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In recent years, novel two-dimensional materials such as graphene, bismuthene, and transition-metal dichalco-
genides have attracted considerable interest due to their unique physical properties. However, certain lattice
geometries, such as the Lieb lattice, do not exist as atomic monolayers. Fortunately, a range of physical effects
can be transferred to the realms of photonics by creating artificial photonic lattices emulating these two-
dimensional materials. Here, exciton-polaritons in semiconductor microcavities offer an exciting opportunity to
study a part-light, part-matter quantum fluid of light in a complex lattice potential. In this Rapid Communication,
we study exciton-polaritons in a two-dimensional Lieb lattice of buried optical traps. The S and Pxy photonic
orbitals of such a Lieb lattice give rise to the formation of two flatbands which are of greatest interest
for the distortion-free storage of compact localized states. By using a well controlled etch-and-overgrowth
technique, we manage to control the trapping as well as the site couplings with great precision. This allows
us to spectroscopically monitor the flatness of the flatbands across the full Brillouin zone. Furthermore, we
demonstrate experimentally that these flatbands can be directly populated by condensation under nonresonant
laser excitation. Finally, using this advanced device approach we demonstrate resonant and deterministic
excitation of flatband modes in transmission geometry. Our findings establish the exciton-polariton systems
as a highly controllable, optical many-body system to study flatband effects and for distortion-free storage of
compact localized states.
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Flatbands are a fascinating class of completely disper-
sionless bands, emerging from symmetry considerations and
phase frustrations in a range of tight-binding Hamiltonians of
periodic lattices. Consequently, the energy E (k) of a flatband
is independent of the Bloch state momentum k. Such bands
have been predicted [1] and subsequently used for the theoret-
ical description of physical phenomena ranging from itinerant
ferromagnetism [1,2], to fractional quantum Hall states [3]
and topological flatband phases [4,5]. Here, the so-called
Lieb lattice, arising from a slightly altered square lattice [see
Figs. 1(a)–1(d)], is of greatest theoretical interest as it features
distinct Dirac-cone dispersions at the M points as well as a
dispersionless flatband cutting through the Dirac points. With
an overall interest and improved mastery of synthetic quantum
matter [6], this geometry has been used to realize flatband
effects experimentally in systems such as cold atoms [7,8],
electronic surface states [9,10], photonics [11–16], exciton-
polaritons in one dimension [17,18], and two-dimensional
lattices [19,20].

Microcavity exciton-polaritons (polaritons) [21] are hy-
brid light-matter particles arising from the strong coupling
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between excitons and microcavity photons. Their strong non-
linearities inherited from the matter part in combination with
their accessibility by angular-resolved photo- or electrolumi-
nescence (PL and EL) spectroscopy granted by the light part
put them in the focus of fundamental research devoted to
macroscopic quantum phases of exciton-polaritons [22]. Most
notably, they have shown the ability to undergo bosonic con-
densation [23,24], superfluid behavior [25], and the formation
of a topological Chern insulator mode [26]. The appeal of
polariton physics in search of novel many-body phenomena
stems from the high degree of interactions in combination
with advanced technological control over the semiconduc-
tor microcavity structures hosting polaritons [27]. The most
evident approach towards polariton confinement is to etch
micropillar resonators with diameters of several micrometers
into planar microcavities. By designing these pillars with
overlap and thus coupling between them, two-dimensional
lattices forming band structures can be fabricated and studied
[28,29]. The downsides of this method include a large etch
surface leading to surface defects, a limited coupling range
due to overlap requirements, as well as a lack of control over
the depth of the confinement potential.

A way to overcome these limitations is the so-called
etch-and-overgrowth (EnO) technique to confine polaritons
[30–32]. Here, the molecular beam epitaxial growth is
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FIG. 1. (a) Schematic drawing of the investigated etch-and-
overgrowth Lieb lattice. A, B, and C denote the three sites of the
lattice unit cell, and t and t ′ describe the nearest- and next-nearest-
neighbor coupling, respectively. (b) Atomic force microscope image
of the etched spacer layer. (c) Realspace and (d) first Brillouin zone
representation of the Lieb lattice with �, X , and M denoting the high-
symmetry points and a being the center-to-center distance. (e) Zoom
on two coupled nearest-neighbor sites in the etch-and-overgrowth
geometry. Pronounced coupling and mode hybridization is possible
even for traps that do not overlap. (f) Fourier space energy-resolved
photoluminescence of the S band of the investigated Lieb lattice. The
blue data points are extracted from the measured dispersions, accu-
rately revealing the four Dirac cones at the M points. In red (flatband)
and gray (dispersive bands) a tight-binding model is plotted, agreeing
very well with the measured data. See Supplemental Material [34] for
a video of the rotating figure. (g) Photoluminescence measurements
of the S and P bands in the reduced Brillouin zone representation.
The S and P flatbands are visible at around 1.603 and 1.606 eV,
respectively.

interrupted after finishing the cavity layers. The trapping
potential is created by patterning and subsequent wet etching
of a spacer layer located on top of the actual cavity [Fig. 1(a)].
Figure 1(b) shows an atomic force microscope image of traps
in a Lieb lattice geometry with a trap height of approximately
5 nm. In Figs. 1(c) and 1(d), the unit cell of the real-space
lattice and the first Brillouin zone with its high-symmetry
points, respectively, are presented. Finally, the top distributed
Bragg reflector (DBR) is epitaxially grown. In this approach,
the trapping potential is created by a modal redshift induced
through a local elongation of the cavity. As the confinement
potential can be finely tuned by changing the etching depth,
the coupled traps can be geometrically separated [see Fig.
1(e)] and still form a band structure.

The polariton lattice investigated in this Rapid Com-
munication is a vertically emitting microcavity with 32
Al0.20Ga0.80As/AlAs mirror pairs in the top DBR, 37
Al0.20Ga0.80As/AlAs mirror pairs in the bottom DBR, and
two sets of four GaAs quantum wells (QWs) embedded in
the field antinode of the AlAs λ/2-wavelength-thick cavity
and in the first mirror pair of the bottom DBR. The exciton,
emitting at an energy of EX = 1.610 eV, is strongly coupled
to the photonic mode, characterized by a quality factor of Q ∼

7500, with a vacuum Rabi splitting of 2h̄�R = 11.5 meV.
The EnO traps lead to a confinement of Econf ∼ 6.2 meV. All
measurements have been performed at a moderately negative
detuning δ ∼ −3.9 meV between the trapped photon mode
and the excitonic resonance. At the given detuning, the three
lowest orbital modes (S, P, and D modes) are confined and
form bands.

For the optical characterization by momentum-resolved PL
spectroscopy, we excite our sample with a continuous-wave
(cw) Ti:sapphire laser tuned to the reflectance minimum of the
first high-energy Bragg mode at 1.658 eV. The luminescence
is collected using a Fourier spectroscopy setup with a Cherny-
Turner spectrometer and a Peltier-cooled 1024 × 1024 px
CCD camera operating at −75 ◦C. By motorized scanning of
the last imaging lens, both in real-space and Fourier-space
imaging configuration, we can collect the full dispersion

information in the kx and ky directions, with k‖ =
√

k2
x + k2

y

being the in-plane wave vector, as well as perform optical
tomographies in real space [E (x, y)]. All experiments have
been carried out in a liquid-helium flow cryostat at T = 4 K.

In the Lieb lattice, the flatband occurs as a consequence
of destructive interference in the lattice coupling. Starting
from a tight-binding Hamiltonian with t and t ′ being the
intersite and next-nearest-neighbor couplings, respectively,
one directly obtains the dispersion relation

E (k) = 0; ±2t
√

cos2(kx/2) + cos2(ky/2) (1)

featuring a flatband that is, in this simplest case of nearest-
neighbor coupling only (t ′ = 0), perfectly flat. However, in
any realistic systems a next-nearest-neighbor coupling t ′ [see
Fig. 1(c)] cannot be avoided.

While the typical real-space signature of the flatband,
which is occupation occurring only on the B and C sites,
referred to as a Lieb diamond, has been described in a range of
papers [12,13,19,20], full tomographic measurements on the
flatband in Fourier space have been missing so far. Figure 1(f)
depicts a tomographic characterization of a polariton Lieb
lattice with trap diameters of d = 2 μm and a reduced trap
distance v = a/d = 1.05, with a denoting the center-to-center
distance of adjacent traps, in the linear regime, using non-
resonant laser excitation. The Fourier space energy-resolved
photoluminescence of the investigated lattice is imaged in the
kx direction and scanned in the ky direction. The blue data
points are extracted from the measured dispersions, accurately
revealing the four Dirac cones at the M points as well as
the S flatband. The corresponding tight-binding model with a
nearest-neighbor coupling of t = 360 μeV and a next-nearest-
neighbor coupling of t ′ = 80 μeV is plotted in gray with the
flatband in red and agrees well with the experimental data.
Figure 1(g) depicts the S and P bands for a Lieb lattice array
of polariton traps in the reduced Brillouin zone representation.

In order to systematically study the influence of next-
nearest-neighbor coupling t ′ on the flatness of the flatband as
well as deformation of the modes of separated mesas, we now
vary the coupling conditions in the lattices. The investigated
structures have a trap diameter d = 2 μm and a reduced trap
distance v = a/d = 0.80; 0.90; 1.05, where a is the center-
to-center distance of adjacent traps [Fig. 1(c)]. Therefore, a
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FIG. 2. Dispersion measurements below threshold for reduced trap distances of v = 0.80, v = 0.90, and v = 1.05 along the (a)–(c) M-X -M
and (d)–(f) X -�-X directions, respectively. Particularly in the X -�-X direction, the next-nearest neighbor coupling t ′ leads to the strongest
deviation from the tight-binding model and thus to a curvature of the flatbands. A full Bloch mode calculation accurately describes the band
structure (gray lines) as well as the respective flatbands (red lines). (g) Measured spectral bandwidth of the S and P flatbands (symbols)
compared to the theoretically predicted bandwidths, extracted from the calculations (solid lines).

value v < 1 corresponds to overlapping traps, v = 1 indicates
touching traps, and v > 1 denotes geometrically separated
traps.

Since the separations between the mesas in the lattice are
comparable or even smaller than their sizes, we expect sub-
stantial deformation of the mode profiles of separate mesas.
Thus the tight-binding approach is not valid anymore. In order
to realistically describe the polariton Lieb lattice in an EnO
structure, we determine the energy-momentum band structure
of the Lieb lattices using a full description of the Bloch
modes taking into account all relevant system parameters.
For this aim we solve the following eigenvalue problem for
the energy E (kb) of the Bloch mode with the Bloch vector
kb = {kbx, kby}:

E (kb)

{
pb(r, kb)
eb(r, kb)

}
= L̂(kb)

{
pb(r, kb)
eb(r, kb)

}
, (2)

where the functions pb(r, kb) and eb(r, kb) describe the am-
plitude distributions of the photonic and excitonic components
of the Bloch modes in real space defined in the plane of the
microcavity r = {x, y}. The main matrix in Eq. (2), describing
the single-particle coupled states of excitons and photons, is
given by the expression

L̂(kb) = h̄

⎛
⎝ ω0

C + V (r) − h̄( �∇⊥+ikb)
2

2mC
�

� ω0
E − h̄( �∇⊥+ikb)

2

2mE

⎞
⎠.

In the model above, the quantities ω0
C and ω0

E represent
the energies of bare photons and excitons, respectively. The
photon-exciton coupling strength is given by the parame-
ter h̄� which defines the Rabi splitting for the microtraps.
Here, mC = 34.3 × 10−6me is the effective photon mass in
the planar region and me denotes the free electron mass.
The effective mass of excitons is mX ≈ 105mC . An external
photonic potential V (r) is defined within the unit cell of the
Lieb structure compound of mesas.

In Fig. 2, the results of a systematic variation of the reduced
trap distance on the S and P flatbands are presented. Here,
Figs. 2(a)– 2(c) show the PL spectra in the M-X -M direction
and Figs. 2(d)– 2(f) in the X -�-X direction for v = 0.80 to
v = 1.05, respectively. Here, the data presented in Figs. 2(c)
and 2(f) correspond to the same lattice as the data depicted
in Figs. 1(f) and 1(g). While the M-X -M spectra exhibit
flatbands within the linewidth throughout the trap distance
variation, the dispersions in the X -�-X direction feature a
distinct curvature of the flatbands. As expected from the full
Bloch mode calculation, we are able to reduce the energy
bandwidth of the S and P flatbands below �ES,P = 500 μeV
by increasing the reduced trap distance to v = 1.05, thus
decreasing the influence of next-nearest neighbors. The rather
shallow confinement potential of 6.2 meV allows for a physi-
cal separation of the traps by 5% (and more) of their diameter
while keeping a lattice band structure. The full Bloch mode
calculations (gray, flatbands red) in Figs. 2(a)– 2(f) are in ex-
cellent agreement with the spectroscopic data. The respective

121302-3



TRISTAN H. HARDER et al. PHYSICAL REVIEW B 102, 121302(R) (2020)

FIG. 3. Overview of the different spectroscopic methods used to
populate the hybrid light-matter flatband states, using the S flatband
as an example. (a),(b) Nonresonant cw laser excitation with a large
spot, leading to a uniformly occupied S-flatband condensate across
several tens of unit cells. (c),(d) Nonresonant cw laser excitation of a
polariton condensate in a single compact flatband site using a spiral
phase plate. (e),(f) Resonant cw laser excitation of the S flatband
in transmission, using a backside polished sample and polarization
optics to suppress the excitation laser. (b),(d),(f) Real-space images
of the respective PL emission from the Lieb flatband. All methods
show the distinct diamond-shaped, real-space signature of the Lieb
flatband.

bandwidths of the S and P flatbands are plotted against the
reduced trap diameter v in Fig. 2(g), where the symbols rep-
resent the experimental findings for the S and P flatbands and
the lines result from the Bloch mode calculations. We can ex-
trapolate that for v ∼ 1.20 the flatband bandwidth will be well
below the respective linewidth of approximately 300 μeV
of the system, where at the same time a distinct band structure
formation can still be well expected (cf. [31,33]).

In order to demonstrate the potential of EnO microcav-
ity designs to host hybrid light-matter flatband states, we
now use a range of optical techniques to populate flatband
states with polaritons. In Fig. 3(a), the excitation scheme for
nonresonant cw laser excitation with a large spot covering
a multitude of lattice sites is illustrated. An appropriately
chosen exciton-photon detuning of δ ∼ −3.9 meV allows
for polariton condensation into the S flatband, characteris-
tically represented by the diamond-shaped mode pattern in
Fig. 3(b) (see [19,20] for comparison). Corresponding spectra
and threshold characteristics can be found in the Supplemental
Material [34]. Having established the excitation of a large
flatband condensate, we continue by demonstrating the ex-
citation of a compact localized condensate in a nearly flat
band as theoretically proposed and described by Sun et al.
[35]. For this purpose, we use a spiral phase plate to control
the phase and intensity of a ring-shaped Laguerre-Gaussian
beam profile with a diameter of d ∼ 4.0 μm and a ring-
to-center intensity ratio of approximately 18:1 centered at
the Lieb lattice diamond (B and C sites). When increasing

the excitation power, we observe polariton lasing from a
single compact localized state (CLS). CLSs represent a key
element of localized information in a flatband system [36]
and can be easily addressed spectroscopically in our polari-
ton lattice, as depicted in Figs. 3(c) and 3(d). Nonresonant
excitation schemes might allow for the realization of col-
lective flatband lasing [37], potentially even using electrical
injection [38].

Having established nonresonant control of the flatband
states, finally, we make use of another technological ad-
vantage of EnO microcavity structures to deterministically
address polariton flatband states by resonant laser excitation.
We use a cw laser with a spot size of ∼30 μm in trans-
mission geometry by exciting through the polished sample
backside. The EnO microcavity used is very similar to the
one investigated so far, but features three In0.04Ga0.96As QWs
instead of GaAs QWs and is characterized by a Rabi splitting
of ∼4.5 meV. The exciton energy of these quantum wells
is lower than the band gap of the GaAs substrate, which
hence becomes transparent to the excitation laser at Ecw =
1.4711 eV. To allow resonant excitation in the transmission
scheme presented in Fig. 3(e), the backside of the sample is
polished using a lapping plate. A detailed description of the
sample preparation for transmission measurements as well as
spectra of the investigated lattice highlighting the resonant
excitation can be found in the Supplemental Material [34].
The cw laser is carefully prepared to be linearly polarized and
subsequently filtered in the detection using cross polarization.
As etching of micropillars is not required when defining the
lattice potential with the EnO technique, both the polished
backside as well as the front surface of the sample are smooth
and scattering of the laser is minimized. Figure 3(f) highlights
again the well-known real-space flatband signature of a po-
laritonic Lieb lattice with d = 2 μm traps at a reduced trap
distance of v = 1.0 and verifies the selective and controlled
occupation of the desired flatband state. The overall intensity
fluctuation is directly related to the specific laser excitation
and transmission properties of the sample. Furthermore, as the
flatband states are localized, polariton propagation that would
result in a compensation of this inhomogeneity is inhibited,
further underlining the flatband nature. This can be used to
study disorder in flatband systems while every site population
can be excited deterministically using spatial light modulator
feedback techniques [39]. Therefore, in particular, the reso-
nant excitation of polaritons in flatband states opens entirely
new ways to study interactions [40], scattering dynamics [41],
and topological effects [42–44].

In conclusion, we have successfully designed and demon-
strated the use of etch-and-overgrowth traps in a Lieb lattice
geometry to create polariton flatband states. Using advanced
tomography techniques we are able to directly image these
flatbands. Furthermore, by optimizing the highly accessible
coupling parameters we are able to flatten the flatbands such
that the spectral bandwidth of the flatbands approaches the
linewidth of the flatband itself. We have demonstrated that the
EnO fabrication technique allows for a highly controllable
population of polaritonic flatbands and compact localized
states via nonresonant excitation and condensation. Finally,
we have been able to show fully resonant excitation of any
modes in polariton lattices, specifically demonstrated for a
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lattice flatband mode. This work is an important step towards
a next generation of polaritonic platforms with properties and
functionalities involving topology, gain, and interactions [45].
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