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Optimal designs for full and partial likelihood

information - with application to survival models

Maria Konstantinou, Stefanie Biedermann and Alan Kimber

Abstract

Time-to-event data are often modelled through Cox’s proportional hazards model for

which inference is based on the partial likelihood function. We derive a general expression

for the asymptotic covariance matrix of Cox’s partial likelihood estimator for the covari-

ate coefficients. Our approach is illustrated through an application to the special case of

only one covariate, for which we construct minimum variance designs for different censoring

mechanisms and both binary and interval design spaces. We compare these designs with the

corresponding ones found using the full likelihood approach and demonstrate that the latter

designs are highly efficient also for partial likelihood estimation.

Key words:
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1. Introduction

Survival experiments are widely used in areas such as medicine, biostatistics, agriculture and

engineering, producing data on the time until the occurrence of a particular event of interest.

Such data known as time-to-event or survival data, usually feature censoring, which occurs when

the event is not observed for some of the subjects in the experiment, and are often modelled

through nonlinear survival models.

Currently there is little guidance on how to plan experiments involving potentially censored

data. Most of the available results concern accelerated life testing, see, for example, Pascual

and Montepiedra (2003), Zhang and Meeker (2006), Wu, Lin and Chen (2006) or McGree and

Eccleston (2010). Becker, McDonald and Khoo (1989) use geometrical arguments and empirical

values to construct D-optimal designs for proportional hazards models with one or two parame-

ters. López-Fidalgo, Rivas-López and Del Campo (2009) consider a two-parameter exponential

regression model and find D-optimal designs conditional on arrival time. Finally, Konstantinou,

Biedermann and Kimber (2014) find D- and c-optimal designs for a large class of two-parameter
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models, including survival models with different censoring mechanisms. The results in all these

papers arise from the use of the full likelihood approach.

In practice, researchers often prefer Cox’s proportional hazards model (Cox (1972)) to parametric

models because fewer assumptions are required and because of the simple interpretation of

the regression coefficients in terms of hazard ratios. In particular, Cox’s model satisfies the

proportional hazards assumption of constant hazard ratio over time. However, the baseline

hazard function, and hence the probability distribution of the times-to-event, is not specified

and therefore inference on the covariate coefficients is based on the partial likelihood method

developed by Cox (1972) which does not require knowledge of the baseline hazard.

Andersen and Gill (1982) formulate the Cox model in a counting process set-up, and provide

analytical results for the asymptotic properties of the estimators from this model. However,

there are only two papers in the literature so far on optimal designs for the model. Kalish and

Harrington (1988) find optimal designs for the special case when two treatments are available,

that is, for a binary design space. They investigate empirically the loss of efficiency when equal

numbers of patients are allocated to each treatment (the balanced design). López-Fidalgo and

Rivas-López (2014) use approximations to obtain an information matrix based on the partial

likelihood for a binary design space. In their application, they find optimal designs based on

this approximation which they then compare with the optimal designs for the full likelihood

approach. However, the model they use in their full likelihood analysis does not correspond to

the nominal model assumed for the partial likelihood situation.

We find a closed-form expression for the asymptotic covariance matrix in the Cox model, and

provide a necessary condition for the optimality of a design that can be used to screen out

non-optimal designs. In our applications, we consider both a binary and an interval design

space and find the optimal designs numerically by optimising a complicated objective function

that involves an integral over time. Comparisons with the optimal designs found using the full

likelihood for the same underlying nominal models (Konstantinou, Biedermann, and Kimber

(2014)) show that the latter designs are highly efficient for partial likelihood estimation. This

suggests that the readily available optimal designs for a suitable parametric model can be used in

practice, even though partial likelihood estimation is to be used. We further extend a result by

Kalish and Harrington (1988) to interval design spaces, where we show that for Type-I censoring

the optimal designs do not depend on the shape of the hazard function. Hence, the optimal

designs found in Konstantinou, Biedermann, and Kimber (2014) for constant hazard functions

are near optimal for the Cox model regardless of the true underlying hazard function.

This article is organised as follows. In Section 2, we briefly describe the type of data observed in

survival studies, and define approximate designs. In Section 3, we derive the optimality criterion

to be used, and find a necessary condition for the optimality of a design. Then in Section 4

we find optimal designs for various censoring scenarios, and compare our results with those by
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Kalish and Harrington (1988). In Section 5 we compare the optimal designs for the Cox model

with optimal designs for the corresponding parametric model, show why these are similar and

give a simple illustration. Finally some conclusions and recommendations are given in Section

6.

2. Background

Let T1, . . . , Tn be the independent times-to-event of the n subjects in the experiment with

t1, . . . , tn their corresponding values and [0, c] be the predetermined period of the experiment.

Throughout this article we focus on right-censoring that occurs when the time until the occur-

rence of the event of interest is above a certain value called the censoring time, but it is unknown

by how much.

We consider two different censoring mechanisms that result in right-censored data, Type-I and

random censoring. Type-I censoring corresponds to the case where all the subjects enter the

experiment at the same time and so the censoring time is common for all the subjects and is

equal to the duration of the experiment c. We observe Yj = min{Tj , c}, j = 1, . . . , n, and times-

to-event greater than c are therefore right-censored. When subject j enters the experiment at a

random time in [0, c], independent of the time-to-event, the censoring time Cj for this subject is

also random. This scenario corresponds to random censoring where we observe Yj = min{Tj , Cj},
j = 1, . . . , n. In the following the distribution of the time of entry for each subject is assumed

to be uniform.

The data, Yj , j = 1, . . . , n, may depend on several covariates held in a vector x, which can be

controlled by the experimenter. The aim of designing an experiment is to choose those settings

of the covariates which ensure the most precise estimation of the model parameters of interest.

This is formulated through an optimal experimental design. We consider approximate designs

of the form

ξ =

{
x1 . . . xm

ω1 . . . ωm

}
, 0 < ωi ≤ 1,

m∑
i=1

ωi = 1,

where the support points xi ∈ X , i = 1, . . . ,m, m ≤ n are the distinct experimental conditions

in the design and the weights ωi represent the proportion of observations to be taken at the

corresponding support point. In what follows, we will state the design problem for the general

situation of possibly more than one covariate. Our applications will then focus on the one

covariate case where X is either binary, that is X = {0, 1}, corresponding, for example, to two

treatments, or an interval, that is X = [u, v], corresponding, for example, to different drug doses.
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3. Cox’s model and optimality criterion

When the risk of the event occurring at a particular time t depends on the values of a set of

covariates Cox’s proportional hazards model is specified by the hazard function

h(t,xj) = h0(t)e
βTxj (t > 0), (1)

where xj is the value of the covariate vector for the jth subject, β is the vector of coefficients

that need to be estimated and h0(t) is the baseline hazard function which remains unspecified.

Suppose that data are available for n subjects with corresponding observations denoted by

y1, . . . , yn and that δj , j = 1, . . . , n, is an indicator function which is equal to zero if the jth

observation yj is right-censored and unity otherwise. The partial likelihood function for model

(1) is (Cox (1972))

L(β) =

n∏
j=1

{
eβ

Txj∑
l∈R(yj)

eβ
Txl

}δj
, (2)

where R(yj) is called the risk-set at time yj and contains the indices of those subjects for which

neither the event nor censoring have occurred at a time just prior to yj .

The asymptotic variance of the maximum partial likelihood estimate of β, β̂PL, is the inverse

of E
[
−∂2 logL(β)

∂β∂βT

]
. López-Fidalgo and Rivas-López (2014) approximate this expectation for one

covariate, and maximise the resulting expression in order to find optimal designs. They therefore

add an extra layer of approximation to the optimality criterion, in addition to the fact that the

information matrix in itself approximates the inverse of the covariance matrix.

We work directly with the asymptotic covariance matrix, which we derive from Andersen and

Gill (1982), who showed that under some regularity conditions,
√
n(β̂PL − β) converges in

distribution to N (0,Σ−1) as n → ∞. Here, 0 is the zero vector of appropriate length, and for

an approximate design ξ, the inverse, Σ, of the asymptotic covariance matrix is given by

Σ = Σ(ξ) =
m∑
i=2

∑
q<i

ωiωqe
βT (xi+xq)(xi − xq)(xi − xq)T

∫ ∞
0

πi(y)πq(y)h0(y)∑m
l=1 ωlπl(y)eβ

Txl
dy, (3)

where πi(y), i = 1, . . . ,m, is the probability that a subject with covariate vector xi is at risk at

time y, that is, neither the event nor censoring have occurred for that subject by time y.

An optimal design for model (1) minimises the asymptotic covariance matrix or equivalently

maximises Σ(ξ) with respect to the design ξ. Thus, a design ξ∗ is Σ-optimal for estimating β if

ξ∗ = arg min
ξ

Σ−1(ξ) = arg max
ξ

Σ(ξ).

We note that the optimal design will depend on the value of the β-parameter and therefore will

be a locally optimal design.
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It is clear from the asymptotic distribution that the bias of the estimator β̂PL is of order o(n−1/2).

Hence the variance will dominate the mean squared error for large n, thus justifying our choice

of optimality criterion, which is solely based on the asymptotic covariance matrix.

For illustration purposes, in what follows, we consider the special case of only one covariate.

This situation is often encountered in clinical trials where patients are randomised to different

treatments or doses of a treatment. Similarly, in life testing in reliability studies there is usually

just one covariate to be selected by the experimenter.

Proposition 1 gives a necessary condition for the optimality of a design ξ∗ and is proven in

the appendix. Unlike the general equivalence theorem for c-optimality (Atkinson, Donev and

Tobias (2007)), this condition is not sufficient, since the criterion function, Σ(ξ), is not concave.

However, it can be used to discard candidate designs that do not satisfy this condition since

they are non-optimal.

Proposition 1. Let H be the class of all one-point designs where the support point is in the

design space X = [u, v], and let η = {x; 1} ∈ H. If a design ξ∗ on X with support points

{x1, . . . , xm} and corresponding weights {ω1, . . . , ωm} is optimal for estimating β via the partial

likelihood method, the inequality

d(ξ∗, η) ≤ 0

holds for all η ∈ H, with equality in the one-point designs ξi = {xi; 1}, i = 1, . . . ,m, generated

by the support points of ξ∗. Here d(ξ∗, η) is the Fréchet derivative of the criterion function at

ξ∗ in direction of the one-point design η, and is given by

d(ξ∗, η) = −
m∑
i=2

∑
q<i

ωiωqe
β(xi+xq)(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)∑m
l=1 ωlπl(y)eβxl

dy

−
m∑
i=2

∑
q<i

ωiωqe
β(xi+xq)(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)πx(y)eβx

(
∑m

l=1 ωlπl(y)eβxl)2
dy

+
m∑
q=1

ωqe
β(x+xq)(x− xq)2

∫ ∞
0

h0(y)πx(y)πq(y)∑m
l=1 ωlπl(y)eβxl

dy,

where πx(y) is the probability of being at risk at time y for covariate-value x.

Example. To fix ideas, consider the scenario with one explanatory variable, parameter value

eβ = 0.03 and no censoring. In this situation, the best two-point design does not satisfy the

condition in Proposition 1; see Figure 1. The best three-point design satisfies the condition.

This does not prove optimality, but numerical search showed that the criterion value could not

be improved by using four-point designs, so in this case there is strong evidence that the best

three-point design is optimal.
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Figure 1: The function d(ξ∗, x) for the best two-point design (left panel) and the best three-

point design (right panel). The two-point design cannot be optimal.

We found that in most scenarios considered in this paper the best two-point design satisfied the

condition from Proposition 1. It was usually the more extreme cases (large values of |β|) where

three points were required. In those situations, the efficiency of the best two-point design was

reasonably high (e.g. 86% for the example). For the sake of better comparison with c-optimal

designs (see Section 5), we present the best two-point designs in what follows. In most cases

these are optimal, and very efficient otherwise.

4. Optimal designs for partial likelihood information

In this section we find the optimal designs for model (1) considering both a binary and a

continuous design space and various censoring mechanisms. We first discuss the special case of

no censoring and then investigate Type-I and random censoring separately.

In the case of a binary design space X = {0, 1} the design must be supported at points x1 = 0

and x2 = 1. Using the results of Andersen and Gill (1982), Kalish and Harrington (1988) find

the asymptotic variance of
√
n(β̂PL − β) to be

Σ−1(ξ) =
1

ω(1− ω)eβ

[∫ ∞
0

π1(y)π2(y)h0(y)

ωπ1(y) + (1− ω)eβπ2(y)
dy

]−1
, (4)

where ω and 1− ω are the weights at points 0 and 1 respectively.

For purposes of comparison with the c-optimal designs found using the full likelihood approach,

for a continuous design space we consider designs with two support points x1 and x2 and cor-

responding weights ω and 1 − ω. From (3), the asymptotic variance of
√
n(β̂PL − β) can be
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written as

Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ ∞
0

π1(y)π2(y)h0(y)

ωeβx1π1(y) + (1− ω)eβx2π2(y)
dy

]−1
. (5)

Following Kalish and Harrington (1988), the survivor function of the random variable W repre-

senting the time to censoring is given by

SW (w) =

{
1, if 0 < w ≤ c
0, if w > c

, SW (w) =

{
c−w
c , if 0 < w ≤ c
0, if w > c

for Type-I and random censoring respectively. Therefore, the probability that a subject allo-

cated at point xi is at risk at time y is πi(y) = SW (y)Si(y), i = 1, . . . ,m, where Si is the survivor

function for subjects allocated at xi. We also use the Kalish and Harrington (1988) character-

isation for the proportion of censoring as the overall probability of censoring had a balanced

design been used. That is, 1− (0.5d1 + 0.5d2), where di = P (Y < W ) =
∫∞
0 SW (y)dFi(y) is the

probability of the event occurring and Fi(y) is the distribution function of the times-to-event

for subjects allocated to xi, i = 1, 2.

4.1. No censoring This corresponds to c = ∞, that is, a study running for as long as

necessary to record all event times. In this case πi(y) = Si(y), i = 1, 2, and equations (4) and

(5) can be written as

Σ−1(ξ) =
1

ω(1− ω)eβ

[∫ 1

0

ue
β−1

ω + (1− ω)eβueβ−1
du

]−1
,

Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ 1

0

ue
βx2−1

ωeβx1 + (1− ω)eβx2ue
βx2−eβx1

du

]−1
respectively using the fact that under proportional hazards Si(y) = {S0(y)}eβxi , i = 1, 2, and

applying the transformation u = S0(y) = exp{−
∫ y
0 h0(s)ds}. Therefore, whether a binary or

an interval design space is considered, the baseline hazard does not affect the optimal choice of

design.

Assuming exponential times-to-event, the optimal designs for various β-values along with the

efficiency of the balanced design that allocates equal proportions of subjects at the two support

points, are presented in Table 1. We note that the continuous design interval considered in these

calculations is X = [0, 1].

We observe that for a positive value of β the optimal weight 1−ω at point x2 = 1 is the same as

the weight ω at point x1 = 0 for the corresponding negative β of equal absolute value. Moreover,

for small and moderate absolute values of β, for example 0.69 and 1.39, the efficiency of the

balanced design is high and decreases for larger absolute values of β (|β| = 3.51).
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Table 1: Optimal designs for binary and continuous design spaces and efficiencies, in percent,

of the balanced design in the absence of censoring

optimal eβ(β)

design 0.03 (-3.51) 0.25 (-1.39) 0.5 (-0.69) 2 (0.69) 4 (1.39) 33.3 (3.51)

1− ω 0.68 0.55 0.51 0.49 0.45 0.32

efficiency (91) (99) (100) (100) (99) (91)

{x1, x2} {0.04,0.96} {0,1} {0,1} {0,1} {0,1} {0.1,1}
1− ω 0.66 0.55 0.51 0.49 0.45 0.34

efficiency (90) (99) (100) (100) (99) (90)

4.2. Type-I censoring Under this censoring scheme Kalish and Harrington (1988) showed

that for X = {0, 1} equation (4) can be written as

Σ−1(ξ) =
1

ω(1− ω)eβ

[∫ 1

S0(c)

ue
β−1

ω + (1− ω)eβueβ−1
du

]−1
,

where S0(y) = exp{−
∫ y
0 h0(s)ds}. We extend this result to the case of an interval design space.

Using again that Si(y) = {S0(y)}eβxi , i = 1, 2, and applying the transformation u = S0(y),

equation (5) becomes

Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ 1

S0(c)

ue
βx2−1

ωeβx1 + (1− ω)eβx2ue
βx2−eβx1

du

]−1
.

In both cases Σ−1(ξ) depends on the baseline hazard only through S0(c) and hence the optimal

design is independent of the shape of h0(t). Therefore, under Type-I censoring the optimal design

can be found by assuming a constant baseline hazard without loss of generality. In conclusion,

the optimal designs for the exponential regression model will be efficient for partial likelihood

estimation whatever the baseline hazard.

Tables 2 and 3 show the optimal designs assuming the exponential regression model and the

efficiency of the balanced design for X = {0, 1} and X = [0, 1] respectively. The β-values were

chosen to exemplify small, moderate and large covariate effects.

For both a binary and an interval design space the symmetry of the optimal weights for equal

absolute values of β is also evident for Type-I censoring. According to the sign of the parameter

β, the optimal design allocates more subjects to the experimental point where the possibility of

censoring is greater in order for the variance to be minimised. This will be the smaller support

point x1 when β is positive since in this case the covariate has an increasing effect on the hazard.

We found numerically that the optimal (two point) designs for the interval design space X = [0, 1]

are not necessarily unique. In particular, if an optimal (two point) design is not supported at
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Table 2: Optimal weights 1 − ω corresponding to x2 = 1 and efficiency, in percent, of the

balanced design for a binary design space and Type-I censoring

proportion eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
0.68 0.60 0.55 0.52 0.48 0.45 0.40 0.32

(92) (97) (99) (100) (100) (99) (97) (92)

0.3
0.68 0.61 0.58 0.54 0.46 0.42 0.39 0.32

(92) (96) (98) (99) (99) (98) (96) (92)

0.5
0.76 0.68 0.62 0.56 0.44 0.38 0.32 0.24

(80) (88) (95) (99) (99) (95) (88) (80)

0.7
0.82 0.73 0.64 0.57 0.43 0.36 0.27 0.18

(71) (83) (93) (98) (98) (93) (83) (71)

0.9
0.85 0.75 0.66 0.58 0.42 0.34 0.25 0.16

(68) (80) (91) (97) (97) (91) (80) (68)

Table 3: Support points {x1, x2}, optimal weights 1 − ω at point x2 and efficiency, in percent,

of the balanced design under Type-I censoring for X = [0, 1]

proportion eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1

{0.04,0.96} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.04,0.96}
0.66 0.60 0.55 0.52 0.48 0.45 0.40 0.34

(90) (97) (99) (100) (100) (99) (97) (90)

0.3

{0,0.91} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.09,1}
0.66 0.61 0.58 0.54 0.46 0.42 0.39 0.34

(90) (96) (98) (99) (99) (98) (96) (90)

0.5

{0,0.84} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.16,1}
0.71 0.68 0.62 0.56 0.44 0.38 0.32 0.29

(76) (88) (95) (99) (99) (95) (88) (76)

0.7

{0,0.77} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.23,1}
0.76 0.73 0.64 0.57 0.43 0.36 0.27 0.24

(63) (83) (93) (98) (99) (93) (83) (63)

0.8

{0,0.74} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.26,1}
0.78 0.75 0.66 0.58 0.42 0.34 0.25 0.22

(59) (80) (91) (97) (97) (91) (80) (59)

zero and one, then the support points are not unique, but their difference is. For example, if a

design with support points 0 and 0.9 is optimal, then a design with support points 0.1 and 1
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(and the same weights) will also be optimal.

We also note that for absolute β-values of 2.3 or more and censoring proportion of 50% or more

the efficiency of the balanced design falls below 90%. This is in contrast to the result of Kalish

and Harrington (1988) who only consider small |β|-values and therefore find the balanced design

to have high efficiency. The lower efficiency can intuitively be explained by observing that for

large |β|-values, the support points of the design move away from 0 and 1. In particular, we

observed a monotonic pattern with respect to the proportion of censoring. The higher this

proportion, the lower the ‘threshold’ value of |β| where the support points move into the interior

of the design space. For example the threshold values for |β| are 3.22 and 2.71 for proportions

of censoring of 0.3 and 0.7, respectively.

4.3. Random censoring In the presence of random censoring the criteria functions Σ−1(ξ)

for binary and interval design spaces are given by

Σ−1(ξ) =
c

ω(1− ω)eβ

[∫ c

0

(c− y)S1(y)S2(y)h0(y)

ωS1(y) + (1− ω)eβS2(y)
dy

]−1
and

Σ−1(ξ) =
c

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ c

0

(c− y)S1(y)S2(y)h0(y)

ωeβx1S1(y) + (1− ω)eβx2S2(y)
dy

]−1
respectively. A transformation similar to the one used for Type-I censoring cannot be applied

here. Therefore, Σ−1(ξ) and hence the optimal design does depend on the form of the underlying

hazard.

For illustration purposes we compute the optimal designs for various β-values and censoring

proportions again assuming a constant baseline hazard. These designs are displayed in Tables

4 and 5 for X = {0, 1} and X = [0, 1] respectively, along with the corresponding efficiencies of

the balanced design.

As for Type-I censoring, the optimal design puts more weight at the support point where cen-

soring is more likely. The symmetry of the optimal weights as well as of the support points

for negative and positive β’s of the same absolute value is also evident in both Tables 4 and 5.

Overall the two censoring schemes produce similar designs which differ from the balanced design

for heavy censoring and for β-values moderately far from 0.

5. Comparison of designs arising from full and partial likelihood methods

Efron (1977) compares the Fisher information for estimating β for the full and the partial

likelihood methods in the same underlying model. He finds that they coincide except for an
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Table 4: Optimal weights 1 − ω corresponding to x2 = 1 and efficiency, in percent, of the

balanced design for a binary design space and random censoring

proportion eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
0.68 0.61 0.55 0.52 0.48 0.45 0.39 0.32

(91) (97) (99) (100) (100) (99) (97) (91)

0.3
0.68 0.62 0.57 0.53 0.47 0.43 0.38 0.32

(91) (96) (98) (100) (100) (98) (96) (91)

0.5
0.71 0.65 0.60 0.55 0.45 0.40 0.35 0.94

(87) (92) (96) (99) (99) (96) (92) (87)

0.7
0.81 0.71 0.63 0.57 0.43 0.37 0.29 0.19

(73) (85) (94) (98) (98) (94) (85) (73)

0.9
0.84 0.75 0.66 0.58 0.42 0.34 0.25 0.16

(68) (80) (91) (97) (97) (91) (80) (68)

Table 5: Support points {x1, x2}, optimal weights 1 − ω at point x2 and efficiency, in percent,

of the balanced design under random censoring for X = [0, 1]

proportion eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1

{0,0.91} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.09,1}
0.66 0.61 0.55 0.52 0.48 0.45 0.39 0.34

(90) (97) (99) (100) (100) (99) (97) (90)

0.3

{0,0.91} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.09,1}
0.66 0.62 0.57 0.53 0.47 0.43 0.38 0.34

(90) (96) (98) (100) (100) (98) (96) (90)

0.5

{0,0.88} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.12,1}
0.68 0.65 0.60 0.55 0.45 0.40 0.35 0.32

(85) (92) (96) (99) (99) (96) (92) (85)

0.7

{0,0.79} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.21,1}
0.75 0.71 0.63 0.57 0.43 0.37 0.29 0.25

(67) (85) (94) (98) (98) (94) (85) (67)

0.8

{0,0.74} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.26,1}
0.77 0.75 0.66 0.58 0.42 0.34 0.25 0.23

(60) (80) (91) (97) (97) (91) (80) (60)
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extra term in the Fisher information for the full likelihood, which, however, will usually be

small in practice. He therefore concludes that in most situations the partial likelihood method

will be reasonably efficient.

These results suggest that the optimal designs for estimating β, which are based on the asymp-

totic variances and thus the Fisher information, should also be similar. In particular, we wish to

find out in which situations the optimal designs for the full likelihood method, which are readily

available in Konstantinou, Biedermann, and Kimber (2014), are highly efficient for estimation

in the partial likelihood model. Hence finding optimal designs for the complicated criterion

function Σ(ξ) could be avoided by practitioners.

A simple explicit formula for the extra term in the Fisher information for the full likelihood could

not be derived and therefore we could not work directly with the Fisher information matrix to

prove the similarity of the two approaches analytically. However, we first compare the optimal

designs directly for several scenarios, to identify the situations where they are similar or even

coincide and then find an explanation for this phenomenon.

Throughout this section, we assume an exponential regression model with constant baseline

hazard and compare the c-optimal design for estimating β in the two-parameter model readily

available in Konstantinou, Biedermann, and Kimber (2014), with the Σ-optimal design for β in

Cox’s model. We note that López-Fidalgo and Rivas-López (2014) provide a brief comparison

of such designs for a binary design space. However, they assume that h0(y) exp(α) = 1, leaving

them with an estimation problem for one parameter only. Hence the optimal designs they find

for the parametric model are one-point designs, taking all observations at x = 1. This is not

surprising since they completely specify the baseline hazard, implying that the hazard at x = 0

is known, thus not requiring any observations at x = 0.

5.1. Numerical comparison We briefly discuss the case of no censoring for which the

c-optimal design for β found using the full likelihood method is always equally supported at 0

and 1 (see Konstantinou, Biedermann, and Kimber (2014)). From Table 1 we observe that for

|β|-values away from zero the two approaches do not coincide as the optimal weights for the

partial likelihood method are not equal. However, the balanced design is highly efficient even

for large values of |β| making the c-optimal designs for β good alternatives to the designs found

based on the partial likelihood function.

In the presence of censoring, we calculate the efficiency of the c-optimal designs found using the

full likelihood function relative to the designs discussed in sections 4.2 and 4.3 by

eff(ξ∗F ) =
Σ(ξ∗F )

Σ(ξ∗P )
=

Σ−1(ξ∗P )

Σ−1(ξ∗F )
,

where ξ∗F and ξ∗P are the locally optimal designs for β arising from the full and partial likelihood

method respectively. The results for the two censoring schemes considered are illustrated in
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Tables 6 and 7 respectively. Both the cases of X = {0, 1} and X = [0, 1] are examined and the

efficiencies are found as functions of the proportion of censoring and the parameter of interest

β. We note that for proportions of censoring above 0.5 the (rounded) efficiencies of the full

likelihood designs are equal to 1 for all β-values and are therefore omitted from Tables 6 and 7.

Table 6: Efficiencies, in percent, of full likelihood designs under Type-I censoring for a binary

(and a continuous) design space

proportion eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
94 98 100 100 100 100 98 94

(93) (98) (100) (100) (100) (100) (98) (93)

0.3
99 100 100 100 100 100 100 99

(98) (100) (100) (100) (100) (100) (100) (98)

0.5
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

Table 7: Efficiencies, in percent, of full likelihood designs under random censoring for a binary

(and a continuous) design space

proportion eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
94 98 100 100 100 100 98 94

(92) (98) (100) (100) (100) (100) (98) (92)

0.3
98 100 100 100 100 100 100 98

(97) (100) (100) (100) (100) (100) (100) (97)

0.5
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

We observe that the c-optimal designs found using the full likelihood function are extremely effi-

cient under both censoring schemes, with the efficiencies under random censoring being slightly

lower. Hence the c-optimal designs can be used as an efficient alternative for the Σ-optimal de-

signs, even if the data are to be analysed through the partial likelihood approach. In particular,

for heavy censoring the full likelihood designs give efficiency very close or equal to 1 even for

extremely large β-values.

Moreover, by comparing the elements of Tables 6 and 7, that is, the efficiencies of the c-optimal

designs, with the corresponding elements in Tables 2- 5, we find that the c-optimal designs are

considerably more efficient for estimating β in the partial likelihood model than the balanced

design on 0 and 1. For example, when the proportion of censoring is 0.5 and β = −2.3, the c-
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optimal designs have efficiencies of 100% for Type-I and random censoring, respectively for both

design spaces whereas the balanced design achieves corresponding efficiencies of 88% for Type-I

censoring and 93% for random censoring again for both design spaces. This means that under

Type-I censoring we require 114 subjects in a balanced design to achieve the same precision for

parameter estimation as 100 subjects in a c-optimal design. For heavier censoring, the c-optimal

designs are even more preferable.

5.2. Analytical results In what follows, we find an explanation for the similarities of c-

and Σ-optimal designs, in particular under heavy censoring and/or small to moderate β-values.

We note that here we are not trying to find the best possible approximation to the information

matrix. Such an approximation is not necessary under the formulation of this paper since we

have established a closed-form expression for the asymptotic covariance matrix which will always

be better or at least as good as the inverse of even the actual information matrix. Therefore,

improving the approximation has no extra value.

From Konstantinou, Biedermann, and Kimber (2014) we have that the asymptotic variance of

(
√
n times) the maximum full likelihood estimator for β for the exponential model under Type-I

censoring is given by

V ar(β̂FL) =
(1− ω)(1− e−ceα+βx1 ) + ω(1− e−ceα+βx2 )

ω(1− ω)(1− e−ceα+βx1 )(1− e−ceα+βx2 )(x2 − x1)2
.

For heavy censoring the probability of the event occurring in the time interval under considera-

tion is small and thus we have small values of ceα+βx. Therefore, the above expression can be

approximated by a first order Taylor expansion,

V ar(β̂FL) ≈ (1− ω)eβx1 + ωeβx2

ω(1− ω)ceαeβ(x1+x2)(x2 − x1)2
,

using that

1− e−ceα+βx ≈ ceα+βx.

Now consider the corresponding quantity for the partial likelihood model for two different treat-

ments or drug doses x1 and x2. Without loss of generality we assume that among the data

available for n subjects there are k distinct event times t1 < . . . < tk. Also let rj be the number

of individuals in the risk set at time tj , qj of them allocated at x2 and rj − qj allocated at x1.

Then using equation (2) the asymptotic variance of (
√
n) β̂PL becomes

V ar(β̂PL) = lim
n→∞

 1

n
E

 k∑
j=1

qj(rj − qj)eβ(x1+x2)(x2 − x1)2

[(rj − qj)eβx1 + qjeβx2 ]2

−1 . (6)

Let q∗j = qj/rj and r∗j = rj/rj = 1, j = 1, . . . , k. Then the right hand side of (6) will not change

when replacing qk and rj with q∗j and r∗j , respectively. For k/n small, the proportion of observed
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event times is also small and this again corresponds to the case of heavy censoring. Therefore,

q∗j ≈ ω and r∗j − q∗j ≈ 1 − ω that is, the original proportion of subjects allocated at x2 and

x1 respectively, at least for small j. Similarly, if |β| is small, the proportion of subjects at risk

in the two groups will not change much over time, and again q∗j ≈ ω in this situation. Hence

in the cases of heavy censoring and/or small |β|-values the proportions of subjects at risk are

approximately constant.

Now k, the number of observed events, is itself random, and its expectation can be approximated

by E(k) ≈ n[(1− ω)ceα+βx1 + ωceα+βx2 ]. Overall, we obtain

V ar(β̂PL) ≈ (1− ω)eβx1 + ωeβx2

ω(1− ω)ceαeβ(x1+x2)(x2 − x1)2
.

We conclude that the two variances, and thus the optimal designs, are approximately equal

which confirms the numerical results in Tables 6 and 7.

Under random censoring V ar(β̂FL) is given by the expression

(1− ω)(1 + (e−ce
α+βx1 − 1)/ceα+βx1) + ω(1 + (e−ce

α+βx2 − 1)/ceα+βx2)

ω(1− ω)(1 + (e−ce
α+βx1 − 1)/ceα+βx1)(1 + (e−ce

α+βx2 − 1)/ceα+βx2)(x2 − x1)2
.

Following along the same lines as for Type-I censoring, we find that for heavy censoring and/or

small |β|-values

V ar(β̂FL) ≈ V ar(β̂PL) ≈ 2((1− ω)eβx1 + ωeβx2)

ω(1− ω)ceαeβ(x1+x2)(x2 − x1)2
.

and therefore, again the two asymptotic variances, and thus the corresponding optimal designs,

are approximately equal.

5.3. Example We now give an example to illustrate the simplicity of our approach to

obtaining highly efficient designs for fitting the Cox model in the case of Type-I censoring with

X = {0, 1}. A key result is that of Section 4.2 that allows us to use the exponential regression

model results of Konstantinou, Biedermann, and Kimber (2014). Collett (2003) briefly discusses

designing a survival trial for chronic active hepatitis patients. The proposed analysis will involve

fitting a Cox model. Each patient will be followed up for c = 2 years, and it is thought that

when x = 0, 70% of patients will survive beyond 2 years, and the corresponding figure when

x = 1 is 82%. This corresponds to a log-hazard ratio β of around -0.6. The c-optimal design

based on the full-likelihood exponential model puts weight
√

0.18/(
√

0.18 +
√

0.30) = 0.436 on

x = 0 and from Table 6 we can see that this design is virtually fully efficient relative to the

much harder to calculate Σ-optimal design.
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6. Conclusions

There is only limited guidance in the literature on efficient design of survival experiments with

possibly censored data, with the majority of the available articles considering parametric models.

However, in practice this type of data is often modelled through a Cox model in which case the

parameters of interest are estimated using the partial likelihood method.

We have met the needs of this practical scenario by setting up a general framework for the

construction of optimal designs for Cox’s model, later focussing on the model with only one

covariate. Our approach contains the results by Kalish and Harrington (1988) as a special case

and it differs from that by López-Fidalgo and Rivas-López (2014) in that we work directly with

the asymptotic covariance matrix, without adding another level of approximation.

Kalish and Harrington (1988) conclude that equal allocation to both support points will be

sufficiently efficient for partial likelihood estimation under both Type-I and random censoring.

However, we have found this not to be the case for large effect sizes β and/or if there is heavy

censoring.

Optimal designs for partial likelihood estimation are not trivial to find, and may therefore not

be popular with practitioners. We have compared these designs with the c-optimal designs

for the corresponding model using the full likelihood information, and found that the optimal

designs for both methods are similar, in particular for heavy censoring, which is often observed

in practice. We have shown that the two asymptotic variances are indeed approximately equal

under heavy censoring. Moreover, we have found that the c-optimal designs are considerably

more efficient than the balanced design for estimating β using the partial likelihood approach.

We have extended a result of Kalish and Harrington (1988) to include more scenarios commonly

encountered in practice. In particular, for Type-I censoring, the optimal design for partial

likelihood estimation does not depend on the shape of the baseline hazard function, but only

on the value of the survival function at the censoring time c. This means that the c-optimal

designs found in Konstantinou, Biedermann, and Kimber (2014) for constant baseline hazard

will be highly efficient for partial likelihood estimation whatever the baseline hazard.

We therefore recommend the use of the readily available and highly efficient c-optimal designs,

also for partial likelihood estimation, since they can be used without detriment in most situations.

Optimally designed experiments are cost effective, since a smaller sample size is required to

obtain estimates with a given accuracy. We hope that this work will encourage practitioners to

use optimal designs thus influencing the planning of survival experiments in the future.
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nichtlinearer dynamischer Prozesse, Teilprojekt C2).

A. Proof of Proposition 1

We first find the Fréchet derivative of the criterion function Σ(ξ) defined in (5), for the case of

one covariate, at a design ξ in the direction of another design η, where

ξ =

{
x1 . . . xm

ω1 . . . ωm

}
and η =

{
xm+1 . . . xl

ωm+1 . . . ωl

}
.

Then

(1− ε)ξ + εη =

{
x1 . . . xm xm+1 . . . xl

ω∗1 . . . ω∗m ω∗m+1 . . . ω∗l

}
where ω∗i = (1 − ε)ωi if i ≤ m or ω∗i = εωi if i > m. Let R1(y) =

∑m
r=1 ωrπr(y) exp(βxr) and

R2(y) =
∑l

r=m+1 ωrπr(m) exp(βxr). Then

Σ((1− ε)ξ + εη)− Σ(ξ)

=
l∑

i=2

∑
q<i

ω∗i ω
∗
q exp(β(xi + xq))(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)

(1− ε)R1(y) + εR2(y)
dy

−
m∑
i=2

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)

R1(y)
dy

=
m∑
i=2

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)

[
(1− ε)2

(1− ε)R1(y) + εR2(y)
− 1

R1(y)

]
dy

+(1− ε)ε
l∑

i=m+1

m∑
q=1

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)

(1− ε)R1(y) + εR2(y)
dy +O(ε2)

=
m∑
i=2

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)
−ε(R1(y) +R2(y)) +O(ε2)

R1(y)[(1− ε)R1(y) + εR2(y)]
dy

+ε
l∑

i=m+1

m∑
q=1

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)

(1− ε)R1(y) + εR2(y)
dy +O(ε2).
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The Fréchet derivative is therefore

d(ξ, η) = lim
ε→0

1

ε
(Σ((1− ε)ξ + εη)− Σ(ξ))

= −
m∑
i=2

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)

R1(y)
dy

−
m∑
i=2

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)R2(y)

R2
1(y)

dy

+

l∑
i=m+1

m∑
q=1

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)

R1(y)
dt.

Clearly, d(ξ, η) =
∑l

i=m+1 ωid(ξ, ηi), where ηi is the one-point design with support xi and weight

1, i = m + 1, . . . , l. (Equivalently, it can be shown that the Gâteaux derivative is linear in its

second argument.) Therefore we only need to consider directions towards one-point designs. If

ξ is optimal, Σ((1− ε)ξ + εηi)−Σ(ξ) ≤ 0 for all designs ηi ∈ H, and the inequality d(ξ∗, η) ≤ 0

follows with l = k + 1 and xm+1 = x.

Now, if ξ is optimal, maxη d(ξ, η) = 0, and clearly 0 = d(ξ, ξ) =
∑m

i=1 ωid(ξ, ξi) where ξi =

{xi; 1}, i = 1, . . . ,m. Hence d(ξ, ξi) = 0 for all i = 1, . . . ,m.
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