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ABSTRACT
The loss of carbonate production during the Toarcian Oceanic Anoxic Event (T-OAE, ca. 

183 Ma) is hypothesized to have been at least partly triggered by ocean acidification linked 
to magmatism from the Karoo-Ferrar large igneous province (southern Africa and Antarc-
tica). However, the dynamics of acidification have never been directly quantified across the 
T-OAE. Here, we present the first record of temporal evolution of seawater pH spanning the 
late Pliensbachian and early Toarcian from the Lusitanian Basin (Portugal) reconstructed 
on the basis of boron isotopic composition (δ11B) of brachiopod shells. δ11B declines by ∼1‰ 
across the Pliensbachian-Toarcian boundary (Pl-To) and attains the lowest values (∼12.5‰) 
just prior to and within the T-OAE, followed by fluctuations and a moderately increasing 
trend afterwards. The decline in δ11B coincides with decreasing bulk CaCO3 content, in 
parallel with the two-phase decline in carbonate production observed at global scales and 
with changes in pCO2 derived from stomatal indices. Seawater pH had declined signifi-
cantly already prior to the T-OAE, probably due to the repeated emissions of volcanogenic 
CO2. During the earliest phase of the T-OAE, pH increased for a short period, likely due 
to intensified continental weathering and organic carbon burial, resulting in atmospheric 
CO2 drawdown. Subsequently, pH dropped again, reaching the minimum in the middle of 
the T-OAE. The early Toarcian marine extinction and carbonate collapse were thus driven, 
in part, by ocean acidification, similar to other Phanerozoic events caused by major CO2 
emissions and warming.

INTRODUCTION
The Pliensbachian-Toarcian (Pl-To) bound-

ary and the Toarcian Oceanic Anoxic Event 
(T-OAE, ca. 183 Ma) constituted a transient 
interval of global warming, development of 
widespread anoxia, enhanced organic carbon 
burial, and acceleration of the hydrological 
cycle, resulting in a mass extinction and a col-
lapse of carbonate production (e.g., Jenkyns, 
1988; Bailey et al., 2003; Cohen et al., 2004; 

Suan et al., 2010; Trecalli et al., 2012). These 
changes and the associated ecosystem crisis 
have been linked to the emplacement of the 
Karoo-Ferrar large igneous province (southern 
Africa and Antarctica) and consequent green-
house gas release (Caruthers et al., 2013). Dur-
ing the T-OAE, volcanogenic greenhouse gas 
emissions induced by thermal metamorphosis 
of coal deposits in the Karoo basin most likely 
triggered carbon-cycle perturbations (McElwain 
et al., 2005; Percival et al., 2015), although 
other sources, such as dissociation of methane 
hydrates from marine sediments or terrestrial 

methane, have also been postulated (Hesselbo 
et al., 2000; Them et al., 2017).

The changes in the carbon cycle are globally 
expressed as a short negative shift in the car-
bon-isotope record at the Pl-To boundary (Lit-
tler et al., 2010), followed by a broad positive 
excursion that is interrupted by a major negative 
(∼6‰) carbon isotope excursion (CIE) during 
the T-OAE (Hesselbo et al., 2007; Müller et al., 
2017). Marine carbonate factories dominated by 
bivalves, corals, and algae disappeared after the 
onset of the negative CIE (Trecalli et al., 2012; 
Brame et al., 2019), and nannoplankton fluxes 
declined in epicontinental basins (Mattioli et al., 
2009). The coincidence between the timing of 
the CIE, indicating a major increase in CO2 
emissions, and the collapse in carbonate pro-
duction indicate ocean acidification as one of the 
potential drivers of these changes (Trecalli et al., 
2012). However, a direct quantification of pH is 
lacking. To fill this gap, we measured the boron 
isotope composition (δ11B) of brachiopod shells 
in conjunction with their δ13C and δ18O from the 
Peniche section (Global Boundary Stratotype 
Section and Point of the Toarcian Stage) in the 
Lusitanian Basin (Portugal; Comas-Rengifo 
et al., 2015; Duarte, 2007). This section com-
bines exceptional stratigraphic resolution across 
the Pl-To boundary and the T-OAE with reliable 
preservation of geochemical signals in calcitic 
shells (Suan et al., 2008; Rocha et al., 2016). 
Here, we evaluate the timing and intensity of 
ocean acidification by reconstructing temporal 
evolution of seawater pH.*E-mail: beregond02@gmail.com
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METHODS
The δ11B composition of marine biogenic 

carbonates is presently regarded as the most 
reliable pH proxy (Gutjahr et al., 2017). Articu-
late brachiopods secrete low-Mg calcitic shells 
nearly in isotopic equilibrium with seawater 
(Brand et al., 2013) and exhibit a pH-depen-
dent δ11B relationship (Lécuyer et al., 2002; 
Penman et al., 2013; Jurikova et al., 2019). We 
present major- and trace-element concentration, 
δ11B, δ13C, and δ18O, as well as 87Sr/86Sr com-
position of brachiopod shells collected from the 
upper Pliensbachian and lower Toarcian at the 
Peniche section, covering 51.5 m of the section 
(Fig. 1) and spanning ∼3.8 m.y. (see the Sup-

plemental Material1). Sample preparation and 
elemental, as well as δ11B and 87Sr/86Sr, analy-
ses were performed according to the methods 
of Jurikova et al. (2019) and Krabbenhöft et al. 
(2009) on pre-cleaned dissolved powders, with 
major- and trace-element content (Ca, Mg, Al, 
Sr, Mn, B) determined on a quadrupole induc-
tively coupled plasma–mass spectrometer (ICP-
MS) (Agilent 7500x), δ11B on a multicollector 
ICP-MS (Thermo Scientific Neptune Plus), and 
87Sr/86Sr via thermal ionization mass spectrom-
etry (TIMS) (ThermoFisher TRITON). δ13C and 
δ18O were measured using a MAT253 isotope-
ratio mass spectrometer coupled with a Kiel 
IV (ThermoFisher Scientific) carbonate device 
(see the Supplemental Material and Table S1 
therein).

To quantify pH from δ11B values, we first 
tied our initial δ11B-derived seawater pH from 
late Pliensbachian brachiopods to pre-event 
conditions (pH = 7.7) based on a Phanerozoic 
pH model for a Neritan ocean (Ridgwell, 2005) 
because carbonate production was predomi-
nantly neritic during the Early Jurassic. The pH 

in this model has a mean value of 7.7 and ranges 
between 7.4 and 7.9 for the latest Pliensbachian 
(ca. 184 Ma). With this range of pre-event sea-
water pH, we computed δ11Bseawater and seawater 
pH with two different δ11B-pH calibrations: (1) 
scenario 1, where biological influence on boron 
incorporation into brachiopod shells is consid-
ered (Lécuyer et al., 2002), resulting in a mean 
δ11Bseawater of 36.6‰ (range = 34.9‰−37.5‰); 
and (2) scenario 2, where boron incor-
poration follows inorganic fractionation 
(δ11Bbrachiopod = δ11Bborate; based on Klochko et al. 
[2006]), resulting in a mean δ11Bseawater of 38.9‰ 
(range = 37‰−40‰) (Fig. 2; Fig. S2). Because 
brachiopods exert vital control over the incorpo-
ration of boron into their shells to some degree, 
we refer to scenario 1 below, while scenario 2 is 
discussed in the Supplemental Material. Using 
our δ11B-pH values and δ18O-based temperatures 
estimated on the basis of our brachiopod shells 
and the formerly published pCO2 estimates from 
stomatal indices (McElwain et al., 2005; Stein-
thorsdottir and Vajda, 2015), we first calculated 
seawater alkalinity at ammonite subzone-scale 

1Supplemental Material. Detailed information on 
the applied geochemical and calibration methods, 
carbonate chemistry models, age model, sample 
preservation, and additional information about species-
specific effect on δ11B fractionation in brachiopods. 
Please visit https://doi​.org/10.1130/GEOL.S.12730832 
to access the supplemental material, and contact 
editing@geosociety.org with any questions.

Figure 1.  (Upper panel) 
Paleogeographic loca-
tion of the Lusitanian 
Basin (Portugal; red star) 
during the Early Jurassic 
(adapted from Ikeda and 
Hori, 2014). LIP—large 
igneous province. (Lower 
panel) Stratigraphic log 
and scale (after Hesselbo 
et al., 2007; modified fol-
lowing Duarte et al., 2018) 
plotted against bulk δ13C 
(Hesselbo et al., 2007) and 
published (Suan et  al., 
2008) and new (this study) 
brachiopod δ13C, δ18O, and 
δ11B (error bars indicate 
two standard deviations 
on replicated analyses). 
Yellow line shows the 
three-point moving aver-
age; horizontal purple 
line indicates the exact 
level of the Pliensbachian-
Toarcian boundary. The 
Toarcian Oceanic Anoxic 
Event (T-OAE) is defined as 
the interval between onset 
of negative carbon isotope 
excursion and the inflec-
tion point in the Levisoni 
ammonite zone, above 
which values tend toward 
a more positive direction, 
and coincides with the 
deposition of organic-rich 
black shales in many Euro-
pean sections (Müller et al., 
2017). Pl-To—Pliensba-
chian-Toarcian boundary; 
Z.—Zone; Marg.—Margar-
itatus; Fm.—Formation; 
VPDB—Vienna Peedee 
belemnite; NIST951—Boric 
acid isotopic standard.
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stratigraphic resolution using the R package 
seacarb (https://cran.r-project.org/web/pack-
ages/seacarb/seacarb.pdf; Gattuso 2019) (Fig. 
S4). Second, we recomputed the atmospheric 
pCO2 record on the basis of alkalinity (with con-
stant values for each subzone), δ11B pH, and 

δ18O-based temperature values at bed-scale 
resolution. Third, we also computed calcite 
and aragonite saturation states (Ω) of seawater 
using the pH estimates and the stratigraphically 
refined pCO2 estimates. δ11B data are derived 
from multiple species because no single spe-

cies spans the entire Peniche section. Although 
δ11B values may be affected by species-specific 
fractionation (Penman et al., 2013), the major 
shift in δ11B from ∼13.75‰ to ∼12.5‰ within 
the Polymorphum Zone is recorded by the rhyn-
chonellid Nannirhynchia pygmaea, and inter-
specific differences within weakly bioturbated 
beds are <0.5‰ (Fig. S4).

RESULTS AND DISCUSSION
The major and trace element composi-

tion (Sr/Ca ∼0.4 − 2 mmol/mol, and Mn/Ca 
<0.46 mmol/mol; see the Supplemental Mate-
rial and Fig. S1G) indicate very good preserva-
tion for the vast majority of our brachiopods. 
Brachiopod δ13C and δ18O records show trends 
similar to those previously reported from the 
Pl-To boundary and T-OAE (Figs. 1 and 2; Bai-
ley et al., 2003; Suan et al., 2008). The δ13C 
values define a short negative CIE of ∼1.7‰ at 
the Pl-To boundary, followed by a broad positive 
excursion up to ∼4‰ in the Polymorphum Zone, 
which is interrupted by a ∼4‰ negative CIE 
diagnostic for the T-OAE. The δ18O declines by 
∼1.8‰ within the Polymorphum Zone, followed 
by a negative trend up to −2.5‰ in the Levisoni 
Zone during the T-OAE, is also consistent with 
reports from elsewhere in Europe (Bailey et al., 
2003; Suan et al., 2008) (Fig. 1). δ11B remains 
rather invariant within the Spinatum (Emancia-
tum) Zone (oscillating around 14‰), with major 
changes occurring at the Pl-To boundary, where 
δ11B first increases to almost 16‰ and subse-
quently declines to a minimum of ∼12.5‰ in 
the upper Polymorphum Zone, just prior to the 
onset of the T-OAE (Fig. 1). δ11B increases in the 
lower Levisoni Zone (by ∼0.8‰), but reaches 
the lowest value (12.47‰) in the middle of the 
T-OAE, followed by a slight increase. A con-
siderable change in seawater pH following the 
Pl-To boundary is evident from the δ11B record 
alone. The most positive δ11B values in the Spi-
natum Zone indicate higher pH, coinciding with 
the highest bulk CaCO3 concentrations, the larg-
est size of a dominant calcareous nannofossil 
(Schizosphaerella), and carbonate supersatu-
ration (Fig. 2; Figs. S2 and S4). The overall 
δ11B drop in the Polymorphum Zone coincides 
with CaCO3 decline (r = 0.36, p = 0.019) and 
with Schizosphaerella size change (r = 0.63, 
p = 0.02) (Fig. 2; Fig. S2; Suan et al., 2010). 
Furthermore, Ωcalcite and Ωaragonite decline to very 
low values in the Polymorphum and early Levi-
soni Zones (undersaturated or close to (Ω<1), 
Fig. S4). The changes in δ11B closely follow 
the δ18O record (r = 0.75, p <0.0001; based on 
three-point moving averages of the records). In 
contrast, the correlation between δ11B and δ13C 
is very weak (r = 0.27, p = 0.07).

The two ∼3.5-m.y.-long δ11B-pH scenar-
ios (1, brachiopod-specific δ11B incorporation 
[Lécuyer et al., 2002]; or 2, inorganic δ11Bcalcium 

carbonate to δ11Bborate ion relationship [Klochko et al., 

Figure 2.  Multiproxy 
record across the 
Pliensbachian-Toarcian 
boundary (ammonite zone 
scale resolution). Pl-To—
Pliensbachian-Toarcian 
boundary; T-OAE—Toar-
cian Oceanic Anoxic 
Event; Z.—Zone. (A) Bulk-
rock carbon isotope data 
(Hesselbo et  al., 2007) 
and brachiopod carbon 
isotope data (this study; 
Suan et al., 2008). VPDB—
Vienna Peedee belemnite. 
(B) Brachiopod oxygen 
isotope and calibrated 
temperature record (this 
study; Suan et al., 2008); 
orange band is error 
envelope for temperature 
estimation, assuming 
seawater δ18O of −2‰ to 
0‰ (equivalent to salin-
ity ±2.5 ppt). (C) Boron 
isotope and calibrated 
pH record according to 
scenario 1 described in 
text (yellow symbols; 
Lécuyer et al., 2002); blue 
band shows propagated 
uncertainty based on 
analytical uncertainty for 
δ11B (±0.2‰, two standard 
deviations). Dashed lines 
mark limits of pH envelope 
derived from minimum 
and maximum pH of late 
Pliensbachian pH Neritan 
model of Ridgwell (2005). 
Plot is truncated at pH 
value 7 due to fact that 
some values fell below 
effective range of pH cali-
brations. NIST951—Boric 
acid isotopic standard. 
(D) Size of calcareous 
nannofossil Schizosphae-
rella (light blue) and bulk 
rock CaCO3 content (dark 
blue) (Suan et al., 2010). 
Error bars: ± 1 standard 
error of Schizosphaer-
ella major axis size. (E) 
pCO2 records (previous 
and new) with uncertain-
ties (orange area; see the 
Supplemental Material 
[see footnote 1]). Ages 
for the Karoo-Ferrar large 
igneous province (LIP) 
are after Ruebsam et al. 
(2019). See the Supple-
mental Material for further 
details on our age model.
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2006]) of seawater pH evolution differ in the 
absolute pH range, albeit only slightly, as a con-
sequence of the individual δ11B-pH calibration 
sensitivities. However, both display a sudden 
drop (∼0.15) and an increase (∼0.22) in pH in 
the late Pliensbachian (Margaritatus–Spina-
tum Zones) alongside a temperature rise and a 
negative CIE, implying that exogenic carbon-
cycle perturbations probably started earlier in 
the Spinatum Zone (Fig. 2; Fig. S2). Seawater 
pH declined during the early Toarcian imme-
diately after the Pl-To boundary and within an 
interval of ∼600 k.y. during the Polymorphum 
Zone. The total negative shift in pH prior to the 
onset of the T-OAE is ∼0.5. At the onset of the 
T-OAE (defined by the negative CIE), a sudden 
rise in pH by ∼0.25 can be observed (Fig. 2; 
Fig. S2). Seawater pH reaches the minimum 
(∼7.2) during the peak of the negative CIE and 
then slowly recovers, attaining pre-event values 
after the T-OAE. The overall decline in pH after 
the Pl-To boundary and prior to the T-OAE is 
marked by large fluctuations, which could sug-
gest short episodic pulses (∼10–200 k.y.) of 
volcanogenic CO2 into the ocean-atmosphere 
system.

At the onset of the T-OAE negative CIE, 
our data indicate a sudden increase in pH that 
was maintained for a duration of ∼270 k.y. 
The timing coincides with osmium isotope evi-
dence (Cohen et al., 2004) of enhanced conti-
nental weathering due to intense temperature 
rise, which could have led to enhanced seques-
tration of atmospheric CO2. Likewise, inten-
sified organic carbon burial may have caused 
a short-term drawdown of CO2 (Fig. 2; Fig. 
S2) (McElwain et al., 2005; Xu et al., 2017). 
The subsequent pH drop suggests that maxi-
mum CO2 emission occurred at the peak of 
the negative CIE and/or that conditions main-
taining carbon sequestration were no longer 
effective. pH evolution during the rebound 
phase of the negative CIE suggests slow reduc-
tion of CO2 emission rates. When averaged 
to the subzone-scale stratigraphic resolution, 
the decline in seawater pH covaries nega-
tively with the stomata-based pCO2 (Pearson 
r = −0.9, p = 0.04, using first differences) that 
suggests an increase from ∼850 ppm in the 
Spinatum Zone to ∼1750 ppm throughout the 
T-OAE (McElwain et al. 2005; Steinthorsdottir 
and Vajda, 2015).

Our δ11B-based pH record, sustained by sto-
matal pCO2 estimates, supports a close temporal 
link between pH decline, early Toarcian carbon-
cycle perturbations, the extinction event, and the 
calcification crisis. At Peniche, the late Pliens-
bachian–early Toarcian pH decline is associ-
ated with a long-term decline in CaCO3 content, 
supporting the hypothesis that the significant 
setback of carbonate production reflects the rise 
in pCO2 (Mattioli et al., 2009). Although the 
envelope for Ω predicted from stomata-based 

pCO2, brachiopod-based pH, and δ18O-based 
temperature is broad owing to the uncertainties 
in seawater δ11B and δ11B-pH calibration, mod-
eled Ωaragonite and Ωcalcite declined to the lowest 
levels during the late Polymorphum Zone and 
early Levisoni Zone (Fig. S4). Although a com-
parison of the δ11B signal to the high-resolution 
CaCO3 and Schizosphaerella records is compli-
cated by disparate temporal resolutions of the 
data sets and by a delayed decline in pelagic 
production (relative to the neritic production; 
Suan et al. 2008), bivariate relations mentioned 
above indicate that the minima in the δ11B-pH 
signal track low carbonate flux prior to and dur-
ing the early phases of the T-OAE. The decrease 
in seawater pH during the Polymorphum Zone 
suggests that environmental conditions were 
already unfavorable prior to the T-OAE, and 
in spite of the short-term rebound in pH at 
the Polymorphum-Levisoni boundary, seawa-
ter likely remained undersaturated during the 
Levisoni Zone. Hence, in addition to warming 
and extensive anoxia, ocean acidification (i.e., 
suppressed pH and carbonate saturation state) 
was responsible for the biodiversity loss (Dera 
et al., 2010; García Joral et al., 2011; Caruthers 
et al., 2013) and the demise of lithiotid bivalve 
reefs and carbonate factories (Trecalli et al. 
2012; Brame et al., 2019) during the Pl-To and 
T-OAE crises.

CONCLUSIONS
Our brachiopod δ11B-pH reconstruction 

from the latest Pliensbachian–early Toarcian 
interval provides evidence of seawater pH 
decline as a result of elevated CO2 emissions 
prior to the Pl-To boundary. Low-pH condi-
tions may have developed already prior to the 
T-OAE. The early phase of the T-OAE was char-
acterized by a short period of pH rebound most 
likely due to atmospheric CO2 drawdown as a 
result of enhanced continental weathering and 
organic carbon burial. Seawater pH attained the 
lowest values immediately prior to and during 
the T-OAE, followed by a protracted recovery 
toward pre-event conditions. Our findings are 
congruent with the hypothesis that ocean acidi-
fication contributed to the large-scale retreat of 
pelagic carbonate producers and to the extinc-
tion of neritic carbonate platform builders dur-
ing the early Toarcian.
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