∂bi∂b j

= 1

(1 − b j )2(1 − bi )2
γ1L1 · · · γi Li

|W j−1|
γ1 · · · γ j−1

|W i−1|
γ1 · · · γi−1

× (γ1L1,i−1 · · · γ j L j,i−1 − γ1L1 · · · γ j L j ) > 0.

�

Corollary 7 For any i ≥ 1, γi Li is strictly decreasing in bi and strictly increasing in b j , ∀ j >

i . The same result holds for γi Li,n.

Proof We shall only consider γ1L1. The strict monotonicity in b1 stems from (14). Take
j > 1. By (14), the monotonicity of γ1L1 in b j does not depend on b1. For convenience let
b1 = c ∈ (0, 1). Then we can study L1 instead. Note that

∂L1

∂b j
= lim

n→∞
∂L1,n

∂b j
= lim

n→∞
|W 2,n |
|W n |

(∂|W 2,n |
∂b j

/|W 2,n | − ∂|W n |
∂b j

/|W n |
)

= L1 lim
n→∞

(∂|W 2,n |
∂b j

/|W 2,n | − ∂|W n |
∂b j

/|W n |
)
.

Notice that the following holds when b1 = 1,

∂|W n |
∂b j

/|W n | = ∂|W 2,n |
∂b j

/|W 2,n |.

Then by Proposition 1

lim
n→∞

(∂|W 2,n |
∂b j

/|W 2,n | − ∂|W n |
∂b j

/|W n |
)

= lim
n→∞

∫ 1

c

∂

∂b1

(∂|W n |
∂b j

/|W n |
)

db1

= lim
n→∞

∫ 1

c

∂2 ln |W n |
∂b1∂b j

db1 > 0.

Then we obtain ∂L1
∂b j

> 0. �

Corollary 8 For any k > 1, both Rn
1,k and R1,k strictly decrease in b j , for any j ≥ 1.

Proof We shall prove only for R1,k . Without loss of generality, we show that Rk+1,k strictly
decreases in bm, m ≥ k + 1. Take |W n |

|W n | and expand the top W n for the first k elements on
the first row. A similar approach was used in obtaining (27) where the expansion was made
on the whole first row. Letting n go to infinity we obtain the following, with detailed steps
omitted

1 = (

k−1∏

j=0

γ1+ j L1+ j )Rk+1,k +
k−1∑

i=1

Φ1,i . (42)

Taking derivative on bm on both sides, and using Corollary 7, the derivative of Rk+1,k on bm

is strictly negative for bm ∈ (0, 1). �
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6.4 Appendix D

We introduce below a new notation for the special structure of matrix W n .

Definition 1 Assume M is a square matrix of size n. For any 1 ≤ i ≤ j ≤ n, let M(i, j) be
the square matrix with Mi,i , Mi, j , M j,i , M j, j as the 4 corner elements. We say M is of type
(∗) if the following holds: Mi, j > 0 if i ≤ j ; Mi, j < 0 if i = 1 + j ; Mi, j = 0 if i > 1 + j .

By definition, W n is of type (∗). To compute the determinant of a matrix of type (∗), we need
some more notations. Define

E n
k := {e = (e1, . . . , ek) : 1 = e1 < e2 < · · · < ek = n + 1}, ∀ 2 ≤ k ≤ n + 1.

So E n
k consists of all sequences of length k increasing from 1 to n + 1. Let

E n := ∪2≤k≤n+1E
n
k .

For M of type (∗) and size n, define

d(M) := M1,n

n∏

i=2

|Mi,i−1|; dM (e) :=
k−1∏

i=1

d(M(ei , ei+1 − 1)), ∀e ∈ Ek, 2 ≤ k ≤ n + 1.

Let sn be the set of permutations of {1, 2, . . . , n}.
Lemma 10 For any matrix M of type (∗) and of size n,

|M | =
∑

e∈E n

dM (e). (43)

Proof By decomposing M along the last row, we can prove it by induction. Details are
omitted. �
Remark 2 Leibniz formula says that |M | = ∑

σ∈sn
sgn(σ )

∏n
j=1 M j,σ ( j). It is easy to see

that the set {σ : σ ∈ sn,
∏n

j=1 M j,σ ( j) �= 0} is in one-to-one correspondence toE n .Moreover
sgn(σ ) = 1 for any σ in the former set. If we use σ e to denote the corresponding element in
sn of an e ∈ Ek,

k−1∏

j=1

d(M(e j , e j+1 − 1)) =
n∏

j=1

M j,σ e( j) > 0.

In other words, (43) is another writing of Leibniz formula.

We admit the following corollary with proof omitted.

Corollary 9

|M(1, j)||M( j + 1, n)| =
∑

e∈E n+1, j+1∈e

dM (e).

Lemma 11 For any 1 ≤ j ≤ n and γ j ∈ (0,∞),

d|W n |
dγ j

/|W n | ∈
(

b j ,
1

γ j

)

.
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Proof By (41),

d|W n |
dγ j

/|W n | = γ −1
j

(

1 − |W j−1| |W
j+1,n |

|W n |
)

= γ −1
j

⎛

⎝1 − |W j−1|
j∏

i=1

Li,n

⎞

⎠ .

Note that as long as γ j �= ∞, we have |W i− j−1| |W j+1,n |
|W n | ∈ (0, 1). Therefore

d|W n |
dγ j

/|W n | < γ −1
j .

To prove the strict lower bounds, using again (41), we just need to show that

|W j−1||W j+1,n |/d|W n |
dγ j

< 1. (44)

Let M be the matrix obtained by deleting the row and column of W n containing γ j . Then

|M | = d|W n |
dγ j

.

The purpose is to compare |W j−1||W j+1,n | and |M |. Denote
A = {e ∈ E n+1 : j + 1 ∈ e}.

Corollary 9 tells that

|W j−1||W j+1,n | =
∑

e∈A

dW n (e). (45)

To compute |M |, we also seek to find an expression similar to the above display. Let t(e) be
the corresponding location such that et(e) = j + 1 for any e ∈ A. Denote

A′ =
⎧
⎨

⎩
e′ ∈ E n : ∃e ∈ A, s.t .,

〈 e′
j = e j , if i ≤ t(e) − 1;

e′
j = e j+1 − 1, if j ≥ t(e)}.

.

⎫
⎬

⎭

There is a clear one-to-one correspondence between A and B. It is easy to verify that

|M | =
∑

e′∈A′
dM (e′).

Consequently

|W j−1||W j+1,n |/|M | =
∑

e∈A dW n (e)
∑

e′∈A′ dM (e′)
. (46)

Let e ∈ A ∩ E n+1
k and e′ its corresponding element in A′. Recalling the Definition 1,

dW n (e) = d
(

W n(et(e)−1, j)
)

d
(

W n( j + 1, et(e)+1 − 1)
) k−1∏

i=1,i /∈{t(e)−1,t(e)}
d
(

W n(ei , ei+1 − 1)
)

=
⎛

⎝
et(e)+1−2∏

i=et(e)−1,i �= j

γi

⎞

⎠m j−et(e)−1+1met(e)+1− j−1

k−1∏

i=1,i /∈{t(e)−1,t(e)}
d
(

W n(ei , ei+1 − 1)
)
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and

dM (e′) =
⎛

⎝
et(e)+1−2∏

i=et(e)−1,i �= j

γi

⎞

⎠met(e)+1−et(e)−1

k−1∏

i=1,i /∈{t(e)−1,t(e)}
d
(

W n(ei , ei+1 − 1)
)
.

By Hölder’s inequality (28),

m j−et(e)−1+1met(e)+1− j−1 < met(e)+1−et(e)−1

Then

dW n (e)

dM (e′)
< 1. (47)

So (44) is proved. �
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