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Abstract To enhance the reversible capacity and cycle stability of MoS2 as anode materials for 

sodium ion batteries (SIBs), we constructed a hybrid architecture composed of MoS2 and TiO2 

nanosheets, linking with reduced graphene oxide (RGO) to another TiO2/MoS2 to form a nanoflower 

structure. Owing to layered RGO coupled with TiO2/MoS2 hybrid, such a composite offered 

interconnected conductive channels to short shuttle path of Na+ ions and favorable transport kinetics 

under charge/discharge cycling. Moreover, this unique structure showed a porous and hierarchical 

architecture, which not only buffered volume changes but also provided more electrochemical active 

sites during insertion/deintercalation processes of Na ions. Outstanding electrochemical 

performances were identified by the component matching effect among TiO2, MoS2 and RGO with a 

three-dimensional (3D) interconnected network, exhibiting a good reversible capacity of 616 mA h 

g-1 after 100 cycles at 0.1 A g-1, an excellent rate capability of 250 mA h g-1 even at 5A g-1 and a long 

cycling stability of 460 mA h g-1 with a capacity fluctuation of 0.03% per cycle within 350 cycles at 

1 A g-1. 

Keywords: Sodium ion batteries; interconnected network; TiO2/MoS2/RGO; component matching 

effect; cycling stability

 1. Introduction

Nowadays, considering the low cost, natural abundance and environmental benignity, sodium (Na) 

presents as a promising alternative of the metal lithium (Li) in practical applications of energy storage 

devices.1-5 However, compared to Li+ (0.76 Å), the ionic radius of 1.06 Å for Na+, it is found that 

exploring appropriate anode materials to hold sodium ions in sodium ion batteries (SIBs) is full of 

huge challenges.6 To this regard, numbers of research works have been put into practice to explore 
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superior electrodes that can enhance their energy density. Such as hard carbon,7 porous and hollow 

carbon hybrid with other composite materials,8-10 titanium-based materials,11 transitional metal 

dichalcogenides,12,13 metal oxide14, another alloying-type metallic Sn-Ge15 and Sb16 have been 

reported. Among them, there is an S-Mo-S three-atom layer in exfoliated MoS2 possesses and the 

interlayer distance can reach 0.62 nm.17 Inspired by this, many works have demonstrated that MoS2 

has the potential as anode electrode of SIBs.18,19 Unfortunately, two-dimensional (2D) MoS2 with 

layered structure is easy to stack, which is ascribed to its surface energy and Van de Waals attraction 

among interlayers. When used as an anode electrode for SIBs, the stacked layers are ready for fast 

capacity fading and poor rate ability under the condition of metal ion insertion/de-intercalation 

cycling process.20 In order to solve the problem derived from shortcomings existing in 

electrochemical performance of MoS2 electrodes, an effective strategy is to find suitable 

nanomaterials to prevent restacking of MoS2 layers. Due to desirable physicochemical properties, 

such as nontoxicity, low cost and chemical stability, TiO2 nanostructure has been identified to be a 

perfect backbone of MoS2 through hybridization, acting as host for metal ions, such as TiO2 

nanowire@MoS2 nanosheet,21 TiO2@MoS2 microspheres,22 and core-shell TiO2@MoS2 

compositions.23 However, the low electronic conductivity and sluggish lithium/sodium ions transport 

power of TiO2 electrodes, resulting in a low power density. 

In previous works, reduced graphene oxide (RGO) nanolayers are introduced in MoS2-based 

electrode compositions, whose aim is to reduce the transfer distance of electrons and Na+ ions as well 

as relieve the volume change. For example, when graphene sheets cover 3D MoS2 micro-flowers, the 

MoS2/graphene network composition will exhibit an outstanding specific capacity of 500 mA h g-1 at 

100 mA g-1, showing a remarkable rate performance of 345 mA h g-1 at 1600 mA g-1.24 Additionally, 

owning to the excellent structure compatibility of MoS2 nanosheets with RGO nanosheets,25 we 
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expected that the problem of stacking of TiO2/MoS2 could be addressed by forming a 3D 

TiO2/MoS2/RGO nanoflower structure based on Van der Waals interaction, which could promote the 

insertion/de-intercalation of sodium ions during repeated charge/discharge cycling.

In this work, we rationally designed and synthesized RGO-interconnected TiO2/MoS2 nanohybrids 

with a porous hierarchical structure to enhance the capacity and overall stability during the 

charge/discharge process of sodium ions battery. The porous hierarchical TiO2/MoS2/RGO 

nanohybrid had low electrons and ion transfer resistances, together with a good electrode integrity 

derived from the robust structural architecture. Compared to MoS2 and TiO2/MoS2, TiO2/MoS2/RGO 

nanohybrids showed a high reversible capacity of 616 mA h g-1 at 0.1 A g-1 after 100 cycles and a 

stable long cycling life with a capacity fluctuation of only 0.03% per cycle within 350 cycles at 1.0 

A g-1. It revealed that TiO2/MoS2/RGO presented an ultrahigh structural integrity after going through 

350 cycles. Furthermore, the synergistic effect among TiO2, MoS2 and RGO provided effective 

electron transfer and ion diffusion spaces, promoting insertion/deintercalation processes of Na ions.

2. Experimental Section

2.1 Materials synthesis

All chemical materials derived from analytical grade, which were purchased from China National 

Pharmaceutical.

2.1.1 Fabrication of TiO2 nanosheets. In a typical synthesis process,26 2.4 ml hydrofluoric acid 

solution (40 wt%) was added in 20 ml titanium butoxide (Ti(OC4H9)4). After ultrasonicating 30 

minutes, a solution was transferred to a 100 ml kettle autoclave, then treated at 200 oC for 24 h. After 

cooling down to the room temperature, the TiO2 precipitate was collected by washed 3 times with de-

ionized water water and ethanol, respectively. Then dried at 60 oC for 12h. Finally, 1.0 g TiO2 and 

0.8 g urea were collected to grind with 5 ml H2O, annealed at 500 oC for 2 h under air. The obtained 
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product is designated as TiO2 nanosheets.

2.1.2 Fabrication of porous hierarchical structured TiO2/MoS2/RGO nanohybrids. Fig. 1 illustrates 

the fabrication procedure for porous hierarchical structured TiO2/MoS2/RGO nanohybrids. First, 

according to the reported literature,27 the graphene oxide (GO) suspension with 2 mg/L was 

synthesized by the modified Hummer’s method. Then 5ml GO solution was injected into 20 ml DI 

water with ultrasound operation for 2 h. Meanwhile, 75 mg TiO2 nanosheets were poured into 60 ml 

DI water, a homogeneous cream yellow solution A can be got under stirring for 5 minutes. Then, 0.8 

ml silane coupling agent was dropped into the solution A under ultrasonicating operation. Afterward, 

20 ml GO suspension was added into above solution with drop by drop. After ultrasonication for 5 

minutes, 0.35 g ammonium molybdate tetrahydrate and 0.76 g thiourea were gradually added to the 

solution under stirring for 30 minutes. Finally, the resultant solution was transferred into 100 ml 

Teflon-lined autoclave, then put into oven at 200 oC for 20 h. The resultant precipitants were washed 

with water and ethanol by filtration three times, respectively. After drying at 60 oC for 12 h, the as-

prepared product was annealed at 500 oC for 2 h under Ar environment with a heating rate of 3 oC 

min-1, which designated as TiO2/MoS2/RGO nanohybrids. As a comparison, similar processes for 

preparing MoS2 and TiO2/MoS2 were carried out without the addition of TiO2 and RGO, RGO, 

respectively.
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Fig. 1 Schematic diagram of the fabrication procedure for the TiO2/MoS2/RGO nanohybrids.

2.2 Material characterization. 

Morphology of the samples were checked via a SU-70 field emission scanning electron microscopy 

(FE-SEM). Under an acceleration voltage of 200 kV, a high-resolution transmission electron 

microscopy (HR-TEM) with JEM-2100 (JEOL) was carried out to obtain morphology and structural 

information of the products. The crystal structural characterization of samples was measured via a 

Rigaku D/Max-Rb diffractometer armed with Cu Ka radiation (λ = 1.5406 Å). The X-ray 

photoelectron spectroscopy (XPS) could be probed with an ESCALAB 250 instrument using a 150W 

Al Ka probe beam. At 77 K, N2 adsorption-desorption measurements were operated via a Gold APP 

V-Sorb 2800P. Brunauer-Emmett-Teller (BET) method and Barrette-Joynere-Halenda (BJH) method 

were used to calculate specific surface areas and porosity distributions. The Raman spectroscopy was 

analyzed via a Renishaw 2000 Raman microscope. 

2.3 Electrochemical measurements. 

Firstly, some slurry was made by the mixture with 70 wt% of produced materials, 15 wt% of LA132 

binder and 15 wt% of acetylene carbon black. Then, the mixed slurry was evenly smoothed on a 

copper foil with a paper blade. The copper foil was heated to 60 oC to form an active working 

electrode. Then cut it into round geometrical shapes with a diameter of 12 mm. The weight of active 
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materials used for electrochemical study was about 1.0 mg cm-2. Electrochemical tests were 

performed using 2025 coin-type cells, with the TiO2/MoS2/RGO acted as a working electrode and a 

sodium metal foil as a counter electrode, a glass fiber as a separator. 1.0 M of NaClO4 in ethylene 

carbonate: propylene carbonate (1:1 by volume) with 5 wt% of fluoroethylene carbonates was used 

as the electrolyte. Fresh coin cells were assembled in an Ar-filled glove box. A discharge/charge 

performance assessment was performed through a LAND CT2001A battery test system from 3.0 V 

to 0.01 V under room temperature. Cyclic Voltammetry (CV) behaviors and electrochemical 

impedance spectroscopy measurements were respectively investigated in an electrochemical 

workstation (PARSTAT 2273) at a scan rate of 0.1 mV s-1 within a frequency range from 100 kHz 

10 mHz for an amplitude of 5 mV.

3. Results and discussion

The crystalline phase component of the prepared samples was identified by XRD patterns. From 

Fig. 2a, at the 2θ degree of  25.3o, 37.8o, 48.0o, 53.9o, 55.1o, 62.7o and 68.8o, these sharp characteristic 

peaks were respectively pointed to crystalline planes at (101), (004), (200), (105), (211), (204), and 

(116) with a tetragonal structured anatase TiO2 (JCPDS No. 21-1272)28. At 22-26oC, there was a 

broad and weak diffraction peak, which was corresponding to the graphite structure of RGO.29,30 The 

diffraction peaks of 14.4o, 32.7o, 33.5o and 58.3o could be respectively traced to crystalline planes at 

(002), (100), (101) and (110) for hexagonal MoS2 (JCPDS No. 37-1492)31. The quantitative phase 

and lattice parameters of composition component of TiO2/MoS2/RGO were evaluated via Rietveld 

refinement of XRD (Fig. S1 (Supplementary Information)). The results indicate that Rietveld 

parameters are: Rexp=3.89%; Rwp=4.20%; Rp=5.19% and GOF=1.08. Table S1 shows that the mass 

percent of MoS2, TiO2 and graphitization of RGO is 17.67%, 35.47% and 27.78%, respectively. For 

TiO2 phase, the value of R-Bragg is 0.813; the lattice parameters are a=b/Å=3.892 and c/Å=9.464; 
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the average crystallite size is about 19.42 nm. Compared to previous works and commercial anatase 

TiO2,32-34 the TiO2 phase shows a more open nanostructure with a and b of higher values, which is 

more liable to hybridize MoS2 (17.67 wt%) with TiO2 (35.47 wt%). Therefore, the existence of TiO2 

nanosheets promotes the formation of TiO2/MoS2.

The Raman spectra confirms the existence of RGO. This view has been explained by the two 

peaks of 1361 and 1585 cm-1, corresponding to the band D and band G of RGO35. After RGO was 

combined with TiO2/MoS2, the broadened peaks of TiO2/MoS2/RGO nanohybrids showed the 

disordered stacking nature of RGO sheets, as is shown in Fig. 2b. For the purpose of contrast, MoS2 

and TiO2/MoS2 were prepared by similar hydrothermal method. Fig. S2 shows the powder XRD 

patterns of crystal compositions of TiO2, MoS2 and TiO2/MoS2. All diffraction peaks of the samples 

can be labelled by cards of JCPDS No. 21-1272 and JCPDS No. 37-1492. 

Fig. 2 (a) XRD patterns of TiO2/MoS2/RGO and the standard patterns of TiO2 and MoS2, (b) Raman spectrum 

of pure RGO and TiO2/MoS2/RGO.

To probe chemical components and chemical element binding energies of the samples, an X-ray 

photoelectron spectroscopy (XPS) test was carried out to get specific data. In Fig. S3, Mo, S, Ti, O 

and C are clearly displayed in the XPS survey spectrum for TiO2/MoS2/RGO powders. The detected 

atomic percent of Ti, Mo, S, C and O was 1.08%, 12.72%, 22.42%, 46.14% and 17.63%, respectively. 

The high oxygen content is attributed to the fact that the sample was exposed to air for a long time. 

mailto:TiO2@MoS2/rGO%20hybrid.%20Tab.1
mailto:TiO2@MoS2/rGO%20hybrid.%20Tab.1
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In Fig. 3a, two peaks located at around 458.8 and 464.8 eV, ascribed to Ti 2p3/2 and Ti 2p1/2 

respectively. Compared to bare TiO2 and some other TiO2 compounds36,37, the difference value of 

binding energy ΔE between Ti 2p3/2 and Ti 2p1/2 is about 6 eV, confirming the oxidation state of Ti 

(Ⅳ). As is shown in Fig. 3b, three prominent peaks with binding energies of 229.6, 232.8 and 235.4 

eV, corresponding to oxidation sate with Mo4+3d5/2, Mo4+3d3/2 and Mo6+3d3/2 2p.38,39 The results 

suggest that there is a small number of MoO2 and molybdate in the TiO2/MoS2/RGO compound owing 

to  surface oxidation. From Fig. 3c, binding energies of 161.8 eV and 163.0 e V can be referred to as 

peak S2-2p3/2 and peak S2-2p1/2.40 Furthermore, after devolution of C1s spectra, three peaks are 

observed at 284.8, 286.0 eV and 288.4 eV (in Fig. 3d), assigned to C-C, C-O and O=C-O bonds 

respectively. In the reported work41,42, there are similar results for C 1s spectrum of RGO, as binding 

energies of sp2 C-C and C-O bonds are located at 284.6 and 286.7 eV.

Fig. 3 The high resolution X-ray photoelectron spectroscopy (XPS) of TiO2/MoS2/RGO. (a) Ti 2p, (b) Mo 3d, 

(3) S 2p, (4) C 1s.
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In order to detective morphology profiles and microstructures of the samples, a scanning electron 

microscopy (SEM), a transmission electron microscopy (TEM) and corresponding element mapping 

images were taken as observation media. As is shows in Fig. S4a, the TiO2 nanosheets present a 

regular rectangle shape with an average lateral size of 30-40 nm. After integrating MoS2 with TiO2 

nanosheets, TiO2/MoS2 composites (Fig. S4b) presented flower microspheres with a three-

dimensional architecture, which was generated from the high surface energy and interlayer Van der 

Waals attraction of MoS2 (Fig. S4c). After combining with RGO, chiffon-like RGO nanosheets with 

crinkled textures were tightly wrapped on the surface of TiO2/MoS2 flower, forming a 

TiO2/MoS2/RGO porous hierarchical hybrid nanostructure (See Fig. 4a). Fig. 4b shows that the 

chiffon-like RGO plays the role of a bridge, interconnecting TiO2/MoS2 flowers. In Fig. 4c, the 

selected area electron diffraction (SAED) image for TiO2/MoS2/RGO sample, presents clear 

diffraction rings, which can be well indexed as a pure hexagonal MoS2 and anatase TiO2 phase, 

indicating the polycrystalline feature of the composite. The diffraction rings are well matched with 

plane (101) and (103) of MoS2 as well as plane (101) and (211) of anatase TiO2, further confirming 

the presence of MoS2 and TiO2. From Fig. 4d, the lattice fringes of TiO2 and MoS2 are found in the 

HRTEM image. The marked d-spacing of 0.35 nm is relates to interplane spacing (101) of TiO2, while 

0.62 nm can be assigned to crystalline planes (002) of MoS2. 
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Fig. 4 Morphological characterization of TiO2/MoS2/RGO nanohybrid. (a) SEM images, (b) TEM images, 

(c)SAED pattern (d) HRTEM lattice image and (e) TEM image and elements mappings.

The detailed microstructures of the TiO2/MoS2/RGO sample were investigated by typical EDS 

mapping. Fig. 4e demonstrates that Mo, Ti, S, and C elements are clearly distributed on the micro-

flowers. It is also revealing that multilayers MoS2 hybrid with the TiO2 nanosheet and the RGO 

nanosheets closely attached among TiO2/MoS2 nanosheets. The 3D interconnected RGO surround 

around the TiO2/MoS2, which helps to provide strong electrical channels and conductive networks 

for TiO2/MoS2 micro-flowers, thereby ensuring the structural integrity and facilitating the effective 

transfer of electron during charge/discharge cycling.24 Moreover, the permeable porous hierarchical 

structure can greatly reduce the transfer length for both sodium ions and electrons.43,44

To investigate the porous feature of the TiO2/MoS2/RGO hybrids, nitrogen adsorption/desorption 

was applied to test the structure of a series of samples. The hysteresis loops observed in Fig. 5a-c 

indicate the presence of abundant mesopores in the composites, which belong to typical type-Ⅲ and 

type-Ⅳ  isotherms.45,46 According to the isotherms, calculating shows that the TiO2/MoS2/RGO 

hybrid possesses a high BET specific surface area of 43 m2 g-1, while that of TiO2/MoS2 and MoS2 

possess 31.9 and 11.4 m2 g-1, respectively. The increase of specific surface area of the 

mailto:TiO2@MoS2/rGO%20are%20about%2046.3%20m2g-1
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TiO2/MoS2/RGO sample, which is attributed to the combination of RGO with MoS2 and TiO2, creates 

a number of mesoporous pores with a 3D interconnected crinkled hierarchical architecture. The pore 

distribution plot in Fig. 5a, b and Fig. d shows the pore size of the samples ranging from 2 to 120 nm. 

The large surface area, mesporous and macroporous pore size distribution of the TiO2/MoS2/RGO 

sample can not only facilitate the entry of sufficient electrolyte into internal voids within porous 

nanostructures of electrode, but also present plenty of electrochemical active sites and enough spaces 

to tackle the mechanical stress occurring in discharging/charging processes.47

Fig. 5 Nitrogen adsorption-desorption isotherm and pore-size distribution curve: (a) MoS2 and (b) TiO2/MoS2; (c) 

Nitrogen adsorption-desorption isotherm of TiO2/MoS2/RGO; (d) pore-size distribution curve of 

TiO2/MoS2/RGO.

To check metal Na+ ions storage performance, the sample electrodes were assembled in a CR2025 

coin cell with sodium metal foil as the counter electrode. With a scan rate of 0.1 mV S-1 and a cutoff 

voltage of 0.01-3.0 V, Cyclic Voltammograms (CV) curves of the first five cycles were measured to 
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observe the electrochemical reaction performance. As shown in Fig. 6a, the reduction peaks located 

at 1.3 and 0.87 V in the first cathodic process, suggesting that the Na+ ions have inserted into TiO2 

nanosheets, the formation of solid electrolyte interphase (SEI) film and Ti4+ was reduced to Ti3+.48,49 

According to our previous works, the peak at about 0.65 V was associated with the Na+ diffusion into 

MoS2 interlayers (forming NaxMoS2)50, when it shifts to 0.15 V, NaxMoS2 further converted to Na2S 

and metallic Mo51. Therefore, Fig. 6a shows that in the following anodic process, peaks at 0.65 and 

0.38 V were attributed to the reconstruction of NaxMoS2 and the formation of MoS2. A broad peak at 

a high voltage of 1.78 V, corresponding to Na2S translated into amorphous S and the oxidation of 

Ti3+ to Ti4+.52 Contrasting to the predecessors’ work about cyclic voltammograms with peak potentials 

of LixTiO2 for TiO2 anode materials,34,37 the main peak voltage of TiO2/MoS2/RGO electrode shifted 

to a lower value. This phenomenon can be observed in the change range of main cathodic peak at ~ 

1.0 V and anodic peak at ~ 2.2 V for convention oxide anode materials.53 In the second cathodic 

curve, there are two peaks observed that are located at about 1.76 and 0.76 V, which were related to 

the formation of Na2S and Mo, respectively. Compared to the first cycle, the integral area and peak 

intensity of CV curves present decreasing trend in the following cycles, which is caused by the SEI 

films arisen from the irreversible capacity of the electrode. It is noted that the CV curves for 2nd, 3rd, 

4th and 5th cycle are nearly overlapped, displaying a good behavior of Na+ ion insertion/de-

intercalation reversibility of the TiO2/MoS2/RGO anode. We expected that each component in the 

electrode exhibits different roles during charging/discharging processes. The interconnected RGO 

layers contribute to improving electrical conductivity and mechanical stability. MoS2 nanosheets 

offer more electrochemical active sites and short electron/ions transfer paths. TiO2 nanosheets modify 

the MoS2 to relieve the stress change originating from the sodium ions intercalation/de-intercalation 

and improve the stability of electrochemical reactions.
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Fig. 6b shows the discharge-charge capacity vs potential profile for TiO2/MoS2/RGO electrode at 

the current density of 0.1 A g-1 for 1st, 2nd, 3th, 4th, 5th and 10th cycle. The first discharge curve appears 

very steep above 1.1 V, then declines to 0.8 V as the insertion of Na+, corresponding to TiO2 + xNa+ 

+ xe- →NaxTiO2
48. This change is agreed with the observed stage of 1.75 - 0.8 V in Fig. S5a. When 

the curve falls slowly to 0.56 V where sodium ions inserted into MoS2 composition, this point can be 

identified by the first discharge curve of Fig. S5b. Further, the second ramp is observed up to 0.15 V, 

which is also accorded with the CV peak potential. However, it is distinctly different from other Mo-

based compositions (such as MoO2) with higher metal ions intercalation voltage (1.6-1.25V) under 

the discharge process.36,54 The initial discharge and charge capacity deliver 1205 and 813 mA h g-1, 

respectively, giving 67.4% for its first Coulombic efficiency. The capacity loss mainly comes from 

the SEI films. Discharge curves of the 2nd-10th cycles present a similar shape, and a steeper discharge 

plateau is observed between 1.5 V and 0.02 V, which is ascribed to the insertion to of Na+ ions insert 

into the reaction sites of MoS2
55 and TiO2

56. In the charge profiles, the slop line from 0.3 to 1.8 V 

shows the extraction of Na ions from TiO2 and MoS2 compounds28,39. Comparing to Fig. S5a and 

S5b, TiO2/MoS2/RGO electrode shows an extend insertion region for the 1st, 5th 10th cycle in Fig. 6b, 

which is due to its multi-composition matching effect and 3D porous interconnected architecture 57.

The cycling performance of all electrodes was evaluated at a current density of 0.1 A g-1 under 

0.01-3.0 V. As shown in Fig. 6c, after activating at a low current density (0.05 A g-1) for the first 5 

cycles, the reversible capacity of the TiO2/MoS2/RGO electrode quickly stabilized at 610 mA h g-1. 

As the cycling numbers increased, the capacity was pushed to 616 mA h g-1 after 100 cycles during 

the activation process. By contrast, the other samples (TiO2/MoS2, MoS2, TiO2) did not show well. 

In the first galvanostatic cycle, MoS2 displays a reversible capacity of 544 mA h g-1 with an initial 

coulombic efficiency (ICE) of 79.3 %; while TiO2 shows a reversible capacity of 253 mA h g-1 with 
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ICW of 60.1 %. From the 2nd to 5th cycle, the reversible capacity retentions of MoS2 and TiO2 were 

reduced from 98.5% to 97% and 99.9% to 99.6%, respectively. This fast capacity decay of the MoS2 

electrode originated from its block structure, resulting in pulverization of the electrode and dissolution 

of polysulfides. The TiO2/MoS2 electrode displayed a reversible capacity of 385 mA h g-1 after 100 

cycles. The MoS2 electrode showed a decreased capacity with cycling, reaching a reversible capacity 

of 141 mA h g-1 over 100 cycles. While the TiO2 nanosheets electrode showed a stable cycling 

capacity with 225 mA h g-1 after 100 cycles, which was higher than that of the MoS2 electrode. 

Considering the above results, the TiO2/MoS2/RGO electrode showed a good cycling performance. 

The flexible and high conductive feature of RGO not only facilitated ion and charge transfer, but also 

acted as a cushion to relieve mechanical stresses of TiO2 and MoS2 during the discharge/charge 

processes. 

The rate performance of the TiO2/MoS2/RGO, TiO2/MoS2 and MoS2 samples was evaluated at 

current density from 0.2 A g-1 to 5 A g-1, as shown in Fig. 6d. The TiO2/MoS2/RGO electrode 

exhibited an average capacity of 580 mA h g-1 at 0.2 A g-1 during the first 10 cycles. When the current 

density went up to 0.5, 1 and 2 A g-1, it showed 540, 506, 410 mA h g-1, respectively. With a current 

density of up to 5 A g-1, a high capacity of 310 mA h g-1 can be sustained. Then, the current density 

went back to 0.2 A g-1, the capacity reached to 670 mA h g-1. As the current density increased to 5 A 

g-1, there were only 250 and 200 mA h g-1 maintained for TiO2/MoS2 and MoS2, respectively. TiO2 

nanosheets also showed a poor rate ability. The capacity of TiO2/MoS2/RGO was superior to that of 

TiO2/MoS2 and MoS2.

The TiO2/MoS2/RGO sample was compared with other works in Table S2, such as MoS2@TiO2,58 

MoS2@rGO,59 MoS2-C60 and NiS/MoS2/C61. The porous hierarchical architecture of 

TiO2/MoS2/RGO could produce more sodium storage sites, which benefited the higher initial capacity, 
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and reduced the barriers of Na+ mobility, contributing to an excellent electrochemical performance.62

The electrochemical impedance spectroscopy (EIS) analysis suggested that the TiO2/MoS2/RGO 

electrode possesses a good charge transfer kinetics. Fig. S5 shows that EIS data of TiO2, MoS2, 

TiO2/MoS2 and TiO2/MoS2/RGO with metal Li as the counter electrode at the open voltage (2.2 V to 

3.0 V), the frequency range of 10 MHz to 100 kHz. Re represents the resistance of the electrolyte, 

electrode and separator in the high-frequency region; the semicircle stands for charge transfer 

resistance (Rct) in the medium-frequency region, and the slant line represents the Warburg impedance 

(Zw) in the low-frequency region. Compared with TiO2/MoS2, MoS2 and TiO2, TiO2/MoS2/RGO 

electrode had a low charge-transfer resistance (Rct) of 133 Ω in the equivalent circuit. Corresponding 

Rct values of TiO2/MoS2, MoS2 and TiO2 electrodes were about 225, 230 and 376 Ω, respectively. 

Synergetic effect of the three components and the interconnected porous architecture prompted Rct 

of TiO2/MoS2/RGO electrode to a relatively small value.63

Fig. 6 The electrochemical performance of the samples. (a) CV curves for TiO2/MoS2/RGO anode on the five cycles 
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operated at a scan rate of 0.1 mV s−1 and voltage range of 3.0-0.01 V; (b) Discharge-charge property of the 

TiO2/MoS2/RGO at a current density of 0.1 A g-1 in the voltage range 3.0-0.01 V; (c) Cycling performance of TiO2, 

MoS2, TiO2/MoS2 and TiO2/MoS2/RGO hybrid electrodes anode at 0.1 A g-1; (d) Rate capabilities of TiO2, MoS2, 

TiO2/MoS2 and TiO2/MoS2/RGO hybrid electrodes.

To further explore the stability performance of the TiO2/MoS2/RGO electrode with a porous 

hierarchical structure, the current density of the cycling test was set to 1 A g-1. In the first four cycles, 

low current density values of 0.05, 0.1, 0.2, and 0.5 A g-1 were conducted to activate the electrode. 

As shown in Fig. 7a, after 350 cycles, the TiO2/MoS2/RGO electrode maintained a discharge capacity 

of 460 mA h g-1. Furthermore, in the first 25 cycles, the coulombic efficiency increased and was then 

kept at around 100%. A superior storage of Na+ ions of the TiO2/MoS2/RGO electrode indicated 

synergistic effects among the MoS2 layers, TiO2 nanosheets and RGO. During the Na+ ions 

inserion/de-intercalation process, TiO2 nanosheets presented their stable nature, showing the 

passivation and buffer feature to prevent the corrosion and collapse of MoS2.64 The interconnected 

RGO layers among TiO2/MoS2 nanosheets relaxed electrochemical redox strains and lowered barriers 

of MoS2 for Na+ insertion/de-insertion.65 Fig. 7b indicates the EIS spectra of the TiO2/MoS2/RGO 

fresh electrode and cycling for 50, 350 cycles. In the fitted equivalent circuit, Rsf refers to the SEI 

surface film resistance of the electrode. The fitted value of Rct for the fresh electrode is 133 Ω. After 

50 cycles and 350 cycles, in the fully charged-state at 2.6 V, the corresponding R(sf+ct) values 

reduced from 120 Ω to 52 Ω. It is found that the surface film resistance and the multi-component 

electrode with porous hierarchical architecture facilitate the kinetics of insertion/desertion of Na ions 

with increasing the cycle numbers. As discussed by M. V. Reddy66,67, the systematic resistance 

decreases from the fresh electrode, 50 cycles to 350 cycles, which was because the surface film 

resistance possibly became negligibly small after 350 cycles.
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Fig. 7 (a) the long cycling performance at current density of 1 A g-1 and (b) EIS spectrum of the of 

TiO2/MoS2/RGO hybrid electrode.

Moreover, to validate the porous hierarchical architecture stability of active materials during 

discharge/charge processes, we disassembled the coin cell after 350 cycles. After washing and drying, 

from the SEM images (Fig. 8), the microstructural shape of the TiO2/MoS2/RGO sample maintained 

its original hierarchical nanostructure, without any collapse and shedding. This indicates that the 

porous hierarchical architecture plays a crucial role in maintaining structural integrity of active 

materials under the repeated Na+ insertion/de-intercalation processes. Additionally, the multi - 

component matching effect enhanced the cycling stability of electrode. The MoS2 was modified by 

TiO2 nanosheets to relieve the stress changes derived from sodium ion intercalation/de-intercalation. 

Following the introduction of RGO, the charge-transfer resistance of TiO2/MoS2 was reduced by the 

interconnected architecture. A 3D porous hierarchical architecture with abundant pores provided 

unblocked channels for electrolytes and shortened the distance of electron and ion transport, resulting 

in a good structure for Na+ storage.68
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Fig. 8 SEM images (a, b) of the TiO2/MoS2/rGO hybrid electrode for SIBs at a potential of 3.0 V after 350 cycles.

4. Conclusions

Above all, a porous hierarchical TiO2/MoS2/RGO architecture was synthesized by hydrothermal 

and calcination method. We explored the synergistic effects among TiO2 nanosheets, MoS2 multilayer 

structure and the linked RGO to improve the Na-storage performance of the TiO2/MoS2/RGO anode 

material for SIBs. Compared with TiO2/MoS2 and MoS2, the TiO2/MoS2/RGO sample delivered a 

reversible capacity of 616 mA h g-1 at 0.1 A g-1 and maintained at 460 mA h g-1 for 350 cycles at a 

high current density of 1 A g-1, accompanied by an outstanding rate performance capability (615 mA 

h g-1 at 0.2 A g-1; 250 mA h g-1 at 5A g-1). This study suggests that a porous hierarchical architecture 

with a synergistic effect among different nanosized components is an effective strategy to enhance 

its electrochemical performances when the electrode is applied to sodium ion batteries.
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Highlight

1. TiO2 nanosheets and RGO layers modify MoS2 layers to realize porous hierarchical 

TiO2/MoS2/RGO architecture;

2. The unique porous hierarchical nanostructure provided unblocked channels for electrolyte and 

shortened the distance of electron and ion transport when it applied as anode material for SIBs;

3. The synergistic effect amongTiO2, MoS2 and RGO with 3D interconnected network improved the 

electrochemical performance.
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