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A B S T R A C T

In this research, a silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating for metallic implants was
fabricated using a facile layer-by-layer coating method. PTFE nanoparticles were immobilized in a sol–gel matrix
and dip-coated onto 316L stainless steel via a mussel-inspired approach followed by AgNP deposition. Benefiting
from the synergistic effect of antibacterial AgNP and non-stick PTFE, the AgNP/PTFE coating exhibited superior
antibiofilm activity against Escherichia coli WT F1693 and enhanced corrosion resistance. Compared with sur-
faces only coated with PTFE, the AgNP/PTFE coated surfaces were capable of sustained release of silver ions,
inhibiting up to ~50% bacterial biomass accumulation after 7 days. To understand the anti-adhesion me-
chanism, both classic DLVO and XDLVO theories were used to model and explain bacterial adhesion. Despite
concerns that an over-release of silver ions may cause toxic effects towards mammalian cells, the coating pro-
cedures offered ease of control over the silver loading, making it potentially useful for preventing metallic
implant-associated infections.

1. Introduction

To date, bacterial infection remains a critical challenge for metallic
implants [1,2]. As a basic survival strategy, bacteria predominantly live
as sessile cells on surfaces rather than as planktonic cells in suspension,
and implant surfaces provide particularly attractive sites for bacterial
adhesion and subsequent biofilm formation [3,4]. For this reason, nu-
merous strategies have been developed to endow implant surfaces with
antibacterial properties to prevent/retard bacterial contamination
[5–10]. Silver (Ag)-based coatings have aroused intense interest as
silver has broad-spectrum antibacterial activity and a low risk of de-
veloping bacterial resistance [11–15]. However, implants coated with
silver alone have only demonstrated limited success in clinical studies
[16–18]. Despite concerns that silver release may cause toxicity in
humans, insufficient silver ion (Ag+) release has nonetheless been
considered as the main reason for the failure of silver-coated implants.
To solve this problem, silver nanoparticles (AgNPs) have been strate-
gically used to replace bulk silver in coatings to improve antibacterial
efficiency with considerable success [19–22]. Owing to the large spe-
cific surface area, AgNP demonstrated enhanced antibacterial activity
allowing a rapid release of Ag+ which affected membrane permeability

and DNA replication, leading to cytoplasm leakage and even cell death
[23,24].

Anti-adhesive coatings are another potential solution to overcome
these challenges. Although bacterial adhesion is a complex process, the
first adhesion phase is believed to be governed by physical and/or
chemical interactions between the planktonic cells and the surface [25].
For example, low-energy surfaces are considered to be less sensitive to
bacterial adhesion because of weaker bonding at the interface [26].
Polytetrafluoroethylene (PTFE) is one of the most biocompatible med-
ical materials and has long been known for its non-stick properties [27].
These properties are believed to result from the extremely strong co-
hesive forces of the PTFE molecules that minimize van der Waals in-
teractions between the surface and bacterial cells [28]. To date, nu-
merous studies have reported success in reducing bacterial adhesion by
incorporating PTFE nanoparticles into the coating matrix [29–32].
Moreover, due to the extremely low coefficient of friction, PTFE has
also been applied to implantable devices for the provision of enhanced
lubricity to minimize patient discomfort [33]. However, the conven-
tional fabrication process often requires specific equipment and may
introduce toxic substances into the coatings.

Recently, sol–gel techniques have emerged as an effective method
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for synthesizing nanocomposite coatings by entrapment of functional
substances into the sol–gel matrix [34]. During the sol–gel process, the
substances are mixed with hydrolyzed sol and gradually trapped in the
network structure in a capsule- or cage-like manner [35]. This simple
feature makes it possible to immobilize PTFE within the coating matrix
to provide an anti-adhesive, corrosion-resistant and lubricant surface
for implants. Moreover, the sol–gel matrix serves as a platform that
allows further modification. Roe et al. [36] previously described a cost-
effective AgNP coating technology, that could be applied to nearly any
type of substrate material, which demonstrated excellent potential for
reducing the risk of infection. Therefore, it would be ideal to combine
antibacterial AgNP with a non-stick PTFE coating to provide enhanced
resistance of the implant surface to bacterial contamination.

In this research, we fabricated an AgNP/PTFE (AP) coating for
metallic implants via a facile mussel-inspired approach. PTFE nano-
particles were incorporated into a sol–gel matrix and coated onto
polydopamine (PDA) functionalized substrates using a dip-coating
technique followed by AgNP deposition. Antibacterial and antibiofilm
activities were evaluated using Escherichia coli WT F1693. Corrosion
resistance was assessed by potentiodynamic polarization measure-
ments, and cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method with
mouse fibroblast cells L929.

2. Experimental

2.1. Preparation of AgNP/PTFE (AP) coatings

Commercially available 316L stainless steel (316L SS) plates (size
10 mm× 10 mm× 1 mm) were used as substrates and electropolished
before further treatment. First, the plates were immersed in a dopamine
solution (2 mg/mL dopamine in 10 mM Tris-HCl buffer, pH = 8.5)
(Sigma-Aldrich, UK) for 24 h to allow the deposition of a polydopamine
(PDA) sublayer. A titanium (IV) butoxide (TBOT) (Sigma-Aldrich,
Dorset, UK) sol - PTFE mixture (PTFE particles: 2.0 g/L, particle size of
200–300 nm, Polysciences, Inc., USA) was prepared and hydrolyzed at
room temperature via an acid catalyzed sol–gel process. The volume
ratios for TBOT:EtOH:0.1 M HNO3 were 1:40:3 and the mixture was
mechanically stirred for 24 h. The PDA-coated plates were vertically
dipped into the mixture and withdrawn at a constant speed of 5 mm/s.
To ensure coating uniformity, the coating process was repeated 3 times
and air dried at room temperature for at least 20 min. The plates were
then immersed into an aqueous solution containing 5 mL/L Tween 20
(Sigma-Aldrich, Dorset, UK), 0.85 g/L sodium saccharine (Sigma-
Aldrich, Dorset, UK), 0.45 g/L silver nitrate (Sigma-Aldrich, Dorset, UK)
and 3.5 mL/L N, N, N’, N’ - tetramethylethylenediamine (Sigma-
Aldrich, Dorset, UK) at 60 °C for 1–12 h to allow AgNP deposition. After
being removed from solution, the plates were subsequently rinsed with
0.1 M HNO3, deionized water and ethanol, air dried and stored in
darkness before further testing.

2.2. Surface characterization

The surface morphology of the coatings was characterized using a
field emission-scanning electron microscope (FE-SEM, JEOL JSM-
7400F, Tokyo, Japan) and atomic force microscope (AFM, Dimension
3000, Santa Barbara, CA, USA). Surface chemistry composition was
analyzed by using energy-dispersive X-ray spectrometry (EDX, QX200,
Bruker, USA). The distribution of PTFE and Ag particles was monitored
by EDX elemental mapping across the entire surface of the coatings.
ImageJ (LOCI, University of Wisconsin, Wisconsin, USA) was used to
identify and calculate the particle size distributions of PTFE and AgNP
from random SEM images. The surface free energy of the coatings was
calculated using the van Oss approach [26,29] and contact angles were
measured using a Dataphysics OCA-20 contact angle analyzer (Data-
Physics Instruments GmbH, Filderstadt, Germany).

2.3. Silver loading and release

The effect of deposition time on silver loading at the surface was
characterized. The AP coated plates (n = 3) with deposition time
ranging from 1 to 12 h were separately immersed in 30% HNO3 for at
least 10 h to ensure complete dissolution of the Ag. The Ag con-
centration was then determined by using atomic absorption spectro-
photometry (Perkin Elmer, AAnalyst 400, USA). To characterize silver
release from the AP coatings, the AP coated plates (n = 3) were se-
parately immersed in 3 mL of PBS at 37 °C for up to 7 days. The PBS
solution was collected and refreshed every day and the silver con-
centration was measured by using AAS. Silver loading and release were
expressed in μg/cm2.

2.4. Antibacterial activity test

Escherichia coli WT F1693 was obtained from the Institute of
Infection and Immunity, Nottingham University, UK. E. coli WT F1693
was inoculated onto tryptone soya agar (TSA) plates and cultured at
37 °C overnight before sub-culturing in Tryptic Soy Broth (TSB). The
bacteria were harvested at the mid-exponential phase and diluted with
nutrient media (10% TSB in PBS) to approximately 106 CFU/mL. To
determine antibacterial activity, the samples (n = 6) were co-incubated
with 3 mL of the diluted bacterial suspension at 37 °C for 7 days. The
optical density, at 600 nm, of the bacterial suspension was measured
daily. To avoid any accumulative effects of Ag+, the bacterial suspen-
sion was refreshed every day. The reduction of bacterial growth was
calculated using the following equation:

= ×Reduction percentage (C E )/C 100%OD OD OD

where COD and EOD are the OD600 values of the control wells containing
only bacteria and the wells containing both samples and bacteria, re-
spectively.

2.5. Live/dead biofilm staining

After 1 or 7 days of incubation, the samples were removed from the
bacterial suspension and air dried after being carefully washed with
PBS. The samples were then stained in the dark using the LIVE/DEAD
Baclight bacterial viability kit L13152 (Fisher Scientific, UK) for
15 min. A fluorescence microscope (OLYMPUS BX 41, Tokyo, Japan)
was used to observe adhered cells and their viability was determined
using Image Pro Plus software (Media Cybernetics, Rockville, USA).
Living bacterial cells were stained fluorescent green while dead cells
were stained fluorescent red. Biomass on the 316L SS, PTFE and AP
coated surfaces was assessed using Gram’s crystal violet staining assay
[37].

2.6. Corrosion test

The anticorrosion performance of the coatings was investigated
using a potentiodynamic polarization test using a CorrTest
Electrochemistry Workstation in PBS at room temperature.
Measurements were conducted in a conventional three-electrode cell
consisting of a platinum (Pt) counter electrode, a saturated calomel
electrode (SCE) as the reference electrode, and the sample (exposed
area: 1 cm2) as the working electrode. Prior to electrochemical mea-
surements, all the samples were immersed in PBS for 1 h to achieve
stable Open Circuit Potentials (OCP, Eoc). The Corrosion Potential (Ecorr)
and Corrosion Current Density (Icorr) were obtained by the Tafel ex-
trapolation method from the potentiodynamic polarization curves at a
scan rate of 5 mV/s.

2.7. Cytotoxicity assays

The cytotoxicity of the coatings was assessed in vitro by an MTT
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assay using mammalian mouse fibroblast cells L929 according to our
previous studies [13,19]. The L929 cells were continuously grown in
Eagle’s minimum essential medium (MEM) supplemented with fetal
bovine serum (10%), penicillin (100 mg/mL) and streptomycin
(100 mg/mL) until achieving confluence. Subsequently, the cells were
collected and seeded in 24 well plates at ~105 cells/well and incubated
with the samples (n = 4) for up to 72 h. The relative cell viability (%)
was determined by comparing the absorbance at 570 nm with the
control wells which contained only cells. Cell morphology was ex-
amined using both optical microscopy (Leica DFC3000, Leica, Wetzlar,
Germany) and confocal microscopy (Leica SP8 confocal microscope,
Wetzlar, Germany).

2.8. Statistical analysis

All data were analyzed using one-way ANOVA and represented as
means ± standard deviation. p < 0.05 was considered significant and
p < 0.01 was considered highly significant.

3. Results and discussion

3.1. Surface characterization

The AP coating process is demonstrated in Scheme 1. According to
our previous study [38], the mussel-inspired PDA sublayer could sig-
nificantly increase the surface wettability of stainless steel and enable it
to resist coating rupture and crack propagation. Upon oxidation, do-
pamine was transformed to 5,6-dihydroxyindole (DHI) through inter-
molecular cyclization in a weak alkaline solution and finally self-
polymerized to PDA that deposited on the 316L SS surface [39–43].
Subsequently, the TBOT precursor sol was thoroughly mixed with the
PTFE nanoparticles followed by a dip-coating process. Previous studies
demonstrated that catechol groups in PDA can effectively chelate with
Ti(IV) and this strong interaction would promote complete and tight
contact between the sol–gel matrix layer and substrate [44,45]. Finally,
the AP coating was obtained by continuous AgNP deposition. As seen in
Fig. 1a and d, PTFE particles with an average diameter of
509.0 ± 12.1 nm aggregated and were entrapped in the coating ma-
trix. Despite attempts having been made to use surfactants (particularly
fluorosurfactants) to improve dispersion of PTFE in coatings and tested
with variable success [46–48], our results showed that surfactants

damaged the coating integrity by creating multiple holes after solvent
evaporation (data not shown). The AgNPs were uniformly deposited on
the coating matrix and the size distribution was relatively narrow
(~5–30 nm) considering the simplicity of the deposition process. EDX
analysis showed the typical surface composition and demonstrated the
presence of F and Ag (Fig. 1b), with the EDX mapping results further
indicating homogenous distributions of PTFE and AgNP in the coating
matrix (Fig. 1c). The Cr and Fe characteristic peaks (Fig. 1b) were from
the 316L SS substrate. To investigate the influence of AgNP deposition
on surface morphology, the deposition time was controlled from 1 h to
12 h. Water contact angle analysis showed that surface hydrophobicity
was slightly increased with the deposition time (Fig. 1e). This could be
attributed to the fact that continuous AgNP deposition increases surface
roughness and causes a net increase in surface energy during wetting,
making the hydrophobic surface more hydrophobic [49]. To verify this,
the surface roughness of the AP coatings was determined by AFM. As
demonstrated in Fig. 1f, the surface roughness increased from
134.7 ± 3.9 nm (PTFE coating) to 158.1 ± 2.7 nm (AP-1, deposition
time of 6 h) and 177.3 ± 5.1 nm (AP-2, deposition time of 12 h),
respectively. In comparison, the uncoated 316L SS substrate showed a
smoother surface (59.4 ± 6.1 nm).

3.2. Antibacterial activity and biofilm adhesion

For silver-based coatings, their antibacterial activity is directly
proportional to the concentration of released silver ions [50]. In this
study, the relationship between deposition time and silver loading at
the surface was characterized. As seen in Fig. S1, the silver con-
centrations deposited at the surface gradually increased with deposition
time reaching 24.8 ± 2.7 μg/cm2 and 68.7 ± 3.4 μg/cm2 after 6 h
and 12 h of deposition, respectively. The silver deposition was rela-
tively slow in the first 2 h (~2.4 μg/cm2·h) and gradually accelerated to
a constant rate of ~ 7.2 μg/cm2·h after 6 h. The low initial deposition
rate could be ascribed to the slow nucleation process that led to in-
sufficient silver nanoparticle formation in the vicinity of the surface.
Owing to the presence of saccharinate anions, the resulted silver pre-
cursor (silver saccharinate) was reduced to stable silver nanoparticles
predominantly monodisperse in size that could firmly attach to the
surfaces [51]. With the coating time from 2 h to 6 h, the concentration
of silver nanoparticles gradually increased, which consequently ac-
celerated silver deposition until a balance was achieved (i.e. the rate of

Scheme 1. Diagram of the AP coating process.
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Fig. 1. (a) Typical SEM image of the AP coatings; (b) Semi-quantitative results of EDX; (c) EDX mappings of SEM image a; (d) Size distribution of the PTFE particles
and Gaussian fitting; (e) Water contact angle as a function of AgNP deposition time; (f) Typical AFM images of 316L SS (f-1), PTFE (f-2), AP-1 (f-3) and AP-2 (f-4).
Bars represent standard deviation of the mean (n = 6). (AP-1 represents the AP coating after 6 h deposition, AP-2 represents the AP coating after 12 h deposition)
(*p < 0.05, **p < 0.01 compared with PTFE coating).
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silver nanoparticle formation = the rate of silver deposition). Fig. 2a
shows Ag+ release curves from two AP coatings with different de-
position times over time. Ag+ release followed a similar trend in both
groups, i.e. a burst release in the initial phase (first 3 days) and a more
gradual release in the second phase. Molleman et al. [52] demonstrated
that the burst Ag+ release was attributable to a fast oxidative dissolu-
tion process, after which a new stable surface state was built with
subvalent silver, yielding a slower but sustained Ag+ release. Over the
first 3 days, the total amounts of silver released from AP-1 (6 h) and AP-
2 (12 h) were 2.59 ± 0.17 μg/cm2 and 3.38 ± 0.25 μg/cm2, re-
spectively. In comparison, the Ag amounts in the last 3 days were
0.77 ± 0.07 μg/cm2 and 1.17 ± 0.14 μg/cm2, respectively. The total
amount of silver released from AP-2 (7.7% of coated silver) in 7 days
was ~40% higher than that from AP-1 (15.2% of coated silver).

To assess the long-term antibacterial activity of the AP coatings,
samples were co-incubated with E. coli in a nutrient-rich culture
medium for up to 7 days and the cell density of each culture was
monitored and compared with the control group. As shown in Fig. 2b,
the AP-1 and AP-2 coated samples significantly inhibited E. coli growth
over the test period when compared with uncoated 316L SS and PTFE

coated samples. For both AP-1 and AP-2, growth inhibition was more
noticeable in the first 3 days as the coatings were able to release a
relatively large amount of Ag+ to inhibit bacterial growth. The results
showed that AP-1 and AP-2 could inhibit by ~75% and ~90% bacterial
growth over the initial 3 days, respectively. After 7 days, AP-1 and AP-2
still exhibited significant antibacterial activity, reducing by ~40% and
~50% of bacterial growth, respectively. In comparison, uncoated 316L
SS and PTFE coated samples demonstrated no significant (p > 0.05)
reduction in bacterial growth over the test period.

The anti-adhesion efficacy of the AP coatings was assessed by live/
dead staining and the total biofilm biomass was quantitatively de-
termined by crystal violet staining. In general, the amount of cumula-
tive biomass increased with incubation time for all the surfaces
(Fig. 2c). The AP-2 exhibited the best anti-adhesive efficacy, reducing
by ~60% and ~50% of biomass accumulation when compared with
316L SS and PTFE coating after 7 days’ culturing, respectively. The
PTFE coating only demonstrated short-term anti-adhesive activity, re-
ducing by ~45% biomass adhesion on the first day as compared with
316L SS, while AP-1 and AP-2 inhibited by ~65% and ~80% of biomass
formation. As seen in Fig. 3, after 1 day’s culture, apparent bacterial

Fig. 2. (a) Ag+ release profiles from the AP coated samples over time; (b) Bacterial growth in the presence of different samples; (c) Biomass formation on different
sample surfaces over time; Effects of separation distance (H) on interaction energy for (d) 316L SS and (e) AP coated surfaces; (f) Effects of the minimum total
interaction energies on E. coli WT F1693 adhesion at 0.157 nm over time. Bars represent standard deviation of the mean.
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aggregation was observed on the 316L SS surface although a mature
biofilm was not formed. In comparison, only dispersed bacterial cells
were found on the PTFE, AP-1 and AP-2 coatings. After 7 days, the
mature E. coli biofilm had established and aggregated on the 316L SS
surface, but dead cells were hardly detected. Large biofilm clusters
accumulated on the PTFE coatings, but only a slight aggregation of E.
coli was observed on the AP-1 and AP-2 coatings. Moreover, a large
number of dead cells were found on the AP coatings which could be
ascribed to the bactericidal Ag+ released from the coatings.

3.3. Effect of interaction energy on biofilm adhesion

Over the last few decades, the extended Derjaguin-Landau-Verwey-
Overbeek (XDLVO) theory has been applied as both qualitative and
quantitative models to predict and explain bacterial adhesion to sur-
faces [4,25,53]. In this theory, bacterial adhesion results from a com-
bination of distance-dependent interactions including Lifshitz-Van der
Waals (LW) forces, electrostatic double-layer (EL) interactions, acid-
base binding (AB) and Brownian motion (Br). Compared to the classic
DLVO theory, the short-range AB interactions describe attractive hy-
drophobic attractions or repulsive hydrophilic repulsions or hydration
effects which may be 10–100 times stronger than LW and EL interac-
tions [25,54].

In this study, the total interaction energy ETOT as a function of
separation distance (H) was calculated according to our previous stu-
dies using both DLVO and XDLVO models [26,33]. The contact angles
and surface energy data are shown in Table 1. As seen in Fig. 2d, the

ETOT curve demonstrated a very clear secondary minimum of about
−3.9E−20 J (−10 kT) at about 7 nm and an energy barrier of up to 1.2
E−17 J (290 kT) at 0.157 nm from the 316L SS surface. Comparing the
classic DLVO and XDLVO models, the acid-base (AB) interactions only
affected the energy curve at close separation distances within the pri-
mary minimum but not at the secondary minimum. In contrast to the

hydrophilic 316L SS surface, the LW reactions at the hydrophobic PTFE
surfaces were repulsive and bacterial adhesion should not occur ac-
cording to the classical DLVO theory (Fig. 2e). However, the XDLVO
model predicted very strong interaction due to the acid-base interac-
tions leading to an extremely deep minimum at 0.157 nm (primary
minimum) at which bacterial cells are considered to be irreversibly
attached to surfaces. Fig. 2f shows the influence of minimum interac-
tion energy ( E )min

TOT on biomass formation over contact time. It seems
that the biofilm was less prone to accumulate on the surface with higher

Emin
TOT , which is consistent with the XDLVO theory.

3.4. Corrosion resistance

Corrosion resistance is an essential characteristic of metallic im-
plants for clinical applications. However, 316L SS surfaces in physio-
logical solutions are often subjected to localized corrosion such as pit-
ting and crevice formation, which may induce mechanical failure and
severe complications [55,56,2]. In this study, the corrosion resistance
of 316L SS, PTFE and AP coatings was studied via an electrochemical
method in PBS. Fig. 4a presents the OCP (Eoc) curves of the coated and
uncoated surfaces during the initial 3600 s. The corrosion potentials of
both PTFE and AP coated samples shifted towards a nobler direction
indicating an improved anodic protection for the 316L SS substrate in
PBS. A passivation layer was formed on the 316L SS surface which
resulted in a rapid increase in the OCP (Eoc) in the initial 1000 s [57]. In
comparison, the OCPs of PTFE coated samples remained at a relatively
stable level during the whole test period. Notably, the AP coatings
(−138 mV for AP-1 and −173 mV for AP-2) presented more negative
OCPs compared with the PTFE coating (−68 mV) and the corrosion
potentials slightly decayed over time. As the AgNP deposition process is
slowly reversible, the decrease in OCP (Eoc) may be caused by the
oxidation of AgNPs in the presence of PBS [58]. Fig. 4b shows the
polarization curves of the uncoated and coated samples. The corrosion

Fig. 3. Live/dead assay: fluorescence microscope images of E. coli on the 316L, PTFE, AP-1 and AP-2 after 1 day and 7 day’s co-culture. Typical images are shown
from one of several examinations.
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potentials (Ecorr) and the corrosion current densities (icorr) were derived
directly from the polarization curves by the Tafel extrapolation method.
As demonstrated in Fig. 4c, all the coatings exhibited more positive Ecorr
and dramatically lower icorr than the uncoated substrate. The PTFE
coating exhibited the best substrate protection as the icorr parameter was
over one order of magnitude lower in value than the 316L SS substrate.
After AgNP deposition, the corrosion resistance was slightly compro-
mised and a longer deposition time resulted in a decrease in the value of
Ecorr . However, the Icorr values of the AP coatings (1.58 × 10−7 A/cm2

for the AP-1 and 2.51 × 10−7 A/cm2 for the AP-2) were still about one
magnitude lower than the substrate (2.01 × 10−6 A/cm2), indicating an
enhanced corrosion protection.

3.5. Cytotoxicity assay

In this study, the cytotoxicity of the coatings was examined using a
direct contact method with L929 mouse fibroblasts for up to 72 h
considering the initial burst release of Ag+ from the AP coatings
(Fig. 2a). As demonstrated in Fig. 5, the uncoated 316 L SS and PTFE
coated samples exhibited the lowest cytotoxicity during 72 h of cul-
turing and no significant difference was found in the OD values be-
tween these two groups (p > 0.05). The presence of AgNP significantly

Table 1
Contact angle and surface energy data (n = 6, bars are standard error of the mean).

Samples Contact angle, θ (deg) Surface free energy (mJ/m2)

θW θD θE γLW γ+ γ− γTOT

316L SS 69.2 ± 0.7 38.4 ± 0.3 47.2 ± 0.9 40.41 0.02 14.18 41.35
PTFE 105.5 ± 1.4 75.4 ± 1.1 79.0 ± 0.8 19.91 0.29 0.38 20.58
AP-1 108.0 ± 0.8 69.6 ± 0.3 84.5 ± 1.2 23.10 0.00 0.22 23.15
AP-2 112.1 ± 1.3 78.2 ± 0.6 90.3 ± 0.4 18.43 0.00 0.29 18.43
E. coli, WT F1693 [38] 16.5 ± 1.1 47.6 ± 0.5 22.9 ± 0.7 35.60 0.14 67.68 41.76

Fig. 4. (a) Open-circuit potential, (b) potentiodynamic polarization curves and (c) the Ecorr and Log icorr of different samples in PBS (n = 3, bars represent standard
deviation of the mean).

Fig. 5. MTT assay for the viability of L929 cells cultured with 316L SS, PTFE,
AP-1 and AP-2 at 24, 48 and 72 h. (* p < 0.05 and ** p < 0.01 compared with
control).
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inhibited the proliferation of L929 cells as the medium with AP coatings
showed the lowest OD value over the whole test period. Moreover, it is
noteworthy that the adverse effects of AP coatings were Ag+-con-
centration-dependent. Following 24 h incubation, the AP-1 and AP-2
coatings inhibited bacterial growth by 26.3% and 39.7% respectively
when compared with the control. After 72 h, the inhibition rates rosed
to 36.7% (AP-1) and 44.8% (AP-2), respectively. According to the ISO
10993–5:2009(E), the samples would be considered to have cytotoxic
effects if the cell viability was reduced to<70% of the blank. There-
fore, the results indicated that the AP coatings would result in a toxic
effect towards the L929 cells after 72 h culture despite AP-1 demon-
strated being biocompatible over the first 24 h. This may be caused by
the accumulation of silver ions in the culture medium that induced a
toxic response over time. According to previous studies [59], the
commercial silver coated urinary catheter (Dover™) only released

~0.30 μg/cm2 of Ag per day in the initial 3 days while the amount of Ag
released from AP coatings was 3–4 times higher (Table S1).

Cell morphologies were observed using both optical and confocal
microscopy. As seen in Fig. 6, after 24 h culturing, L929 cells in the
control wells exhibited a healthy and heterogeneous profile, including
spindle-like, stellate and round shapes. Cells cultivated in the medium
which was initially incubated with 316L SS and PTFE coated samples
showed a similar morphology to control cells. However, it was found
that some of the cells exposed to the AP coatings lost their typical
spindle-shaped morphology and features such as shrinkage, cytoplasmic
condensation and rounded cells were observed in the AP-2 group. After
72 h, the cells exposed to AP coatings had almost lost their elongated
shape, and the majority had an oval or rounded shape. Similar results
have been reported in other studies [60,61].

Fig. 6. (a) Optical images of L929 cells after 24 h of co-incubation and (b) confocal microscopy images of L929 cells after 72 h of co-incubation (the nuclei were
stained with Hoechst 33258, the actin cytoskeleton was labeled using Alexa Fluor 488 phalloidin). Typical images are shown from one of several examinations.
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4. Conclusions

In this paper, a sol–gel derived AP coating was fabricated for me-
tallic implants via a facile layer-by layer method. A mussel-inspired
PDA layer was first applied onto the substrate to encourage the im-
mobilization of the sol–gel matrix which provided a platform for the
subsequent entrapment of PTFE and deposition of AgNP. Benefiting
from their synergistic effect, the AP coating exhibited prolonged anti-
bacterial activity against E. coli and enhanced corrosion resistance in
PBS. The AP coating was capable of releasing antibacterial Ag+ in a
sustained manner which was proved to effectively inhibit bacterial
growth and retard biofilm formation. Despite concerns that overdose of
Ag+ could cause local cytotoxicity, the coating procedures offered an
ease of control over the silver release and demonstrated good practic-
ability, making it potentially useful in preventing the metallic implant-
associated infections.
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