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Model robust designs for survival trials

Maria Konstantinou, Stefanie Biedermann and Alan Kimber

Abstract

The exponential-based proportional hazards model is often assumed in time-to-event

experiments but may only approximately hold. Deviations in different neighbourhoods of

this model are considered that include other widely used parametric proportional hazards

models and the data are assumed to be subject to censoring. Minimax designs are then

found explicitly, based on criteria corresponding to classical c- and D-optimality. Analytical

characterisations of optimal designs are provided which, unlike optimal designs for related

problems in the literature, have finite support and thus avoid the issues of implementing

a density-based design in practice. Finally, the proposed designs are compared with the

balanced design that is traditionally used in practice, and recommendations for practitioners

are given.

Key words:

proportional hazards models, minimax optimal designs, D-optimality, c-optimality, Type-I cen-

soring

1. Introduction

Optimal experimental designs are often constructed assuming that the model generating the data

is known, up to the values of the parameters involved. In many practical situations, however,

the proposed parametric model may only be approximately true and thus may cause the vector

of parameter estimators to be biased. As illustrated by Box and Draper (1959) for the case of

a linear regression model, the advantages of using an optimal design that minimises just the

variance are lost even if the deviations from the assumed model are small.

Following Box and Draper (1959), robust designs for approximately linear regression have been

constructed by Wiens (1992) based on classical optimality criteria but involving the mean

squared error matrix. He finds minimax designs which are optimal in that they minimise the

criteria functions for the worst possible deviation from the linear regression model. Prediction

and extrapolation problems with possible heteroscedasticity are studied by Wiens (1998) and

Fang and Wiens (1999) respectively among others. Sinha and Wiens (2002) consider the con-

struction of sequential designs which are robust against model uncertainty for nonlinear models.
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Further results on misspecified nonlinear regression include Woods et al. (2006), Wiens and Xu

(2008) and Xu (2009a) for prediction and extrapolation problems.

However, none of these authors considers the case where the data are subject to censoring. This

arises in many time-to-event experiments when a particular event of interest is not observed for

some of the subjects utilised in the experiment. Censoring is often a result of the fact that the

experiments are not run as long as necessary in order to obtain complete data, that is, event

times for all the subjects, because of time and cost limitations. Therefore, it is of interest to find

optimal designs which are robust to misspecifications of the assumed model and which allow for

the possibility of the data being censored.

The available literature on model robust designs for time-to-event data is focused on accelerated

life tests for which the subjects are put under extreme conditions in order for the event of interest

to occur sooner than under normal circumstances. In this case, extrapolation to lower covariate

values and prediction problems is often of interest; see, for example, Pascual and Montepiedra

(2003), Xu (2009b) and McGree and Eccleston (2010).

An alternative class of models used for the modelling of time-to-event data is studied, namely

that of proportional hazards models. Such models satisfy the proportional hazards assumption

of constant hazard ratio over time and are frequently used in practice because of the simple

interpretation of the regression coefficients in terms of hazard ratios. When a specific distribution

is assumed for the event times, the resulting parametric models is referred to as distribution-

based proportional hazards models. Cox’s proportional hazards model, on the other hand, leaves

the underlying distribution unspecified and therefore inference is based on the partial likelihood

function (see Collett (2003) for further details).

Konstantinou et al. (2015) consider Cox’s model and show that in the presence of Type-I cen-

soring an exponential distribution can be assumed without greatly affecting the optimal choice

of design for partial likelihood estimation. They also find that the full and partial likelihood

approaches result in very similar designs for the same assumed model.

Following these findings, small deviations in a neighbourhood of the exponential-based propor-

tional hazards model are considered. The model uncertainty is formulated via a contamination

function and the data are assumed to be subject to Type-I censoring. Then following along the

same lines as in Xu (2009b), both censoring and model uncertainty are incorporated to obtain

the asymptotic properties of the maximum likelihood estimator. Based on the asymptotic mean

squared error matrix, minimax optimal designs for full likelihood estimation are constructed

which protect against the worst possible misspecification of the assumed exponential model.

Note that Xu (2009b) considers various prediction and extrapolation problems for normally dis-

tributed data and investigates the construction of designs that are continuous with respect to the

Lebesgue measure. However, the focus of the present paper is on designs with finite support.

This allows for explicit solutions to be obtained and then compared with the corresponding
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results of Konstantinou et. al. (2014) for the case of the assumed model being true.

In Section 2 the assumed and true models considered are introduced and two different classes

of contamination functions are defined to account for the various forms of the true distribution

for the data. Then in Section 3 the asymptotic properties of the maximum likelihood estimator

for the parameter vector are derived under model uncertainty and Type-I censoring. Analytical

characterisations of minimax c- and D-optimal designs are given in Section 4. These designs

are found using criteria corresponding to the classical c- and D-optimality criteria but are based

on the mean squared error matrix rather than just the information matrix. In Section 5 the

behaviour of the proposed designs is illustrated and they are compared with the balanced design

traditionally used in practice. Finally, the main conclusions are discussed in Section 6.

2. Models and contamination functions

Time-to-event experiments are usually conducted in order to evaluate a particular intervention

or treatment. Therefore, in what follows the focus is on models that involve one explanatory

variable x. The mean squared error matrix for general designs is derived, and then design search

is illustrated for the situation in which x takes values in the binary design space denoted by

X = {0, 1}, corresponding, for example, to a placebo and an active treatment in a clinical trial.

The aim of the experiment is assumed to be the estimation of one or both of the two model

parameters. Let c be the predetermined duration of the experiment at which point the observa-

tions of subjects for which the event of interest has not occurred are said to be right-censored.

Possibly censored data are summarised mainly using the hazard function which expresses the

risk of the event of interest occurring at any time after the commencement of the experiment

(Collett (2003)).

Consider the situation where the experimenter assumes the exponential-based proportional haz-

ards model specified by the hazard function

h1(t) = exp{α+ βx}, t > 0, x ∈ X ⊆ IR, (1)

where α and β are real parameters, when in fact this is only an approximation to the true

underlying model. Denote the hazard function of the unknown true model by

h2(t) = exp

{
α+ βx+

g(t)√
n

}
, t > 0, x ∈ X ⊆ IR, g(t) ∈ G, (2)

where n denotes the sample size. The function g(t) represents uncertainty about the exact

form of the underlying distribution for the data and, following the literature, it is called the

contamination function or just the contaminant. It is assumed that g(t) is unknown and ranges

in a neighbourhood specified by the class G.
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The parametrisation in (2) allows one to remain within a proportional hazards framework and

ensures that the model parameters are well defined. In particular, unlike the existing literature,

see, for example, Wiens (1992), the contamination function is independent of the covariate

value x. Therefore, the parameter β corresponds to the effect of the explanatory variable. For

identifiability reasons it is further required that g(t) does not involve an additive constant. If this

were not the case, the constant term would be absorbed in the quantity exp{α} that represents

the baseline hazard for model (1), that is, the hazard function for a subject with x = 0.

The factor n−1/2 is included so that the deviations are of the order O(1/
√
n), resulting in models

that are in a neighbourhood of the exponential model (1). At the same time, the dependence of

g on the time t ensures that the general form of the true model includes widely used parametric

proportional hazards models, such as, for example, the Weibull and Gompertz distributions with

known shape parameter γ. These distributions correspond to the cases where g(t) is equal to

(γ − 1) log t and γt respectively.

Two classes of contamination functions are defined which allow various forms of g, including

those that correspond to the Weibull and Gompertz distributions. With the exception of Li and

Notz (1982), the existing literature on model robustness considers the construction of designs

that are absolutely continuous with respect to the Lebesgue measure. On the other hand, the

formulation of the classes considered ensures the use of designs with finite support on the design

space X . This allows for exact solutions to be obtained which can then be compared with the

corresponding solutions one would have in the case of the assumed model being true (see Section

4).

The first class of contaminants under study is specified by

G1 =

{
g : max

t∈[0,c]
|g(t)| ≤ c1

}
, (3)

where c1 is a specified positive constant. This class includes contamination functions g(t) which

are bounded on the time interval [0, c] and is also used in Li and Notz (1982). They, however,

considered extrapolation and interpolation problems for linear regression models with complete

data.

Now consider the case of unbounded contamination functions such as g(t) = (γ − 1) log t for

which limt→0 g(t) = −∞. A class that can be used to include such contaminants is

G2 =

{
g :

∣∣∣∣∣
∫ c

0
e−te

α+βx
g(t) dt

∣∣∣∣∣ ≤ c2, ∀x ∈ X and

∣∣∣∣∣
∫ c

0
g(s) ds

∣∣∣∣∣ <∞
}
, (4)

where, as before, c2 is a specified positive constant. This class is defined so that the integral

expression involved in the asymptotic expectation of the score function b(ξ, g), evaluated in

Section 3, is bounded in the design space X .
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3. Estimation under model uncertainty and Type-I censoring

For the estimation of the model parameters the full likelihood approach is adopted since the

assumed parametric model is completely specified as the exponential-based proportional hazards

model. Throughout this section a similar procedure to that used in Xu (2009b) is adopted in

order to incorporate both censoring and model misspecification in the maximum likelihood

estimation method and to obtain the asymptotic properties of the resulting estimator vector.

Let T1, . . . , Tn be the independent random variables indicating the times to the occurrence of the

event of interest for the n subjects utilised in the experiment with corresponding observed values

t1, . . . , tn. Under the right-censored data scenario considered, Type-I censoring corresponds to

the case where all the subjects enter the experiment at the same time, indicated by zero, and

so the censoring time c is common for all the subjects. This situation occurs commonly in

reliability applications. Alternatively, as is more common in clinical studies, subjects may enter

the study at different calendar times but each be followed up for c time units. Therefore, in the

presence of Type-I censoring, what is actually observed are the values yj of the random variables

Yj = min{Tj , c}, j = 1, . . . , n. This is formulated using an indicator variable δj that is equal to

unity if observation j is an event time and zero if it is a right-censored observation. That is,

δj =

1, if Yj = Tj

0, if Yj = c
.

Note that δj ∼ Bin(1, Pj), where Pj = P (δj = 1) = P (Yj = Tj).

The likelihood function for possibly censored data involves the survivor and probability density

functions which are defined in terms of the hazard function as

Sk(y) = exp

{
−
∫ y

0
hk(s) ds

}
and fk(y) = hk(y)Sk(y), y ∈ [0, c]; k = 1, 2,

respectively (Collett (2003)). Therefore, assuming that model (1) is correct, the corresponding

log-likelihood function of the jth observation yj with covariate value xj is given by

l := l(xj , α, β) = δj log f1(yj) + (1− δj) logS1(c)

= δj

(
α+ βxj − yjeα+βxj

)
− (1− δj)ceα+βxj .

To find the limiting properties of the maximum likelihood estimator for the vector of model

parameters requires the evaluation of the asymptotic expectation and variance-covariance matrix

of the score function where

∂l

∂α
= δj

(
1− yjeα+βxj

)
− (1− δj)ceα+βxj ,

∂l

∂β
= xj

∂l(xj , α, β)

∂α
,
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for the jth observation and also the calculation of the asymptotic information matrix involving

the second order derivatives

∂2l

∂α2
= −eα+βxj [δjyj + c(1− δj)] ,

∂2l

∂α∂β
= xj

∂2l

∂α2
,

∂2l

∂β2
= x2j

∂2l

∂α2
.

At this stage the fact that the true model is actually specified by (2) must be taken into account.

Assuming this true model and observing that the above expressions involve only two random

quantities via δj and δjYj , gives

E

[
∂l

∂α

]
= eα+βxj

∫ c

0
e−yje

α+βxj g(yj)√
n
dyj + o

(
1√
n

)
,

V ar

(
∂l

∂α

)
= 1− e−ce

α+βxj
+ eα+βxje−ce

α+βxj

∫ c

0

g(s)√
n
ds

− (eα+βxj )2
∫ c

0
2
yjg(yj)√

n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

E

[
− ∂

2l

∂α2

]
= 1− e−ce

α+βxj
+ eα+βxje−ce

α+βxj

∫ c

0

g(s)√
n
ds

− eα+βxj
∫ c

0

g(yj)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

(5)

using Taylor expansions. The calculations for the derivation of the set of expressions (5) can be

found in the appendix.

Now let θ = (α, β)T be the vector of model parameters and θ0 the vector of their true values.

Also let

ξ =

{
x1 x2 . . . xm

ω1 ω2 . . . ωm

}
, 0 < ωi ≤ 1,

m∑
i=1

ωi = 1, (6)

where x1, . . . , xm (m ≤ n) are the distinct experimental points where observations are taken and

ω1, . . . , ωm represent the relative proportions of observations taken at the corresponding point

xi. Using the expressions in (5) gives the asymptotic information matrix of θ0

M(ξ) = M(ξ,θ0) = lim
n→∞

1

n
E

− n∑
j=1

∂2l

∂θ∂θT

∣∣∣
θ=θ0


=

m∑
i=1

ωi(1− e−ce
α+βxi )

(
1 xi

xi x2i

)
,

the asymptotic expectation of the score function evaluated at θ0

b̃(ξ, g) = b̃(ξ, g,θ0) =
1√
n

lim
n→∞

1

n
E

√n n∑
j=1

∂l

∂θ

∣∣∣
θ=θ0


=

1√
n

m∑
i=1

ωie
α+βxi

∫ c

0
e−yje

α+βxig(yj) dyj

(
1

xi

)
:=

1√
n
b(ξ, g),
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and finally the asymptotic variance-covariance matrix of the score function evaluated at θ0 which

is given by

C(ξ) = C(ξ,θ0) = lim
n→∞

1

n

n∑
j=1

Cov

(
∂l

∂θ

∣∣∣
θ=θ0

)

=
m∑
i=1

ωi(1− e−ce
α+βxi )

(
1 xi

xi x2i

)
.

Note that the asymptotic matrices M(ξ) and C(ξ) are identical. Now expanding the score

function s(θ) around θ0 gives

s(θ) = s(θ0) + s′(θ0)(θ − θ0) + . . . ,

and, since the maximum likelihood estimate θ̂ is a root of the score function,

0 ≈ s(θ0) + s′(θ0)(θ̂ − θ0)

(θ̂ − θ0) ≈M−1(ξ,θ0)s(θ0).

Now
√
n s(θ0) ∼ AN(b(ξ, g), C(ξ)) and therefore the asymptotic distribution of the maximum

likelihood estimator is described by

√
n(θ̂ − θ0) ∼ AN

(
M−1(ξ)b(ξ, g),M−1(ξ)

)
. (7)

4. Minimax optimal designs

The optimal planning of time-to-event experiments is concerned with finding the experimental

points and the number of subjects that should be assigned to each point so that the parameters

are estimated as precisely as possible. To illustrate the proposed methodology, the binary design

spaces X = {0, 1} is considered, corresponding, for example, to placebo and active treatment,

respectively. Following Kiefer (1974), the problem is formulated through an approximate design

of the form (6) with support points 0 and 1 and corresponding weights ω and 1−ω. In practice,

if an approximate design is available and a total number of n observations can be taken, the

quantities ωn and (1−ω)n are rounded to integers using an efficient rounding procedure in order

for the design to be used (see Pukelsheim and Rieder (1992)).

As mentioned in the introduction and as can be seen in (7), fitting the exponential-based pro-

portional hazards model given in (1) when in fact the true underlying model is specified by (2)

adds a bias to the maximum likelihood estimator for the vector of parameters. Therefore, a

suitable measure for the precision of the parameter estimates is the mean squared error matrix

which, using (7), is given by

MSE(ξ, g) =
(
M−1(ξ)b(ξ, g)

) (
M−1(ξ)bT (ξ, g)

)
+M−1(ξ)

= M−1(ξ)
(
b(ξ, g)bT (ξ, g) +M(ξ)

)
M−1(ξ). (8)
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Furthermore, the minimax approach is adopted in order to find designs that ensure precise

parameter estimation for the worst case scenario among all possible model departures in the

class of contamination functions (either G1 or G2).

4.1. Optimality criteria The optimality criteria used correspond to classical optimality

criteria but they are based on the mean squared error matrix rather than just the information

matrix. The resulting minimax optimal designs minimise the corresponding criteria functions

with respect to the design, for the worst possible contamination function g.

The first criterion to be studied corresponds to the c-optimality criterion for estimating only

the parameter β, treating α as a nuisance parameter. This is often the case in time-to-event

experiments since β represents the explanatory variable effect and is therefore of primary interest.

A design ξ∗ is a minimax c-optimal design for estimating β if (0 1)T is in the range of MSE(ξ∗, g)

and

ξ∗ = arg min
ξ

max
g∈G1 or G2

(0 1)MSE(ξ, g)

(
0

1

)
. (9)

The case corresponding to D-optimality is also considered, that is, when one is interested in

estimating both model parameters α and β. A design ξ∗ is minimax D-optimal if

ξ∗ = arg min
ξ

max
g∈G1 or G2

det {MSE(ξ, g)} . (10)

Note that under both optimality criteria the resulting optimal designs depend on the parameter

values and therefore, following Chernoff (1953), these are referred to as locally optimal designs.

The corresponding locally optimal designs for the case of the exponential-based proportional

hazards model being the true model are readily available in Konstantinou et al. (2014).

4.2. Minimax c-optimal designs for β Design search is illustrated through the special

case of a binary design space X = {0, 1}. Hence a candidate design for estimating the parameter

β can have either one or two support points. However, in the former case the mean squared

error matrix cannot be defined since the information matrix M(ξ) is singular. Therefore, the

designs must be supported at both 0 and 1, and let ω and 1−ω be their corresponding weights.

The following theorem gives the minimax c-optimal design for estimating β for both the cases

of g ∈ G1 and g ∈ G2 (see the appendix for a proof).

Theorem 1. Regardless of whether the contamination function belongs in G1 or G2, the minimax

c-optimal design for estimating β on X = {0, 1} allocates a proportion of ω∗ of observations at

point x = 0, where

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

. (11)
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The minimax c-optimal weight given in (11) is the same as the c-optimal weight for estimating β

when the exponential-based proportional hazards model is true (see Konstantinou et al. (2014)).

Therefore, the contamination function g does not affect the minimax c-optimal design for β and

the exponential distribution can be assumed without loss of generality. This result is in line

with the findings of Konstantinou et al. (2015) for partial likelihood estimation.

4.3. Minimax D-optimal designs To allow estimation of both parameters a design must

have at least two support points. For X = {0, 1} this means that both points 0 and 1 must be

support points of the minimax D-optimal design. However, now the choice of contamination

class and therefore the worst possible contaminant affects the optimal choice of design. Theorems

2 and 3 provide analytical characterisations of the minimax D-optimal designs when g ∈ G1 and

g ∈ G2 respectively and are proven in the appendix.

Theorem 2. Let g ∈ G1. The minimax D-optimal design on X = {0, 1} allocates a proportion

of ω∗ observations at point x = 0, where

ω∗ =

√
c21(1− e−ce

α+β ) + 1

[√
c21(1− e−ce

α) + 1−
√
c21(1− e−ce

α+β ) + 1

]
c21(e

−ceα+β − e−ceα)
. (12)

Theorem 3. Let g ∈ G2. The minimax D-optimal design on X = {0, 1} allocates a proportion

of ω∗ observations at point x = 0, where

ω∗ =

√
c22(e

α+β)2

(1−e−ceα+β )
+ 1

[√
c22(e

α)2

(1−e−ceα ) + 1−
√

c22(e
α+β)2

(1−e−ceα+β )
+ 1

]
c22

[
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

] . (13)

Note that the D-optimal design when model (1) is true allocates equal proportions of observa-

tions at point 0 and 1. Furthermore, it is easy to check that both minimax D-optimal weights

have limiting values as c1 or c2, increases. These are

lim
c1→∞

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

, when g ∈ G1,

and

lim
c2→∞

ω∗ =
eβ
√

1− e−ceα

eβ
√

1− e−ceα +
√

1− e−ceα+β
, when g ∈ G2.

Also note that that the minimax D-optimal weight for g ∈ G1 given in (12) tends to the c-optimal

weight for β when the exponential-based proportional hazards model is true.
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5. Numerical results

For time-to-event experiments comparing two treatments, or equivalently a placebo with an

active treatment, practitioners traditionally use the balanced design allocating equal proportions

of observations at the two treatments. The aim is to illustrate the theoretical results on minimax

optimal designs found in the previous section and also to examine the efficiency of the balanced

design in the presence of model uncertainty and possibly censored data.

5.1. Minimax c-optimal designs for β As shown in Section 4.2, the minimax c-optimal

design for estimating β does not depend on the contamination function g but is locally optimal

through the parameter values (see Theorem 1). To illustrate this parameter dependence β-

values corresponding to small, moderate and large covariate effects are used along with various

proportions of censored observations. Following Kalish and Harrington (1988), the proportion

of censoring is characterised as the overall probability of censoring for model (1) had a balanced

design been used. That is,

proportion of censoring = 1− 0.5(1− e−ceα)− 0.5(1− e−ceα+β ). (14)

Setting α = 0, for illustration purposes, this equation provides the value of the censoring time

c for a given combination of β-value and censoring proportion.

Two different contamination scenarios are considered. For g ∈ G1, the Gompertz distribution is

selected for which g(t) = γt, where γ is the shape parameter. A value of γ = 0 would correspond

to the exponential regression model. For the class G2 of possibly unbounded contamination

functions the Weibull distribution with shape parameter γ is studied for which g(t) = (γ−1) ln t,

so a value of γ = 1 would correspond to the exponential distribution.

The case of γ = 1 for the Gompertz model and γ = 2 for the Weibull model is presented. For both

contamination types, various different values for γ gave similar results, and are thus omitted.

Table 1 shows the minimax c-optimal design weights at point x = 0 for several combinations

of β-values and proportions of censoring. For each combination, the value of c is determined

using equation (14) by setting α = 0. Note that the minimax c-optimal weights are the same

regardless of whether the Gompertz or the Weibull distribution is used.

It can be observed that the minimax c-optimal design for β allocates more observations at point

x = 0 when β > 0, that is, when the probability of occurrence of the event increases with x,

and less when β < 0. Therefore, the design puts more weight at the experimental point where

censoring is more likely.

The efficiencies of the balanced design for the Gompertz and the Weibull models under con-

sideration are given in Table 2 for the various explanatory effect and proportion of censoring

scenarios.
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Table 1: Minimax c-optimal weights ω∗ at point x = 0.

prop. eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

cens. (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1 0.47 0.47 0.47 0.48 0.52 0.53 0.53 0.53

0.3 0.39 0.39 0.42 0.46 0.54 0.58 0.61 0.61

0.5 0.22 0.31 0.38 0.44 0.56 0.62 0.69 0.78

0.7 0.17 0.27 0.36 0.43 0.57 0.64 0.73 0.83

0.9 0.15 0.25 0.34 0.43 0.58 0.66 0.75 0.85

It turns out that the balanced design is highly efficient for small proportions of censoring whereas

its efficiency drops below 90% for absolute β-values of 2.3 or more and proportion of censoring of

50% or more. Furthermore, the efficiencies are almost identical for both contamination functions.

This can be explained by the form of the objective function defined in (9) which is given by[
eα+β

(1− e−ceα+β )

∫ c

0
e−yje

α+β
g(yj) dyj −

eα

(1− e−ceα)

∫ c

0
e−yje

α
g(yj) dyj

]2
+

1

ω(1− e−ceα)
+

1

(1− ω)(1− e−ceα+β )

for a design of the form ξ = {0, 1;ω, 1 − ω}. The above expression shows that the objective

function is dominated by the terms involving ω but not g.

5.2. Minimax D-optimal designs Besides the parameter dependence, the minimax D-

optimal designs also depend on the choice of contamination class and therefore on the values of

the positive constants c1 or c2 (see Theorems 2 and 3). In order to illustrate the contaminant

dependence a numerical example is used that is based on the study reported by Freireich et al.

(1963), for which the maximum likelihood estimates are α̂ = −2.163 and β̂ = −1.526 with

approximately 30% of the observations right-censored. Using this proportion of censoring and the

estimates α̂ and β̂ for the α and β values, the value c = 30 is obtained from the characterisation

of the proportion of censoring defined in section (14). Figures 1 and 2 illustrate the limiting

behaviour of the minimax D-optimal weights ω∗ on x = 0 given in (12) and (13) respectively as

c1 and c2 increase.

For both cases of G1 and G2, the weight at point x = 0 is smaller than 0.5 (the D-optimal weight

when model (1) is true) and its value decreases as c1 and c2 increase, with the limiting weight

for g ∈ G1 being larger than that for g ∈ G2.

To investigate the performance of the D-optimal minimax design with respect to contamination

functions g ∈ G1 and G2, the Gompertz and the Weibull distributions respectively are considered

11



Table 2: Efficiency, in percent, of the balanced design, for the Gompertz model with γ = 1 and

the Weibull model with γ = 2 (in brackets).

prop. eβ(β)

of 0.03 0.1 0.25 0.5 2 4 10 33.3

cens. (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
100.0 100.0 99.8 99.8 99.8 99.7 99.7 99.7

(99.9) (99.8) (99.8) (99.9) (99.9) (99.8) (99.8) (99.9)

0.3
99.4 96.4 97.4 99.2 99.2 97.4 95.4 95.2

(97.2) (96.1) (97.5) (99.2) (99.2) (97.5) (96.1) (97.2)

0.5
76.5 87.2 94.7 98.6 98.6 94.7 87.1 76.3

(76.7) (87.3) (94.7) (98.6) (98.6) (94.7) (87.3) (76.7)

0.7
70.1 82.6 92.5 98.0 98.0 92.5 82.6 70.1

(70.1) (82.6) (92.5) (98.0) (98.0) (92.5) (82.6) (70.1)

0.9
67.6 79.8 90.8 97.4 97.4 90.8 79.8 67.7

(67.6) (79.8) (90.8) (97.4) (97.4) (90.8) (79.8) (67.7)

again. In this situation the results turn out to be less clear cut than for c-optimality. In

particular, the relative efficiencies of the balanced design are close to 1 in all scenarios, and

sometimes even exceed 1. It is not surprising that an optimal minimax design can be less

efficient than a non-optimal design in some scenarios, since the minimax designs protect against

a whole class of contamination functions whereas each scenario is characterised by just one

function from this class. This phenomenon is similar in nature to situations where parameter

robust designs over a range of values are outperformed for specific values in this range.

As proposed by a Referee, the case of the continuous design space X = [0, 1] is also investigated,

for the same combinations of β-values and censoring proportions as in Table 1. Using either

the c- or D-optimality criterion, the support points of the resulting minimax optimal designs

for either contamination class are found to always be the points 0 and 1. Furthermore, the

corresponding minimax optimal weights are the same as in the case of the binary design space

X = {0, 1} described above.

Overall, the conclusion is that if estimation of both parameters, α and β, is of interest, the

balanced design is highly efficient, and can be used in practice. If, however, the main focus is

on the treatment effect β, then the minimax c-optimal designs are recommended.

12
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Figure 1: Minimax D-optimal weight at

point 0 for g ∈ G1
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Figure 2: Minimax D-optimal weight at

point 0 for g ∈ G2

6. Conclusions

In practice when parametric models are used for time-to-event experiments, often the exponen-

tial distribution is naturally assumed for the event times along with the proportional hazards

assumption. However, this assumed model may only be an approximation of the true underlying

parametric proportional hazards model.

Following this practical scenario, deviations in a neighbourhood of the exponential-based pro-

portional hazards model are considered which are specified by a contamination function g. Two

different classes of contamination functions are defined which can be used to include various

forms of g but most importantly they include the commonly used parametric proportional haz-

ards models based on the Weibull and Gompertz distributions.

Since time-to-event experiments are usually conducted in order to evaluate a particular interven-

tion or treatment, the focus is on models involving one explanatory variable. Nevertheless, the

model misspecification introduced in Section 2 and the results of Section 3 regarding the maxi-

mum likelihood estimator can be easily generalised to models with more than one explanatory

variables.

Assuming that the time-to-event data are subject to Type-I censoring, the construction of designs

13



which are robust to model misspecifications is investigated. Following Wiens (1992), optimality

criteria corresponding to the classical c- and D-optimality criteria but based on the mean squared

error matrix are used and minimax optimal designs are constructed which guard against the

worst possible deviation from the assumed model. Therefore, previous results on minimax

optimal designs are extended by considering both possibly censored data as well as the class

of proportional hazards models. However, the choice of contamination classes enables the use

of designs with finite support and therefore analytical characterisations of minimax c- and D-

optimal designs are provided.

This framework is established for general designs, hence optimal designs on continuous design

spaces X corresponding to, for example, doses of a drug can easily be found numerically. The

design search is illustrated for the important special case of a binary design space, and some

analytical results have been presented.

The results on minimax c-optimal designs for estimating the covariate coefficient β, show that

the deviations from the exponential distribution do not affect the optimal choice of design if one

remains in a proportional hazards framework. This is in accordance with the result for partial

likelihood estimation, stating that under Type-I censoring the exponential distribution can be

assumed for design search without loss of generality (see Konstantinou et al. (2015)).

If estimation of both parameters is required, that is, if D-optimality is the desired criterion,

then Theorems 2 and 3 give the minimax optimal weights for deviations in the class G1 and G2
respectively. Both of these weights have limiting values if we allow the deviations to become

large and in particular when g ∈ G1 the minimax D-optimal weight tends to the c-optimal weight

corresponding to the case of the assumed model being true, as c1 → ∞. This again highlights

the importance of the latter design in a model uncertainty situation.

The analytical characterisations of minimax optimal designs and the numerical results of Section

5 suggest that if the main interest is in estimating the treatment effect one has to move away from

the traditional balanced design to guard against misspecifications of the assumed exponential

model. A suitable candidate for practical use would appear to be the classical c-optimal design

for estimating the covariate effect assuming the exponential-based proportional hazards model.

It is minimax c-optimal for both contamination classes, is (in the limit) minimax D-optimal for

G1, and is also highly efficient if Cox’s proportional hazard model is fitted via partial likelihood

estimation (see Konstantinou et al. (2015)). An analytical characterisation of the locally c-

optimal design for estimating β is given in Konstantinou et al. (2014).

The designs derived are locally optimal hence, while being robust against model misspecifica-

tions, they depend on the values of the unknown model parameters. Finding designs which are

robust to both sources of uncertainty is an interesting area of future research. A promising

starting point for such an investigation could be the parameter robust designs derived in Kon-

stantinou et al. (2014). They show that for a binary design space and a given range of possible

14



β-values, the optimal weight at point 0 of the standardised maximin c-optimal design for β (for

parameter robustness) is the average of the two locally c-optimal weights at point 0 correspond-

ing to the end-points of the given interval of β-values. As it is shown in Section 4, the (locally)

minimax c- and D-optimal weights (for model robustness) are the same or tend, respectively, to

the locally c-optimal weight. Therefore, it is of interest to investigate whether such an averaging

of the locally optimal weights result also holds both for minimax c- and D-optimal designs for

model robustness.
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Appendix

A.1. Proof of set of expressions in (5) The true underlying model specified by (2) has

corresponding probability density function given by

f2(yj) = exp

{
α+ βxj +

g(yj)√
n

}
exp

{
−eα+βxj

∫ yj

0
eg(s)/

√
n ds

}
, j = 1, . . . , n.

Taking this into account gives

E(δj) = Pj = P (Yj = Tj) =

∫ c

0
f2(yj) dyj = 1− exp

{
−eα+βxj

∫ c

0
eg(s)/

√
n ds

}
.

Since small deviations from the exponential-based proportional hazards model are considered,

the Taylor expansion of eg(s)/
√
n around g(s) = 0 can be used. Then the above expression

becomes

E(δj) = 1− exp

{
−eα+βxj

∫ c

0

[
1 +

g(s)√
n

+ o

(
g(s)√
n

)]
ds

}
= 1− exp

{
−ceα+βxj

}
exp

{
−eα+βxj

[∫ c

0

g(s)√
n
ds+ o

(
1√
n

)]}
.

By further expanding around
∫ c
0
g(s)√
n
ds + o

(
1√
n

)
= 0, the expectation of the random variable

δj becomes

E(δj) = 1− e−ce
α+βxj

+ eα+βxje−ce
α+βxj

∫ c

0

g(s)√
n
ds+ o

(
1√
n

)
,
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where the first term, 1 − e−ceα+βxi , corresponds to the expectation if the assumed exponential

model was in fact the true model. Using this expression the variance of δj can be found without

making any further calculations and is given by

V ar(δj) = Pj(1− Pj) = e−ce
α+βxj

(1− e−ce
α+βxj

)

+ eα+βxje−ce
α+βxj

(2e−ce
α+βxj − 1)

∫ c

0

g(s)√
n
ds+ o

(
1√
n

)
.

Note that

δjYj =

Yj , if Yj = Tj

0, if Yj = c
.

Following along the same lines as for the random quantity δj , that is, using two consecutive

Taylor expansions, the following expression can be obtained

E(δjYj) =
1− e−ce

α+βxj

eα+βxj
− ce−ce

α+βxj
+ e−ce

α+βxj
(ceα+βxj + 1)

∫ c

0

g(s)√
n
ds

−
∫ c

0

g(yi)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

V ar(δjYj) =− c2e−ce
α+βxj

(1 + e−ce
α+βxj

) +
1− e−2ce

α+βxj

(eα+βxj )2
− 2ce−2ce

α+βxj

eα+βxj
+ e−ce

α+βxj

(
c2eα+βxj + 4ce−ce

α+βxj
+

2e−ce
α+βxj

eα+βxj
+ 2c2eα+βxje−ce

α+βxj

)∫ c

0

g(s)√
n
ds

−

∫ c

0

2e−yje
α+βxj

(
yj +

e−ce
α+βxj

eα+βxj
+ ce−ce

α+βxj

)
g(yj)√
n
dyj + o

(
1√
n

)
,

Cov(δj , δjYj) = e−ce
α+βxj

(1− e−ce
α+βxj

)/eα+βxj − ce−2ce
α+βxj

+ e−ce
α+βxj

(
2ceα+βxje−ce

α+βxj
+ 2e−ce

α+βxj − 1
)∫ c

0

g(s)√
n
ds

− e−ce
α+βxj

∫ c

0

g(yj)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
.

The set of expressions given in (5) then follow since

E

(
∂l

∂α

)
= E(δj)− eα+βxjE(δjYj)− ceα+βxjE(1− δj),

V ar

(
∂l

∂α

)
= V ar(δj) + e2(α+βxj)V ar(δjYj) + c2e2(α+βxj)V ar(δj)

− 2eα+βxj (1 + ceα+βxj )Cov(δj , δjYj),

E

(
− ∂

2l

∂α2

)
= −eα+βxj [E(δjYj) + cE(1− δj)] .
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A.2. Proof of Theorem 1 Let ξ = {0, 1;ω, 1 − ω}. The objective function defined in (9)

becomes [
eα+β

(1− e−ceα+β )

∫ c

0
e−yje

α+β
g(yj) dyj −

eα

(1− e−ceα)

∫ c

0
e−yje

α
g(yj) dyj

]2
+

1

ω(1− e−ceα)
+

1

(1− ω)(1− e−ceα+β )
. (15)

The minimax c-optimal design for β is found by minimising the above expression with respect

to ω for the worst possible contaminant. Observe that the term involving the contamination

function g is independent of the weight ω and therefore, it is enough to minimise

1

ω(1− e−ceα)
+

1

(1− ω)(1− e−ceα+β )
,

which gives the optimal weight

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

.

A.3. Proof of Theorem 2 For ξ = {0, 1;ω, 1 − ω} the determinant of the mean squared

error matrix is given by

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β )

{
1 + ω

[
eα
∫ c
0 e
−yjeαg(yj) dyj

]2
(1− e−ceα)

+ (1− ω)

[
eα+β

∫ c
0 e
−yjeα+βg(yj) dyj

]2
(1− e−ceα+β )

}
.

Since g ∈ G1, then maxyj∈[0,c] |g(yj)| ≤ c1 ∀j = 1, . . . , n and so∣∣∣∣∣
∫ c

0
e−yje

α+βx
g(yj) dyj

∣∣∣∣∣ ≤
∫ c

0
e−yje

α+βx |g(yj)| dyj ≤
∫ c

0
e−yje

α+βx
c1 dyj

= c1(1− e−ce
α+βx

)/eα+βx, ∀x ∈ {0, 1}

Therefore, for contamination functions g in the class G1 the maximum value of the determinant

of the mean squared error matrix is given by

c21
ω(1− e−ceα)

+
c21

(1− ω)(1− e−ceα+β )
+

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β )
.

Taking the first order derivative of this expression with respect to ω and equating it to zero

gives

c21ω
2(1− e−ceα)− c21(1− ω)2(1− e−ceα+β )− (1− 2ω) = 0

⇐⇒ ω1,2 =
−[c21(1− e−ce

α+β
) + 1]±

√
c21(1− e−ce

α) + 1
√
c21(1− e−ce

α+β ) + 1

c21(e
−ceα+β − e−ceα)

.
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When β is positive, it is easy to see that both the numerator and the denominator of the above

expression are non-positive. The negative root of the numerator is rejected since

− c21(1− e−ce
α+β

)− 1−
√
c21(1− e−ce

α) + 1
√
c21(1− e−ce

α+β ) + 1

< −c21(1− e−ce
α+β

) + c21(1− e−ce
α
) = c21(e

−ceα+β − e−ceα),

and the weight must be always less than or equal to unity. In the case of negative β-values the

denominator is positive and since ω > 0, again the positive root is accepted.

Therefore, whatever the sign of the parameter β, the minimax D-optimal weight at point 0 is

given by (12).

A.4. Proof of Theorem 3 Since g ∈ G2, then

∣∣∣∣∣
∫ c

0
e−yje

α+βx
g(yj) dyj

∣∣∣∣∣ ≤ c2 ∀x ∈ {0, 1}.

Therefore, for a fixed design ξ supported at 0 and 1 with corresponding weights ω and 1−ω the

determinant of the mean squared error matrix is smaller than or equal to

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β )

{
1 + ω

(c2e
α)2

(1− e−ceα)
+ (1− ω)

(c2e
α+β)2

(1− e−ceα+β )

}
.

Taking the first order derivative of this expression with respect to ω and equating it to zero

gives

(c2e
α)2

(1− e−ceα)
ω2 − (c2e

α+β)2

(1− e−ceα+β )
(1− ω)2 − (1− 2ω) = 0

⇐⇒ ω1,2 =

−
[

(c2eα+β)2

(1−e−ceα+β )
+ 1
]
±
√

(c2eα)2

(1−e−ceα ) + 1

√
(c2eα+β)2

(1−e−ceα+β )
+ 1

c22

(
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

) .

When β is positive, it is easy to check that both the numerator and the denominator of the

above expression are non-positive. The negative root of the numerator is rejected since

− (c2e
α+β)2

(1− e−ceα+β )
− 1−

√
(c2eα)2

(1− e−ceα)
+ 1

√
(c2eα+β)2

(1− e−ceα+β )
+ 1

< − (c2e
α+β)2

(1− e−ceα+β )
< c22

(
(eα)2

(1− e−ceα)
− (eα+β)2

(1− e−ceα+β )

)
,

and the weight must be always less than or equal to unity. In the case of negative β-values the

denominator is positive and since ω > 0, again the positive root is accepted.

Therefore, whatever the sign of the parameter β, the minimax D-optimal weight at point 0 is

given by (13).
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