
1 

 

Habitat use of a coastal delphinid population investigated using 

passive acoustic monitoring 

Palmer, K.J.1, Brookes, Kate L.2, Davies, I.M.2, Ewan Edwards2, Rendell, L.1. 

1 Sea Mammal Research Unit, School of Biology, University of St Andrews, Fife, KY16 9TH, 

UK 

2 Marine Scotland Science, 375 Victoria Road, Aberdeen, AB11 9DB, UK 

Abstract 1 

 The population of bottlenose dolphins in eastern Scotland has undergone significant 2 

range expansion since the 1990’s, when a special area of conservation was established for 3 

the population. 4 

 Distribution of this population is well described within areas of its range, where intensive 5 

work has been carried out, such as the inner Moray Firth, St Andrews Bay, and the Tay 6 

estuary area. However, elsewhere in their range, habitat use is less well understood. 7 

 In this study, a large-scale and long-term passive acoustic array was used to gain a better 8 

understanding of bottlenose dolphin habitat use in eastern Scottish waters, 9 

complementing and augmenting existing visual surveys. 10 

 Data from the array were analysed using a three-stage approach. First, acoustic 11 

occupancy results were reported; second, temporal trends were modelled; and third, a 12 

spatial-temporal-habitat model of acoustic occupancy was created. 13 

 Results from the acoustic occupancy are in agreement with visual studies that found areas 14 

near known foraging locations were consistently occupied. Results from the trend 15 
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analysis were inconclusive. Habitat modelling showed that, throughout their range, 16 

bottlenose dolphins are most likely to be detected closer to shore, and, for a constant 17 

distance to shore, in deeper water. 18 

 19 
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mammals 21 

 22 

1. Introduction 23 

Bottlenose dolphins (Tursiops truncatus) are a cosmopolitan species with populations found in 24 

tropical and temperate waters worldwide (Connor, Wells, Mann, and Read, 2000). Presently, the 25 

International Union for Conservation of Nature lists the species as ‘Least concern’ indicating a 26 

low risk of extinction. However, they are also listed under Appendix 2 of the Convention on the 27 

Conservation of Migratory Species of Wild Animals indicating a need for, or benefit from, 28 

international co-operation on conservation efforts. Off the eastern coast of Scotland, there is a 29 

population of bottlenose dolphins consisting of approximately 200 individuals (Cheney et al., 30 

2013). The population is protected by a variety of national and international regulations, 31 

including Annexes II and IV of European Union Habitats Directive (92/43/EEC), Wildlife and 32 

Countryside Act (1981), and Joint Nature Conservation Committee UK Post-2010 Biodiversity 33 

Framework. In 2005, as part of these conservation efforts, a Special Area of Conservation (SAC) 34 

was established in the Moray Firth to protect habitat important to this population.  The Moray 35 

Firth SAC covers approximately 1500 km2 extending west from the Beauly Firth, north to 36 

Helmsdale, and east to Lossiemouth (http//:www.jncc.defra.gov.uk; Figure 1). The management 37 
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of the SAC has been implemented in such a way that the population is protected throughout its 38 

range, whereby any activity which could have an adverse effect on the integrity of the site (i.e. 39 

the protected features) is subject to a Habitats Regulations Appraisal (Arso Civil et al., 2019). 40 

The range of this population extends well outside of the bounds of the SAC, with animals 41 

commonly sighted along more than 200 km of coastal habitat (Paxton, Scott-Hayward, 42 

Mackenzie, Rexstad, & Thomas, 2016). Both within and outside the SAC, animals are known to 43 

aggregate at certain locations, often associated with the mouths of rivers or estuaries (Hastie, 44 

Wilson, & Thompson, 2003, 2006; Hastie, et. al, 2004; Mendes, Turrell, Lütkebohle, & 45 

Thompson, 2002; Pirotta et al., 2014; Sargeant, Mann, Berggren, & Krutzen, 2005; Wilson, 46 

Thompson, & Hammond, 1997). Because of the high encounter rates at these locations, some 47 

have become focal areas for boat-based survey efforts, most notably the inner Moray Firth and 48 

Firth of Tay. In some of these locations, henceforth termed points of aggregation, dolphins are 49 

known to exploit tidal cycles and local bathymetry to maximise foraging efficiency (Hastie et al., 50 

2004). This is the case at two locations within the inner Moray Firth SAC: Chanonry Point near 51 

the River Ness, and the entrance to the Cromarty Firth (Figure 1). At these locations deep 52 

channels result in higher prey density at low tides and therefore may represent increased foraging 53 

success for marine mammals (Thompson, Pierce, Hislop, Miller, & Diack, 1991). Outside of the 54 

Moray Firth SAC, points of aggregation have been observed around the mouth of the River Dee 55 

(Sini, Canning, Stockin, & Pierce, 2005), the Firth of Tay, and St Andrews Bay (Arso Civil et 56 

al., 2019). While foraging activity has been observed at some of these locations, the underlying 57 

factor(s) resulting in the higher occurrence are less clear for others. For example, dolphins are 58 

commonly sighted in and around St Andrews Bay, which is a shallow water area with a small 59 

estuary (Arso Civil et al., 2019; Quick & Janik, 2012).  60 
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Despite the large population range, most survey effort has focused on the Moray Firth and 61 

specifically on well-established areas of high usage (Arso Civil, 2014; Arso Civil et al., 2019; 62 

Bailey et al., 2010; Bailey & Thompson, 2006; Hastie et al., 2006; Hastie et al., 2003; Janik & 63 

Thompson, 1996; Pirotta et al., 2014; Thompson, Brookes, & Cordes, 2015; Wilson et al., 1997). 64 

While these areas clearly represent key habitat for this population (Cheney et al., 2013), effective 65 

conservation requires knowledge of habitat use throughout the population’s range. Even in 66 

foraging hotspots, bottlenose dolphin sightings are often not predictable (Culloch & Robinson, 67 

2008).  68 

Since 2000, there have been a handful of regional scale surveys covering a large portion of the 69 

population’s habitat (Cheney et al., 2013). These include a compilation of visual and sightings 70 

data from land and boat-based surveys (Thompson et al., 2011); a series of line transect surveys 71 

between the Firth of Forth and the river Dee (Arso Civil, 2014), as well as some passive acoustic 72 

studies (Cheney et al., 2013) . Together, results from these studies suggest that bottlenose 73 

dolphins use the entirety of the coastal habitat, though less frequently outside of the Moray Firth 74 

SAC than within it, and that animals are more likely to be sighted in waters within a few 75 

kilometres of the shore. However, the relative lack of survey effort in other parts of the 76 

population’s range (Paxton et al., 2016) limits understanding of how these areas are used and 77 

their relative importance to the population.  78 

This lack of understanding has potential implications for the Habitats Regulations Appraisals 79 

undertaken as part of the licensing of marine activities in the region, including the development 80 

of offshore wind energy. Of particular concern is the lack of data in the regions most likely to 81 

receive noise from wind farm construction activities, along with a lack of understanding of how 82 

far offshore bottlenose dolphins range in these regions. Thompson, Brookes & Cordes (2015) 83 
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used a combination of fixed passive acoustic, and presence only visual survey data to model 84 

usage of offshore areas by bottlenose dolphins. While they showed that it was unlikely that the 85 

species used areas close to construction activities, the lack of data in the areas of concern 86 

reduced stakeholder confidence in the findings.  87 

To address these issues, the East Coast Marine Mammal Acoustic Study (ECoMMAS) (Marine 88 

Scotaland Science, 2013) was started in 2013 to improve understanding of bottlenose dolphin use 89 

of the east coast of Scotland, with effort spread more evenly throughout the region, including 90 

data collection further offshore. The study uses fixed passive acoustic monitoring to complement 91 

existing visual surveys in coastal and high-use areas. The data presented here were collected 92 

during the first three years of the study.  93 

C-PODs are commercially available echolocation click train detectors widely used for 94 

monitoring cetaceans. The instruments are sold with a proprietary click train detector that 95 

discriminates between ‘noise’ and the echolocation click trains (series of echolocation clicks) 96 

produced by dolphins and porpoises. Over the last decade, studies using these devices have 97 

contributed to our understanding of the behaviour and habitat use of the Moray Firth bottlenose 98 

dolphin population (Graham et al., 2017; Pirotta, Merchant, Thompson, Barton, & Lusseau, 99 

2015; Pirotta et al., 2014).  100 

Where multiple species are present however, discriminating between target (e.g. bottlenose 101 

dolphin) and non-target species constitutes a major and ongoing challenge in the field of marine 102 

passive acoustic monitoring. This is especially pertinent for studies using logging devices like C-103 

PODS that collect few acoustic features from which to classify the detections. To account for 104 

this, users typically either deploy the instruments in habitats where only a single species is 105 
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expected (Jaramillo-Legorreta et al., 2017) or assume the contribution of non-target species 106 

detections to the analysis is limited (Pirotta et al., 2014; Thompson et al., 2011). Due to the scale 107 

of the ECoMMAS array, neither assumption was applicable in this study. Throughout the survey 108 

area, multiple species have been known to occur (Anderwald et al., 2010; Arso Civil, 2014; 109 

Hammond et al., 2017). There is therefore a need to incorporate both acoustic classifiers and 110 

classifier uncertainty into the analysis (Caillat, 2013). 111 

In this research, a heuristic approach was taken to misclassification wherein species uncertainty 112 

is built into the model response. An acoustic classification system (Palmer, Brookes, & Rendell, 113 

2017) was applied to C-POD detections in order to group detections into one of three classes: 114 

broadband, frequency banded or unknown. The broadband category represents click trains 115 

matching bottlenose dolphin and common dolphin (Delphinus spp. ) click characteristics and the 116 

frequency banded category represents click trains matching white-beaked (Lagenorhynchus 117 

albirostris) and Risso’s (Grampus griseus) dolphin click characteristics (Calderan, Wittich, 118 

Harries, Gordon, & Leaper, 2013; Soldevilla et al., 2008). This analysis used the probability that 119 

each echolocation click was broadband as the predictor for bottlenose dolphin presence, thereby 120 

reducing the influence of non-target species on the model results.  121 

Monitoring occupancy rates provides baseline data for future studies seeking to understand 122 

changes in distribution over long timescales. In Scottish waters, long-term acoustic studies of 123 

have been used to investigate the spatial and temporal distribution of harbour porpoises and 124 

bottlenose dolphins, as well as model the potential impacts of anthropogenic activities (Brookes, 125 

Bailey, & Thompson, 2013; Harris et al., 2017; Simon et al., 2010; Williamson et al., 2016) . In 126 

these studies, the presence of an acoustic signal characteristic of the animal (e.g. click or whistle) 127 

is used as a proxy for true occupancy (P. Thompson et al., 2011).  128 
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We expected to find low acoustic occupancy rates and the potential for misclassification was 129 

high, so this research took a three-stage approach. In the first stage, two acoustic occupancy rates 130 

are reported: proportion of acoustically monitored days containing acoustic encounters, and the 131 

proportion of acoustically monitored days containing one or more broadband acoustic 132 

encounters. The proportion of days with echolocation encounters is reported for the first three 133 

years of the ECoMMAS survey.  134 

The second stage of the study modelled temporal trends in acoustic occupancy from the first 135 

three years of the ECoMMAS. As with baseline acoustic occupancy rates, identifying patterns in 136 

annual occupancy trends should be of interest to regulators seeking to manage the effects of 137 

offshore activities on dolphin habitat and behaviour.  138 

The third stage of the analysis determined whether and to what extent it is possible to produce 139 

spatial-temporal habitat models of broadband acoustic occupancy using ECoMMAS C-POD data 140 

alone. In this portion of the analysis a model containing all available spatial and temporal 141 

covariates was fitted to acoustic detections aggregated from the first three years of the 142 

ECoMMAS study.  143 

 144 

2. Methods 145 

Data Collection 146 

Data in this study were collected by 30 C-POD (version 1) echolocation click detectors 147 

(Chelonia, Ltd,  UK). Deployment locations were spread across the region of interest, in ten 148 

groups of three; each group of three radiated out from the coast at approximately 5km intervals 149 
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to provide data at increasing distance offshore (figure 1). The 30 deployment locations are 150 

identified by the combination of the group name (based on the nearest settlement on land) and 151 

distance from shore (e.g. Cro_05 for the Cromarty nearshore location). 152 

The entire array was deployed each spring and recovered in the fall. Precise deployment and 153 

recovery times depended on ship availability and weather conditions (Table 1). With the 154 

exception of the first deployment in 2015, which was recovered prior to battery exhaustion, all 155 

C-PODS ran continuously until either storage or battery capacity was exhausted.  156 

 157 

Data Quality 158 

Acoustic Data Processing 159 

C-POD data from 2013-2015 were processed with the accompanying KERNO classifier version 160 

2.042 (www.chelonia.co.uk) for the presence of high or moderate quality “other cetacean” click 161 

trains. The KERNO classifier annotates impulsive detections as narrow-band high frequency 162 

(NBHF) click trains, ‘Other cetacean’ click trains and ‘sonar’. NBHF detections are primarily 163 

produced by porpoises. ‘Other cetacean’ click trains may be indicative of a variety of dolphin 164 

species (Sarnocinska, Tougaard, Johnson, Madsen, & Wahlberg, 2016). After processing for the 165 

presence of ‘other cetacean’ clicks, click trains were grouped into acoustic encounters. Each 166 

acoustic encounter consisted of all high or moderate quality ‘other cetacean’ click trains starting 167 

within 20 minutes of the end of another click train. Acoustic encounters were subsequently 168 

processed with the categorization system described in Palmer et al. (2017). This system 169 

categorises each acoustic encounter into one of the following three categories; ‘broadband’, 170 

‘frequency banded’, or ‘unknown’. Thus, only acoustic encounters considered by the system to 171 



9 

 

be at least five times more likely to be either broadband or frequency banded were categorised. 172 

Encounters that failed to meet the classification threshold for either taxonomic group were 173 

classified as unknown.  174 

To incorporate classifier uncertainty into the analysis, the probability that broadband clicks were 175 

detected (P(Broadband)) was used as the response variable in the acoustic occupancy models 176 

(Palmer et al 2017; supplementary material). Broadband click detection probability was defined 177 

as the probability that broadband clicks were actually present, given the category produced by 178 

the classification system. For days when no acoustic encounters were detected, P(Broadband) 179 

was set to 0. Days when only broadband acoustic encounters (as determined by the classification 180 

system) were reported, P(Broadband) was set to 0.79, reflecting the known error rate as 181 

determined by the classification confusion matrix. Similarly, for days when only frequency-182 

banded clicks were reported, P(Broadband) was 0.08. For days when both broadband and 183 

frequency banded click encounters were reported, complete uncertainty was assumed by setting 184 

P(Broadband) to 0.5. 185 

 186 

Temporal Covariates 187 

The way temporal covariates were included in the models differed between the modelling stages. 188 

For the second stage temporal models, time of the year was measured as the Julian day (1-365) 189 

and included as a smooth continuous variable. For the third stage spatial-temporal model, there 190 

were insufficient detections to incorporate time as a smoothed variable and thus, season was 191 

included in the model as a three-level factor (Spring, Summer, or Autumn). Spring was defined 192 

as the months between April and May (March data was not available), Summer (June to August) 193 
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and Autumn (September to November). No data were collected over the winter season. For both 194 

analyses, year was included as a three-level categorical predictor (2013, 2014 or 2015). 195 

Spatial Covariates 196 

As with temporal covariates, spatial covariates were included as either continuous or factor 197 

variables. Previous studies have identified the following spatial covariates as potential predictors 198 

for the presence of bottlenose dolphins: distance to nearest point of aggregation (e.g. Cromarty 199 

Firth and River Dee), distance to shore, the gradient of the seabed (henceforth slope), and depth 200 

(Thompson et al., 2015). 201 

Distance to the nearest point of aggregation was included as a continuous variable in the spatial-202 

temporal model. Known points of aggregation have previously been shown to drive spatial and 203 

temporal distribution of animals in this population and, in some areas, have been linked to 204 

foraging (Hastie, Wilson, Wilson, Parsons, & Thompson, 2004). Given the spatial and temporal 205 

scale of this study, estuaries that may represent important habitat for animals either transiting 206 

between the established points of aggregation or contemporaneous with local and/or ephemeral 207 

prey sources were included. Known points of aggregation included the Cromarty Firth, Firth of 208 

Tay, and the rivers Ness and Dee (Cheney et al., 2013; Hastie et al., 2004; Quick et al., 2014). To 209 

the known points of aggregation, the mouths of the rivers Spey, North Esk, and Tweed were 210 

added. River estuaries were selected from the Atlantic Salmon Rivers Database 211 

(http://www.nasco.int/RiversDatabase.aspx). Distance to nearest point of aggregation was 212 

reported as a continuous variable and was measured by calculating the distance between each C-213 

POD and the nearest point of aggregation.  214 
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Distance to shore was measured as either a three-level factor corresponding to whether each C-215 

POD was deployed in nearshore (05), midshore (10), or offshore (15) habitat, or as a continuous 216 

predictor. For the spatial-temporal model of acoustic occupancy, distance to shore was reported 217 

as the continuous range between the deployment location and the distance to the nearest 0 m 218 

isobath (Pante & Simon-Bouhet, 2013).   219 

Deployment depth (in meters) was recorded from the ship at the time of deployment. Additional 220 

spatial covariate data were obtained from the NOAA ETOPO1 database (Amante, 2009), with 1 221 

arc-second resolution (~30m) and processed using the ‘marmap’ R package (Pante & Simon-222 

Bouhet, 2013). Slope was calculated in radians using the Fleming and Hoffer algorithm through 223 

the ‘raster’ R package (Fleming & Hoffer, 1979; Hijmans & van Etten, 2014). Depth and slope 224 

were modelled as continuous predictors (see supplemental information for covariate details). 225 

Site-specific temporal trends 226 

Generalized estimating equations with splines (GEE-GAMs) were fitted to each of the ten 227 

deployment groups based on a priori knowledge that bottlenose dolphin behaviour changes 228 

throughout their range, depending on whether they are or are not near foraging areas (Hastie et 229 

al., 2004; Pirotta et al., 2014; Thompson et al., 2013).  GEE-GAMs were chosen for their flexible 230 

modelling structures capable of handling binary data. Only data from C-PODs that returned at 231 

least two days with ‘other cetacean’ detections were included in the temporal models. Temporal 232 

autocorrelation in detections across consecutive days was accounted for by including in the 233 

models an autoregressive correlation structure (ar1) to detections from each individual C-POD 234 

deployment (Box, Jenkins, Reinsel, & Ljung, 2015).  235 
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For this analysis, model selection focused on estimating the form of the relationship between the 236 

probability of detecting a broadband acoustic encounter and the Julian day of the year.  For each 237 

deployment, four models were investigated. Predictor variables for all models included 238 

ShoreDist, a three level factor for distance from shore of the deployment location (05, 10, 15), a 239 

three level factor for survey year (2013, 2014 or 2015) and an integer for Julian day of year.  240 

The first model (Equation 1) assumed an interaction between the shore distance and Julian day of 241 

year, and that the pattern in detections throughout the year could be modelled by a cubic B-242 

spline. The second model (Equation 2) assumed an interaction between the cubic B-spline and 243 

the survey year. The third model (Equation 3) had no interactions between the cubic B-spline and 244 

the shore distance or survey year, and the fourth model (Equation 4) assumed a parametric 245 

linearrelationship between the daily probability of detecting a broadband echolocation click train, 246 

P(Broadband), and the Julian day of year. In accordance with previous studies using cubic spline 247 

models a single knot was set at the median of each C-POD record (Pirotta, Matthiopoulos, 248 

MacKenzie, Scott-Hayward, & Rendell, 2011). It was not possible to include more than one knot 249 

in the spatial models, as the lost degrees of freedom prevented model convergence. All models 250 

were fitted in R v.3.3.2 using the ‘geepack’ package (Halekoh, Højsgaard, & Yan, 2006). B-251 

splines were added to the models using the ‘splines’ package (R Core Team, 2016).  252 

 253 
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 254 

Akaike’s Information Criterion (AIC) scores are commonly used to select between candidate 255 

GAM or GLM models (Akaike, 1974). However, because GEE’s are not likelihood-based 256 

models, AIC scores cannot be calculated. Instead a quasi-likelihood criterion (QIC; Pan 2001) 257 

was used to select between the four temporal acoustic occupancy models. Quasi-likelihood 258 

criterion model selection mirrors AIC-based selection in application, but is appropriate for 259 

selecting between GEE models.  260 

Assessing how well the selected model fitted the data followed previous methods (Pirotta et al., 261 

2011; Thompson et al., 2013). For each deployment group, the model with the lowest QIC was 262 

used to predict the probability of detecting a broadband echolocation click across the range of the 263 

predictors. Receiver operating curves (ROCs; Fawcett, 2006) were then created to determine the 264 

relationship between the detection threshold, and the false positive and false negative rates for 265 

each model. ROC curves show the relationship between the proportions of true positive 266 

detections, here the proportion of days with broadband echolocation click trains accurately 267 

predicted, and the proportion of false positive detections or the proportion of days the model 268 
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inaccurately predicted the presence of broadband echolocation click presence. True and false 269 

positive rates are then plotted for each threshold. The threshold at which the trade-off between 270 

true and false positive rates is approximately equal is referred to as the optimum threshold. Using 271 

the ROC, an optimal detection threshold was selected above which broadband echolocation 272 

clicks were assumed to be detected and below which they were not. Using optimum threshold, 273 

confusion matrices were then created to measure the proportion of detection-positive and 274 

detection-negative days correctly identified by the model. The area under the ROC curve (AUC) 275 

was used to describe the model goodness-of-fit. AUC scores represent a measure of how well the 276 

model predicts the data. AUC values of 0.5 indicate that the model correctly predicted 50% of 277 

the observations and therefore, for a binomial model, values of 0.5 represent models that 278 

performed as well as would be expected by chance alone. Considering the variation in the data, it 279 

was relevant to determine how well each model fit all locations in the group. Thus, in addition to 280 

assessing how well the selected model fit each deployment group, how well the winning model 281 

fit the data from each C-POD deployment location was also investigated. Through this process 282 

AUC scores were calculated for each model for each deployment group, as well as for all 30 283 

individual deployment locations (Figure 1). These analyses were done in R using the ‘ROCR’ 284 

v1.0-7 and ‘PresenceAbsence’ v1.19 packages (Freeman, 2007; Sing, Sander, Beerenwinkel, & 285 

Lengauer, 2005). The relationship between P(Broadband) and Julian day was then plotted for 286 

each of the deployed C-PODs and years (Figures 3-5). 287 

Spatial-Temporal Habitat Modelling 288 

Bottlenose dolphins are known to move along the east coast of Scotland for foraging and other 289 

purposes (Cheney et al., 2013; Thompson et al., 2013). The full model presented in this study 290 
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included independent factors for slope, distance to point of aggregation, depth, and distance to 291 

shore. Temporal covariates included only season as a factor (spring, summer, and autumn). 292 

For this analysis, a generalized additive mixed model (GAMM; Wood 2006) that incorporated 293 

both spatial and temporal variables was fitted to the data. Because smooth terms are centred 294 

using the MGCV package, smooth terms were also added as a main effect, as per package 295 

recommendations. As with the temporal models, an autoregressive correlation structure with 296 

detections grouped by deployment site was included (Box et al., 2015). Only the ‘ar1’ 297 

autocorrelation structure was investigated, based on biological understanding that acoustic 298 

encounters spanning several days were unlikely to be driven by the same underlying factor.  299 

The limited degrees of freedom in the data precluded fitting multiple models. Rather, a full 300 

model was fitted that included at least one form of all spatial and temporal covariates. Model 301 

covariates were investigated for collinearity using variance of inflation factors (VIF), and any 302 

covariates with VIF scores greater than two were considered collinear (Craney & Surles, 2002). 303 

As the goal of this analysis was to produce a comprehensive model for habitat use, model 304 

selection was limited to excluding variables with estimated degrees of freedom less than 1. 305 

Adjusted r-squared and AUC scores were used to describe model fit.  306 

The resulting model was used to predict the presence of broadband acoustic encounters in the 307 

Scottish North Sea. A grid size of 1 km2, the approximate detection range of the C-PODs 308 

(Nuuttila, Thomas, et al., 2013) was used. The prediction space was restricted to habitats that fell 309 

within the parameters covered by the C-POD deployments including depth (103.0 - 9.3 m), 310 

distance to nearest point of aggregation (2.3 - 67.17 km), and distance to shore (0.35 - 17.9 km). 311 

 312 
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3. Results 313 

Acoustic Occupancy Rates 314 

Throughout the three years of survey reported in this study, 11,663 days of C-POD recordings 315 

were collected. At only16 deployment sites, devices were retrieved in all three years (Figure 2 316 

and Supplemental Material). C-PODs deployed at the Fraserburgh 10 site were not recovered in 317 

2013 and 2014 and did not detect any acoustic encounters in 2015. C-PODs at the Spey Bay 10 318 

and Helmsdale 10 locations returned data for two of the three years but failed to document two 319 

or more days with dolphin echolocation click trains. The C-PODs deployed at the St Andrews 10 320 

location were successfully recovered in all three years but failed to detect dolphin echolocation 321 

click trains on two or more days.  322 

The C-POD deployed nearest to Cromarty Firth showed the highest acoustic occupancy rate, 323 

with 78% of the days containing at least one broadband detection in 2013, and 83% in 2015 324 

(Table 2). There was wide variation in the acoustic occupancy rate and broadband occupancy 325 

rate across the array. C-PODs deployed at the northern and southern ends of the survey area 326 

(Latheron and St Abbs ) had very low (<5%) broadband occupancy rates for all survey years. 327 

Broadband occupancy rates at the nearshore (05) deployment locations were typically greater 328 

than the more offshore (10 or 15) locations. The mean broadband occupancy rates for the 05, 10 329 

and 15 locations were 0.12, 0.03 and 0.02 detections/day respectively. Excluding the Cromarty 330 

05 C-POD, the occupancy rate for the nearshore deployments was 0.06 detections/day, nearly 331 

twice that of the mid or offshore locations (Table 2).  332 

C-PODs in the Stonehaven deployment group were notable for having the second highest 333 

acoustic occupancy rates behind the Cromarty group. Both broadband and frequency branded 334 
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acoustic encounters were documented at these sites with similar frequency (Figure 2). The C-335 

PODs in this group detected echolocation click encounters on more than 15% of the survey days 336 

and broadband encounters on at least 10% of the survey days.   337 

 338 

Site-Specific Temporal Trends 339 

Deployments at the Helmsdale 15, St Andrews 10, Fraserburgh 10, and Spey Bay 10 sites failed 340 

to detect broadband clicks on at least two days and were removed from the temporal analysis. 341 

Delta-QIC scores for temporal model selection were less than 3.5 for half of the deployment 342 

groups indicating some uncertainty in model selection. Furthermore, AUC scores at some 343 

individual deployment sites less than 0.5 (Table 3): equal to what would be expected by chance 344 

alone. Even at sites with high AUC scores, the ability to predict days with broadband acoustic 345 

encounters was 0.53, indicating that nearly half the detections could not be explained by the 346 

model. The lowest AUC score among the ten deployment groups was at the St Abbs group (AUC 347 

= 0.62, Table 3), indicating it performed only slightly better than would be expected by chance 348 

alone. The highest AUC was 0.93 determined for both the Helmsdale and Cromarty groups. 349 

When model fit was investigated at each of the 30 deployment sites, AUC ranged from 0.2 at the 350 

Cruden Bay 10 location to 0.99 at the Latheron 10 location (Table 2). 351 

Low acoustic occupancy rates across most sites meant that the temporal models generally did 352 

well at predicting periods without detections, but were poor at predicting detection-positive days. 353 

Across the dataset, 43% of the days without broadband detections were accurately predicted, 354 

with the exception of Cruden Bay, where 30% were correctly classified. Apart from the 355 
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Cromarty group, no model was able to predict more than 20% of the broadband detection-356 

positive days.  357 

Large (>3) ΔQIC and high (>0.75) AUC scores indicated a more confident model selection and 358 

better model fit at the Latheron 10, St Andrews 15, Stonehaven 15, Spey Bay 10, and Helmsdale 359 

15 sites.  Of these, only the Stonehaven 15 location contained broadband echolocation click 360 

trains on greater than 1 % of the days. Thus, high AUC scores at the other locations were 361 

influenced by the correct prediction of days without dolphin detections.  362 

For sites with the highest acoustic occupancy of broadband click trains, e.g. Cromarty 05 and 363 

Stonehaven 15, GEE-GLM models suggested peaks in the probability of detecting broadband 364 

echolocation encounters in August and July, respectively. At other locations, including 365 

deployment sites in the Fraserburgh, Arbroath and St Andrews groups, temporal trends in 366 

acoustic occupancy were highly stochastic. Poor model fits (AUC <0.50) at the deployment sites 367 

within these groups make it difficult to identify the presence and/or persistence of patterns in 368 

daily acoustic occupancy (Figures 3-5).  369 

Spatial-Temporal Habitat Modelling 370 

VIF scores for spatial covariates were less than three and subsequently all spatial variables were 371 

retained. In the full model the estimated degrees of freedom (EDF) for slope were less than one, 372 

and the predictor was removed. In the final model, all terms were significant except season 373 

(Table 4). The AUC score of the final model was 0.86. Modelling results suggested that the 374 

probability of detecting broadband echolocation click train encounters decreased with increasing 375 

distance to shore and increasing distance to the nearest point of aggregation. However, across the 376 
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extent of the array, the probability of detecting broadband echolocation encounters increased 377 

with increasing depth (Figure 6). 378 

When the GAMM was projected over the available habitat, higher broadband occupancy was 379 

predicted near the Inner Moray Firth and Dee river estuaries. The GAMM also predicted that C-380 

PODs deployed in nearshore areas were more likely to detect broadband encounters than those 381 

deployed further offshore. Finally, deeper (>60m) offshore areas were projected to have a higher 382 

probability of broadband occupancy than shallow areas (Figure 7; see supplemental material for 383 

projections of the confidence intervals as well as projections for Spring and Autumn). 384 

 385 

4. Discussion 386 

The primary goal of this study was to improve understanding of the patterns of habitat use by 387 

this coastal bottlenose dolphin population throughout its range. A three-step approach was taken 388 

to the analysis. First, daily acoustic occupancy rates were reported for all sites and for both 389 

unfiltered acoustic encounters and echolocation click encounters identified as ‘broadband’ by the 390 

classification system (Palmer et al., 2017). Second, models investigating temporal trends were 391 

fitted to the available data to investigate seasonal occurrence patterns. Third, a spatial-temporal 392 

model was fitted to the data to predict the animals’ habitat use.  393 

The study faced two main challenges: low acoustic occupancy rates and species classification 394 

uncertainty. Low acoustic occupancy rates limited detection sample size. The autocorrelation 395 

structure in the temporal model accounted for correlation within acoustic encounters, but further 396 

limited the remaining degrees of freedom to model spatial and temporal trends in acoustic 397 

occupancy. For half of the deployment groups, model selection techniques (ΔQIC) did not 398 
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strongly favour one temporal model over another. This is indicative of variation not accounted 399 

for by any of the models in the set. Larger amounts of acoustic data will be needed to produce 400 

robust model estimates in future studies. For example, Pirotta et al. (2014) used data from eight 401 

years of continuous surveys to produce estimates for dolphin foraging rates within the Moray 402 

Firth SAC. In addition to having a longer sample period, echolocation detectors in Pirotta et al. 403 

(2014) were deployed in areas of high use and therefore registered a higher rate of detections. 404 

Future deployments of the ECoMMAS will address some of the temporal modelling issues this 405 

work encountered, as gaps in data coverage are reduced through multiple annual deployments, as 406 

was done in 2015. 407 

Despite their lack of species resolution, C-PODs remain widely used instruments for passive 408 

acoustic monitoring (Cox et al., 2017; Jaramillo-Legorreta et al., 2017; Nuuttila, Meier, et al., 409 

2013; Williamson et al., 2016; Wilson, Benjamins, & Elliott, 2013). Nearly all studies that use 410 

the instruments simply assume that the target species, here bottlenose dolphins, are responsible 411 

for the preponderance of the detections. This study improves to some degree on that assumption 412 

by applying a secondary classification system to the detections. This system is unable to 413 

discriminate between some species of dolphins and enhanced taxonomic resolution is unlikely to 414 

be achievable with these devices. Even with full spectrum recordings, it is exceptionally difficult 415 

to discriminate between echolocation clicks of common and bottlenose dolphins (Soldevilla et 416 

al., 2008).  417 

Species discrimination was improved over the Chelonia classifier, but perfect dolphin 418 

classification is impossible for any passive acoustic study, regardless of the recording device or 419 

sample frequency (Caillat, 2013; Roch et al., 2011). As such, these findings emphasise the need 420 

to combine long term data from visual and acoustic surveys. In doing so, researchers will be able 421 
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to provide robust data on long-term trends in dolphin occurrence throughout the habitat and for 422 

areas of ecological or commercial interest (Thompson et al., 2011).  423 

This is the first acoustic study that approximates the entire geographic range of this population. 424 

The ECoMMAS, in combination with Arso Civil et al. (2019), provides critical information 425 

about baseline habitat use. Such information is needed to monitor change in habitat use through 426 

time (Bailey et al., 2010). A novel classification algorithm on the ‘other cetacean’ detections 427 

reported by the C-POD software was used. The additional information produced by the 428 

classification algorithm enabled both the temporal and spatial-temporal model to more closely 429 

focus on the species of interest. Thus, this research required fewer assumptions about the impact 430 

of non-target species detections on the resulting models.  431 

Patterns in broadband acoustic occupancy rates were generally consistent with previous research 432 

suggesting the bottlenose dolphins are more likely to be observed in coastal waters, within 5 km 433 

of shore (Arso Civil, 2014). While most instruments were deployed in less than 30m of water, 434 

broadband acoustic occupancy rates throughout the survey were generally higher for C-PODs 435 

closer to the shoreline (Table 3; Figure 2).  This supports the work of Thompson, Brookes & 436 

Cordes (2015) and increases the confidence that bottlenose dolphins are unlikely to be present in 437 

areas that may be exposed to significant construction noise from offshore wind farms.  438 

Acoustic occupancy rates and habitat modelling highlight the waters between Stonehaven and 439 

Aberdeen as a potential area of high occupancy. Instruments deployed in the Stonehaven group 440 

showed the second highest acoustic occupancy rates behind the Cromarty group. In 2013 and 441 

2015, the Stonehaven 15 and 05 (respectively) C-PODs documented dolphin presence on at least 442 

30% of the monitored days (Table 3). Moreover, both broadband and frequency banded click 443 
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trains were documented at these sites at nearly equal rates, suggesting a potential hotspot 444 

important for multiple species. Previous studies have shown that dolphins are present in coastal 445 

waters north and south of Stonehaven year-round (Thompson et al., 2011). Historically, white-446 

beaked and bottlenose dolphin sightings have been common in visual surveys (Anderwald et al., 447 

2010; Arso Civil, 2014; Weir, Stockin, & Pierce, 2007). Thus, further research to determine 448 

whether the area constitutes a biological hotspot is warranted. 449 

Modelling efforts for temporal trends across the spatial and temporal extent of the array were 450 

challenged by few detections and gaps in data coverage. As such, the inference that can be made 451 

from the models is highly limited. Despite these challenges, the model for the Cromarty group 452 

did fit well and indicated a peak in broadband detections consistent with earlier visual surveys 453 

(Thompson et al., 2011). The novel approach to classification uncertainty reduced the number of 454 

days with echolocation encounters in the dataset. While this conservative approach hindered 455 

modelling efforts in this research, it will provide more robust estimates of dolphin species 456 

distributions as the survey matures (Pirotta et al., 2014).    457 

Spatial-temporal habitat selection modelling was more successful and generally agreed with 458 

previous studies linking smaller distances to shore with increased probability of detecting 459 

bottlenose dolphins (Arso Civil, 2014; Pirotta et al., 2014; Quick et al., 2014). The spatial 460 

modelling suggested that broadband acoustic encounters were more likely to be detected in 461 

deeper water and predicted a slight increase in detections >15 km from shore (Figures 5-6). 462 

Without concurrent visual confirmation residual uncertainty remains regarding whether and to 463 

what extent echolocation encounters detected at offshore locations represented common 464 

dolphins. The spatial-temporal model indicated that distance to the nearest selected point of 465 

aggregation and depth were also important predictors of broadband occupancy. Unfortunately, 466 
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there were not enough detection data to model the spatial and temporal covariates together (e.g. 467 

Julian day of year and depth).  468 

Bottlenose dolphins are commonly sighted in St Andrews Bay (Arso Civil et al., 2019; Quick et 469 

al., 2014), so the low number of detections at the St Andrews survey location nearest the bay (St 470 

Andrews 05) was somewhat unexpected. There are several possible reasons for this. One 471 

possibility is that the area may represent habitat associated with rest or socializing rather than 472 

foraging, so there are fewer clicks to detect. Previous studies have found lower detection rates 473 

for groups of animals, travelling and socializing animals, than single animals or foraging animals 474 

(Nuuttila, Thomas, et al., 2013). If animals near the Fife Ness survey sites were primarily 475 

travelling or socializing, they may not have been detected at rates comparable to foraging 476 

animals. These results reinforce the need to integrate visual and acoustic surveys when managing 477 

highly mobile species. 478 

Unfortunately, the limited taxonomic resolution of the acoustic data means that it is not possible 479 

to say with a high degree of certainty which of the broadband or frequency banded species were 480 

present at these locations. Delphinid species classification is an issue that other studies using C-481 

PODs have not typically had the tools to address. This study uses improved classification 482 

measures to more reliably discriminate between the various species present in the area. 483 

Furthermore, the maximum acoustic occupancy probability of 0.79 for broadband acoustic 484 

encounters is not a direct representation of true bottlenose dolphin occupancy. Thus, 485 

conservative interpretation of these results, including relative occupancy between the survey 486 

locations, is prudent. 487 
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In situations where species classification remains an outstanding problem it is appropriate to 488 

combine inferences from multiple survey methodologies (Cheney et al., 2013; Thompson et al., 489 

2015). In this survey region, visual surveys provide evidence that the majority of the broadband 490 

echolocation encounters detected at the near-shore deployments originated from bottlenose 491 

dolphins (Anderwald et al., 2010; Arso Civil, 2014; Arso Civil et al., 2019; Thompson et al., 492 

2013). Considerable uncertainty remains regarding broadband detections from offshore areas that 493 

lack consistent visual survey effort. Where there are increased broadband detections at the 494 

offshore locations, the data warrant further investigation, but classification is not possible. These 495 

areas would benefit from either increased visual survey effort or more advanced acoustic 496 

techniques that have recently shown promise in discriminating between common and bottlenose 497 

dolphins (Frasier et al., 2017). 498 

Data presented here also represent a small spatial sample, and acoustic data are lacking from 499 

many important sites such as the River Dee and Tay estuary. In these, shipping activity has 500 

restricted the use of acoustic moorings which may present a potential navigational hazard. Thus, 501 

it has not been possible to deploy acoustic recorders in some known points of aggregation. 502 

Appropriate sampling methods for investigating temporal and spatial trends are diametrically 503 

opposed. If the continued goal of the ECoMMAS array is to relate habitat data to acoustic 504 

occupancy, managers should consider changing deployment locations at each recovery and re-505 

deployment. However, if the goal is to maintain a historical record of the trends in acoustic 506 

occupancy at these locations it is important that the deployment locations remain consistent. 507 

From a conservation and management perspective, knowledge of where animals are is equally as 508 

valuable as knowledge of where they are not. The ECoMMAS provides continuous survey 509 

coverage for areas where consistent visual surveys are untenable. The first ecological results of 510 
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ECoMMAS are consistent with visual sightings highlighting the importance of particular high-511 

usage areas to the population (Arso Civil et al., 2019). Similarly, daily acoustic occupancy rates 512 

in areas between established points of aggregation were an order of magnitude lower. In sites 513 

other than Cromarty 05, there was no clear trend in temporal detections. Thus, by themselves, 514 

these results do not suggest the need to change any of the existing regulatory framework for this 515 

population of bottlenose dolphins. 516 

Bottlenose dolphins are highly mobile and adaptable generalists, capable of exploiting changing 517 

environments (Santos et al., 2001). The areas currently considered to be critical habitat for this 518 

population (e.g. the SAC) may shift with changing climate or other anthropogenic impacts. For 519 

example, the point of aggregation near the Cromarty Firth has conclusively been linked with 520 

foraging (Hastie et al. 2003). If the area no longer provides optimal foraging habitat, dolphins 521 

will likely move elsewhere. Under such dynamic systems fixed protected areas may not provide 522 

optimal conservation solutions for either protected species or human users. Dynamic ocean 523 

management plans represent a flexible conservation approach that mirror the spatial and 524 

temporal variability present in marine systems (Maxwell et al., 2015). Such management plans 525 

have been implemented in North America where vessel speed restrictions may be triggered when 526 

critically endangered North Atlantic right whales (Eubalaena glacialis) are visually or 527 

acoustically detected near shipping lanes (Spaulding et al., 2009; Van Parijs et al., 2009). These 528 

dynamic management areas are designed to provide maximum protection from anthropogenic 529 

mortality while limiting additional regulatory burden on users. In a changing regulatory 530 

landscape, there may be opportunities to rethink the implementation of conservation measures 531 

for highly mobile species. Since the establishment of the Moray Firth SAC, the population has 532 

grown and is now observed using the entire coastline (Cheney et al., 2013; Arso Civil et al. 533 
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2019). This range expansion over a relatively short period might be reflected in a dynamic 534 

management plan that considers variation in animal presence and the timing of ecological 535 

features (e.g. diadromous fish runs or seasonal patterns in habitat use). Under dynamic 536 

management plans, surveys like the ECoMMAS would be invaluable in providing detailed 537 

information about habitat over longer periods than can be provided by visual surveys alone.   538 
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Tables 765 

Table 1. Deployment and recovery months of the ECoMMAS array in the three years of data 766 

collection used in this study. In 2015 two consecutive deployments were undertaken. 767 

Year Deployment Recovery 

2013 June and July October 

2014 May November 

2015 April 

July 

July 

November 

 768 

 769 

 770 

 771 

 772 

  773 
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Table 2. Daily acoustic occupancy rates (number of days with detections/days with acoustic coverage) for unprocessed C-POD data 774 

(All) and detections classified as “broadband” by the classification system. Ninety-five percent binomial confidence intervals in 775 

parenthesis. Black areas indicated C-PODs that were not recovered or failed to record data.  776 

  2013 2014 2015 

  

Occ. Rate (All) 

Occ. Rate 

(Broadband) 

Occ. Rate (All) 

Occ. Rate 

(Broadband) 

Occ. Rate (All) 

Occ. Rate 

(Broadband) 

Lat_05 0.19 (0.12 - 0.28) 0.00 (0.00- 0.04) 0.00 (0.00 - 0.04) 0.00 (0.00- 0.04) 0.20 (0.15 - 0.26) 0.00 (0.00- 0.03) 

Lat_10 0.03 (0.01 - 0.08) 0.01 (0.00- 0.05) #VALUE! #VALUE! 0.04 (0.02 - 0.08) 0.01 (0.00- 0.04) 

Lat_15 0.04 (0.01 - 0.09) 0.01 (0.00- 0.05) #VALUE! #VALUE! 0.02 (0.01 - 0.05) 0.00 (0.00- 0.02) 

Hel_05 0.05 (0.02 - 0.12) 0.00 (0.00- 0.04) 0.12 (0.08 - 0.17) 0.03 (0.01 - 0.06) 0.14 (0.09 - 0.20) 0.07 (0.04 - 0.12) 

Hel_10 0.00 (0.00 - 0.03) 0.00 (0.00- 0.03) #VALUE! #VALUE! 0.02 (0.01 - 0.06) 0.00 (0.00- 0.03) 

Hel_15 0.01 (0.00 - 0.05) 0.00 (0.00- 0.03) 0.01 (0.00 - 0.06) 0.00 (0.00- 0.04) 0.00 (0.00 - 0.02) 0.00 (0.00- 0.02) 

Cro_05 0.89 (0.80 - 0.94) 0.78 (0.68 - 0.86) #VALUE! #VALUE! 0.95 (0.91 - 0.97) 0.83 (0.77 - 0.87) 

Cro_10 0.32 (0.17 - 0.52) 0.12 (0.04 - 0.30) 0.35 (0.26 - 0.46) 0.25 (0.17 - 0.35) 0.37 (0.27 - 0.48) 0.28 (0.19 - 0.39) 

Cro_15 0.02 (0.01 - 0.08) 0.02 (0.01 - 0.08) 0.00 (0.00 - 0.04) 0.00 (0.00- 0.04) 0.04 (0.02 - 0.08) 0.03 (0.01 - 0.06) 

SpB_05 0.22 (0.15 - 0.32) 0.13 (0.08 - 0.22) 0.21 (0.11 - 0.38) 0.09 (0.03 - 0.24) 0.14 (0.10 - 0.19) 0.08 (0.05 - 0.13) 

SpB_10 0.00 (0.00 - 0.03) 0.00 (0.00- 0.03) #VALUE! #VALUE! 0.00 (0.00 - 0.05) 0.00 (0.00- 0.05) 

SpB_15 #VALUE! #VALUE! 0.01 (0.00 - 0.05) 0.01 (0.00- 0.05) 0.03 (0.01 - 0.06) 0.02 (0.01 - 0.05) 

Fra_05 0.13 (0.08 - 0.21) 0.00 (0.00- 0.04) 0.21 (0.13 - 0.33) 0.20 (0.12 - 0.31) 0.11 (0.07 - 0.16) 0.06 (0.03 - 0.10) 
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Fra_10 #VALUE! #VALUE! #VALUE! #VALUE! 0.00 (0.00 - 0.03) 0.00 (0.00- 0.03) 

Fra_15 #VALUE! #VALUE! 0.04 (0.02 - 0.10) 0.03 (0.01 - 0.08) 0.08 (0.05 - 0.13) 0.05 (0.03 - 0.09) 

Cru_05 0.19 (0.13 - 0.26) 0.02 (0.00- 0.06) 0.04 (0.02 - 0.10) 0.01 (0.00- 0.05) 0.13 (0.07 - 0.22) 0.01 (0.00- 0.07) 

Cru_10 #VALUE! #VALUE! 0.15 (0.09 - 0.23) 0.04 (0.02 - 0.10) 0.00 (0.00 - 0.43) 0.00 (0.00- 0.43) 

Cru_15 0.16 (0.11 - 0.23) 0.06 (0.03 - 0.10) 0.15 (0.09 - 0.23) 0.03 (0.01 - 0.09) #VALUE! #VALUE! 

Sto_05 0.17 (0.11 - 0.25) 0.10 (0.06 - 0.16) #VALUE! #VALUE! 0.36 (0.30 - 0.44) 0.27 (0.21 - 0.34) 

Sto_10 #VALUE! #VALUE! 0.12 (0.06 - 0.21) 0.05 (0.02 - 0.13) 0.07 (0.04 - 0.12) 0.04 (0.02 - 0.07) 

Sto_15 0.30 (0.23 - 0.37) 0.11 (0.07 - 0.16) 0.10 (0.06 - 0.19) 0.01 (0.00- 0.06) 0.12 (0.06 - 0.20) 0.06 (0.03 - 0.14) 

Abr_05 0.17 (0.11 - 0.26) 0.07 (0.03 - 0.14) 0.11 (0.06 - 0.18) 0.05 (0.02 - 0.12) 0.27 (0.18 - 0.38) 0.09 (0.04 - 0.17) 

Abr_10 0.02 (0.01 - 0.08) 0.00 (0.00- 0.04) 0.02 (0.01 - 0.09) 0.00 (0.00- 0.05) 0.04 (0.02 - 0.08) 0.02 (0.01 - 0.06) 

Abr_15 0.18 (0.13 - 0.25) 0.05 (0.03 - 0.10) #VALUE! #VALUE! 0.03 (0.01 - 0.06) 0.02 (0.01 - 0.05) 

StA_05 0.18 (0.12 - 0.27) 0.09 (0.04 - 0.16) 0.07 (0.03 - 0.16) 0.03 (0.01 - 0.10) 0.07 (0.04 - 0.11) 0.03 (0.02 - 0.07) 

StA_10 0.00 (0.00 - 0.04) 0.00 (0.00- 0.04) 0.01 (0.00 - 0.06) 0.01 (0.00- 0.06) 0.02 (0.01 - 0.09) 0.01 (0.00- 0.07) 

StA_15 0.03 (0.01 - 0.08) 0.01 (0.00- 0.05) 0.02 (0.01 - 0.07) 0.01 (0.00- 0.06) 0.00 (0.00 - 0.05) 0.00 (0.00- 0.05) 

Stb_05 0.05 (0.02 - 0.10 ) 0.02 (0.01 - 0.07) 0.06 (0.03 - 0.12) 0.02 (0.01 - 0.07) 0.04 (0.01 - 0.10) 0.04 (0.01 - 0.1) 

Stb_10 0.03 (0.01 - 0.09) 0.01 (0.00- 0.06) 0.02 (0.01 - 0.07) 0.02 (0.01 - 0.07) 0.02 (0.01 - 0.05) 0.01 (0.00- 0.04) 

Stb_15 0.04 (0.02 - 0.08) 0.02 (0.01 - 0.06) #VALUE! #VALUE! 0.01 (0.00 - 0.07) 0.00 (0.00- 0.05) 

 777 

 778 
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Table 3 Temporal model selection results for the 10 deployment groups (Group). Formula 779 

indicates the final model form selected via QIC for each deployment group (Equations 1-4). 780 

Response for all models was P(Broadband). ShoreDist represents the three-level factor for 781 

the near (05), mid (10), and offshore (15) deployment locations. Year is the two or three 782 

level factor each survey year (2013, 2014 or 2015), Delta QIC is the difference in QIC 783 

scores between selected model and the next best performing model. Group AUC is the area 784 

under the ROC curve for each model applied to deployment groups. Group presence (Pres.) 785 

and absence (Abs.) are the proportion of presences and absences correctly identified by the 786 

model for each group. Unit is the location of each C-POD within the group and each 787 

individual deployment location (Dep) AUC, Pres. and Abs. are the area under the curve and 788 

proportion of presences and absences correctly predicted by the model for each of the C-789 

POD locations. Dashes indicated locations were modelling was not possible due to either 790 

low numbers of detections or failure to recover the C-PODs deployed at that location.  791 

 792 

Group 

Name 

Formula Selected 

Delta 

QIC 

Group 

AUC 

Pres. Abs. 

Dep. 

Name 

Dep. 

AUC 

Dep. 

Pres. 

Dep 

Abs. 

Latheron 

P(Broadband) ~ ShoreDist + 

Year * bs(JulianDay, knots = 

mean(JulianDay)) 

13.83 0.85 0 0.88 Lat_05 0.99 0.00 0.99 

  

    Lat_10 0.82 0.01 0.59 

  

    Lat_15 0.98 0.00 0.97 

Helmsdale P(Broadband)~ ShoreDist + 3.51 0.93 0.01 0.77 Hel_05 0.82 0.02 0.78 
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Year + JulianDay 

  

    Hel_10 0.94 0.00 0.93 

  

    Hel_15    

Cromarty 

P(Broadband)~ ShoreDist + 

Year + bs(JulianDay, knots = 

mean(JulianDay)) 

1.22 0.93 0.28 0.6 Cro_05 0.62 0.53 0.10 

  

    Cro_10 0.61 0.19 0.30 

  

    Cro_15 0.78 0.01 0.80 

Spey Bay 

P(Broadband)~ Year + 

ShoreDist * bs(JulianDay, 

knots = mean(JulianDay)) 

5.34 0.81 0.04 0.63 SpB_05 0.63 0.05 0.63 

  

    SpB_10    

  

    SpB_15 0.75 0.01 0.55 

Fraserburgh 

P(Broadband)~ ShoreDist + 

Year + JulianDay 

2.52 0.75 0.04 0.48 Fra_05 0.70 0.03 0.81 

  

    Fra_10 0.99 0.00 0.98 

  

    Fra_15 0.54 0.04 0.40 

Cruden Bay 

P(Broadband)~ ShoreDist + 

Year + JulianDay 

1.85 0.63 0.03 0.33 Cru_05 0.64 0.01 0.72 

  

    Cru_10 0.22 0.03 0.13 

  

    Cru_15 0.61 0.02 0.82 

Stonehaven 

P(Broadband)~ Year + 

ShoreDist * bs(JulianDay, 

5.73 0.79 0.06 0.77 Sto_05 0.71 0.13 0.63 
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knots = mean(JulianDay)) 

  

    Sto_10 0.63 0.02 0.67 

  

    Sto_15 0.81 0.05 0.82 

Arborath 

P(Broadband)~ Year + 

ShoreDist * bs(JulianDay, 

knots = mean(JulianDay)) 

1.39 0.82 0.03 0.51 Abr_05 0.61 0.04 0.58 

  

    Abr_10 0.98 0.01 0.96 

  

    Abr_15 0.76 0.03 0.49 

St Andrews 

P(Broadband)~ ShoreDist + 

Year * bs(JulianDay, knots = 

mean(JulianDay)) 

8.46 0.85 0.02 0.82 StA_05 0.83 0.04 0.72 

  

    StA_10 0.81 0.00 0.72 

  

    StA_15 0.63 0.00 0.51 

St Abbs 

P(Broadband)~ ShoreDist + 

Year + JulianDay 

3.06 0.62 0.01 0.63 Stb_05 0.51 0.02 0.18 

  

    Stb_10 0.63 0.00 0.92 

            Stb_15 0.60 0.01 0.36 

  793 
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Table 4 GAMM summary for the parametric and smooth coefficient estimates, standard errors, estimated degrees of 794 

freedom (EDF), reference degrees of freedom (Ref.df), F, t and p-values for the final habitat model. Smooth factors 795 

(Distance to nearest Point Of Aggregation and Distance to Shore) are added as a main effect. 796 

Model Formula 

P(Broadband)~ s(DistToPOA, bs = "ts", k = 3) + s(Depth,  bs = "ts") + s(DistToShore, bs = "ts") + POIName 

+ Season+ DistToPOA+ DistToShore 

Parametric coefficients 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -2.70586 0.17708 -15.281 <.001 

Dee -0.63122 0.34879 -1.81 0.070 

Esk -1.02055 0.31654 -3.224 0.001 

Spey -1.24386 0.27673 -4.495 <.001 

Tay Firth -0.64207 0.35049 -1.832 0.067 

Tweed -2.41157 0.44156 -5.461 <.001 

SeasonSpring -0.06665 0.16495 -0.404 0.686 

SeasonSummer 0.03319 0.12101 0.274 0.784 

Approximate significance of smooth terms 

 

EDF Ref.df F p-value 

s(DistToPOA) 1.917 2 55.264 <.001 

s(Depth_m) 4.686 9 6.233 <.001 

s(DistToShore) 4.961 9 9.094 <.001 

R-sq.(adj) =  0.322  ,   Scale est. = 1 ,   n = 9181         

 797 

 798 
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Figures 799 

 800 

Figure 1. Study area including the Moray Firth Special Area of Conservation (yellow) and 801 

deployment locations of the East Coast Marine Mammal Acoustic Study (red points) and 802 

associated deployment group names. 803 

 804 
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 805 

Figure 2. Observed (points) and 95% confidence interval of the modelled occupancy (shaded) for 806 

the 2013 near (05) mid (10) and offshore (15) deployment sites (panels). Colour indicates 807 

distance from shore as a factor. 808 

 809 
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 810 

Figure 3. Observed (points) and 95% confidence interval of the modelled occupancy (shaded) for 811 

the 2014 near (05) mid (10) and offshore (15) deployment sites (panels). Colour indicates 812 

distance from shore as a factor. 813 
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 814 

 815 

Figure 4. Observed (points) and 95% confidence interval of the modelled occupancy (shaded) for 816 

the 2015 near (05) mid (10) and offshore (15) deployment sites (panels). Colour indicates 817 

distance from shore as a factor. 818 
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 819 

 820 

Figure 5. Two dimensional representations of the binomial smooths for the habitat GAMM. 821 

Shaded area represents the probability of detecting a broadband echolocation click train on a 822 

given C-POD as a function of the CPOD’s distance to the nearest point of aggregation (top left), 823 

deployment depth (top right) and distance to shore (bottom). Shaded areas represent 95% 824 

confidence intervals and dashes on X-axis are rug plot of deployment variables. 825 

  826 
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 827 

Figure 6. Predicted broadband occupancy throughout the east coast habitat. Predictions based on 828 

GAMM analysis of CPOD acoustic records from 2013-2015. Data are standardized to year 2015 829 
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and season is set to summer830 
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