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Abstract: In this paper, steady solutions of solitary waves in the presence of nonuniform shear currents are obtained by use of the High-Level 

Green-Naghdi (HLGN) model. We focus on large-amplitude solitary waves in strong opposing shear currents. The linear-type currents, 

quadratic-type currents and cubic-type currents are considered. In particular, the wave speed, wave profile, velocity field, particle trajectories 

and vorticity distribution are studied. It is demonstrated that the solitary wave and nonuniform shear current interaction changes the velocity 

field and vorticity field significantly.  
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A solitary wave has been an important topic in 

nonlinear water wave field for many decades. Dutykh and

Clamond
[1]

proposed an effective method to calculate the 

profile and the velocity field of the solitary waves 

( / 0.79H d  , where H is the wave amplitude and d is

the water depth) by solving Euler’s equations. Recently, 

Duan et al.
[2]

calculated steep solitary waves, and even a 

limiting-amplitude solitary wave with / 0.833199H d 

by using the High-Level Irrotational Green-Naghdi

(HLIGN) model.  

Meanwhile, wave-current interaction is universal in 

coastal regions, and it changes the wave profile, speed

and particle trajectories. Thus, it is important to study the

effect of wave-current interaction of the flow field.

Steady solutions of solitary waves in the presence of

linear shear currents have been studied by some

researchers. Choi
[3]

, Pak and Chow
[4]

used asymptotic 

method and third-order solution, respectively, to study 

the solitary-wave profile, wave speed and streamlines for

a solitary wave in linear shear current. Duan et al.
[5]

used

the High-Level Green-Naghdi (HLGN) model to obtain

more accurate results for large-amplitude solitary waves

in linear shear currents to compare with the results of Pak 

and Chow
[4]

.     

    However, to our knowledge, few works considered 

solitary waves in the presence of nonuniform shear 

currents. Pak and Chow
[4]

 studied two types of

nonuniform shear currents as ( )cu z U z  and 

2( )cu z Uz , where U is the current speed at the still-

water level and ( )cu z is the current profile. While Pak

and Chow
[4] 

only considered a small-amplitude solitary

wave with / 0.1H d  . Meanwhile, particle trajectories 

and vorticity distribution are not considered by Pak and 

Chow
[4]

.

    In this paper, we use the High-Level Green-Naghdi 

(HLGN) model to investigate solitary waves in  

nonuniform shear currents. The fluid is assumed to be 

inviscid and incompressible. The water depth is constant. 
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    x  is the horizontal axis and positive to the right. z  is 

the vertical axis and positive up in this 2-dimentional 

study. The continuity equation is written as 

+ =0,
u w

x z

 

 
(1) 

where ( , , )u x z t  is the horizontal component of velocity 

and ( , , )w x z t  is the vertical component of velocity.  

    Euler’s equations are written as 

1
- ,

u u u p
u w

t x z x

   
  

   
(2a) 

1
- ,

w w w p
u w g

t x z z




    
    

    
(2b) 

where   is the mass density, p  is the pressure, g  is the 

gravitational acceleration and  t  is time.  

Meanwhile, the kinematic boundary conditions are 

written as

( , ),w u z x t
t x

 


 
  
 

(3a) 

0  ,w z d   (3b) 

where ( , )x t is the surface elevation. 

In the HLGN model, only a single assumption on the

velocity variation in vertical direction is introduced as
1

0

( , , ) ( , ) ,
K

n

n

n

u x z t u x t z




 (4a) 

0

( , , ) ( , )
K

n

n

n

w x z t w x t z


 ， (4b) 

where nu and nw are the unknown velocity coefficients

that should be solved later. 

    We then substitute Eq. (4) into Eq. (1) and Eq. (3b) to 

eliminate  ( 0,1,..., )nw n K . We substitute Eq. (4) into Eq.

(2), multiply each term by
nz and integrating from d to

 and eliminate pressure terms. We finally obtain the

HLGN equations. The unknowns are ( 0,1,..., -1)nu n K

and  . We refer the reader to Webster et al.
[6]

for more 

details. 

In this paper, we consider a solitary wave with 

amplitude H propagating from left to right with a 

constant speed c . The background linear-type currents, 

quadratic-type currents and cubic-type currents are 

considered. Sketch of the physical problem is shown in 
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Fig. 1.  

 
Fig.1 Sketch of a solitary wave propagating in shear currents 

 

We note that for these three type currents, the current 

velocity at the bottom is ( ) 0cu d   and it is (0)cu U  

at the still-water level. Fig.2 shows the velocity profiles 

of the three type currents for the case that 1d m and 

1 /U m s  . 

 
Fig.2 Velocity profile of different type shear currents, 1d m  

and 1 /U m s   

 

We solve this physical problem in wave coordinates, 

where X x ct   and Z z . The method to solve the 

steady problem can be found in Duan et al. 
[5]

.  

    Some boundary conditions should be considered to 

solve ( 0,1,..., -1)nu n K  and  . If we set the solitary-

wave crest at 0X  , based on the symmetry 

characteristics, surface elevation   and velocity 

coefficients nu  are 

 0,           0X
X


 



 
(5a) 

 0,      0,1,..., 1,   0nu
n K X

X


   



 
(5b) 

When X  , since there is no wave-current 

interaction, the surface elevation 0  . Meanwhile, the 

boundary conditions should describe the shear currents 

exactly. Thus, for the quadratic shear currents discussed 

in the present study, we have  

 

2

0 1 2,   2 / ,   / ,

0     3,..., 1,   ,n

u U c u U d u U d

u n K X

   

   

 
(6) 

and for the cubic shear currents, we have 

 

2

0 1 2

3

3

,   3 / ,   3 / ,

/ ,   0     4,..., 1,   .n

u U c u U d u U d

u U d u n K X

   

    

 
(7) 

The Newton-Raphson method is used to obtain the 

travelling solution. The solitary-wave solution with no 

currents of the HLGN model is used as the initial values, 

see Zhao et al.
 [7]

. Then we increase U from 0  to the 

desired value we specify gradually. 

    Next, we will show the numerical results of the steady 

solutions of the solitary wave in nonuniform shear 

currents. We nondimensionalize all the parameters by  g  

and d . The bar over the following quantities means they 

are dimensionless.     

We firstly consider a weakly nonlinear case, where the 

solitary-wave amplitude is 0.1H  . For the quadratic 

shear-current case, Pak and Chow
[4]

 obtain the third-order 

solution of the wave profile when 1.2U   .The 

comparison between the HLGN results and the third-

order solution is shown in Fig. 3. We find that the two 

results show very good agreement. This is expected 

physically because the wave amplitude is not high.  

 

 
Fig.3 Solitary-wave profile for the quadratic-current case, 0.1H  , 

1.2U    

 

    We also obtain the relationship between the wave 

speed c and current strength U  for the quadratic-current 

case for the solitary wave of amplitude 0.1H   by use of 

the HLGN model. Good agreement is found between the 

HLGN results and the third-order solution.  Figure is not 

shown here for the sake of brevity. 

    Next, we consider a strongly nonlinear solitary wave 

with 0.5H  . Variations of the wave speed c with the 

current strength U  is shown in Fig. 4. From Fig. 4, we 

find that as the opposing-current strength increases, the 

solitary-wave speed decreases. Meanwhile, for a fixed 

current strength, the solitary wave in the cubic shear 

currents travels faster than that for other two types of 

shear currents. Solitary wave in linear shear currents has 

the lowest wave speed. 
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Fig.4 Relationship between the wave speed c  and current 

strength U for the solitary wave with 0.5H   
 

    In particular, we focus on solitary waves with 

0.5H  in the presence of strong opposing shear currents 

when 1U   . The wave profile, velocity field, particle 

trajectories and vorticity distribution are studied.  

    The solitary-wave profiles are shown in Fig. 5. From 

Fig. 5, we see that the solitary-wave profiles are much 

wider for the opposing-current cases than that for the no-

current case. Also, the solitary-wave profiles for the 

linear-current case, quadratic-current case and cubic-

current case show very little differences in Fig. 5. 

 
Fig.5 Solitary-wave profiles, 0.5H   

 
    Next, we study the horizontal velocity along the water 

column at the wave crest. Results are shown in Fig. 6.  

 
Fig. 6 Horizontal velocity along the water column at wave crest, 

0.5H  , 1U    

 
    We mention that the initial current velocity distribution  

shown in Fig. 2 is 
current 1u   at still water level.  Fig. 6 

shows that 
wave current interactionu u u u    at the wave crest 

are close to -1.2 because of the wave-current interaction. 

These values also show some differences at sea bottom. 

    The velocity field of solitary wave in shear currents are 

shown in Fig. 7, including the linear-current case in Fig. 

7(a), quadratic-current case in Fig. 7(b) and cubic-current 

case in Fig. 7(c). We find  an obvious vortex in each case. 

In the linear-current case, the vertical position of vortex is 

near 0.34Z   , while it is near 0Z   and 0.13Z   for 

the quadratic-current case and cubic-current case. Note 

that there is no assumption of irrotationality in the present 

theory.  

    Results of the particle-trajectory calculations on three 

different vertical positions ( 0,  -0.2, -0.5)Z   are shown 

in Fig. 8. For each case, we have aligned the maximum 

displacements at the same horizontal position 0X  . We 

find that for the particle that initially lies at the free 

surface 0Z  ,  the trajectories are similar in these three 

cases. For the particle that initially lies at 0.2Z   , 

some differences are found between these three cases, 

among which the shape of trajectory is steepest for the 

cubic-current case. When we consider a particle initially 

lies at half of the water depth 0.5Z   , some obvious 

differences are found. For the quadratic-current case and 

cubic-current case, a closed hoop appears in the particle 

trajectories. Meanwhile, the hoop is wider for the cubic-

current case than that for the quadratic-current case. As 

far as the maximum vertical displacement, it is largest for 

the linear-current case and it is smallest for the cubic-

current case. 

    At last, we consider the vorticity field. Vorticity is 

written as 

.
w u

x z


 
 
 

 
(8) 

The vorticity along the water column at different 

horizontal positions ( 0,  3, 6, 40)X   is shown in Fig. 9. 

The solitary wave and linear shear current interaction will 

not change the vorticity field as shown in Fig. 8(a). 

However,  the solitary wave and nonlinear shear-current 

interaction significantly affects the vorticity distribution.  

For example, at 0X   in Fig. 8(b), the vorticity changes 

nonlinearly. As X increases, which means the spatial 

position is further from the wave crest and nearer to the 

position with no wave-current interaction, the vorticity 

changes more linearly. At the position 40X  , since 

there is almost no wave-current interaction, the vorticity 

changes linearly. For the cubic-current case shown in Fig. 

9(c), we find that the vorticity changes rapidly near the 

wave crest due to wave-current interaction. Moreover, at 

all the positions, the vorticity  changes from 0  to 2  for 

the quadratic-current case and changes from 0  to 3  for 

the cubic-current case.  

At last, the vorticity field of the solitary wave in 

nonuniform shear currents is shown in Fig. 10. 

    In this paper, we focus on a strongly nonlinear solitary 

wave with 0.5H  propagating in the presence of 

opposing nonuniform shear currents with 1U   . The 

linear-type currents, quadratic-type currents and cubic-

type currents are studied. Conclusions are reached below: 

     (1) The solitary wave and opposing-current interaction 

will significantly affects the velocity field, see Fig. 6. 

     (2) Different type of shear currents will significantly 

affects the particle trajectories, see Fig. 8. 

     (3) Solitary wave and nonuniform currents interaction 

changes the vorticity distribution, see Fig. 9 and Fig. 10.  
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              (a) linear-current case                                       (b) quadratic-current case                                   (c) cubic-current case 

Fig. 7 Velocity field of the solitary wave in shear currents, 0.5H  , 1U    

 

 
           (a) linear-current case                                   (b) quadratic-current case                             (c) cubic-current case 

Fig. 8 Particle trajectories at different vertical positions, 0.5H  , 1U     

 

 
             (a) linear-current case                                   (b) quadratic-current case                             (c) cubic-current case 

Fig. 9 Vorticity distribution along the water column at different horizontal positions, 0.5H  , 1U    

 

 
           (a) linear-current case                                   (b) quadratic-current case                             (c) cubic-current case 

 Fig. 10 Vorticity field, 0.5H  , 1U    




