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Abstract

Sensorineural hearing damage occurs when the hair cells which transduce me-

chanical input to electrical become damaged in the cochlea. Current drug therapies,

whilst being promising in their ability to heal these cells, are limited by the inability

to reliably administer them to their target sites.

This work looks at the phenomenon of steady streaming, a non-zero net motion

in a fluctuating flow with non-conservative body forces, and investigates whether or

not it is possible to harness the effect in order to deliver and potentially even specifi-

cally target damaged hair cells in the cochlea. Using the WKB model for the basilar

membrane waves alongside experimental data to a create computational fluid dy-

namic simulation of the guinea pig cochlea, particle tracking was undertaken in order

to find individual particle trajectories in the flows under pure tone, pitch change and

multiple pitch stimulation. The steady streaming velocities and relative efficacy of

the different stimuli were then determined and multiple frequency stimulation found

to be superior as a method of drug transportation due to the setup of a so-called

‘streaming channel’ along which particles flow.
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Nomenclature

ū Time averaged velocity of particles passing through a cell in the decomposed

domain. ms−1

uA Instantaneous velocity of particles within a cell of the decomposed domain

between two timesteps. ms−1

∆t The discrete timestep for the CFD simulation s

∆x The discrete spatial step for the CFD simulation m

δ Spatial separation of resonance peaks m

P̂ Spatially dependant coefficient of the pressure difference between the two

channels. Pa

κ Compressibility of the fluid m2N−1

λ Wavelength of the travelling waves along the basilar membrane. m

µp Friction coefficient of injected particle

ν Fluid kinematic viscosity m2s−1

ω Angular frequency of the pure-tone sound stimulation. ◦

ω0 Resonant frequency at a certain location along the the basilar membrane ◦

ρ Fluid density kgm−3
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ρ0 Fluid density at mean membrane displacement, x0 kgm−3

τRij The Reynolds stress tensor Nm−2

p̃(1) Spatially dependent part of the fluid pressure field in the top channel. Pa

p̃(2) Spatially dependent part of the fluid pressure field in the bottom channel. Pa

Ũ Maximum fluid velocity ms−1

u(1) 3 Dimensional velocity vector in the top channel, (u(1), v(1), w(1)) ms−1

u(2) 3 Dimensional velocity vector in the bottom channel, (u(2), v(2), w(2)) ms−1

uE = (uE, vE) Euler velocity ms−1

uL = (uL, vL) Lagrangian velocity. ms−1

uss = (uss, vss) The steady streaming velocity ms−1

ξ Damping factor Nsm−1

A Area of segment of basilar membrane. m2

a Amplitude of the waves travelling on the basilar membrane. m

c Speed of compression wave through the fluid ms−1

Co The Courant-Friedrichs-Lewy constant

e Coefficient of restitution of injected particle

F Body force in the fluid. N

f Stimulation frequency Hz

h Height of the unrolled cochlear channel m

K(x) Stiffness of the basilar membrane. Nm−1
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k(x) Wave number of travelling wave along the basilar membrane. m−1

m(x) Mass of the basilar membrane. Kg

P Pressure difference across the top and bottom channels. Pa

p Fluid pressure field. Pa

pN Normalisation pressure (or root mean square pressure) for a specific SPL. Pa

pref Reference sound pressure in air: 2× 10−5 (threshold for human hearing). Pa

R Ratio of log frequencies corresponding to scaled spatial separation

Re Reynolds number

RN Normal force exerted on a fluid element due to Reynolds stress. N

RT Tangential (shear) force exerted on a fluid element due to Reynolds stress. N

S Strouhal number

t Time s

uESS Steady streaming velocity found by Edom and Obrist. ms−1

ub.lL Lagrangian velocity in the boundary layer ms−1

uBL Lagrangian velocity in the bulk flow region ms−1

uS Stokes drift velocity ms−1

uBM Velocity contribution due to the 2D basilar membrane motion ms−1

V Vertical velocity of the basilar membrane. ms−1

x Spatial coordinate in the longitudinal direction. m

y Spatial coordinate in the vertical direction. m

Z Impedance of the basilar membrane Nsm−1
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Chapter 1

Motivation for this Work

1.1 Motivation

Sensorineural hearing loss is caused by damage in the inner ear, and is one of

the most common disabilities across the world [4][5]. Although research into drug

therapies for various disorders in the inner ear are proving to be promising, the

progress of effective therapies is stunted by the fact that the inner ear is a very

complex part of the body to access and treat. Whereas most parts of the anatomy

can be targeted via the cardiovascular system after oral or intravenous application of

a drug, the cochlea can not. Finding a means of delivering the drugs to the desired

location is therefore of the utmost importance in the field of hearing restoration and

protection.

The role of the ear is to convert acoustic signals from the air into electrical

signals which can be processed by the brain. Specialised hair cells are responsible

for this mechanotransduction and they lie upon the Basilar Membrane (BM) inside

the cochlea which is itself encased within the temporal bone: the hardest bone in

the body. These hair cells can be damaged due to noise exposure or age, and once

damaged cannot repair themselves in mammals, leading to sensorineural hearing

loss. Treatment of these hair cells is promising, with new therapies such as gene

therapy able to restore their function [6] [7] [8].

The cochlea itself is a very delicate organ and is to some extent isolated from

the rest of the body through the blood-labyrinth barrier which, in a similar way to

the blood-brain barrier, protects the cochlea from an influx of anything (be that

hormones, free radicals, or any other toxin which may circulate in the blood stream)

which could adversely affect its function [9]. This is necessary so that the cochlea

stays in a state of homeostasis: it’s function is dependent on a delicate balance in

1
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the composition of the fluids which fill its interior [10][11]. Although this keeps a

healthy cochlea functioning, it also makes the treatment of those that are damaged

very difficult: if only those substances which the cochlea requires for healthy function

can cross the blood-labyrinth barrier, systemic delivery of a drug via the bloodstream

is very ineffective [12]. Not only does the drug have to be designed in order to cross

the barrier, it has to be applied in sufficiently high doses such that the concentration

once it reaches the cochlea is high enough to have any effect. In the case of steroid

treatments, very common in inner ear therapies, this also leads to some quite serious

side effects such as hyperglycemia, osteoporosis and even adrenal suppression [13].

Hence most delivery methods focus on local delivery, either by diffusion across a

membrane known as the round window at the entrance to the cochlea, or by direct

injection through it.

Diffusion across the round window occurs after application of a drug to the

middle ear. The middle ear is the region of the ear which lies between the ear

drum and the cochlea, and is normally filled with air, maintained at atmospheric

pressure through the eustachian tube, which connects the middle ear to the throat.

This tube’s purpose is to regulate pressure and to remove mucus from the middle

ear, necessary to avoid infection. Consequently, drug application to the middle ear

suffers from the fact that the solution containing the drug is removed very quickly

and swallowed by the patient [14][15]. Methods of delivery this way have fixed the

patient’s head in position for around 30 minutes, preventing the drug-filled solution

from pouring through the tubes and allowing it to diffuse across the round window.

Even with these measures, the concentration of the drug in the cochlear fluids is still

relatively small, with concentrations at the first turn of the cochlea as low as 2.5%

of that administered to the middle ear [16]. Not only is this percentage very low,

but large gradients exist along the length of the cochlea [17]. For example, after an

application of a suspension of the corticosteroid dexamethasone to the middle ear

cavity, the concentration of the drug near the apex of the cochlea (the low frequency

region) is 500 times smaller than at around halfway along it [18]. Hence apical and

therefore low frequency damage is unlikely to be affected by such treatment.

Intracochlear injection involves the delivery of the drug directly into the cochlear

fluids [4]. This method has the benefit of targeted delivery to the cochlea only, and

hence the actual dosage delivered is well known compared to the round window

diffusion technique, the results of which are known to vary widely between patients

[19]. There are however a number of difficulties with this procedure. Firstly, the

precision with which the procedure must be done make it very difficult. In order

to reach the round window, a surgeon must first pass along the ear canal, through
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the ear drum, across the air filled space of the middle ear, and into the small round

window. Secondly, the volume of fluid which can be injected into the cochlea is very

small, else the increase in pressure can lead to the destruction of the entire cochlear

function [4]. Thirdly, the needle which delivers the injection passes through the

membrane and causes a small rupture. This rupture must be perfectly sealed on

removal of the needle to prevent fluid leakage and although gels and biocompatible

tissue glues have proved to seal this hole well, they impact the mechanical properties

of the membrane itself, which can lead to further problems [16] [20] .

The methods described here merely approach the issue of delivering drugs in-

side the cochlea: already a very complex task. However there is another problem:

the distribution of drugs throughout the cochlea itself. Although the cochlea is com-

pletely fluid-filled, current therapies must rely on local, passive diffusion for drug

transport throughout its entire length. Because of its dependence upon concentra-

tion gradients, this diffusion is very fast over small length scales. However once

diffusion has begun, the concentration gradient reduces and the process slows [21].

To reach the apical region of the cochlea therefore requires very long timescales,

turning the the problem into one of dosage and bio-availability. Under passive diffu-

sion, the drug will redistribute evenly throughout the entire channel and the actual

dosage at any one location will be much reduced. The reduction in availability of

the drug is further compounded by processes such as absorption via the body and

binding of the drug to proteins in the fluid itself [22]. Not only this, but a drug may

only remain active for a certain lifetime, after which it becomes less effective. To

overcome this issue, there are methods of delivery which delay the release of an active

drug through the use of a so-called “carrier” (such as biodegradable micro-spheres

and gels which can be loaded with a drug [18]), which can be triggered to release

the drug in a variety of ways. Examples include utilising natural concentration gra-

dients, using a chemical trigger such as the surrounding pH level or even through

a variation in temperature [16]. These not only increase the active lifetime of the

drug, but mean that the carrier can diffuse further towards the apex before releasing

its payload, and potentially affect hair cells. However, the problem of re-absorption

by the body still remains.

There is an emerging technology which looks to be very promising and man-

ages to overcome almost all of these issues. The process works by the temporary

implantation of precision micromechanical pump, which, over some time period, de-

livers the drug to the cochlea by a constant push-pull process. It overcomes volume

conservation issues of normal injection techniques by ensuring that the total volume

in the cochlea remains constant and also manages to mix the drug throughout the
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entire cochlea, removing the need for passive diffusion as the main means of trans-

port. The pump is implanted into a patient, and can be used over long timescales

to deliver its payload. However, its biggest downfall is that it requires very invasive

surgery: carrying its own, separate set of risks [13] [19]. It is therefore clear that a

non-invasive, predictable method of delivering these drugs to a specific location in

the cochlea is needed.

To summarise: research has shown that there are a number of ways that a

drug can be delivered into the fluid-filled cochlea. These results, coupled with the

pharmaceutical research being undertaken, provide a way in which to treat hearing

damage and loss. However, these methods still rely on passive diffusion once the

drug has been delivered or require invasive surgery to implement. This work will

instead try to quantify and harness the natural fluid dynamics of the inner ear as

a result of optimised sound stimulation to target locations along the cochlea and

therefore increase dosage of therapies at a particular location.



Chapter 2

Introduction

2.1 The Anatomy and Physiology of the Ear

The anatomy of the ear consists of three main parts: the outer, middle and

inner ear. Fig. 2.1 is an illustration showing the details of the anatomy of the human

hearing organs.

2.1.1 The Outer Ear

The outer ear consists of the auricle (the visible part of the ear) and the ear

canal. The auricle has its particular shape in order to funnel sound pressure waves

in the air into the ear canal and onto the tympanic membrane. The tympanic

membrane therefore oscillates at the same frequency as the waves in the air.

2.1.2 The Middle Ear

The tympanic membrane signifies the beginning of the middle ear. The mem-

brane is forced to oscillate with the frequency of the incident sound, which in turn

drives the oscillation of a series of three bones known as the ossicles: the maleus,

incus and stapes (see Fig. 2.1 and Fig. 2.2). The purpose of these bones is to match

the impedance between the air filled outer ear and the fluid filled inner ear (also

known as the cochlea). When sound waves travel between media, there is usually a

very large attenuation of energy due to the transition from a compressible medium

(air) to a barely compressible fluid (the liquid contained within the cochlea). With-

out the intermediate stage of the middle ear, the vibration of the ear drum alone

would have to drive vibrations in the fluid filled cochlea. If this were the case, the

5
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Figure 2.1: Illustration of the anatomy of the human ear detailing the outer, middle and
inner ear. Taken from “An Introduction to the Physiology of Hearing” [3].

transmission of sound energy could be as small as 0.1% [3]. The ossicles therefore

facilitate the transfer of force from the relatively large tympanic membrane onto a

much smaller membrane known as the oval window, and the decrease in area results

in an increased pressure at the oval window and hence a large enough energy transfer

to drive the fluid motion inside the cochlea. This is possible through the geometry

and lengths of the bones. Combined, they act as a compound lever, generating the

increase in force necessary to drive the oscillation of the oval window.

2.1.3 The Inner Ear

We now reach the inner ear (or cochlea): the most complex part of the hearing

apparatus. The purpose of this stage of hearing is to convert the mechanical signal
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Figure 2.2: The tympanic membrane oscillates at the same frequency as the sound wave
which is incident upon it. This in turn sets into motion the ossicles: three small bones
whose purpose is to more efficiently transmit the oscillations from the air to the fluid in the
cochlea. The ossicles connect the relatively large tympanic membrane to the much smaller
oval window. The pressure exerted on the oval window and therefore onto the fluid within
the cochlea is increased from that at the tympanic membrane. This impedance matching
device means that the attenuation of the signal is drastically reduced relative to an air-
liquid transmission.

received at the oval window into an electrical signal which can then be transmitted

to the brain. The cochlea contains three coiled channels, separated by membranes,

which form a spiral shaped structure (Figs. 2.3, 2.4).

The channels (scala vestibuli, scala media and scala tympani) are encased

within the bony otic capsule. All three channels are completely fluid-filled. The

scala vestibuli and tympani are connected at the apex of the channels by the heli-

cotrema, allowing the exchange of fluid between the two. The scala media is isolated

however, due to the composition of the fluid contained within: although the other

channels are filled with a liquid which has a similar ionic composition to the ex-

tracellular matrix (perilymph), the scala media’s fluid has a high concentration of

potassium ions, K+. This so-called endolymph has a potential of 80 mV: the en-

docochlear potential [23]. The channels are separated by two highly specialised

membranes: Reissner’s Membrane (separates scala vestibuli from media) and Basi-

lar Membrane (separates scala media from tympanic). These two membranes as well

as the scala media are grouped into what is known as the cochlear partition. Figure
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Figure 2.3: The spiralled cochlea, with a cut away section revealing the cochlear partition
which coils throughout the cochlea. The arrows indicate the motion of the oval window
(which is connected via the ossicles to the ear drum) which drives the fluid motion and
consequently the travelling waves along the basilar membrane.

2.3 demonstrates this, showing the cochlea, with a section of the otic capsule cut

away, revealing this cochlear partition, bounded from above by Reissner’s membrane

and from below by the basilar membrane with the scala media in between. Figure

2.4 shows these details further, and corresponds to a viewpoint which looks through

the yellow section highlighted in Fig. 2.3. If we were to unroll the cochlea into a

straight, tapered channel as in Fig. 2.5a, we would see that the BM is trapezium

shaped (Fig. 2.5b). It is comprised of many fibres, which run perpendicular to its

length, are attached at the cochlea walls and which have more mass and become

more elastic the further along the cochlea we travel.

The structure of this membrane means that it has a spatially varying impedance,

and it is for this reason that the cochlea is able to spatially resolve frequencies. The

result of a sound wave of a particular frequency causing the fluid in the cochlea to

move via motion of the oval window is a pressure difference between the top and

bottom channels. The pressure difference causes motion of the BM in the vertical

direction and elicits a travelling wave along the BM surface. Because of the phys-

ical structure of the membrane, with the mass increasing with distance from the

base and the stiffness vice-versa, there is a spatial position at which the travelling

wave abruptly decays. So, for a specific frequency, a resonance will occur at a cer-

tain location, causing the specialised cells at that location to send a signal to the

brain. Because different cells are triggered at different frequencies, the brain can

differentiate between signals of different frequency.

It is upon the Basilar membrane that the Organ of Corti is located. This organ

is responsible for transducing the membrane motion into electrical signals through

the triggering of action potentials in auditory-nerve fibers that are attached to hair
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Scala Media

Figure 2.4: Cross section of the cochlea, corresponding to a viewpoint through the yellow
highlighted section in Fig. 2.3 showing the basilar membrane and the various channels
which run along the spiral. Taken from “An Introduction to the Physiology of Hearing”
[3].

(a) (b)

Figure 2.5: By unrolling the cochlea so that the channel is straight as depicted in (a),
we find that the geometry of the basilar membrane which runs along the entire cochlear
spiral, is trapezoidal:(b). It is composed of many radial components which are weakly
coupled in the longitudinal direction (along the cochlea). At the entrance of the cochlea
the components are stiffer and have smaller mass, whereas towards the apex of the channel
they become more compliant with a greater mass.

cells. The vertical displacement triggers the transmission of electrical signals to the

auditory fiber and thus the brain, by opening ion gates in the hair cells which lie upon
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the membrane surface. Each hair cell consists of a central cell body with a set of

stereocilia positioned at it’s head (Fig. 2.6). These stereocilia are joined by filaments

called tip links (Fig. 2.7) which, when the BM is deflected and the stereocilia bent,

pull open ion channel gates and allow the flow of positive potassium ions into the

hair cells.

Figure 2.6: The hair cells which form part of the Organ of Corti on the BM are highly
specialised. They allow an influx of Potassium ions from the endolymph into the hair cell
through the gated channels of the stereocilia which open on deflection of the BM. Once
the K+ ions have flowed into the cell, its membrane becomes depolarized, and Calcium
ions can also enter. The purpose of this ion flux is to trigger electrical signals which are
sent to the auditory nerve and then the brain.

2.2 The Active Process

Measurements of the Basilar membrane response in a living (active) cochlea

differ greatly from those of a dead (passive) one. In an active cochlea, the peak

displacement of the BM is much larger than in the passive case. Not only is there an

amplification of the BM displacement, but there is also a persistence in its oscillation

in the fluid that cannot be explained by a model in which the membrane is driven by

the mechanics of the middle ear alone. Experimental work by Gold on this matter

[24][25] found that the quality (or Q) factor being measured for the oscillating system
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Figure 2.7: Stereocilia are grouped together into hair bundles, organised such that the
stereocilia line up in height order creating a wedge profile (left diagram). Individual
stereocilia are linked together via tip links (right diagram) whose role is to open the ion
gates after deflection of the BM.

was impossibly high if it were true that the BM was driven only by the pressure

difference between the channels. Consequently he hypothesised that there must

be some other process which acts to amplify the displacement and prolong the

oscillation.

The non-linear behaviour of the membrane displacement is the mechanism

which allows the cochlea to resolve sounds of different orders of magnitude. Early

experimental work [26] revealed that the membrane elicits a non-linear response to

an increase in both sound pressure level (SPL) and frequency. The BM displacement

away from the resonant position follows a linear behaviour, becoming sublinear as

the peak is approached [27]. Quieter sounds have an amplification of up to 100 times

those of louder ones.

Although these behaviours were known for a long time, it is only recently

that a hypothesis for its origins has been put forward. It is now generally agreed

upon that specialised hair cells upon the BM are responsible for the membrane

amplification, through a process named “active feedback” [28][29][30][31]. The hair

cells which lie along the BM are responsible for the mechanotransduction of signals

from the membrane to the nerve fibres. When the hair cells are displaced by the BM,

they exert a force back onto the membrane and cause an amplitude amplification.

This amplification also aids the cochlea in hearing and processing low SPL inputs.

Without the amplification it is impossible to explain how the ear succeeds in picking

up such low energy signals. The active process is a feed back loop and is highly non-

linear in nature. It is also the cause of otoacoustic emissions, sounds which are

produced internally within the inner ear itself, rather than as a result of eternal
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sound stimuli. The active process amplifies the BM wave and allows it to have

enough energy to overcome the effects of viscous damping of the fluid, which lead

to an increased wave amplitude. Although the mathematical model which we will

describe in Chapter 3 does not include the details of this non-linear behaviour, we

are able to incorporate the compressive non-linearity through empirically fixing the

damping of the wave for different SPLs.

To summarise: the outer ear’s role is to focus sound waves onto the ear drum;

the middle ear’s role is to transfer the energy received at the ear drum to the fluid

in the cochlea through the impedance matching offered by the ossicles; the inner

ear’s role is to convert the mechanical waves into electrical signals for the brain to

interpret as sound at a particular frequency. The displacement of the BM wave is

different in an active vs passive cochlea due to the presence of the active process.

2.3 Steady Streaming

Steady streaming is the net motion of particles in a fluid in a fluctuating flow

whose time average is zero. A simple example of this is in the case of a surface wave

where the velocity field displays circular motion but with an amplitude that decays

exponentially away from the surface. The time average of the motion of this fluid is

zero, yet individual particle paths map out a translating circle: a spiral trajectory.

There are a few factors which contribute to this effect, but the underlying principle

is that energy is transferred to the fluid and results in a velocity field, which we will

call the “steady streaming field” which is superposed onto the Euler velocity field

of the fluid system. In general, the effect arises either due to a non-conservative

body force in the fluid, through the momentum transfer from Reynolds stresses or

from the boundary layer [32]. As will be discussed in further detail in the following

chapter, it turns out that the nature of the fluid motion in the cochlea means that

all three effects are present. Streaming in the cochlea has been a topic of interest

for many years: Lighthill studied steady streaming of the cochlea theoretically and

in particular found that a combination of effects cause the steady streaming: Stokes

drift in the bulk flow and boundary layer, and momentum transfer due to Reynolds

tangential and normal stresses [33]. Edom and Obrist built upon this work and

found additional streaming effects which result from slight membrane motion along

the channel as well as perpendicular to it. [34]. The work of Steele in 1968 focused

on the effects of the streaming within the perilymph-filled space between the two

main channels [35]. Whereas research has been conducted into the process of steady
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streaming in the cochlea, the focus has been towards the physiological implications

of such an effect or the determination of its magnitude and importance for the overall

dynamics of the cochlea [36]. In this work we are instead interested in the question:

are we able to use the steady streaming flow in the cochlea to efficiently transport

an injected drug to a specific location along the basilar membrane?

To discuss the simplest steady streaming, we must use two interpretations of

the velocity field in the fluid, depending on the reference frame used: Euler (fixed

reference frame) or Lagrangian (reference frame which moves with the fluid parcel).

Of course in a linear system, the time average of these two velocities are equal.

However, as will be seen in the full treatment of steady streaming in the cochlea in

§ 3, when higher order terms are taken into account, this difference is non-zero and

proportional to the square of the velocity amplitude.

In the work which follows, we investigate whether or not the steady streaming

in the cochlea occurs fast enough and over sufficient length scales such that when

presented with a sound, the underlying steady streaming field can be used as a

transport mechanism. The fact that the streaming is proportional to the square of

the velocity amplitude (where in the case of the cochlea this refers to the membrane’s

vertical velocity) implies that the effect is greater near the position of resonance for a

particular frequency. It is therefore hypothesised that by changing the frequency of

the stimulation via frequency sweeps for example, the location of the resonance and

hence maximum steady streaming could be changed also. By optimising the sound

stimulus it could be possible to harness this effect and transport an injected drug

through the cochlea to a specific location: something which is currently impossible

to achieve with any significant dosage.



Chapter 3

The Mathematical Formulation:

Cochlear Mechanics and Steady

Streaming

3.1 Basilar Membrane Waves

3.1.1 Cochlear Fluid Mechanics

We begin by reducing the geometrical complexity of the system significantly in two

ways. Firstly, by unrolling the cochlea [37]. The validity of this simplification can

be argued for two reasons. The first is that in the high frequency region (the region

of focus of this work) the curvature of the cochlear channel is much larger than

the local wavelength of waves elicited upon the BM, and so we can locally assume

the channel to be straight. The second is that the energy transferred to the fluid

because of the curvature is small for most of the channel, becoming significant only

near the apex [38][39]. In this work we focus on high frequency stimulation, which

occurs at the base of the cochlea, because it is not only better understood, but

physically lies in the region of interest in terms of drug delivery along the cochlea

[40][41]. Secondly, by treating it as two channels instead of three: effectively treating

the scala media and scala vestibuli as one compartment [42] [43]. The justification

for this simplification is that Reissner’s membrane which separates the scala media

and scala vestibuli, is much thinner than the BM and hence has a much smaller

impedance [26][44]. Figure 3.1 shows the geometry and associated variables of the

problem.

14
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Figure 3.1: The geometry of the problem: the top (1) and bottom (2) channels of the
cochlea are separated by the Basilar membrane. Velocity and pressure fields are defined
in both channels.

Beginning with the full Navier Stokes equations:

ρ
Du

Dt
= −∇p+ ρF + µ∇2u (3.1)

where u = (u, v, w) is the velocity field vector and Du
Dt

= ∂u
∂t

+ u∇. u is the material

derivative, we make the following assumptions:

• no external body forces act upon the fluid

• the fluid is inviscid

• the amplitude of the BM waves, is small. [44] This long wavelength approx-

imation means that a
λ
� 1. Using this fact, the advective, non-linear term

(O(a
2ω2

λ
)) is much smaller than the unsteady term (O(aω2)) and can be ne-

glected.

These assumptions leave us with the reduced Navier Stokes equations:

ρ
∂u

∂t
= −∇p. (3.2)

Next we consider the continuity equation:

Dρ

Dt
= ρ∇·u (3.3)

Only very small displacements are present in the cochlea (< O(10−6)m). Conse-

quently, we employ a Taylor expansion of the fluid density around a mean displace-

ment, x0:

ρ = ρ(x0, t) + (x− x0)
∂

∂x
ρ(x0, t) +

(x− x0)2

6

∂2

∂x2
ρ(x0, t) + ... (3.4)
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and take ρ to be equal to the leading term, ρ0 = ρ(x0, t). Thus we remove the x

dependence of the density, but its time dependency remains. Now Eq. 3.3 becomes

∂ρ0

∂t
= −ρ0∇·u. (3.5)

Notice the spatial derivatives of ρ have now vanished after invoking Eq. 3.4.

Time dependent density is equivalently described in the context of a pressure

change, and the two vary according to the fluid’s compressibility, κ as follows:

∂ρ0

∂t
= ρ0κ

∂p

∂t
(3.6)

combining Eq. 3.5 and Eq. 3.6

−∇·u = κ
∂p

∂t
(3.7)

and by combining the divergence of Eq. 3.2:

ρ0
∂

∂t
∇·u = −∇2p (3.8)

with Eq. 3.7, we find the wave equation for the pressure in the fluid:

∂2p

∂t2
= − 1

ρ0κ
∇2p (3.9)

which defines the wave speed, c for a sound wave travelling through the fluid:

c =
1
√
ρ0κ

. (3.10)

The longitudinal pressure wave which travels through the fluid is not important for

the fluid dynamics. It has a wavelength of the order of a metre, significantly larger

than the size of the cochlea, even in large mammals.

At this point, we can introduce the time dependency to the u(1,2) and p(1,2)

fields. We begin by assuming a pure-tone, with frequency ω, such that

p(1,2) = p̃(x)(1,2)e−iωt + c.c (3.11)

u(1,2) = ũ(x)(1,2)e−iωt + c.c (3.12)

where c.c indicates the complex conjugate. We now consider the boundary condi-
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tions. Firstly, apply the no slip condition at the top and bottom walls:

u(1,2)
∣∣
(y=h,−h)

= 0 (3.13)

and at the BM:

u(1,2)
∣∣
(y=0)

= V (3.14)

where V is the vertical velocity of the basilar membrane, defined through the

impedance, Z, as:

V =
1

Z

(
p̃(2) − p̃(1)

)
(3.15)

and all walls are treated as rigid boundaries such that:

∂p

∂y

(1,2)
∣∣∣∣∣
(y=h,−h)

= 0. (3.16)

Starting now again with Eq. 3.7 we set the y-dependent velocity to 0 and use the

common simplification of making the system 2D [45] [46], with the x direction along

the channel and the y direction across the channel height. Taking a volume integral

(where volume here refers to volume per unit span) described in Fig. 3.2 over both

sides:

−
∫
V

∇·udV = κ

∫
V

∂p

∂t
dV (3.17)

and using Gauss’s theorem: ∫
V

∇·udV =

∮
S

u.n̂dS (3.18)

we rewrite Eq. 3.17 as

−
∮
S

u· n̂dS = κ

∫
V

∂p

∂t
dV (3.19)

Integrating over a fluid control volume in the top channel , leads to 1 dimensional

expression for the velocity u = (u, v) and the pressures:

−h u|(x) + v|(y=h) x− h u|(x+dx) − v|(y=0) dx = κh
∂p

∂t
dx (3.20)
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Figure 3.2: The left hand diagram shows the control volume, V , over which we integrate.
Due to Gauss’s theorem, we can calculate this as a surface integral with normal vectors
and the direction of integration defined in the right hand diagram.

the second term, v(h)x = 0 by definition (no flow through solid boundaries).

Grouping the terms multiplying h and dividing through by dx:

h

(
u|(x) − u|(x+dx)

)
dx

− v|(y=0) = κh
∂p

∂t
(3.21)

and after using the definition of the derivative:

h
∂u

∂x
= v|(y=0) + κh

∂p

∂t
. (3.22)

The vertical component of the fluid velocity at the membrane, v(x, y = 0),

is equal to the membrane’s vertical velocity, V. Now we can implement Eq. 3.11,

Eq. 3.12 and Eq. 3.15 in each of the channels which gives

h
dũ(1)

dx
=

1

Z

(
p̃(2) − p̃(1)

)
− iωκhp̃(1) (3.23)

The two terms here show the two ways in which the longitudinal velocity can

be altered: a membrane motion (induced by a pressure difference across it) or a

compression of the fluid.

By taking the x differential of the x-component of Eq. 3.2, we can eliminate
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the velocity from Eq. 3.23 to form an equation in terms of the pressure for the top

and bottom channel respectively:

d2p̃

dx2

(1)

= −iωρ0

hZ

(
p̃(2) − p̃(1)

)
− ω2ρ0κp̃

(1) (3.24)

d2p̃

dx2

(2)

=
iωρ0

hZ

(
p̃(2) − p̃(1)

)
− ω2ρ0κp̃

(2). (3.25)

Combining these expressions and defining the pressure difference: P̃ = p̃(2)−p̃(1)

and neglecting compressive effects due to the large wavelength of compression waves

leads to the one dimensional wave equation for the pressure difference across the

BM:

d2P̃

dx2
=

2iωρ0

Zh
P̃ (3.26)

This wave equation gives the local wave speed as

c(x) =

√
iωZh

2ρ0

(3.27)

which leads to the wave number (through c = ω/k ):

k(x) =

√
2ωρ0

iZh
(3.28)

The nature of the wave number is important. It is dependent on the impedance,

which is itself a result of the balance between the mass and stiffness properties of

the membrane.

So far there has been no mention of the mathematical nature of the impedance.

In reality, the BM is not a continuous membrane at all, but rather a series of radially

connected elastic beams, which are coupled together by the fluid, rather than each

other. This means that each beam has its own resonant frequency dependent upon

its mass, m and stiffness, K. We now implement this spatial dependence, using the

following expression for the impedance [37],[40],[43]:

Z =
1

A

(
−iK
ω

(
1− ω2

ω2
0

+
iξω

K

))
(3.29)
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where the resonant frequency, ω0 is

ω2
0 =

K(x)

m(x)
. (3.30)

and ξ is a damping factor, necessary to ensure that the resonance peak behaves in

a physical manner. ξ therefore represents the viscous damping of the BM by the

fluid.

3.1.2 The WKB Approximation

The WKB approximation is a method used to solve spatial and temporal differ-

ential equations where the coefficient has a spatial dependence. Usually the WKB

approximation is used in the case of a “short wavelength” assumption: seemingly

opposite to the model requiring the long wave assumption we have presented here.

However, it has been argued that the short assumption is still valid in this case,

as the wavelength is only long in comparison to the small amplitudes of the BM

motion. In fact we compare the wavelength scale to the lengthscales over which the

impedance of the membrane changes [47]. In this way the wavelength is “short”.

This assumption is borne from the observations that waves travel only in one di-

rection along the membrane [26][43]. In order for no travelling wave reflections to

occur at any point along the membrane, the structure of the membrane must change

slowly and smoothly [42][47][48].

We are now at the stage where we can begin the process of finding the surface

deflection which we shall need to pursue the next stages of the work. The purpose

of using this method, is that it will enable us to greatly simplify the computational

costs of simulation the membrane motion in the cochlea. This is due to the fact

that the results of the WKB method incorporate the mechanical properties of the

membrane and allow us to use the deflection to drive the flow, rather than applying

a pressure field to the fluid and implementing a fluid structure interaction to deflect

the membrane as a result. This is discussed in further detail in the following chapter.

Once we take Z to be Z(x), Eq. 3.26 becomes a differential equation with a spatially

varying coefficient, and so we can use the WKB approximation to solve it. We begin

by introducing the ansatz

P̃ = P̂ (x)e−i
∫ x
0 k(x′)dx′ (3.31)
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into the wave equation:

P̂ ′′ − 2ik(x)P̂ ′ − ik(x)′P̂ − k(x)2P̂ =
2iωρ0

Z(x)h
P̂ (3.32)

To find the leading order behaviour of this equation, we use the fact that the wave

number, k(x) is much larger than the relative change in pressure amplitude, ∂P̂
∂x
/P̂ .

Doing so gives the dispersion relation:

k(x) =

√
2ωρ0

iZ(x)h
(3.33)

and taking the next order gives an ordinary differential equation for P̂ :

P̂ ′

P̂
= −k

′

k
(3.34)

the solution of which is

ln(P̂ ) = ln(k−1) (3.35)

leading to

P̂ =
1√
k
. (3.36)

and thus

P̃ =
1√
k(x)

e−i
∫ x
0 k(x′)dx′ (3.37)

Finally, using Eq. 3.15 and Eq. 3.33, we arrive at an expression for the vertical

velocity of the BM as a function of the impedance:

Ṽ (x) =

(
−h

2iωρ0Z(x)3

)1/4

e
−i

∫
x

0

√
2ωρ0
ihZ(x′)dx′

(3.38)

and we define the velocity amplitude, V̂ as

V̂ =

(
−h

2iωρ0Z(x)3

)1/4

(3.39)

Finally, the full expression including time dependence for the BM velocity is:

V (x, t) = Ṽ (x)eiωt. (3.40)



22Chapter 3. The Mathematical Formulation: Cochlear Mechanics and Steady Streaming

To elucidate the behaviour of the BM, we consider the nature of V̂ (x). The integral

term in the exponential depends on the impedance, Z(x). Before the wave reaches

the resonant location, the impedance has a large, real part, and the exponent is

imaginary, resulting in a propagating wave. Once the resonant location is reached

however, the impedance becomes imaginary and the exponent real. This is an

evanescent wave, which promptly decays, allowing the cochlea to achieve spatial

frequency resolution.

3.1.3 Matching the Theory to the Experimental Data

Now that the function governing the mechanics of the membrane has been

derived, the parameters will be fixed in order to use Eq. 3.40 to generate realistic

BM deflections in the computational model. Experimental data for the mass and

stiffness of the BM in gerbils is used, from the work of Emadi et al [1]. Henceforth,

all parameters will be fixed using rodent data and so the work effectively calculates

the steady streaming fields for much smaller mammals than humans. Although the

geometry is much smaller and the frequency range different to humans, the model

can be easily adapted for a human cochlea on addition of the equivalent experimental

data to that which follows.

x Position (mm) Mass ( ng) Stiffness (Nm−1)
0 32 1
7 65 0.03

Table 3.1: Experimental data taken from the work of Emadi et al [1]

Using the convention that their spatial variation is approximately exponential [42][47]:

m = m0e
x/lm K = K0e

−x/lK . (3.41)

combined with the data in table 3.1 gives the empirically determined decay length-

scales as lm = 115 nm and lK = 501 nm respectively. Higher frequencies should

resonate closer to the entrance of the cochlea and lower frequencies resonate at the

base of the cochlea. Figure 3.3 verifies that these functions behave in this way.

The amplitude of the BM wave envelopes scale with increasing SPL. The next

value we determine is the scale factor between SPLs, the normalisation pressure.

The normalisation pressure, pN for each curve is the root mean square pressure in
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Figure 3.3: Resonance curves for 80 dB SPL stimulation across a range of frequencies. The
intersection of the mass and stiffness curves indicate the location of the resonant location
for different frequencies. Higher frequencies resonate closer to the base of the cochlea.

air for a specific SPL, determined through the conversion:

dB SPL = 20log

(
pN
pref

)
(3.42)

where pref = 2× 10−5 Pa is a reference pressure: the threshold for human hearing.

These values will scale the entire envelope to simulate increasing energy of the stimuli

sound. However, the scaling is not the same across the entire envelope. This leads

us to the final parameter to fix: the damping factor, ξ. This affects the shape of the

envelope itself, by altering the shape around the peak, and can be fixed such that

some of the non-linear behaviours can be captured. Specifically, we want to try, as

far as possible, to recreate the compressive non-linearity around the resonance peak.

Figure 3.4 shows the experimental results of Cooper and Rhodes [2], who measured

the sensitivity (the displacement normalised by pN) at different frequencies, but

always at the same location in the cochlea: in this case at the position of the 17 kHz

resonance for a chinchilla.
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Figure 3.4: Experimental data taken from the original work of Cooper and Rhodes [2].
The higher frequency curves are of interest for us. We chose the 60, 80 and 100 dB SPL
curves respectively. The data was found from measurements made at the 17 kHz resonance
location in a chinchilla cochlea.

In order to fix ξ, the value was varied until the the wave amplitude at a fixed x-

location (the longitudinal coordinate of the 17 kHz resonance) as well as the relative

amplitude between SPLs at that location was matched to the experimental data.

We are able to capture some of the non linear behaviours without actually having a

nonlinear wave input; the ratio between the envelopes far from the peak is ≈ 10 but

at the peak location, it is ≈ 3. However, the damping factor can only do so much

in capturing the shape of the envelope of the waves. Indeed, our wave envelopes are

indeed more sharp than is observed physiologically, and this can be seen in Fig. 3.5

when compared with the shape of the curves in Fig. 3.4. This is because we are

limited by the use of a linear theory in a non-linear system. We therefore decided

to make a trade off, prioritising the amplitude of the wave envelope over the ideal

shape. The reason for this was that the steady streaming is proportional the square

of the velocity envelope (see Section 2.2) which is determined by the amplitude of

the function. Because the aim of this work is to determine whether or not streaming

can effectively transport drugs, the magnitude of the streaming is more important

than the width of the region of influence of the BM wave. Thus, in the work which

follows, the reader should keep in mind that the steady streaming fields will be more

spread than they appear here. Figure 3.5 shows the displacement envelope of the

waves as well as the sensitivity curves after fixing all of the parameters, collated in

Table 3.2 below.
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SPL (dB) Normalisation Pressure, pN (Pa) Damping Factor ξ (Nsm−1)
60 0.02 10× 10−8

80 0.2 5× 10−7

100 2 2× 10−6

Table 3.2: Parameters for the BM wave model, fixed using data acquired from the work
of Cooper and Rhodes [2] 



Figure 3.5: Curves for the membrane displacement at 17 kHz with increasing SPL. By fit-
ting the damping factors to fit the experimental data, the compressive non-linearity around
the resonance can be captured approximately: note the ≈10 fold increase in amplitude far
from the resonance compared to ≈3 fold increase between the maxima.

3.2 Steady Streaming

The derivation for the steady streaming in the cochlea is completed in full

by Lighthill, and we merely summarise the contributions to steady streaming that

he presents (the Stokes drift, and Reynolds stresses)[33] as well as a more recent

contribution from work completed by Edom and Obrist [34]. In the sections which

follow, several assumptions about the nature of the fluid solutions in the channels

have been made, specifically about the behaviour of the wave number, k. Following

Lighthill [33], if k varies smoothly as a function of x only:

• at a specific location along the BM, the wave number takes on a constant, local

value and is described by the dispersion relationship value at that location

• the local waveform is assumed to be that of a wave with a constant value of

the local wave number everywhere.

• the amplitude variation along the membrane is due to the transfer of energy

at the group velocity speed.
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• any error associated with these assumptions is O(dk
dx

1
k2

)2.

Lighthill used these rules in order to derive his solutions for the fluid fields in

the cochlea, which have been shown by comparisons by Steele [43] to be valid to as

high an accuracy as the WKB method. Thus we implement his method in our work

to the same end. For what follows, we approximate k as locally constant.

3.2.1 Stokes Drift

The first contribution we explore is the Stokes drift, uS, a second order ef-

fect resulting from the difference between the time averaged Euler and Lagrangian

velocities:

uS = uL − uE. (3.43)

The mean Euler velocity is calculated as the time average of instantaneous velocities

at a fixed points in the field. The Lagrangian mean velocity however is the time

average of a particle along some trajectory. So a particle moves through the Eulerian

field on its Lagrangian path. The time average at a specific fixed coordinate in

an oscillating field is zero, whereas this is not necessarily true along a particle’s

trajectory for the same time average. We calculate these differences in the bulk flow

and the boundary layer flow.

Bulk Flow

We take the Euler mean velocity to be zero, and so are only interested in uL

for now. The velocity field in the x and y directions in the bulk flow take on the

well known values of:

ũ = iṼ e−kz (3.44)

ṽ = Ṽ e−kz (3.45)

such that the transverse (y-component) and longitudinal (x-component) fields are

out of phase by π/2. Note that these variables are the Fourier coefficients of the

velocity fields. Using the fact that [33]

uL =

〈
∂ũ

∂x

ũ

iω
+
∂ũ

∂y

ṽ

iω

〉
(3.46)

(angular brackets indicate an average over time) and substituting in the relevant
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fields leads to

u
(B)
L =

k

ω
Ṽ 2e−2ky (3.47)

which is the same as the well known result for deep water waves. This deep water

result is valid within the apparently shallow cochlea because the depth of penetration

of the energy associated with the BM wave is of the order of k−1. For a BM wave

with λ ≈ 10−3m, this corresponds to a penetration depth of ≈ 1.5 × 10−4m at

the peak of the BM wave, which is around 1/3 of the entire depth of the channel

(5× 10−4m) Completing an analogous process with wL results in wL = 0.

Boundary Layer

Now we can repeat this process for the flow in the boundary layer along the

Basilar membrane. The velocity fields here are

ũ = iṼ (1− e−y( iω
ν

)−1/2

) (3.48)

ṽ = iṼ (1 + (1− e−y( iω
ν

)−1/2

)) (3.49)

using the same definition of uL gives

u
(b.l)
L =

√
iω

ν

Ṽ 2

2ω
e−y
√

iω
ν (3.50)

If we integrate u
(B)
L and u

(b.l)
L to get the total mass flow, we find that they in

fact have the same magnitude ( Ṽ
2

2ω
) but in different directions. Hence the net mass

flow as a result of the Stokes drift is zero: mass transport in the bulk of the flow is

balanced out by an equal and opposite mass transport in the boundary layer.

3.2.2 Reynolds Stresses

The next contribution to steady streaming is through the Reynolds stresses:

the mean value of the momentum flux. Whereas Stokes drift is present even in deep

free surface water waves, these stresses originate in the boundary layer due to the

BM and result in the application of a resultant force upon a fluid volume, causing

non-zero mean motion to occur.

The Reynolds stresses are commonly seen in the theory of turbulence, where

they appear in the Navier Stokes equations as a result of decomposing the velocity
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fields into a mean and fluctuating component. For a fluctuating velocity component,

u′i in the xi direction (i = 1, 2, 3), the Reynolds stress tensor is defined as:

τRij =
〈
ρu′iu

′
j

〉
(3.51)

Which can be understood as the flux of the jth component of the mean mo-

mentum per unit volume, ρu′j, in the xi direction [49].

For our purposes, we are interested only in the transfer of x momentum in the

y direction (the tangential (shear) stress):

RT = −ρ ∂
∂y
〈u′v′〉 (3.52)

as well as the transfer of x momentum along the x direction (the normal stress):

RN = −ρ ∂
∂x
〈u′2〉 (3.53)

The result of spatial changes in the stress is the generation of a thin vortex sheet,

which leads to a non-zero value of uE. uE then sharply decreases from its value at the

BM, causing a large momentum gradient. Considering these momentum balances

leads to the determination of the value of uE and because forcing of fluid elements

in the bulk flow will come from the value of uE at the edge of the boundary layer,

we calculate its value at that point. This is known as the slip velocity, and comes

from these shear and normal stress contributions as well as an extra contribution to

the shear stress due to the spatial dependence of the BM wave amplitude ([33] Eq.

91). Taking these things into consideration results in the steady streaming velocity:

uss =
kṼ 2

4ω
− 3

4

Ṽ

ω

dṼ

dx
(3.54)

To derive this expression, Lighthill realised that the Stokes drift is cancelled

out in the flow in some fashion. To ensure this was the case, he made an assumption

that the Euler velocity at the position y = 0,(the surface of the Basilar Membrane)

was

uE|y=0 =
Ṽ 2

√
8νω

(3.55)

The work of Edom and Obrist however leads to a more intuitive boundary

condition through their new contribution to the streaming velocity.
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3.2.3 Edom and Obrist’s New Term

The new term introduced by Edom and Obrist [34] is a result of the motion of

the BM itself: that the elastic restoring forces of the membrane result in a force on

the fluid in the direction of the travelling wave. The contribution to the streaming

velocity from this effect is:

uBM =
Ṽ 2

√
8νω

(3.56)

This velocity is equal and opposite to the value of the Stokes drift. It was

hypothesised that this contribution to the flow is what cancels the Stokes drift,

not a contrived boundary condition as mentioned above. If instead a more natural

boundary condition is implemented at the boundary:

u|y=0 = 0 (3.57)

it yields an altered Reynolds stress contribution to the streaming velocity and a

different expression than that derived by Lighthill:

uEss =
−Ṽ 2

√
8νω

+
Ṽ 2k

4ω
− 3Ṽ

4ω

dṼ

dx
(3.58)

For the work which follows, we take only Lighthill’s solution, uSS (Eq. 3.54) in any

mention of the theoretical streaming value. This is because our BM deflection model

uses a 1D stiffness in the model, as opposed to the 2D stiffness used by Edom and

Obrist to derive uBM .

In summary:

• Steady streaming has a contribution from the Stokes drift: the difference be-

tween the mean Euler and Lagrangian flows. However, the streaming in the

boundary layer is equal and opposite to the streaming in the bulk flow, hence

the Stokes drift has no contribution to overall mass transport.

• The streaming is therefore primarily driven by the transfer of momentum due

to Reynolds stresses present in the boundary layer. These stresses result in

generation of a vortex sheet and consequently a forcing from the boundary

layer on the bulk flow. The maximum streaming velocity occurs at the bound-

ary layer edge.

• For a membrane with 2 dimensional motion, there is a further contribution to

the streaming. Our model however does not include this 2D BM motion.
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3.3 Dimensionless Parameters

Dimensionless parameters are important in fluid dynamics because they give

an idea of the regime that the flow is in. This informs us of whether or not the

assumptions we made in order to derive the equations which govern the flow are

correct. There are two dimensionless parameters which are of interest here. The

first is the Reynolds number, the ratio between inertial and viscous effects:

Re =
UmaxL

ν
(3.59)

where L is a typical length-scale, taken to be the height of the channel: 0.5 mm. For

a pure-tone stimulation of 20 kHz at 80 dB SPL, the value of Umax is 2× 10−4 ms−1

and the kinematic viscosity is assumed to be the same as water. As expected for an

incompressible viscous, laminar flow the Reynolds number for the cochlea is small

and here its value is 0.125, agreeing with previous calculations, which have placed

the value between 0.06 and 1 [50][51][46]. The Reynolds number is interpreted as a

measure of the flows resistance to viscosity and low value is expected as it implies

that the effects of viscous damping in the fluid are important. The second parameter

of interest for oscillatory flows is the Strouhal number, defined as:

S =
fL

Ũ
(3.60)

and is the ratio of the oscillation and mean speeds, Ũ , with f being the oscillation

frequency and L the characteristic length, as above. A high value of S is expected

in this case, as we have a high frequency system with a relatively slow flow. Indeed,

for the same system as above, we find that S ≈ 105, again agreeing with previous

investigations [50].
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Computational Fluid Dynamics

4.1 Setting up the Problem

Many factors must be considered when undertaking the creation of a new CFD

simulation. In this chapter, the process of creating, testing and using the CFD

simulation is described.

The simulations were used for all results and hypothesis testing once the real-

istic wave forms had been generated. All simulations were done in OpenFOAM, an

open source software run from the Linux terminal and written in C++. The soft-

ware is powerful due to the fact that every piece of the code is fully user manipulable

meaning that the user has full control over the entire computational process, from

the equations of motion and turbulence models to implementation of geometries and

boundary conditions.

It is compatible with the paraView software for visualising the flow, and all

figures involving direct simulation output were generated using this software.

All simulations were run on a discrete mesh, and finite difference schemes used

for the spatial and temporal derivatives. There are several factors which determined

the size and scale of the spatial and temporal discretisation.

4.1.1 Mesh Size and Timestep Considerations

The initial mesh was tested for convergence using increasing spatial resolution.

The aim of these initial tests was to confirm that the velocity and pressure fields

in the domain were independent of the mesh used. This gives a “lower limit” on

the mesh resolution: a coarser mesh will not give valid results. Once this limit is

determined, there are three factors which influence the choice of mesh resolution:
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• The amplitude of the travelling waves along the basilar membrane surface.

There must be enough mesh points along the BM surface in order to accurately

capture the shape of the wave. For this consideration, the more points defining

the membrane, the better the wave resolution.

• The stability of the mesh due to the dynamic mesh changes. The motion

of points on the membrane drive the motion of all local points through the

implementation of a dynamic mesh. Large deflections using a coarse mesh will

lead to deformation of cells which causes poor derivative calculations. The

mesh must have the correct refinement near the surface as a result of this

constraint

• The stability of the mesh due to the speeds present in the system, parame-

terised by the Courant-Friedrichs-Lewy number, Co. This is the ratio of the

maximum speed present in the domain and the speed of propagation across a

cell. This determines the stability of the simulation and is very important in

this case where we need to track particles over very small displacements.

The first two points were found to be resolved fairly naturally as a result of

the final, stronger restriction. The Courant-Friedrichs-Lewy, or CFL constant, was

described by the authors in their work on the discretisation of partial differential

equations (PDEs) [52]. It describes the necessary condition for the PDEs to con-

verge, namely that the time taken for a wave to propagate across a cell must be larger

than the timestep. Hence the timestep and grid size choices are not independent of

one another. The condition for convergence is that

Co =
umax∆t

∆x
≤ 1 (4.1)

The cell velocity, ucell = ∆x
∆t

is therefore fixed by the maximum magnitude of the

fluid velocity, umax. This gives a first estimate of the way in which we need to set

the spatial and temporal timesteps. The next step is to ensure that the timestep can

capture the frequency we want to stimulate. A range of frequencies were required

and initially, 5 kHz to 20 kHz were chosen. In order to capture very highly resolved

particle paths, a sample rate of 10 steps per cycle was selected. This set the timestep

at values between a maximum of 2× 10−5 s for 5 kHz to a min value of 0.5× 10−5 s

for 20 kHz stimulation.
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4.1.2 Dynamic Boundary Implementation

Often, cochlear CFD models use a fluid structure interaction to simulate the

flow [53] [54] [55] [56]. The structural properties of the BM would be encoded and

then an oscillating pressure field caused by an oscillating wall in the basal side of

the channel would cause the pressure difference between the top and bottom chan-

nels, resulting in a travelling wave across the membrane. In order to simulate this

entire process, a fluid structure interaction (FSI) is required, something which is

computationally difficult and expensive. Instead, the method elucidated here re-

moves the need for an FSI. By using MATLAB to numerically solve Eq. 3.38, the

solution is found at every timestep and a matrix generated with each row corre-

sponding to the full set of coordinates for the BM deflection at time timestep. This

information is then used as an input to the CFD simulation1. Therefore there is an

accurate BM wave shape which propagates with the temporal resolution required

by our simulation and without the need for the FSI we can drive the flow in the two

channels.

4.2 Evolution of the CFD Simulation

The simulation has undergone drastic changes over its lifetime, primarily due

to changes in the mesh geometry and generation, and changes in the fluid dynamic

solver.

4.2.1 Evolution of the Mesh

Initial work tried to simplify the problem of a double-channelled flow with fluid

exchange as a closed half channel flow, the idea being that simulating only half the

flow would halve the computational time. It also meant that there was no need to

simulate an immersed, dynamic boundary which seemed more challenging at the

time. These runs used a rectilinear grid generated by OpenFOAM’s built-in mesh

generator tool, blockMesh. The edge and bottom walls were static and the top

wall (corresponding to the basilar membrane) dynamic: its motion defined by the

numerical solution of 3.38, calculated using MATLAB.

Initial successful test cases were run where the left and right hand walls had pe-

1This capability was made possible in the early stages of the project by code supplied by Nikola
Ciganovic.
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riodic boundary conditions applied and the top, dynamic surface supported a simple

sine wave. The model was then ran as a closed system, with no slip boundary con-

ditions applied at every wall and the WKB wave along the BM. These half channel

closed models resulted in an anomaly in the fluid and pressure fields, attributed to

a break down in volume conservation which can be seen clearly in Fig. 4.1.

Figure 4.1: Simulation output of the y-component of the velocity field for an 8kHz BM
wave, used here to illustrate the volume conservation problems of the half channel geom-
etry. A “singularity” can be seen in the bottom left corner and originates from the fact
that the top surface being redefined in a closed incompressible system induces small but
important errors in the mass conservation. The field from the surface interacts with this
feature at higher frequencies and cannot be ignored.

The top surface deflection is not symmetric and so the integral of the area

in the positive and negative parts of the displacement are not equal. Although

the deflection of the surface is very small and the mismatch between the integrals

also very small, this effect was enough to allow error propagation in the flow and

affect the final field. The location of the “singularity” was not dependent upon the

frequency the BM was stimulated at. For low frequencies therefore the affect on the

flow was negligible, but for high frequencies these flows would interact and affect

the result.

To resolve issues of volume conservation and in fact make a more robust, mean-

ingful simulations, the computational cost worries of doubling the domain were set

aside, and the entire domain, detailed in Fig. 4.2, simulated. In this way the BM

becomes a fully immersed, solid, deformable boundary, implemented numerically by

the definition of a “master” and “slave” walls (the top and bottom surfaces of the

BM respectively) to which boundary conditions can be applied. The stimulation is

in 2D but there is still an extrusion of the 2D geometry, leading to a top and bottom

surface of the BM. In this case, the top surface is the master wall and the bottom

the slave. The front and back walls of the simulation are ”empty” leading to the 2D

solution in the end. The two coupled walls are merely the top and bottom face of

the basilar membrane. The helicotrema is modelled as an “blank” wall with no solid

structure, and so allows for fluid exchange between the top and bottom channel.
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Figure 4.2: Triangular Delaunay mesh created using the Gmsh meshing software. A
greatly exaggerated BM surface deflection has been included for illustration. All walls are
rigid, and the helicotrema portion of the membrane is open, allowing exchange of fluid
between the channels. All boundary walls are static with non-slip conditions applied.

Aside from this issue which related to the fundamental flow fields being un-

reasonable, there were further issues regarding the particle tracking. Once particles

were added into the simulations, these meshes led to very unstable and strange

trajectories. It was unclear why this should happen. It was hypothesised that the

particle moving across a cell boundary could be redefined as being in another lo-

cation. However this issue was difficult to understand because the nature of the

odd behaviour was quite varied. Sometimes the particle would simply move from

one timestep to the next to another location in the domain and carry on with the

same trajectory from there. Other times the amplitude of the oscillation would vary

suddenly, as if the velocity had discretely jumped. In all cases it was thought that

the motion across a boundary must have resulted in a change of velocity due to the

discrete nature of the fields, but this was never confirmed. Because the flow has

underlying rotation due to the creation of the vortices, it was determined that an

unstructured triangular mesh may be better suited to this model, thereby ensuring

that on average more cell edges were orthogonal to the flow direction2 [57]. The

mesh was generated using the external software, Gmsh. OpenFOAM has built in

capabilities for interpreting the mesh files outputted by Gmsh. Indeed, the results

of the simulations after implementing this were much improved, but still required

a very small CFL number in order to output stable particle trajectories. Figs. 4.3

and 4.4 show the kind of strange results that would be seen after post processing

of the data when the CFL number was below 1, but larger than around 10−5. For

clarity a result with only one rogue particle is shown, but for all simulations with a

CFL number which was much higher than this value these results were much more

common, especially near the BM where there were large velocity gradients.

Updated mesh tests were completed on the new mesh and although coarser

meshes were stable and converged, a finer mesh (resulting in a compromise in com-

putational time) was required in order to capture the particle behaviours nicely.

2Issues with particle tracking were also related to the solver, which will be addressed in the
following section.
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Figure 4.3: uss for a row of particles injected along the cochlea from the base to the apex.
The stimulation frequency was 5kHz. Each velocity value comes from the analysis of the
trajectory of an individual particle placed at that location. Particle displacements are
very small, so for these timescales (in this example, 12.5ms) we can assume the steady
streaming field value to be the value of the particle. Anomalous results such as the one
clearly seen here were difficult to handle. The underlying problematic trajectories were
not always so distinctive from the normal ones.

(a) (b)

Figure 4.4: Typical example of problematic particle trajectories. (a) x-trajectory showing
the oscillatory behaviour and the translation in the negative x-direction. (b) Problematic
particle y-trajectory showing the subtle jump at around 100 timesteps. This discontinuity
caused errors in the determination of the steady streaming velocity fields.

After all of these considerations, a mesh with 975 points along the BM (correspond-

ing to a ∆x of 1.12× 10−5 m) was chosen, which satisfied all of the points discussed

here. These simulations turned out to be incredibly stable and yielded very smooth

results for the particle trajectories: the main goal.
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4.2.2 Evolution of the Solver

The cases were run using the homemade solver, BMicoFoam which was orig-

inally formed from the creation of a merged pimpleFoam solver and solidParticle

tracking algorithms. The problems encountered throughout the CFD were mainly

in the particle tracking. Initially pimpleFoam was used to simulate the flow because

of its more complete treatment of fluid systems (it has capabilities for both laminar

and turbulent flow and so was thought to cater for the fast flow at the membrane

surface and the transition to the almost static flow regime far from the surface). Ul-

timately it was too unstable in this particular context due to its formulation being

inherently set up for large timesteps (pimpleFoam is used in larger-scale turbulent

flows where the averaged behaviour is more important than that of the small spatial

and temporal scales). The problem with this was a CFL number which was too high

to capture the particle paths, which would be erratic and disjointed. To overcome

these issues, the much simpler icoFoam solver was implemented.

4.3 The BMicoFoam Algorthim

The icoFoam formulation is a transient, incompressible laminar solver, which is

required in this case because of our high frequency flow: the timestep should be small

enough to fully capture the oscillation of the wave and therefore the trajectory of the

particles. It also keeps the full Navier Stokes equations without such simplifications

as neglecting non-linear terms. The steady streaming phenomenon is a consequence

of these non-linear terms so they must remain. Its core solver is built around the

PISO (Pressure Implicit with Splitting of Operators) algorithm and an overview of

its function follows here.

4.3.1 The PISO Algorithm

In all of the simulations that follow throughout this work the fundamental fluid

solver was not changed. Instead only boundary conditions (i.e the BM deflection

for different frequencies and sound pressure levels) or parameters relating to the

particles moving within the fluid (their initial coordinates or injection speed for

example) were altered.

Fig. 4.5 shows a general overview of the processes followed by the PISO algo-

rithm in order to calculate the pressure and velocity fields. The algorithm begins by
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Start 
t = tn

t = tn+1

Continue 

Solve momentum equation 
using initial  

pressure guess

Solve pressure  
correction equation

Correct pressure and 
velocities
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number of 
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Use corrected pressure 
and velocities to calculate 

all other variables  

Has code converged?
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and velocities 
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Figure 4.5: The PISO algorithm simply explained. The algorithm relies on a few “correc-
tor” steps. Once an initial guess for the pressure field is made, the equations of motion are
solved under that first restriction. They are then corrected and this process repeated for
as many times as the user specifies, in our case only twice. Then the remaining fields are
determined from these calculations of the pressure and velocity fields. A convergence test
is done and if successful the next timestep is calculated. If the fields have not converged
the process is repeated from the equation of motion this time, with the improved estimates
now used as the first guess.
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choosing a “guessed” pressure field and using it as an input to solve the discretised

momentum equations. The backwards Euler (implicit) scheme is used for all time

differentials. In simplified terms, if we have a differential equation for a velocity, u:

du

dt
= f(t, u) (4.2)

the backwards Euler scheme determines the value of u at a certain timestep, i for a

timestep of size ∆t through

ui+1 = ui + hf(ti+1, ui+1) (4.3)

The method is implicit because it relies on information from the next time step

in order to calculate the information for the time step that precedes it. Spatial

derivatives are found using the Gauss linear scheme, a finite volume method. In this

scheme, the field values for a cell are evaluated using the cell centre as the node,

illustrated in Fig. 4.6.
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Figure 4.6: The values for the variables are calculated by taking the nodes to be at the
centre of the cells, denoted by the capital lettered labels (blue points). The dotted lines
show the grid points of a Cartesian grid and so black dots correspond to the cell corners.
The face centres are indicated by lower case labels and the arrows show the direction of the
outward facing normal, necessary when using the divergence theorem to form the surface
integrals.

The Gauss linear scheme refers to the method of volume integration (Gaussian),

the method of discretisation of the domain (central differencing defines values at the

cell centres, as opposed to face centres) and the fact that linear interpolation is used
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for calculation of diffusion coefficients, in this case, merely the viscosity, ν.

The pressure is then recalculated using a pressure corrector equation, after

which the disparity between the velocity and pressure fields is determined, and

used to re-correct the fields. The PISO algorithm allows the user to repeat this

stage up to 4 times: this work found 2 to be sufficient. Once the velocity and

pressure fields have been found, any remaining fields (such as temperature) are

calculated from their corresponding equations, using the pressure and velocity fields

as input. A convergence test is then completed, according to a user defined input

for the tolerance of the residual. The residual of the particular solution is just the

difference between two iterations of the solution, and if this value falls below the

specified tolerance the system is said to have converged and the simulation moves

on to the next time step, and so on until all timesteps have been calculated. The

tolerances used in this work are 10−6Pa for the pressure fields and 10−5ms−1 for the

velocity fields.

4.4 Particle Tracking

OpenFOAM has a somewhat built in capability for particle tracking. Initially

this analysis was attempted using the post-processing tools supplied with paraView

to insert tracer particles into the pre-calculated flow. This was prohibitively slow

however and not very elegant to implement. Instead, the particle tracking was

written into the solver so that the coordinates would be calculated at every timestep

during the simulation run. In order to achieve this, the work of Aurélia Vallier from

the Chalmers Institute of Technology was followed [58], and updated to account for

significant software update since its time of writing. The particle tracking works

by defining the injection coordinate and speed of particles in the domain, as well

as their size and density, and then the forces acting upon each particle as a result

of the pressure field in the flow are applied to each particle resulting in particle

displacement at each timestep. In all simulations, a set of 5000 particles spaced

evenly on a grid covering the entire bottom channel (Fig. 4.7), were injected at the

first timestep and their trajectories calculated throughout the run. In this way then,

only the initial coordinate of the particle needed to be supplied through the use of

the particleProperties dictionary.

Further to the properties already mentioned, there are also two more dimen-

sionless parameters which need to be defined: the restitution ratio and friction

coefficient. The restitution ratio is a parameter which controls the way in which the
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Figure 4.7: An example of the paraView output, here showing the x-component of the
fluid velocity field at an instant in time. The particles are injected in rows which fill the
bottom half of the channel.

particles interact with each other/boundaries in the simulation. In the implemen-

tation used here, the simplest coupling between particles was used. The argument

for this decision comes from exploration for the velocity fields due to the membrane.

It became clear that the flow is so small that the flow is laminar and we can safely

say for small sound pressure levels that no mixing occurs and so particles are very

unlikely to collide. For those that do, the effects are so small that it was not consid-

ered worthwhile to implement a more complicated particle coupling. The restitution

ratio, e is defined as:

e =

√
KEbefore
KEafter

(4.4)

where ”before” and “after” are in reference to a collision between another particle

or a solid boundary. The friction coefficient is added so that the particles can be

seen as separate to the main fluid. A small value of 0.001 was used in this case so

that the particles are separate to the fluid but do not interact strongly.

In summary: the simulation uses an unstructured, triangular mesh, whose cell

size is a result of numerical stability and wave amplitude constraints. The timestep

is determined by the frequency of the waves simulated. The numerical scheme uses

an implicit Euler method of the time differentiation, and a discrete volume Gauss

linear scheme for the spatial differentials. All walls are impermeable, the bounding

walls are also static. The BM is modelled as an immersed dynamic boundary,

whose motion is a result of a redefinition of its coordinates at each timestep. These

coordinates are supplied externally through a set of matrices generated by numerical

solution of the wave equation detailed in the preceding chapter. Finally, particles

with a simple coupling and with an almost elastic collision model are injected at

zero velocity into the domain according to a set of coordinates such that all of the

domain volume is filled and the steady streaming velocity can be extracted from the

coordinates of the particle trajectories. The table below summarises all parameters

used in the CFD simulation. The fvSolutions and fvSchemes dictionaries which

contain all of the information pertaining to the numerical solution implementation
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in OpenFOAM are included in the appendix.

Parameter Symbol Numerical Input Value SI Unit
Fluid Density ρ 1000 kgm−3

Fluid Kinematic Viscosity ν 10−6 m2s−1

Particle Diameter dP 0.2 µm
Injected Particle Density ρp 1000 kgm−3

Coefficient of Restitution e 0.95 n/a
Friction Coefficient µP 0.001 n/a

Particle Injection Speed UP 0 ms−1

Table 4.1: Parameters used in the CFD simulation for the cochlear channel, including
those of the fluid itself, and the injected particles.
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Results: Pure-Tone Stimulation

The following chapter presents a subset of results obtained from the OpenFOAM

simulations. In total, 18 simulations were run, covering a range of frequencies (5,

8, 10, 15, 18, 20 kHz) at each SPL (60, 80 and 100 dB). In each simulation 5000

particles were injected throughout the bottom half of the domain, and their motion

tracked throughout the simulation. Throughout the following, the steady streaming

velocity is uss(x, y) = (uss(x, y), vss(x, y)). Simulations were undertaken on a HP

EliteDesk 800 desktop machine (8 core, 32GB RAM). Each simulation of 20000

timesteps took around 30 hours to complete.

5.1 Post Processing

The aim of the analysis of the data from the simulations is to find the steady

streaming velocity of the particles injected into the field. OpenFOAM gives an

output of the coordinates of each particle at every timestep of the simulation, and

these coordinates were read into MATLAB. We know that due to steady streaming

the particle trajectories map out spirals, which means the x and y-components of

the motions will be oscillatory, with one full oscillation per BM wave cycle. By

ensuring that the timestep was small enough (10 timesteps per cycle), we captured

these oscillations very well. For a circular trajectory, these oscillations have their

centres at the same x-coordinate. However a spiral trajectory translates in x and so

mapping the x-coordinate of the centre of the spiral in time should give a line with

some gradient. This gradient is the steady streaming velocity and will tend to some

constant value as the steady state is reached. All simulations started from both

zero particle injection speed as well as zero fluid speed, so some time was needed

for the system to accelerate to the steady state. In order to find these gradients, we

43
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implemented the MATLAB smoothing function on the coordinates. The function

used a weighted linear least square regression model with a moving average span that

was chosen to be 0.5, correspondong the half of the data points at each step of the

smoothing algorithm. This means that the span is very wide, which was necessary

in order to resolve both the very small changes in the gradients and in order to

reduce edge effects. The model further used weighting to scale the value of outliers:

reducing a data point’s weight if it lay far from the mean. At 6 standard deviations,

the data points had 0 weight. An example of the extraction of this information from

the raw coordinates is illustrated in Fig. 5.1. It should be mentioned that this is a

relatively steep slope, chosen here for illustration so that the spiral centre tracking

is more evident.

Figure 5.1: The spiral trajectories of the individual particle paths can be decomposed into
sinusoidal oscillations in the x and y directions. The zero point of the oscillations are
tracked using a smooth function: illustrated by the blue line.

From this example we can see that the gradient of the line mapping the centre

of the spiral is very small. The fluid velocities away from the basilar membrane

are small and mean that within a single cycle the particle’s translation is very

tiny. Significant particle translation is only possible over large timescales. For all

the following results, the zero line tracking was completed using 20000 timesteps.

This timescale was chosen because it was long enough to ensure the steady state

was reached, and also supplied the smoothing function with enough information in

order to calculate the gradients accurately. For every separate simulation, conver-

gence tests were undertaken for this stage of the post processing to ensure that the

streaming velocities had reached their steady state.
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The convergence tests also served another purpose: to define an upper limit

on the timescales used. As well as ensuring that enough information was available

in order to capture behaviours, it was important that not too many timesteps were

used. The reason for this comes from the way in which we present the data: as a

steady streaming field. The particles were injected in a grid formation and their

streaming velocity after 20000 timesteps were then used as the approximate value of

the streaming field at their injection point. This is only an approximation because

the particles do not remain in a singular point throughout the sound stimulus, but

it was found that for small enough timescales and for a large enough number of

particles, this approximation is valid. The more particles, the higher the resolution

of the streaming field and so the better the approximation of a smooth field from

the discrete values.

Finally this process was followed for both the x and y-components, and their

respective steady streaming fields determined. With these velocity components, it

was also possible to create a vector map of the steady streaming flow, using the

symmetry of the system to present the top channel results as well. These plots

reveal a pair of counter rotating vortices in the top and bottom channel.

To summarise:

• The particles were injected into the fluid domain according in the geometry of

a grid, using 10 rows of 500 particles in the bottom channel. The simulations

then run for 20000 timesteps.

• After the simulations had run, the coordinates of the particles at each timestep

were read into MATLAB for analysis.

• This analysis began with the use of the smooth function, which effectively

traced out the centre point of the oscillations of the x and y -coordinates

respectively (see Fig. 5.1) for each particle in the domain.

• This so-called “centre line” has a gradient corresponding to the steady stream-

ing velocity.

• We defined the steady streaming field by assigning the particle’s streaming

velocity to the location in the field at which is was injected, thereby creating a

velocity map of the entire domain. Using the symmetry of the system to also

display the top channel streaming fields and vector maps.

In the sections which follow, the velocity component maps and vector plots for

10 kHz and 20 kHz frequency stimulations are presented at each SPL.
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5.2 Results: 60 dB SPL

a

b

c

Figure 5.2: a) Travelling wave shape and envelope at 60dB SPL with a 10kHz pure tone
stimulation. b)Resulting uss and vss fields after 20000 timesteps. The black line at y =
0 indicates the location of the basilar membrane. Note that the region closest to the
membrane is an interpolation of the streaming fields, due to problems with particle tracking
inside the boundary layer. c) Vector field around the characteristic place, showing that
there is a recirculation zone which particles move within.
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b

c

a

Figure 5.3: Same as previous figure, except at 20kHz stimulation.
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5.3 Results: 80 dB SPL

 a

 b  

 c

Figure 5.4: Same as Fig. 5.2 at 80dB SPL.
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c

Figure 5.5: Same as Fig. 5.3 at 80dB SPL.

5.4 Results: 100 dB SPL
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Figure 5.6: Same as Fig. 5.2: stimulation of 20kHz at 100dB SPL.

.
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Figure 5.7: Same as Fig. 5.3: stimulation of 20kHz at 100dB SPL.

The separate vertical and horizontal velocity profiles for both the x and y-
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components at the resonant location are detailed in the following pages. Following

this, Fig. 5.14 then collects all of this information into a comparison to the theoretical

prediction.

We also begin to see the boundaries affecting the flow. At 100 dB the amplitude

of the waves is large enough such that, at high frequencies, the fluid interacting with

the wall changes the underlying streaming field. These effects were not included by

Lighthill in his theoretical treatment of cochlear steady streaming, hence we expect

some discrepancy between the values found here and those predicted by his work.



5.4. Results: 100 dB SPL 53

(a) (b)

Figure 5.8: (a) Comparison of uSS at fixed x location (the 10 kHz resonance location) for
different SPL, showing the increase in streaming velocity from 0 at the BM to a maximum
at the edge of the boundary layer and the subsequent decrease back to 0 to satisfy no-slip
at the top and bottom walls. (b) Curves are normalised by the maximum streaming
velocity at each SPL for comparison. We can see that the larger SPL have a larger depth
over which they influence the flow, indicated by the depth at which the inflection point of
the curve occurs.

(a) (b)

Figure 5.9: (a) Same as Fig. 5.8a but taken at the 20 kHz resonance location (b) Curves
are normalised by the maximum streaming velocity at each SPL for comparison.

.
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(a) (b)

Figure 5.10: (a) Comparison of uSS at fixed y (edge of the boundary layer) for different
SPL. (a) 10 kHz stimulus and (b) 20 kHz stimulus. The influence of the walls on the 100
dB waves can be seen by the spread of the curves.

(a) (b)

Figure 5.11: (a) Comparison of vSS at fixed x location (the 10 kHz resonance location)
for different SPL, showing the increase in streaming velocity from 0 at the BM to its
maximum value at the edge of the boundary layer and the subsequent decrease back to 0
to satisfy no-slip at the top and bottom walls. (b) Normalised curves to better show the
detail near the BM across SPL. The SPL increase changes the magnitude of the steady
streaming.

.



5.5. Discussion of Results 55

(a) (b)

Figure 5.12: (a) Same as Fig. 5.11 but now at 20 kHz (b) Curves normalised by the
maximum vSS at each SPL

(a) (b)

Figure 5.13: Comparison of vSS at fixed y (edge of the boundary layer) for different SPL.
(a) 10 kHz stimulus and (b) 20 kHz stimulus. The influence of the walls on the 100 dB
waves can be seen by the spread of the curves.

5.5 Discussion of Results

The results are qualitatively sensible, we see an increasing steady streaming

velocity near the resonance location, as well as an increase with SPL. Figs. 5.8 and

5.12 shows the vertical velocity profiles for the x-component of the streaming at the

characteristic place for the 10 kHz wave. The scale of the streaming increases with

SPL as expected, and we can see that the width of the circulation region generated

by the pure-tone also increases significantly with an increased SPL, whereas the

depth of the eddies remains constant. Fig. 5.13 shows the velocity profile along the

boundary layer, close to the BM, and we see the character of the waves is preserved
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in the flow: lower SPL have a narrower peak and higher SPL more spread, which

explains why the vortices at higher SPL are wider.

The hypothesis of the work was that we could use a changing frequency stim-

ulus in order to drag fluid through the cochlea and target damaged hair cells at a

particular site. In order to do this, we need to ensure that the rate at which we

change the frequency is optimised such that it matches the streaming rate of the

particles. If it is changed too quickly, particles will be “left behind” but if it is

moved too slowly the process becomes very inefficient and could be comparable to

passive diffusion alone. We use the results from all pure-tone simulations to compare

the maximum steady streaming velocity to the predictions of the theoretical model.

Fig. 5.14 (a) details the raw simulation output compared to the theory, whereas

(b) has employed a shift in order to better match the theory and numerics.

(a) (b)

Figure 5.14: (a) Comparisons between uss from Lighthill’s theory (Eq. 3.54) and these
simulations showing a discrepancy in the functional behaviour of the numerics at lower
frequencies as well as an offset in the actual values of the solutions. (b) Scaled numerical
results compared with the theory, showing that with the use of a scale factor the functional
behaviour of the streaming can be reproduced from the simulations.

Here we see that our simulation doesn’t follow the correct functional behaviour

for frequencies below 10 kHz. Because the entrance to the cochlea is where we are

most interested in (for now) and the WKB and steady streaming models are anyway

only valid for high frequencies, we decide to only focus on the region down to 10 kHz

stimulation. Figure 5.14 shows that for frequencies over 10 kHz, the numerical model

and theoretical model agree up to a scale factor. By scaling the numerical results

we can find the relation

Utheory = CUnum



5.6. Frequency Sweep Formulation 57

where C is the scale factor to be determined empirically and Utheory and Unum

are the maximum streaming velocities from the theory and numerical simulation

respectively. We can now use the theoretical model to find the sweep rate required

to move to a certain location in the cochlea, and the scale factor to convert that

into the required sweep rate in the numerical model to get the equivalent motion.

5.6 Frequency Sweep Formulation

5.6.1 Calculating the Sweep Rate

Now that we have the scale factors for each SPL, they can be used to determine

the way in which we must alter the frequency in order to move the particles through

the cochlea. We can use the analytical expressions (which are now scaled accord-

ingly) to see how much time is required to move from one position in the cochlea to

another, if the particles act in the ideal way and move along the cochlea with the

resonance peak of the membrane. The ultimate goal is to find the rate at which to

change the frequency of the stimulus waves. In order to determine this, the max

steady streaming velocity at every input frequency was determined numerically from

Eq. 3.58, and through this, the position of the resonance as a function of frequency,

ω was found. Fig. 5.15 shows these results, for a frequency range down to 10 kHz

and for a SPL of 80 dB. We focus on 80 dB now because it is a reasonable SPL for a

patient to listen to for an extended time (100 dB could be too much over longer time

spans) but more powerful than the 60 dB which has much slower steady streaming

velocities.

Now, using these values, we can determine the time it would take to move a

particle from one location to another: necessary if we are to calculate the frequency

sweep function, ω(t). In our discrete setup, we must approximate the velocity be-

tween successive frequency resonance locations by taking the average. Then by

dividing this average velocity between the spatial distance moved we can estimate

the time taken between the two locations. Fig. 5.16 illustrates this point.

Using the variables from Fig. 5.16, where we now generalise using the index i,

if the average of the velocities at xi and xi+1 is simply:

v̄i =
vi + vi+1

2
(5.1)



58 Chapter 5. Results: Pure-Tone Stimulation

(a) (b)

Figure 5.15: (a) The maximum value of uss for an 80 dB SPL wave, extracted from
numerically solving Eq. 3.58 for many frequencies. (b) The corresponding x-coordinate
of the maximum value of uss.

Figure 5.16: An illustration of the variables outlined in the description of the sweep rate
calculation. The wave envelopes for different pure-tone frequency stimuli, ωi have their
resonance location at different locations along the cochlea, xi, with corresponding steady
streaming velocities at that location, vi.

then the time taken to move through the distance

∆xi = xi+1 − xi (5.2)
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is

ti =
∆xi
v̄i

(5.3)

and the total time, T to move though N steps in frequency is:

N∑
i=1

ti = T (5.4)

Using this method, the time for the particle to move from the entrance of the cochlea

to the 10 kHz position were determined.

(a) (b)

Figure 5.17: (a) The cumulative time required to move a particle from the entrance of
the cochlea to a location along is length. Only frequencies down to 10 kHz have been
considered due to the discrepancy between the theoretical and numerical model below
that point. This puts the estimate of the time required to move an injected particle from
the entrance of the cochlea to approximated 1/4 along its length as 12 minutes. (b) The
cumulative time time now scaled by 10 times as given by our numerical results. Only
frequencies down to 10 kHz have been considered due to the discrepancy between the
theoretical and numerical model below that point. This puts the estimate of the time
required to move an injected particle from the entrance of the cochlea to approximated
1/4 along its length as 2 hours.

For a particle to move around 1/4 of the way along the cochlea at 80 dB would

take 2 hours. In terms of a therapy this is quite promising, as it is not a prohibitively

long time to be sat listening to the stimulus. Of course this timescale increases if we

need to reach frequencies much lower than 10 kHz, but an order of magnitude time

estimate from simply extrapolating Fig. 5.17b still would leave us with a feasible

time-frame: after all a patient could even be under general anaesthetic during the

process. The more pressing problem with this timescale is the computational time.

From these results, we see that in order to move a particle near the membrane



60 Chapter 5. Results: Pure-Tone Stimulation

along with the flow, it is necessary to change the frequency incredibly slowly: a

change of 10 kHz across 2 hours corresponds to a change of approximately 1.4 Hz

every second. The simulations undertaken thus far have run for 100 cycles of each

frequency, ranging from 0.005 seconds of real time (for 20 kHz) to 0.02 seconds

(for 5 kHz). The computational time of these runs is significantly larger, with the

smallest timescale simulations taking approximately twelve hours to compute. So to

even simulate a change of 1 Hz would take a very long time. As well as this, a change

of 1 Hz corresponds to a minute change in spatial position: the meshes being used

will not be able to capture it. The next logical step would therefore be to reduce

the mesh size to a scale which enables the behaviour to be resolved, which in turn

means a reduced timestep in order to keep the simulation stable. It was therefore

decided that simulating the sweep at these amplitudes would be prohibitively slow,

as we would require a nanometre resolution in the mesh in order to sweep slowly

enough to affect the particles.

5.6.2 Scaling Solution to the Problem

The steady streaming velocity is related to the square of the membrane am-

plitude, so increasing the wave amplitude means we increase the lengthscales over

which particles travel in a certain time. The problem with increasing the SPL and

forming realistic waves for simulations is that the method must be suitable for ther-

apeutic purposes: the method is useless if it works only for SPL which themselves

cause hearing damage after sustained delivery. To overcome the problem of compu-

tational time, we have scaled the wave forms for an 80 dB stimulation (a reasonable

SPL for a patient to listen to for a sustained amount of time) by 300 times, corre-

sponding to a 129.5 dB SPL in loudness. By keeping the shape of the envelope of the

wave the same as 80 dB, we can find the streaming velocities and scale them back

down (time scales at 129.5 dB SPL are therefore 90000 times faster than at 80 dB

with the same physical behaviour). In this case, because the amplitude of the waves

(and therefore the speed) was much increased, the mesh resolution also changed to

keep the simulation stable. Specifically it was reduced by a factor of three, such that

∆x = 3.36× 10−5m). Figs. 5.18a- 5.19b show the much higher speeds and therefore

smaller timescales now required for the same displacement of the injected particles.

The analyses undertaken for pure-tone stimuli at the beginning of this chapter were

repeated to find the scaling for the 129.5 dB SPL waves. This scaling was found to

be 15.

This now means that a sweep of 10 kHz takes place at a rate of 5 kHz per second.
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(a) (b)

Figure 5.18: (a) The maximum value of the uss for an 129.5 dB SPL wave, extracted from
numerically solving Eq. 3.58 for many frequencies. (b) The corresponding x-coordinate
of the maximum value of uss.

(a) (b)

Figure 5.19: Same as Fig. 5.17 but now scaled as described. (a) Now a particle takes only
takes 0.12 seconds to move 1/4 of the length of the cochlea. (b) The cumulative time
time now scaled by 15 times as given by our numerical results. A particle now takes 12
seconds to move 1/4 of the length of the unrolled cochlea.

These scales are much more manageable now, as even a small timescale will still

translate particles over a significant distance which the mesh can easily resolve. In

order to simulate the changing frequency input, the frequency sweeps were generated

by approximating the change in max streaming velocity as locally linear for a small

frequency change (Fig. 5.19a) then a simple linear function spanning two frequencies

in some number of timesteps was generated. In the same way as for the pure-tone

stimuli, the wave forms at each timestep were generated and fed into the OpenFOAM

simulation.
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The details which follow show the process of optimising the frequency input,

and were done mostly qualitatively from viewing the outputs after each simulations.

In these cases no further processing was completed because the downfalls of each

method and the way to improve them became immediately clear from the first

simulation outputs. The particles were indeed moved along via the frequency sweep,

but due to the region of circulation set up by the BM motion, they would enter the

back-flow and be moved back towards their initial injection points. It was also

obvious that a simple sweep alone would not be very efficient. Many particles were

“left behind” by the translating wave, and those who had been translated initially

were either lost to the backwards part of the streaming circulation (Fig. 5.20) or

simply stagnated in the region downstream from the resonance peak location. The

next trials therefore tried a pulsing sweep (Fig. 5.21). The idea was to repeatedly

sweep the particles (much like sweeping leaves) to pull those particles which may

have been left behind into the main circulation region as the waveform translated

along the BM. However the problems of back flow and stagnation still remained.

The next sweeping trial then aimed to “capture” the particles in the circulation

region by adding a second, simultaneous sweeping wave beginning from a lower

frequency along the BM which would act to trap the particles and aid in their

motion. The frequencies were chosen such that the difference in frequency was

constant during the sweep. This causes a widening of the distance between resonance

peaks as they move from the base to the apex of the cochlea. This did not have the

effect desired, but it became immediately clear that the combination of the eddies

induced by the membrane motion could lead to much more efficient transport.
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Figure 5.20: OpenFOAM output, included here as an illustration of the behaviour of the
injected particles when a linear frequency sweep over a small frequency range (12-10 kHz)
was implemented. The colour mapping represents the x-component of the fluid field veloc-
ity and the red and blue colouring indicates positive and negative field values respectively.
The fluid field becomes static after the resonance location. The white points are individual
particles which are traced through the flow and the images are snapshots from the start
middle and end of the simulation (after 1.2 ms 3.5 ms and 5.9 ms respectively). Parti-
cles begin to move in the opposite direction at the edge of the sweep, and the amount of
particles even affected by the sweep is quite small. Many particles lying further from the
membrane are barely affected by the sound stimulus at all.
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Figure 5.21: OpenFOAM output, included here as an illustration of the behaviour of the
injected particles when a linear frequency sweep over a small frequency range (20-18 kHz)
was repeated three times. The colour mapping represents the y-component of the fluid
field velocity where the red and blue indicate positive and negative field values respectively.
The fluid field becomes static after the resonance location. The white points are individual
particles which are traced through the flow and the images are snapshots from throughout
the simulation (at 1 ms, 9.1 ms, 18 ms and 23 ms respectively). In the third snapshot,
the wave begins again to sweep from its initial frequency. This is repeated and it is clear
that this is more efficient than the simple sweep in Fig. 5.20.
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Instead of focusing on the sweeping, more tones were added to see if this could

increase the transport efficiency. Fig. 5.22 shows the result of 6 (at this stage quite

arbitrarily chosen) frequencies played at the same time, showing how much the par-

ticles are displaced from their initial to final positions. This stimuli is very effective

at transporting the particles, setting up a streaming channel along which particles

are accelerated due to the addition of the local eddies into a larger global circulation

region, preventing back flow from individual eddies and stretching further along the

channel. Importantly for both the pure-tone and the tone complex simulations, par-

ticles which lie far from the membrane in the y-direction are pulled up and along

the streaming channel, an important result when it could be very difficult to inject

a drug into a specific region of the cochlea.

After this simulation, the focus was shifted to a new question: how can the

sound stimulus be optimised for multiple frequencies such that the maximum hori-

zontal speeds are reached in the streaming channel?

Figure 5.22: The initial (black) and final (red) coordinates for 5000 particles injected near
the entrance of the cochlea as a result of 6 frequencies played simultaneously for 12.5 ms
of real time. The bumpy shape of the path the particles travel is a consequence of the
interaction of multiple vortices, which superpose to form into one global circulation region.
Not only do the particles move a significant distance, with 3mm corresponding to more
than 1/4 of the length of the cochlea, but the particles which lie far from the membrane
are also pulled up and along the channel.



Chapter 6

Results: Multiple Frequency

Stimulation

The results of the previous chapter show that steady streaming causes particles

which lie further from the BM to be pulled into the region of higher streaming

velocity nearer to the BM. This effect is very promising for therapeutic applications.

As discussed in § 1, injection of a drug into the cochlea through the round window

is already very difficult. If the method is capable of drawing an injected drug from

the entire volume near the base of the cochlea, it removes the need to worry about

where exactly the drug is being deposited on injection. If a drug is placed on the

outside of the round window membrane and allowed to diffuse across it (a much

safer and less invasive method) it is hard to control where it will be concentrated on

the other side. Having a method of delivery where this does not matter is therefore

very powerful.

6.1 Frequency Superposition

The linear superposition of multiple pure-tone frequency stimuli is effective

because for each frequency, a local circulation region is generated. Once these circu-

lation regions come into contact, they combine, creating a global circulation region.

By choosing the frequencies carefully, it should be possible to optimise this effect

and create a circulation region which extends from the highest frequency resonance

location to the lowest. There are a number of factors which affect this choice.

Firstly, the circulation regions should be close enough that they actually combine

as explained in Fig. 6.1.

Secondly, although the maximum speeds are possible when the circulation re-

66



6.1. Frequency Superposition 67

(a)

(b)

Figure 6.1: Considering only the bottom half of the channel, when two pure tones are
linearly superposed, their combined wave envelope (exaggerated for illustration here by
the dotted line) will have two peaks if the difference in frequency is large enough. If the
difference is too small the peaks will overlap and the envelope will become smeared out. For
wave envelopes where the peaks are too widely spaced as in (a), the individual circulation
regions generated by each tone are spatially separated such that they do not combine. If
however the frequencies are chosen such that the peaks are separated sufficiently close, as
in (b), the individual circulation regions combine to form one global circulation region,
which is much more efficient at transporting injected particles.

gion centres are closer together, they cannot be too close. Not only because of the

fact that the peaks will no longer be resolved, but also because our simplified model

uses the fixing of damping parameter, ξ in order to recreate the compressive non-

linearity around the peak, meaning that a linear superposition of the waves is only
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valid outside of this region. Therefore we can only linearly superpose waves as long

as their non-linear regions do not overlap. This gives us a lower limit on how small

the change in frequency between successive tones can be. Using experimental data

from the chinchilla cochlea [59], a non-linear interaction region width of 100 µm was

chosen as a lower limit on the peak-to-peak distance between wave envelopes.

At a constant SPL, the circulation region diameters are not a strong function

of frequency in the range that we consider. The wave envelopes are more spread,

and hence the circulation region diameters wider, for lower frequencies at the same

SPL, but because we are only considering frequencies down to 10 kHz, the circu-

lation region diameters can safely be assumed to be constant. So we look for a

superposition of frequencies which lead to an equal spacing in the spatial domain.

The spatial location of resonance along the BM scales linearly with the logarithm

of the frequency such that choosing a constant difference in the spatial coordinates

corresponds to a scaling in frequency of:

fj+1 = fje
−R. (6.1)

Therefore when j = 1 we have the initial frequency (chosen to be 24 kHz in all

results that follow) and all fj scale from there onwards. R is what we will refer to

as the ratio, and is defined as

R = mδ (6.2)

m being the constant of proportionality between ln(f) and x: equal to 301.5m−1.

The constant δ is the distance we desire between resonance peaks along the BM.

From the 80dB simulation results, the longitudinal distance between circulation

region centres was estimated as 1 mm, meaning an upper bound on the ratio value

of 0.3. Hence a change in R is a scaling of the change in the distance between the

circulation region centres. Fig. 6.2 shows the implementation of this method for

different ratios of 10 frequencies and shows that indeed the peaks are equidistant.

Already we find that a spatial separation of 1 mm is too large: the BM wave

envelope extends across the entire cochlea, into the low frequency region which we

do not account for in our model. This in turn gives another restriction on the choice

of ratio, and leads to the maximum ratio considered as R=0.15. Fig. 6.3 shows

the frequency functions used in the OpenFOAM simulations after invoking Eq. 6.1

with R=0.05, 0.1 and 0.15 respectively, with corresponding spatial separations of

δ0.05 = 0.17 mm, δ0.1 = 0.33 mm and δ0.15 = 0.5 mm.
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(a) (b)

Figure 6.2: Plots showing the pure-tone stimuli wave envelopes for (a) R= 0.1 (with a
corresponding peak to peak distance of 0.33 mm) and (b) R= 0.3 (with a corresponding
peak to peak distance of 1 mm). Each envelope was calculated separately using the same
parameters and only changing the frequency. The peaks are equidistant in space, and
their total spatial extent increases as R is increased, as expected. These travelling waves
were linearly superposed and used as input to the simulations as a multi-frequency BM
deflection.

Figure 6.3: Frequency curves for the three values of R presented in this work. Each pure-
tone is linearly superposed such that the envelope consists of ten equally-spaced peaks.
The peak separation distances were: δ0.05 = 0.17 mm, δ0.1 = 0.33 mm and δ0.15 = 0.5
mm.

6.2 Post Processing

The metric against which we measure the efficacy of the transport is the velocity

of particles the streaming channel when the steady state has been reached. In order

to determine these velocities, the domain was decomposed into a grid, and the

average velocity of particles in each cell of the grid calculated. Fig. 6.4 illustrates
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such a grid on one half of the domain and defines the lengths of the cell edges ∆x

and ∆y.

Δy
Δx

Figure 6.4: Example of a coarse grid taken over the lower half of the domain in order
to define cells within which the statistics for the average velocity of particles can be
determined. ∆x and ∆y are the lengths of the cell edges.

In order to find the time averaged velocity of particles in each cell of the domain, ū

where the overbar indicates time averaging, the following method was undertaken:

• At a certain timestep, ti, find the particles contained in each cell by sorting all

of the particles in the domain into the corresponding cells in the grid which

contain their coordinates.

• For each cell, store the coordinates (xi, yi) of every contained particle at ti and

ti+1.

• Calculate their instantaneous velocity between successive timesteps:

uAi = (uA, vA) =

(
xi+1 − xi

∆t
,
yi+1 − yi

∆t

)
where ∆t is the timestep of the simulation.

• Find uA for every particle in the domain at t = ti.

• Repeat for every timestep (for all i).

• Average these values over time to get ū in each cell of the domain.

In order to define the grid through which we decompose the domain, the max-

imum displacement between adjacent timesteps was found such that the cells of the

grid would contain even the largest displacements between two timesteps. If parti-

cles translated more than a cell size between timesteps, the velocity statistics would

be inaccurate.
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6.3 Results

All simulations were run for 10000 timesteps and each took around 25 minutes

to run.

6.3.1 129.5 dB SPL

The initial and final coordinates of the injected particles for a range of δ are

shown in Figs. 6.5 to 6.7 and show how much more effective the smallest separation

was at drug transport: almost all particles were dragged into and along the streaming

channel. Not only does the vicinity of each recirculation region play a big role in

this process, but for smaller separation values, the amplitude of the BM wave is

higher and so therefore are the speeds. For δ= 0.5mm, we start to see why the

larger spread is less efficient: whereas some particles were transported along the

centre of the streaming channel and have almost no component of their velocity

in the y-direction, some were in the region where their y-velocity component is

non-zero, reducing the average horizontal velocity and hence the efficiency. This is

more apparent in the time averaged velocity maps in 6.8 to Figs. 6.10. Reducing

the separation to 0.17 mm caused particles to move so effectively that in the same

time, they reached the edge of the global circulation region and began to move into

the back flow. This was the smallest separation considered, because it approaches

the lower limit of 100 µm imposed earlier in this chapter. In total 10 OpenFOAM

simulations were run for values of δ between 0.17 mm and 0.5 mm and the maximum

steady streaming velocities as a function of ratio were found and are presented in

Fig. 6.11. For the displacements and average particle velocity maps, only the results

for 0.17 mm, 0.33 mm and 0.5 mm are presented.
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Figure 6.5: Displacement of particles injected into the fluid when a sound stimulus with
δ = 0.5 mm is applied. Each point represents a particle and the top five rows of particles
have been colour coded in order to better track their displacement throughout the domain.

Figure 6.6: Same as Fig. 6.5 but with δ = 0.33 mm

.
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Figure 6.7: Same as Fig. 6.5 but with δ = 0.17 mm. Here we see the particles have began
to move back towards the base of the cochlea after entering the backflow. This effect would
be diminished on addition of more tones to the stimuli in order to elongate the region of
oscillation of the BM.

Figure 6.8: Average velocity maps for ū (top panel) and v̄ (bottom panel) when δ= 0.5 mm,
averaged across 250 timesteps (1.25 ms) once the steady state was reached. The domain
has been split into a 20x50 grid of cells according to the method outlined above. The
upper panel shows the streaming channel whereas the lower panel reveals the circulation
regions due to the non-zero y-component.

.
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Figure 6.9: Same as previous figure except δ= 0.33 mm. The upper panel shows the
streaming channel, which is narrower and hence more efficient than for R=0.15. The lower
panel reveals the circulation regions due to the non-zero y-component which is weaker in
this case than for δ= 0.5 mm.

Figure 6.10: Same as previous figure except δ= 0.17 mm. Here the particles have travelled
to the edge of the BM stimulation region and have began to move back towards the
entrance of the cochlea. The x-velocity values are higher than for the previous ratios and
the y-velocity along most of the channel is almost zero, meaning virtually all of the energy
is given to motion in the x-direction, as desired.

.
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(a) (b)

Figure 6.11: ū normalised by the ratio of the successive frequencies in the multi-frequency
stimulation. If the steady streaming was proportional to the energy dissipated along a
constant cochlear extent, then this normalized velocity would be constant. However, the
normalized velocity increases strongly for smaller spatial separations, evidencing that the
steady streaming becomes stronger when the multi-frequency stimulation uses many pure
tones that successively differ only by a small amount.(a) the 129.5 dB SPL simulations
and (b) scaled appropriately to give the expected speeds for stimulation at 80 dB SPL.

.
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6.3.2 80 dB SPL

In order to show the vector field and therefore the combination of the circulation

regions, the simulation was run over a longer timescale at the amplitude of the

80 dB SPL stimulus and the analysis of § 5 repeated using δ= 0.17 mm. Fig. 6.12

shows uss and vss over 20000 timesteps and it should be noted that the speeds

present in the system are higher because of the superposition of wave envelopes

causing a larger sound stimulus to be applied. The important result is the clear

increase in longitudinal influence on the flow, with the field showing uSS showing

that in the streaming channel near the membrane, the particles experience a force

purely in the positive x direction. In Fig. 6.13 the circulation region combination

is apparent, with clear enhanced global rotation and the 10 individual circulation

regions discernible the region close to the BM.

Figure 6.12: uSS (top panel) and vSS (bottom panel) for a linear superposition of 10 pure
tones ranging from 24 kHz to 15.3 kHz (δ= 0.17 mm) at 80 dB SPL. The black line at
y = 0 indicates the location of the basilar membrane.
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Figure 6.13: Vector field up to the characteristic place for a linear superposition of 10
pure tones ranging from 24 kHz to 15.3 kHz (δ= 0.17 mm) at 80 dB SPL. The black line
at y = 0 indicates the location of the basilar membrane. The 10 individual regions of
circulation can be seen clearly near the BM and the way in which they combine is also
clear.

6.3.3 Recirculation Depth

The vertical distance from the membrane from which the particles are trans-

ported along the channel is important. At 129.5 dB SPL the entire depth of the

channel is affected by the stimulus and even particles which lie very close to the bot-

tom of the channel are transported to the BM and towards the apex of the cochlea.

The simulations were run again, this time for decreasing SPL to monitor how this

affected the circulation region depth. The motivation was to find the region within

the cochlea that a drug must be injected in order for this procedure to work. Al-

though the magnitudes of the average velocities decreased with SPL, the spatial size

of the circulation regions were found to be constant. The normalised depth profiles

for the v̄ at the basal edge of the circulation region for δ= 0.17 mm are displayed in

Fig. 6.14.
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Figure 6.14: Depth profile of v̄ for δ= 0.17 mm for a range of SPL to show that although the
magnitude of the velocity decreases, the size of the circulation regions is almost constant.
This means that a quieter sound will still induce a global circulation region although its
strength will be diminished.
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Conclusion

7.1 Summary

The initial hypothesis of this work was that a sound stimulus of a descending

frequency could be optimised such that the phenomenon of steady streaming could

be used to transport an injected drug from the base of the cochlea towards its apex.

Current research into drug therapies in the cochlea is constrained by the fact that

not only is it difficult to apply a drug to the inside of the cochlea, it is even more

difficult to control the location at which it is concentrated.

This work represents an early stage investigation into the phenomenon of steady

streaming as a method for drug delivery. Whereas previous work has investigated the

streaming fields in the cochlea [34][46] , the novel approach in this work was to track

individual particles through the flow. Initially extensive efforts were focused on the

creation of the CFD simulation of a simplified cochlear model. This simplification

came from two factors: firstly the geometry was vastly simplified from a 3D spiralled

tapering channel to a 2D straight one. The second simplification was due to the

use of a passive cochlear model to generate the travelling waves along the basilar

membrane surface. Linear theory was used to derive the waves and a compressive

non-linearity around the peak was possible through the use of a damping parameter

in the impedance of the membrane which was fixed according to experimental data.

However, there was a trade-off at this point between the realistic wave amplitude and

a realistic wave envelope. The envelope which have been used throughout this work

are sharper than those which occur physiological. This behaviour was constrained by

the use of a linear mathematical model. The CFD model was then used to determine

the steady streaming velocities of individual particles placed into the cochlear fluid

under a range of pure-tone frequency stimuli. The frequencies initially ranged from
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5 to 20 kHz and the results of this portion of the investigation revealed that our

wave model was only valid down to around 10 kHz: spanning a distance of around

1/4 of the cochlear length. This was more than enough to begin investigations into

whether or not the frequency sweeps would be effective. The pure-tone results were

used in order to compare the simulation output to the steady streaming theorised

by Lighthill, and these were found to follow the same functional behaviour, up to

a constant scaling factor. The scale factor was necessary in order to use Lighthill’s

equations to optimise the frequency so that the rate of change in frequency would

match the streaming speed of particles at that location. Furthermore, Edom and

Obrist have undertaken modelling of the cochlear channel in 2D, and found the

maximum value of uSS to be around 4.8 × 10−6 ms−1. Their investigations were

undertaken at 1kHz stimulation at 76dB SPL. In order to compare their speeds with

those found here, scaling is necessary to account for both the difference in SPL, and

the difference in frequency. Using the usual scaling for SPL and approximating the

change in amplitude with frequency as liner, this leads to an equivalent result of

1.14× 10−6 ms−1 if we consider a stimulus of 10kz at 80dB SPL. This is around 10

times faster than we find here, which is to be expected due to their inclusion of a 2D

stiffness tensor for the basilar membrane, instead of the one dimensional stiffness

implemented here. They therefore have another contribution to the streaming, which

forces the particles in a way which we cannot account for in this model. The depth

profiles of both components of the streaming velocity were investigated and it was

found that the size of the recirculation region around the characteristic place is

constant through changes in SPL. This is important as it means that although for

quieter sounds the streaming velocities are lower, the region of influence of the

travelling waves on the particles in the flow is predictable.

Running preliminary cases with an optimised frequency sweep were then com-

pleted, and it became apparent very quickly that the frequency sweep had some

downfalls which made it far less effective than hypothesised. Firstly, although the

sweep of the resonance location along the basilar membrane did indeed drag particles

along with it, the region of influence was very small, meaning that particles lying

sufficiently far from the membrane were barely affected. Secondly, the set of parti-

cles nearest to the peak location and hence moving the quickest, were pulled into

the back-flow of the streaming vortex generated by the BM wave. After attempting

to use a second, simultaneous frequency sweep beginning at a lower frequency in

order to try to translate the entire vortex of particles, it became clear that the com-

bination of frequencies was instead resulting in a combined vortex and the creation

of a “streaming channel” along which particles had a higher horizontal velocity.
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From this point, the frequency sweeps were no longer pursued, and instead the fo-

cus changed to optimising the superposition of frequencies in order to maximise this

horizontal steady streaming. It was found that not only were combined vortices

more effective at transport, but that they are significantly more so. Although the

increase in speed is mainly due to the increase in amplitude overall after frequency

superposition, the main reason for the increase in horizontal displacement is the

combination of the eddies. Use of an optimised frequency superposition therefore

led to timescales of around 2 hours for particles injected near the base of the cochlea

(through the round window for example) to be transported 1/4 of its length. Im-

portantly, this work provides a method of generating a sound stimuli which can

be tailored to transport a drug to a specific location along the cochlea, from prior

knowledge of hair cell damage after undergoing an audiogram for example.

7.2 Model Limitations

There are certain limitations to the CFD model used in this work which should

ideally be addressed in order to pursue this streaming further.

Firstly, the dimensions and experimental parameters used here all originate

from small rodents. Including experimental results from a human cochlea into the

model would be useful in order to ensure that the very promising timescales found

in this work are still the case for humans.

Secondly, as mentioned above, is the issue of the active process. The relation

between the membrane velocity and the pressure difference across it outlined in

Eq. 3.15, leads to the wave equation for the pressure difference, which we solve

using the WKB method. However, using a non-linear relation here leads to a new,

nonlinear term in the wave equation and yields more realistic behaviour.

Thirdly, problems relating to the particle tracking implementation. The time

frames over which the simulations could be run were limited because they would

hang indefinitely once particles approached the BM too closely. It was not clear

why this should happen. The conclusion was that the redefinition of the BM sur-

face between timesteps could have led to some particles having their next set of

coordinates on the other side of the membrane between time steps, leading to prob-

lems with the convergence of the solution. This problem was avoided by removing

particles which came too close to the BM and by injecting particles sufficiently far

from the membrane at the start of the simulation. This vertical distance from the

membrane at which the initial injection was possible increased with SPL and so for
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this reason, during the 129.5 dB SPL investigation, particles were injected at almost

quarter of the total channel height away from the membrane. Another improvement

to the particle tracking model would be to introduce a more complex interaction

model for collisions. Currently the model allows almost elastic collisions with walls

and no collisions with one another. Although this was a sufficient condition for the

pure-tone investigations of § 5 where displacements were incredibly small, this may

no longer have been adequate for the more complex flows encountered in § 6. The

biggest problem as a result of the lack of proximity of particles to the BM was that it

was difficult to resolve the boundary layer width and behaviour because no particles

were injected there. Finally, the fact that the simulation required extremely small

Courant numbers (typically O(10−5)) was also assigned to issues regarding particle

motion, because of the tiny displacements between time steps.

Finally, the sharpness of the tuning used in his work needs some improvement,

ideally through inclusion of non linear terms in the initial equations. A direct result

of broadening the envelopes will be that the choice of 100 µm as the width of the

non-linear interaction region would also need to be increased. The width is already

quite small, and once the improved BM wave model is implemented in order to

capture more of the non-linear behaviours, this width would need to be reassessed

according to the wave envelopes this model generates.

Although there are undeniably limitations to this model, these results are very

encouraging. Most of the issues outlined above, once improved, will result in an

increased value of uss to that seen here, ideally towards the values found by Edom

and Obrist, which are around ten times higher than those seen here. This increase

would be significant for drug delivery, where the efficacy of a therapy (due to re-

absorption or drug deterioration for example) reduces with time meaning that any

increase in the magnitude of the streaming is desirable for the application of drug

delivery.

7.3 Further Investigation

As well as the improvements touched upon above, the next way to extend

the work is to create a more realistic cochlear geometry, by tapering the channel

firstly, and then potentially extending this by including the 3D nature of the flow

and ultimately the spiral geometry. As has also been mentioned throughout this

work, the sharpness of the tuning can be improved through inclusion of a non-linear

wave model for the BM deflection. The stimuli can also be optimised further. For
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example an initial frequency superposition could be played for some time, until

a large proportion of the drug has been transported along the channel and then

switched off. After this, either the drug is allowed to diffuse locally, resulting in

a much improved dosage at that location compared to passive diffusion from the

round window alone, or a pure-tone corresponding to the frequency at that location

played, to locally recirculate the flow and attempt to keep it in the vicinity of the

damaged hair cells until it has been absorbed. For drugs which rely on a time

delayed liberation, this could be particularly powerful. Another route to explore is

the use of varying SPL during the stimulus, something which has not been attempted

here: perhaps changing the loudness of the sound with some modulation will have

a significant effect on the streaming. By varying the SPL as a function of frequency

(for example reducing the SPL with frequency), it could be possible to have a higher

acceleration for the particles nearer the base of the cochlea than those which lie

more apically along it. Such a stimulus would mean that the high frequency, lower

amplitude (for the same SPL compared to lower frequencies) region of the cochlea

could be traversed more quickly in order to efficiently transport the drug in a shorter

time, but without the overall SPL of the stimulus being too high for a patient to

listen to comfortably. Finally, a simplistic superposition method has been used here,

merely adding the separate wave forms together for different frequencies and using

this as an input to the simulation. It would be useful to superpose these waves such

that the overall amplitude of the resulting wave is still at the SPL desired. This is

important because increasing the SPL of the resulting signal could lead to further

damage to, or at least discomfort for, a patient.

The conclusion of this work is therefore that one can in fact achieve drug

delivery through steady streaming in the cochlea, and it is possible to specifically

target locations along the cochlear channel by designing the appropriate frequency

stimulus such that a streaming channel is set up, along which particles travel. We

also show that the timescales over which these stimuli must be played to achieve

this transport are reasonable for therapies: around 2 hours for a displacement of

1/4 of the cochlea. Now that it has been shown that for a passive cochlea at least

steady streaming is a viable method of delivery, there is a rich landscape of sound

stimuli to explore.
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[26] Georg Von Békésy and Ernest Glen Wever. Experiments in hearing, volume 8.

McGraw-Hill New York, 1960.

[27] W.S Rhode. Observations of the vibration of the basilar membrane in squirrel
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Appendix A

The following figures display the variables which the OpenFOAM solver required in

order to run all of the cases outlines in this thesis, including the schemes used in

calculations in the finite volume scheme itself, as well as the solution.
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Figure A.1: fvSchemes (finite volume schemes) file from the OpenFOAM simulation solver
BMicoFoam
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Figure A.2: fvSolution (finite volume solution) file from the OpenFOAM simulation solver
BMicoFoam
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