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Abstract   
At the beginning of the 13th century  Fibonacci described the rules for  making 
mixtures of all kinds, using the notation and methods of the Hindu-Arabic system of 
arithmetic.  His work was repeated in the early printed books of arithmetic, many of 
which contained chapters on ‘alligation’, as the subject became known. But the rules 
were expressed in words, so the subject often appeared difficult, and occasionally 
mysterious. Some clarity began to appear when Thomas Harriot introduced a modern 
form of algebraic notation around 1600, and he was almost certainly the first to 
express the basic rule of alligation in algebraic terms. Thus a link was forged with 
the work on Diophantine problems that occupied mathematicians like John Pell and 
John Kersey in the 17th century. Joseph Fourier’s work on mechanics led him to 
suggest a procedure for handling linear inequalities based on a combination of logic 
and algebra; he also introduced the idea of describing the set of feasible solutions 
geometrically. In 1898, inspired by Fourier’s work, Gyula Farkas proved what we 
now regard as the fundamental theorem about systems of  linear inequalities. This 
topic eventually found many applications, and it became known as Linear 
Programming.  The theorem of Farkas also plays a significant role in Game Theory.  

1. Introduction 
In 1279 Edward I, king of England, instituted a major reform of his coinage, with the aim of 
controlling more strictly the weight and fineness (purity) of the coins produced at the mints. 
A few years later one of Edward’s mint officers wrote the Tractatus Nova Moneta, 
explaining the problems involved in great detail. One of these problems was the following:1 

Suppose I have to alloy the money to be ninepence fine and have bullion or silver 
elevenpence fine and fourpence fine. 

[Pono quod debeam alliare monetam ad ixd. de allaio et habeam billionem siue 
argentum ad xjd. de allaio et ad iiijd. de allaio.] 

 

1 For the background to the Tractatus see Martin Allen, Mints and Money in Medieval England (Cambridge: 
Cambridge University Press, 2012) and Nicholas Mayhew, ‘From Regional to Central Minting’, in A New 
History of the Royal Mint ed. by Christopher Challis (Cambridge: Cambridge University Press, 1992) pp. 
81-178. The extract is from the Red Book of the Exchequer, translated by Charles Johnson, The De Moneta 
of Nicholas Oresme and English Mint Documents (London: Nelson, 1950) 71. 
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The question is: how to make silver coins of a specific fineness,  given that two sorts of silver 
are available, one  better and one worse than the required standard. The standard of 
‘ninepence fine’ meant that 9 parts out of 12 were pure silver.  We now measure fineness as 
a  percentage or ‘parts per thousand’, so that sterling silver is 92,5% pure, or ‘925’, but  in 
medieval times the assayers used strange measures that had evolved as part of the mystery 
of their craft.  Here pure silver is reckoned as ‘12 pence fine’, so the coins at ‘9 pence fine’ 
are required to be 75% pure. This is not a standard that was actually used in England, and 
clearly the writer’s intention is to illustrate the need for arithmetical skill in the practice of 
minting.  

        The solution is obtained by noting that one of the sources is 2 pence better than required, 
and other is 5 pence worse, so they should be combined in the proportion of 5 to  2. Although 
the principle is clear intuitively,  the writer goes on to justify the result  by calculating the 
fineness of the mixture directly, in two different ways. 

The present paper builds on the seminal work of Jack Williams,2 who described the 
methods used in the minting of coins, up to 1700.  Here we shall begin by looking more 
closely at the mathematics underlying the procedures used in the late medieval period. Then 
we shall describe  how, following the work of Thomas Harriot and John Pell in the 17th 
century, the subject was treated by algebraic methods.  Finally, we shall explain how 
analytical methods were deployed to establish an important mathematical theory, Linear 
Programming.     

 We focus initially on the evolution of the methods and notations that were traditionally 
used to describe the making of mixtures of all kinds. The arithmetical methods described by 
Fibonacci at the start of the 13th century became widely known in the 15th and 16th 
centuries, when printed textbooks of arithmetic began to appear. But the subject was 
presented in the form of rules, which often obscured the underlying principles. Around 1600, 
Thomas Harriot developed a symbolic form of algebra, very similar to the form we use today, 
and he was the first to express Fibonacci’s arithmetical rules in that way. In the 17th century 
the work of John Pell, John Kersey, and others, showed how algebraic techniques could 
provide a clearer understanding of the subject, especially the aspects of ‘indeterminacy’. 
Much later, a similar combination of logic and algebra was discussed by Joseph Fourier, who 
also introduced the idea of describing the set of feasible solutions geometrically. 

In the second half of the 19th century the subject we now know as Linear Algebra began 
to take shape. In 1873, when Paul Gordan proved a ‘Theorem of the Alternative’ about the 
existence of non-negative solutions of a system of linear homogeneous equations, he used 
determinants in his paper. Twenty-five years later Gyula Farkas, inspired by Fourier’s work,  
proved a significant extension of Gordan’s result, about non-homogeneous equations. In the 
twentieth century Linear Algebra found many new applications, notably as a tool for solving 
complex problems of organisation and planning. Thus there arose the subject of Operations 
Research. One of its main tools was Linear Programming, where it turned out that the ‘Farkas 

 

2 Jack Williams, ‘Mathematics and the Alloying of Coinage 1202-1700’ Annals of Science 52 (1995), 212-234, 
235-263.  
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Lemma’ plays a fundamental role. In fact, the underlying mathematical principle also played 
a central role in the development of Game Theory and other areas of Mathematical 
Economics.  
 
 
2. Fibonacci: arithmetic, alloying, and birds 
The arithmetic that appeared in the Tractatus Nova Moneta  was not new. We do not know 
when it was first used in England, but it was surely familiar to the experts who were imported 
to help manage the English coinage in the 13th century, several of them from Italy.3   One 
of them, Orlandino da Poggio, was appointed joint Warden of the Exchange and Mint in 
1279, as a representative of the king’s bankers, the Riccardi of Lucca. The Riccardi  were 
entrusted with running the Exchange, where silver of all levels of fineness was received, 
valued, and exchanged for current coin,  an operation that required considerable skill in 
arithmetic.  Another Italian, Boniface Galgani from Florence, was assayer, buyer, and 
weigher from 1279 to 1281. Almost certainly such men would have been familiar with the 
Liber Abbaci of Leonardo of Pisa, often known as Fibonacci.4  The widespread circulation 
of this work was truly ground-breaking:  it signalled the transition from the ancient methods 
of calculating with counters, to pen-reckoning with the Hindu-Arabic numerals and 
algorithms.   Fibonacci had learned his craft on his travels in the Islamic lands surrounding 
the Mediterranean Sea where, significantly,  gold and silver coins were common at that time. 
Indeed, the application of arithmetical methods to coinage may well go further back, to the 
mints of Greece, Rome, Byzantium and India. For example, the Indian document known as 
the Bakshali Manuscript contains several problems about combining gold coins of different 
finenesses.5  
       Fibonacci’s manuscripts contained a great deal of commercial arithmetic, as well as 
some more famous arithmetical puzzles.  In Section 6 of Chapter 11 (On the Alloying of 
Money) he considered the problem of producing silver coins with fineness 5 1

8
 ounces per 

pound, given two sorts of bullion, one at 4 1
2
  ounces per pound and one at 6 1

4
 ounces per 

pound. (Here the fineness is measured in an Italian style, by the number of ounces of pure 
silver in a pound of twelve ounces:  so the required standard is about 42.7%.)    Fibonacci 
reduced the problem to whole numbers by taking the unit of fineness to be one-eighth of an 
ounce, so that one sort is better by 9 units and the other is worse by 5 units. It follows that  
they should be mixed in the proportion 5 to 9.  

 

3 For the general background to the Italian bankers in England see Walter Rhodes ‘The Italian bankers in 
England and their loans to Edward I and Edward II’, in Historical Essays ed. by T.F. Tout and J.F. Tait 
(London: Longmans, 1902). For a more numismatic account, see Mavis Mate. `Monetary Policies in 
England 1272-1307’ British Numismatic Journal 41 (1972) 34-79.   

4 Fibonacci’s work first appeared in 1202 and was revised in 1228.  The Latin text has been published by 
      B.  Boncompagni , Scritti di Leonardo Pisano (Rome: 1857) and there is an English translation by L. Sigler    
       Fibonacci’s Liber Abaci (Springer: New York, 2002). 
5 Kim Plofker, ‘Mathematics in India’ in The Mathematics of  Egypt, Mesopotamia, China, India and Islam, ed. 

by Victor Katz (Princeton: Princeton University Press, 2007) pp.435=437. 



4 
 

   Fibonacci also considered problems where more than two kinds of bullion are available.  
As a simple illustration, he discussed the case where the standard is 5 ounces fine, and there 
is one better kind of bullion (6 ounces fine), and two worse kinds (4 and 3 ounces fine).  His 
first solution is to mix the two worse kinds in equal amounts, making a single worse kind, 
3 1
2
 ounces fine, and then combine that with the better kind, using the simple rule.  This 

produces a standard mixture in which the proportions of the three constituents are 3:1:1.   
Significantly, he then observes that there are other ways of achieving the desired result. For 
example, if the two worse kinds are combined in a different way, say in the proportion 5:2, 
then the resulting mixture is  3 5

7
 ounces fine, and combining that with the better kind using 

the simple rule produces a mixture in which the proportions of the three constituents are 
9:5:2.  As we shall see, this remarkable insight into the ‘indeterminacy’ of the problem would 
be overlooked in many later accounts, when the problem was presented in terms of codified 
rules.   
      The Liber Abbaci is best known for its many delightful arithmetical puzzles, such as the 
‘Seven Old Men Going to Rome’ and the ‘Rabbits’. The  puzzles mainly occur in Chapter 12, 
and are preceded by the serious mathematics such as ‘the Alloying of Monies’, which is in 
Chapter 11.  A particularly striking illustration of the book’s true priorities  appears towards 
the end of  Chapter 11, where Fibonacci introduces the puzzle of ‘The Three Kinds of Birds’ – 
and solves it by converting it into a problem of alloying money.  Clearly, he was aware that the 
rules for alloying money were based on mathematical principles that had wider application. In 
Section 5 we shall discuss another method used by Fibonacci for the ‘Birds’ problem, which 
resembles modern algorithmic techniques.   
      The problem is as follows: thirty birds of three kinds, A, B, C, are bought for thirty pence.  
Each A costs 3 pence, each B costs 2 pence,  and each C costs half a penny.  How many birds 
of each kind are bought?    Fibonacci remarks that this problem is equivalent to making a 
‘standard’ alloy of fineness 1 (since 30 birds are bought for 30 pence), using three kinds of 
‘bullion’, with finenesses 3, 2, and ½.  Because the numbers of birds are required to be positive 
integers, he works in multiples of ½, so the finenesses of A, B, C are 6, 4, 1, and the ‘standard’ 
is 2.    Now he can use the pairing rule in the usual way. A and C must be combined in the ratio 
1:4, since 6 – 2 = 4 and 2 – 1 = 1.  Similarly, B and C must be combined in the ratio 1:2.  In 
other words, one lot of the AC alloy contains 1 A-bird and 4 C-birds, while one lot of the BC 
alloy contains 1 B-bird and 2 C-birds. Both these alloys are ‘standard’ so they can be combined 
in any way, and it remains only to work out  how AC lots of 5 birds and BC lots of 3 birds can 
be combined to make 30 birds in all.   There is in fact only one possibility: 3 lots of 5 and 5 
lots of 3, giving the answer A = 3, B = 5, C = 22.     
 

3. From manuscript to print 
The problems of combination described in the Liber Abbaci and the Tractatus Nova Moneta 
were not confined to the minting of coins. They occur whenever mixtures are required, for 
example when wines are blended by vintners and potions are made up by apothecaries. By 
the 16th century the subject had become known in English as alligation, and it was discussed 
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in the printed books on arithmetic that were starting to appear. But, as was the custom, the 
methods used were presented without any form of justification, although the results could be 
checked by a direct calculation. 

One of the first printed books to discuss the principles of alligation was the Arithmetica 
of Piero Borgi, a book specifically intended for the mercantile community.6 

 
Figure 1.  Alligation with five sorts of wine, as presented by Borgi (1488). 

Borgi’s exposition shows how the principles set out by Fibonacci had become codified by 
the end of the 15th century. In particular, he deals with the problem of a vintner who has five 
kinds of wine, with unit-prices 44, 48, 52, 60, and 66, and wishes to produce 50 units priced 
at 56 (Figure 1). The aim is to find a feasible solution, which could of course be achieved by 
combining just one pair of the constituents according to the basic rule. However, Borgi 
follows the usual practice, which was to seek a solution in which all the available constituents 
are used. This can be achieved by pairing the constituents in several different ways, and then 
combining the resulting mixtures, all of which have the required property. The idea is clearly 
illustrated in Borgi’s diagram. He takes three pairs, as shown by the links, and mixes them 
according to the basic rule: 
              44 and 66: since 56 - 44 =12 and 66 - 56 = 10, use 10 units and 12 units; 
              48 and 60: since 56 - 48 = 8 and  60 - 56 =  4,   use  4 units  and   8 units; 
              52 and 66: since 56 - 52 = 4 and  66 - 56 = 10, use  10 units  and  4 units. 
                                                
He adds these three mixtures together, obtaining a mixture totalling 48 units. Since 50 units 
are required, he then multiplies by  50

48
  to obtain the answer. 

Modern vector notation enables us to understand the procedure more generally. Borgi’s 
basic solutions are (10,0,0,0,12), (0,4,0,8,0) and (0,0,10,0,4), which he adds in order to obtain 
a mixture containing all five ingredients: 

 
(10,0,0,0,4) + (0,4,0,8,0) + (0,0,10,0,4) = (10,4,10,8,16). 

 

6Piero Borgi, Qui Comenza  la Nobel Opera de Arithmetica  (Venice: 1488). Editions of this work were  published 
      in 1484 and 1488, preceding the better-known Summa of Pacioli which appeared in 1494. 
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Multiplying by 50
48

  gives the answer �10 5
12

, 4 1
6

, 10 5
12

, 8 1
3

, 16 2
3
 �. This simple notation 

clarifies several aspects of the process, but clarity was not a feature of the descriptions that 
appeared in many of the textbooks published in the 16th century, when alligation became 
one of the main topics of practical arithmetic. The Latin word ‘alligationis’ was used by 
Widman in 1489, and in 1552 the second edition of Robert Recorde’s Grounde of Artes 
contains one of the first appearances of the word in English.7 Unfortunately the rules 
presented in these books tended to obscure the essential features of the subject, and it would 
continue to be regarded as ‘difficult’ for a very long time. 

Recorde’s book contains an extended account of the subject, and this was the basis of the 
material that appeared in many subsequent books. Among them was a popular textbook  
written by the goldsmith Dionis Gray.8 Gray’s treatment of alligation is similar to Recorde’s, 
but very muddled – and consequently revealing. His first example concerns an apothecary 
who is required to use four sorts of ‘drugges’ to make a mixture priced at 40 shillings per 
ounce. Two sorts (say A and B) are priced at 45 and 42 shillings, and the other two (C and 
D) are priced at 36 and 32 shillings (Figure 2).  

                                 
Figure 2: Alligation with four sorts of drugs, as presented by Gray (1577). 

As indicated in the diagram, Gray applies the basic pairing rule to A and D, with the result 
that 8 ounces of A should be mixed with 5 ounces of D. Similarly, 4 ounces of B should be 
mixed with 2 ounces of C. Adding these two mixtures in the usual way produces 8+4+2+5 
= 19 ounces in total, but the problem asked for 8 ounces, so the quantities must be multiplied 
by  8

19
 .    

Gray then remarks that a different solution is obtained if the drugs are paired differently. 
He means pairing A with C, and B with D, but confuses the issue by writing that ‘the 
differences change their places’ and referring to a diagram which contains several mistakes. 

 

7Johannes Widman, Behennd und hupsch Rechnung auf allen Kaufmanschaften (Leipzig: 1489); Robert  
      Recorde, The Grounde of Artes (London: 1552). The OED  attributes the word ‘alligation’ to Richard 
      Taverner, but the context is unclear. 
8 Dionis Gray, The Store-House of Breuitie in Woorks of Arithmetic (London: William Norton and John 

Harrison, 1577).  
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In fact, Gray’s understanding of alligation was very patchy. He gives several more examples, 
one of which is hopelessly wrong, and ends with a cryptic comment: 

. . . there are other soundrie orders of prooves, for the commixions of Goldes and Silvers 
which here I omitte, in respect of severall causes, referring suche as by vocation maie 
desire knowledge therein to private conference, who maie be satisfied to effecte 
extraordinaire. 

From this comment we may infer that the practitioners of alligation had indeed advanced 
beyond the simple rules published in the textbooks.   Even though the symbolism required 
to formulate their problems precisely was not yet invented, the mint-men of the 16th century 
surely had insights that nowadays we should express algebraically. For example, when four 
constituents A,B,C,D are mixed, it is not necessary to obtain the solution by simply adding 
the AD mixture and the BC mixture in the way that Gray suggests: any combination of the 
AD mixture and the BC mixture will work.  Gray’s comment suggests that the experts were 
aware of this possibility, and other methods ‘extraordinaire’.   The idea had been clearly 
formulated by Fibonacci,  but his analysis had not survived in the printed texts.  Gray had 
described only two solutions to his problem: the first by the pairings AD and BC, the second 
by the pairings AC and BD. In modern notation, the first one leads to (8,4,2,5) by adding 
(8,0,0,5) and (0,4,2,0), while the second leads to (4,8,5,2) by adding (4,0,5,0) and (0,8,0,2). 
Why should we not use more general combinations, such as 2(8,0,0,5)+10(0,4,2,0), and what 
then is the significance of the relationship 
 

2(8,0,0,5) + 10(0,4,2,0) = 4(4,0,5,0) + 5(0,8,0,2)  ? 
 

       In practice the mint-men must have encountered many situations where more complex 
methods were useful. Their activities were constrained by the fact the quantities 
of the various kinds of silver available to them were limited, and choices would have to be 
made. They did not have the advantages of a succinct notation for describing these problems, 
but they would have developed heuristic rules for dealing with them.  For example, they 
would probably wish to use up as much low-grade silver as possible, and one way of doing 
so had been suggested by Fibonacci.  All the available silver that was worse than standard 
could be combined into a single lot, and then combined with a suitable quantity of the better 
kind.  But of course, there might not be enough of the better kind available.   

4. From arithmetic to algebra: the problem of ‘indeterminacy’ 
Thomas Harriot (1560?-1621) was the finest English mathematician before Newton. He 
produced over 8000 pages of notes on a wide range of mathematical topics, but none of this 
work was published in his lifetime. In fact, it was difficult to appreciate the full range of his 
achievements until his manuscripts were published in 2011.9  It is now clear that Harriot had 
been concerned with several matters relating to the coinage of his time, including alligation. 

 

9The Harriot papers can be examined online (echo.mpiwg-berlin.mpg.de).  The parts relating to alligation and  
    coinage are analysed by Norman Biggs, `Thomas Harriot on the Coinage of England’ Archive for the History  
    of the Exact Sciences 73(4) (2019) 361-383, 
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Harriot studied the chapter on alligation in the 1585 Arithmetique of Simon Stevin.  That 
work contained several problems set out in the standard form as presented by Recorde and 
Gray. Harriot worked out the answers to these problems and, significantly, he wrote down 
the basic pairing rule in algebraic form (Figure 3). Although this would now be regarded as 
‘elementary algebra’, it must be stressed that Harriot’s notation was entirely new at that time.  

 
 
Figure 3: Harriot’s algebraic summary of the basic principle of alligation. 

© British Library Board BL Add MS 6783 f.313v 
 

Harriot’s table gives the general form of the quantities that occur when it is required to 
produce q units of silver with fineness c, given that two sorts are available, one with 
fineness b and one with fineness d, where b < c < d. According to the usual rule, the sorts 
must be mixed in the proportion of d − c units of b to c − b units of d, making d − b units in 
all. These quantities are written on the left. In the middle are the quantities needed to 
produce q units, obtained by multiplying by q/(d − b). On the right is the verification that 
the fineness of the mixture is correct. Each quantity is multiplied by the respective fineness 
and divided by q; these terms are then added to obtain the fineness of the mixture as the 
weighted average of the finenesses of the constituents. Since  

𝑞𝑞𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞

+  
𝑞𝑞𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞

 =   
𝑞𝑞𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞

 =   𝑞𝑞 , 

the result is correct. The absence of any hint of explanation is typical. Harriot’s notes were 
not written for the purpose of instructing others; his only concern was to convince himself. 
His notes on the pairing rule would have meant little to all but very few of his 
contemporaries. 

Harriot’s death in 1621 was followed by efforts to publish his work. Eventually the 
project fell into the hands of Sir Thomas Aylesbury, a rising star in the royal 
administration. He had been appointed as a Master of Requests in 1628, and was granted 
the monopoly of making weights for checking gold coins in 1631. In that year a small 
volume containing some of Harriot’s algebraic work was published, but alligation was not 
one of the topics covered. Aylesbury became joint Master of the Tower Mint in 1635, and 
almost certainly he was aware that Harriot’s unpublished papers contained material 
relevant to coinage, in particular alligation, or ‘the commixture of monies’ as it was known 
to the mint-men. Aylesbury had become acquainted with John Pell, a rising star of the 
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mathematical kind, and it appears that he considered asking Pell to help with further work 
on the publication of Harriot’s papers,  but nothing came of it.10 

Nevertheless, Pell’s mathematical interests did extend to some topics relevant to our 
story. His surviving manuscripts are in an even more chaotic state than Harriot’s, but 
among them some relevant material has been found. He made notes on the chapter on 
Alligation in the Arithmetica of Gerhard de Neufville.11 In that book there is a long 
discussion of a problem with six kinds of wine, three better and three worse than the 
required standard, so there are nine possible pairings in all. Neufville finds three solutions 
using three pairs in different ways, as well as one solution using five pairs and one using 
eight pairs. In all cases the result is obtained by simply adding the basic mixtures, but it is a 
good illustration of the fact that many different solutions are possible. 

Such ‘indeterminacy’ also occurs in another area of mathematics which attracted Pell’s 
interest, the study of Diophantine equations. It had become very fashionable, following the 
re-discovery of the works of Diophantus in the 16th century, and the publication of a 
commentary on them by Bachet in 1621. A feature of Pell’s work on the subject was the 
use of symbolic algebra in the style of Harriot. On 1 March 1645 he gave Sir Charles 
Cavendish some notes which included the following problem.12 Find positive numbers 
a,b,c such that 
 5a + 3b − 2c = 24, and − 2a + 4b + 3c = 51. 

The problem is ‘indeterminate’ because there are only two equations for three unknowns. 
However, as Pell observed, the condition that a,b and c must be positive means that the 
range of possibilities is restricted. He knew how to eliminate variables from systems of 
simultaneous linear equations, and he saw how to apply the method in this case.13  

Eliminating c results in the equation 11a + 17b = 174, which implies that a must be less 
than 174

11
=  15 9

11
 .  (Similarly, b must be less than  10 4

17
. )  Pell allowed fractional 

solutions, of which there are infinitely many, but if the solutions are required to be whole 
numbers then a must be one of the numbers 1,2,3, ... ,15, and it turns out that there is a 
unique solution a = 5, b = 7, c = 11. 

Sir Charles Cavendish, the recipient of the notes on the Diophantine problem, carried on 
an extensive correspondence with Pell in the years 1641 to 1651. For most of that time 
England was in the throes of a civil war, and both men were living abroad. The publication 
of their letters by Malcolm and Stedall has thrown more light on Pell’s interest in 

 

10 See note 30/4/9B-18A in the online edition of Samuel Hartlib’s Ephemerides (www.dhi.ac.uk/hartlib). 
11 Gerhard de Neufville, Theorica et Practica Arithmetica (Bremen: 1624).  
12The circumstances are described by Noel Malcolm and Jacqueline Stedall, John Pell (1611-1685) and his 

Correspondence with Sir Charles Cavendish (Oxford: Oxford University Press, 2005) 290-291.   
13The ‘ordinary’ method of elimination was rarely mentioned in the early books on algebra (Joseph Grear,  
     ‘How ordinary elimination became Gaussian elimination’ Historia Mathematica 38 (2011) 163-218.  
      But  it was in fact well known. A very clear example from the middle of the 16th century, using old notation. 
      can be found in the Logistica of Jean Borrel. It has been reprinted with an English  translation by Jacqueline 
      Stedall, Mathematics Emerging (Oxford: Oxford University Press, 2008) pp. 548-551. Pell’s notes for 
      Cavendish contained an example taken from Gosselin’s De Arte Magna of 1577, with modernised notation. 



10 
 

indeterminate problems.14 In Letter 51 Cavendish mentions Pell’s notes on the problem 
discussed above and asks for more explanation. In Letter 52 he specifically mentions 
Alligation and asks if Pell knows of a ‘goode demonstration’ of the rule. In Letter 55 Pell 
replies: 

... you desire good demonstrations of ye rules of Alligation & Falshoode. But, as I 
remember, I have heeretofore told you, that neither of them have ever beene taught or 
confirmed as they ought. And that amongst ye taskes which I have set myselfe, that is 
one.   

This remark indicates that Pell was unaware of Harriot’s work on alligation (Figure 3). 
That would not have been the case had he taken advantage of his contacts with Aylesbury 
in the 1630s.  Furthermore,  he was not good at bringing tasks to a conclusion, and no 
coherent account of his work on indeterminate problems has been found. In fact, none of 
his algebraic work was published until 1668, and then only in a rather curious way.15 
        Meanwhile, at the Mint the ‘commixture of metals’ remained a perennial problem.  
Back in 1635 a tract on the subject had been produced by Walter Warner, probably at the 
request of the royalist Master of the Mint, Sir Thomas Aylesbury.16  By 1650 the royalist 
regime had collapsed, and Aylesbury was long gone from the Mint.  England was under the 
rule of the  parliamentarians, who were greatly concerned about the integrity of the nation’s 
coins. Indeed it was rumoured that Seth Ward, newly appointed as Professor of Astronomy 
at Oxford, was going to revise Warner’s tract.17  However, no evidence that Ward actually 
worked on this project has been found, probably because in 1651 an alternative manual on 
the same subject appeared in print.  This was the Brief and Easie Way by Tables to cast up 
Silver . . . and Gold, by John Reynolds, the Mint’s long-standing authority on the subject. 
Reynolds presented a neat  procedure that enabled an assay-master to produce alloy of 
standard fineness, using only simple arithmetic and the information contained in his tables.    
The procedure can be described in algebraic terms, but it seems likely that Reynolds based 
it on his practical experience of the art of assaying, rather than algebraic theory.18 

5. Algebra and logic 
The focus on arithmetical procedures at the Mint, and  the elusiveness of Pell’s work on 
algebra, means that we must look elsewhere for clear evidence of the application of 
symbolic algebra to alligation. One of the most popular 17th-century textbooks of 
arithmetic was Edmund Wingate’s Arithmetick, first published in 1630. It contained a 
chapter on alligation, similar in style and scope to Recorde’s Ground of Artes. In 1650 a 

 

14See the reference in note 12. The original sources are: Letter 51 (page 459) BL Add MS 4278 f.238-9; Letter 
     52 (page 461) BL Add MS 4278 f.241; Letter 55 (page 470)  BL Add MS 4280 f.117.  
15The details are described by Jacqueline Stedall, A Discourse Concerning Algebra (Oxford: Oxford University 

Press, 2002) 135-139. 
16 BL Harleian Ms 6755. 
17 See note 28/1/60B-71A in the online edition of Samuel Hartlib’s Ephemerides (www.dhi.ac.uk/hartlib). 
18For an analysis of Reynolds’ method, see Norman Biggs ‘John Reynolds of the Mint: A Mathematician in the 

Service of King and Commonwealth’ Historia Mathematica 48 (2019) 1-28.   
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second edition appeared, much enlarged and with an Appendix written by Wingate’s friend 
John Kersey. This contained a justification of the rule of alligation by geometry, which 
Kersey attributed to the second volume of the great Cursus Mathematicus of Pierre 
Hérigone.19 After Wingate’s death in 1656 Kersey continued to revise and extend the book, 
and in 1662 a fourth edition appeared.20 Here the geometrical demonstration was followed 
by an algebraic one. Kersey began by stating (in words) the algebraic identity that we 
would now write as x(y−z) = xy−xz. He then addressed the problem of producing a mixture 
with fineness A from two constituents with fineness B and C, given that B > A > C (Figure 
4). 
 

                     

Figure 4. Algebraic demonstration of the rule of alligation (Kersey 1662). 

      Kersey’s working is similar to Harriot’s, but clearly explained. He describes the 
sequence of algebraic operations in words, following the steps that we would now write in 
symbols: 

B × (A − C) + C × (B − A) = (BA − BC) + (CB − CA) 

= BA − CA 

= (B − C) × A. 

In parallel with his work on Wingate’s Arithmetick, Kersey was also writing another 
book, on Algebra.21 Chapter 13 is entitled ‘Concerning the Reduction of such Arithmetical 
Questions as are capable of innumerable Answers’. He refers to three propositions from the 

 

19Pierre Hérigone, Cursus Mathematicus Tomus Secundus (Paris: 1634).  
20John Kersey, Mr Wingate’s Arithmetick (London: 1662).  
21John Kersey, The Elements of that Mathematical Art commonly called Algebra (London: 1673). John Collins 

considered this book to be ‘much better’ than others being offered for  publication in the early 1670s.  See 
Stephen Rigaud, Correspondence of Scientific Men of the Seventeenth Century, Volume 1 (Oxford: Oxford 
University Press, 1841).  
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1624 edition of Bachet’s Problèmes plaisans et delectables, but remarks that Bachet’s 
methods are ‘very tedious and obscure’. Consequently Kersey proposes to use his own 
methods, which are ‘both intelligible and demonstrative’. His Questions 19 and 20 are 
concerned with alligation, and they do indeed provide a clear exposition of how such 
problems can be solved by a combination of algebra and logic. 

Question 19 is about a vintner who has three sorts of wine, with prices per gallon of 24, 
22, and 18 pence. He wishes to make 60 gallons of wine priced at 20 pence, so the total 
cost is 1200 pence. Kersey denotes the quantities of the three sorts by a, e, and y, so the 
basic equations are 
 a + e + y = 60, 24a + 22e + 18y = 1200. 

For practical reasons, all the unknowns are required to be positive. Kersey’s first step is to 
eliminate a, which he does by multiplying the first equation by 24 and subtracting the 
second one. He then eliminates e in a similar way, obtaining (after simplification) the two 
equations 
 e + 3y = 120, a − 2y = −60. 

The next step is crucial: further constraints involving fewer variables can be obtained  by 
simple logic. Since e is positive, and e = 120 − 3y, it follows that y < 40. Since a is positive 
and a = 2y − 60, it follows that y > 30. The conclusion is that y can be any number between 
30 and 40, and a and e can then be calculated from the equations stated. 

If the numbers are allowed to be fractions there are ‘innumerable’ answers, but if whole 
numbers are required then only solutions with y = 31,32, ... ,39 are valid. Kersey notes that 
only one of these, y = 36, arises from the traditional pairing method, where the mixtures 
(0,2,2) and (2,0,4) are added to give (2,2,6), and then multiplied by 6.  

At this point it is appropriate to return to Fibonacci’s problem of ‘The Three  Kinds of 
Birds’.  In the Liber Abbaci the problem was solved by translating it into a problem about 
alloying money and applying the pairing rule of alligation (Section 2). Fibonacci also 
discussed variants of the problem in a Letter to Master Theodorus, with different numbers 
and a different method of solution.22   As before,  thirty birds  of three kinds, A, B, C, were 
sold for thirty pence.  The A-birds cost a penny for three, the B-birds cost a penny for two, 
and the C-birds cost two pence each.  Fibonacci’s new  method was based on algebraic 
ideas (although without symbolic notation),  and it foreshadowed modern algorithmic 
techniques for solving linear problems. 

Fibonacci’s first step was to suppose that all thirty birds were A-birds,  in which case 
the total cost would be only ten pence.  He then worked out how the cost would increase if 
A-birds were exchanged for B-birds or C-birds. Replacing an A-bird by a B-bird  increases 
the cost by one-sixth of a penny, and replacing an A-bird by a C-bird increases the cost by 
five-thirds of a penny.  So he needed to work out how many of these changes would 
increase the total cost by twenty pence, since thirty pence was spent.  In units of one-sixth 
of a penny, each new B accounts for one unit, and each new C accounts for ten units, so the 

 

22B. Boncompagni, Scritti di Leonardo Pisano II (Rome:1857-62) 247. 
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number of  new B’s plus ten times the number of new C’s must equal 120. Since both 
numbers are positive, there is only one possible solution: 10 B’s and 11 C’s, leaving 9 A’s 
to make up the total of 30.  

    In algebraic terms, Fibonacci obtained the equation 𝑞𝑞 +  10𝑞𝑞 =  120 by  
eliminating  𝑎𝑎  (the number of A’s) from the two linear equations in 𝑎𝑎, 𝑞𝑞, and 𝑞𝑞  that 
represent the given conditions. His last step, applying the condition that the numbers must 
be positive integers, also anticipates the method of Kersey.  Indeed, these ideas recur in the 
technique we now know as Linear Programming.    

Kersey’s algebraic method cast new light on the range of the solutions to an alligation 
problem. In practical terms, it is clear that, since each basic mixture produced by the 
pairing rule has the required property, these mixtures can be combined in any way. 
Unfortunately the traditional arithmetical procedure had obscured this obvious fact, 
because it required the basic mixtures to be added in a specific way. 

Slowly, the mist was dispersed. For example, in 1730 the problem was discussed by 
Alexander Malcolm.23  He observed that the ‘Algebraists’ had shown how to find an 
infinite number of different answers. On the other hand, the traditional arithmetical method 
could provide only a limited number, by using different ways of pairing the constituents. 
Significantly, he went on to explain that the old method could actually be used to produce 
infinitely many answers, by increasing or diminishing the amount of the mixture obtained 
from any pair or pairs. In modern terms, that means using any linear combination of the 
basic mixtures, not just their sum. 

Kersey’s procedure is to simplify the system by the elimination of variables and the 
application of logic to obtain new inequalities. It works well when the number of variables 
is small, but Kersey made no attempt to describe how it might work more generally, and 
how the ‘infinity’ of solutions might be described more precisely. In the 18th century the 
problem of eliminating variables from a system of equations was commonly taught in 
courses of algebra, but the corresponding problem for systems of inequalities remained 
untouched. The next advance in the theory of inequalities came from a new direction. 

6. Fourier and Farkas 
Throughout the 18th century the science of mechanics was gradually transformed by the 
introduction of algebra and calculus. A recurring theme was the formulation of general 
‘principles’, which could be used to predict the behaviour of mechanical systems. In the 
great Mécanique Analytique of Joseph Louis Lagrange, published in 1788, the ‘principle of 
virtual velocities’ was regarded as one of the fundamental assumptions of statics. In many 
circumstances this principle can be applied to determine the equilibrium position of a 
system, by maximizing or minimizing a certain function, subject to given constraints  In 
Lagrange’s formulation the constraints were assumed to be equalities, and his method of 
`Lagrange multipliers’ could be used. This method is relevant to our theme, for two 
reasons. First, it was the first general framework for dealing with problems of constrained 

 

23 Alexander Malcolm, A New System of Arithmetick (London: J. Osborn and T, Longman, 1730) 568-9. 
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optimization, and second, the multipliers themselves play a central role in the subsequent 
development of the subject, as we shall see. 

In 1798  Lagrange’s compatriot, Jean Baptiste Joseph Fourier, attempted to improve and 
extend the principle of virtual velocities. In particular,  he pointed out that in many 
practical problems the constraints should be represented by inequalities, rather than 
equations. Fourier later  became famous for his important discoveries about the flow of 
heat and the representation of functions by infinite series of sines and cosines. This work 
established him as one of the leading mathematicians of his day, and  in 1822 he became 
secretary of the French Academy of Sciences. That may account for the fact that soon 
afterwards the Histoire of the Academy contained a long report of two papers he had read 
to the Academy in November 1823. The subject of the papers was ‘le calcul des conditions 
de inégalités’.24 

The report began by describing a simple experiment, clearly inspired by the problems of 
analytical statics that the author had discussed in 1798. Suppose a triangular plate is placed 
in a horizontal position, supported by a pillar at each of its three corners. Each pillar will 
bear a load of one unit, but no more. A load must be placed on top of the plate, in a position 
that will not cause it to collapse. If the load exceeds three units a solution is impossible, 
and if it weighs exactly three units there is a unique solution, the centroid of the triangle. 
But if the load is (say) two units, then there are many possible solutions. Fourier asserted 
that the set of feasible solutions can be represented geometrically by a hexagonal region, 
defined by six inequalities. 

A similar report appeared in the Histoire for 1824, and in it Fourier outlined a general 
method for handling a system of linear inequalities. He considered a system of (strict) 
linear inequalities involving a finite set of unknowns x, y, . . . , u, t. Every such inequality 
in which  x appears can be written in a form like 
 x < A + By + Cz + ..., or x > α + βy + γz + ... . 

Comparing a pair of inequalities like these we obtain a new inequality in which x  does not 
appear: 

A + By + Cz + ... > α + βy + γz ... . 

Clearly, the idea is similar to the technique used by Kersey. But the report did not 
contain any explicit examples, and it did not explain how the method might work in 
general. In 1826 Fourier wrote a short paper containing a simple example, resembling the 
mechanical problem described in the first report, but with an explicit algebraic formulation. 
Perhaps the most significant feature was that the problem was illustrated by a diagram 
(Figure 5).  The combination of geometric intuition with algebraic precision would become 
a powerful technique for dealing with problems of this kind.  

 

24Fourier’s publications on this topic are conveniently collected in the second volume of his Oeuvres, edited by 
       G. Darboux (Paris: Gauthier-Villars, 1890) pp.317-328. His 1798 Mémoire appears in the same volume.  
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Figure 5. The feasible region for the problem of Fourier (1826). 

The problem was to find solutions of the equation  𝑥𝑥 + 𝑦𝑦 +  𝑧𝑧 =  1  in which the three 
variables are approximately equal. This means that they must satisfy certain inequalities, 
which Fourier expressed in the form 𝑦𝑦 <  𝑥𝑥(1 + 𝑟𝑟), where 𝑟𝑟 is a small number 
representing the closeness of the approximation required. There are six of these constraints, 
one for each ordered pair of the variables 𝑥𝑥, 𝑦𝑦, 𝑧𝑧.  Fourier’s method, like Kersey’s, began by 
reducing the number of variables.  He substituted 𝑧𝑧 = 1 −  𝑥𝑥 −  𝑦𝑦,  so that only 𝑥𝑥 and 𝑦𝑦 
remained, although there are still six constraints. The next step was simple, but significant: 
he interpreted the constraints geometrically, regarding (𝑥𝑥,𝑦𝑦) as Cartesian coordinates in a 
plane.25 The form of the constraints means that each of them corresponds to the set of 
points lying on one side of a straight line, and so the intersection of these regions is the 
interior of a hexagon, denoted by 123456 in the diagram. 

Fourier’s method, based on the elimination of a variable by comparing two opposing 
inequalities, was simple, but there are obvious complications. For example,  a reduction in 
the number of variables may result in an increase in the number of constraints.  The 
publication of the second volume of Fourier’s Oeuvres in 1890 may have been responsible 
for a particularly significant development. Gyula Farkas (1847-1930) was a professor of 
theoretical physics, and his interest in the principles of mechanics led him to consider the 
foundations of Fourier’s work on systems of inequalities. In 1894, in his first publication 

 

25In the diagram 𝑂𝑂𝑂𝑂 represents the line 𝑦𝑦 =  0, and 𝑂𝑂𝑂𝑂 represents the line 𝑥𝑥 =  0. The line 𝑂𝑂𝑂𝑂 (not drawn)  
        represents  𝑥𝑥 +  𝑦𝑦 =  1 (that is, 𝑧𝑧 =  0) and so all the positive solutions lie inside the triangle 𝑂𝑂𝑂𝑂𝑂𝑂. 
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on the subject, he proposed a theory based on the method of Lagrange multipliers. His 
theory was incomplete, but a few years later he was able to prove a now-famous theorem.26  

The theorem establishes a necessary and sufficient condition that the inequality 
     (𝑄𝑄)         𝑞𝑞1𝑢𝑢1 + 𝑞𝑞2𝑢𝑢2  +  ···  +  𝑞𝑞𝑛𝑛𝑢𝑢𝑛𝑛   ≥   0      

is a consequence of the m inequalities 

     �𝑄𝑄𝑗𝑗�       𝑎𝑎1𝑗𝑗𝑢𝑢1  + 𝑎𝑎2𝑗𝑗𝑢𝑢2  +  ···  +  𝑎𝑎𝑛𝑛𝑗𝑗𝑢𝑢𝑛𝑛   ≥   0     (1 ≤  𝑗𝑗 ≤  𝑚𝑚). 

This means that given any n-tuple of real numbers  𝑢𝑢1,𝑢𝑢2, . . ., 𝑢𝑢𝑛𝑛  for which all the 
inequalities (𝑄𝑄𝑗𝑗) are true, the inequality (𝑄𝑄) is also true. The necessary and sufficient 
condition is the existence of non-negative real numbers 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑚𝑚   such that the 
coefficients (𝑎𝑎𝑖𝑖𝑗𝑗) and (𝑞𝑞𝑖𝑖) satisfy the equations 
                             𝑞𝑞𝑖𝑖 =  𝑣𝑣1𝑎𝑎𝑖𝑖1   +  𝑣𝑣2𝑎𝑎𝑖𝑖2  + ···  +𝑣𝑣𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚    (1 ≤  𝑖𝑖 ≤  𝑛𝑛). 

The numbers   𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑚𝑚  are analogous to Lagrange multipliers, as Farkas had 
suggested in his earlier paper. It is easy to show that the condition is sufficient; the 
difficulty lies in proving that it is necessary.   

 

7. Linear Programming 

The proof published by Farkas in 1898 was elementary (but complicated) and written in a 
language (Hungarian) which few mathematicians could read easily.   It was repeated in a 
longer paper written in German and published a few years later, which helped to make the 
result more widely known, although it was not regarded as part of mainstream mathematics 
at that time.  So how did it become famous?  
        The theory of linear inequalities arose in several contexts in the early 20th century, 
and some of the resulting publications contained equivalent versions of the ‘Farkas 
Lemma’.  In 1936 many of these versions were collected and systematized by Theodore 
Motzkin in his doctoral thesis.27   However, the thesis was purely theoretical, and it 
remained almost unknown until the 1950s, when Albert Tucker, David Gale and others 
recognised that it was a fundamental contribution to an emerging field of Applied 
Mathematics.  It had gradually become clear that large-scale problems of organisation and 
planning could be formulated in mathematical terms,  and thence arose the discipline 
known as Operations Research (sometimes Operational Research, abbreviated to OR).   

 

26Gyula Farkas, ‘Applications of the Mechanical Principle of Fourier’ and ‘Algebraic Basis of the Mechanical 
Principle of Fourier’ [Hungarian] Mathematikai es Termeszettudomanyi Ertesito 12 (1894) 457-472 and 16 
(1898) 361-364.  

27Theodore Motzkin, Beitrage zur Theorie der Lineaaren Ungleichungen (Doctoral thesis, Basel/Jerusalem, 
1936). Fourier’s method of eliminating variables from a system of linear inequalities is now known as 
‘Fourier-Motzkin Elimination’; see Paul Williams, ‘Fourier’s method of Linear Programming’ American 
Mathematical Monthly 33(9) (1986) 681-675.    
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Several areas of mathematics were associated with this development: for example there 
were significant advances in Combinatorial Optimization, as described by Schrijver.28  
       One of the founders of OR was George Dantzig.  During the Second World War he  
had worked on various operational problems in an ad hoc manner, usually in situations 
where there were many variables and any solution was acceptable. Subsequently he tried to 
deal with such problems in a more structured way, encouraged by the achievements of  
Wassily Leontief, who had obtained significant results on equilibrium in linear models of 
an economy in which there are many inter-dependent industries.  Dantzig realized that the 
next step was to set up a model in which a linear function was optimized, subject to a set of 
linear constraints, and  by 1947 he had begun to develop a general method for solving such 
problems.   This topic eventually became known as  Linear Programming (LP), and 
Dantzig’s method became the ‘simplex algorithm’.  
      Although Dantzig’s method seemed to work well on small examples, for real problems 
involving a large number of variables it required a significant amount of calculation — and 
the time was ripe, because electronic computers were just starting to become available.   
On 3 October 1947 Dantzig visited John von Neumann, who was playing a leading part in 
the computer revolution. Dantzig began by describing the practical importance of his work, 
but von Neumann asked him to focus on the mathematics. Immediately, von Neumann 
spotted the link between Linear Programming and the Theory of Games, a subject he had 
been working on for over twenty years. He gave an impromptu lecture on the mathematical 
foundations and, as Dantzig reports, ‘Thus I learned about Farkas’ Lemma, and about 
Duality’.29 

The version of the ‘Lemma’ proved by Farkas in 1898, as described in the previous 
section, asserts the equivalence of two statements. In modern notation, the given 
information consists of a matrix 𝐴𝐴 =  (𝑎𝑎𝑖𝑖𝑗𝑗) and a column vector 𝑞𝑞 =  (𝑞𝑞𝑖𝑖), where A  has n 
rows and m columns and b has n rows. The conclusion is expressed in terms of column 
vectors 𝑢𝑢 and 𝑣𝑣 with n and m rows respectively.30  The equivalent statements are: 
                        (I) for all 𝑢𝑢, 𝑢𝑢𝑇𝑇𝐴𝐴 ≥  0 implies that 𝑢𝑢𝑇𝑇𝑞𝑞 ≥  0; 

    (II) there exists 𝑣𝑣 such that 𝐴𝐴𝑣𝑣 =  𝑞𝑞 and 𝑣𝑣 ≥  0. 
The first statement is logically equivalent to 
                       (Ia) there does not exist u such that 𝑢𝑢𝑇𝑇𝐴𝐴 ≥  0 and 𝑢𝑢𝑇𝑇𝑞𝑞 <  0. 
Another logical twist allows us to state Farkas’s result in a particularly neat way. 
Interchanging the order of the statements  (Ia) and (II) we have a ‘Theorem of the 
Alternative’: the assertion that exactly one of the following holds: 

 

28Alexander Schrijver, ‘On the History of Combinatorial Optimisation (till 1960)’ in Handbooks in Operations 
Research: Discrete Optimisation, ed. by K. Ardaal et al. (Amsterdam: North-Holland, 2005).  

29George Dantzig, ‘Linear Programming’ Operations Research 50(1) (2002) 42-47.  Von Neumann had also 
worked on the Leontief model, where the prices of commodities occur naturally as the ‘dual’ variables. 
Essentially the same idea is now regarded as fundamental in financial mathematics, where the ‘no free 
lunch’ principle is equivalent to the existence of a consistent system of prices: this is a direct consequence of 
the Farkas Lemma.    

30We denote the transpose of 𝑢𝑢 by 𝑢𝑢𝑇𝑇 and follow the usual conventions about inequalities between vectors. 
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there exists 𝑣𝑣 such that 𝐴𝐴𝑣𝑣 = 𝑞𝑞 and 𝑣𝑣 ≥ 0;  there exists u such that uTA ≥ 0 and uTb < 0. 
 

Farkas’s method was based on the ideas of Fourier, and he appears to have been unaware that 
a simpler Theorem of the Alternative had been proved by Paul Gordan in 1873, using the 
methods of classical algebra, including determinants (but not matrices).  

       With modern terminology the crucial importance of the Lemma in the theory of Linear 
Programming can now be described.  Consider two linear programs, the ‘Primal’ 

max{ 𝑞𝑞𝑇𝑇𝑥𝑥 |  𝐴𝐴𝑥𝑥 ≤ 𝑞𝑞 and  𝑥𝑥 ≥ 0}, 

and its ‘Dual’ 

min{ 𝑞𝑞𝑇𝑇 𝑦𝑦 | 𝐴𝐴𝑇𝑇 𝑦𝑦 ≥ 𝑞𝑞 and  𝑦𝑦 ≥ 0}. 

It follows directly from the definitions that a solution for the Primal program cannot exceed a 
solution for the Dual.  The key result is that the two values are the same.  This is proved by 
applying the Farkas Lemma (or some equivalent result), as von Neumann suggested to  
Dantzig in October 1947.  Essentially  the same argument could be used to prove von 
Neumann’s Minimax Theorem, which guarantees the existence of equilibrium in two-person 
zero-sum games. 

 

8. Alligation reconsidered 

Returning to the late medieval texts, the modern theory can throw some light on the rather 
obscure methods and rules that were then in use.   

      In modern notation, the basic problem of alligation is as follows.  A number n of  
varieties of a commodity, with ‘grades’ (prices or finenesses) 𝑔𝑔1,𝑔𝑔2, . . .  ,𝑔𝑔𝑛𝑛  are given, and 
it is required to determine proportions  𝑝𝑝1,𝑝𝑝2, . . .  ,𝑝𝑝𝑛𝑛  that will make a mixture with a 
standard grade s.  The equations to be solved are  

𝑝𝑝1 + 𝑝𝑝2 +  . . .  + 𝑝𝑝𝑛𝑛 = 1 ,         𝑔𝑔1𝑝𝑝1 + 𝑔𝑔2𝑝𝑝2  + . . . +  𝑔𝑔𝑛𝑛𝑝𝑝𝑛𝑛 = 𝑠𝑠 ,           

with the proviso that 𝑝𝑝1,𝑝𝑝2, . . .  ,𝑝𝑝𝑛𝑛  must all be non-negative.  Let 

𝐴𝐴 =   � 1   1 .  .  .   1
𝑔𝑔1 𝑔𝑔2 .  .  .  𝑔𝑔𝑛𝑛

� ,      𝑞𝑞 = �1𝑠𝑠�  ,          𝑝𝑝𝑇𝑇 = [𝑝𝑝1  𝑝𝑝2   . . .   𝑝𝑝𝑛𝑛],   

so that the problem is to find a solution of  𝐴𝐴𝑝𝑝 = 𝑞𝑞  with  𝑝𝑝 ≥ 0.   The Lemma of Farkas 
asserts that this is possible if and only if, for all  𝑞𝑞, the 𝑛𝑛  inequalities 𝑞𝑞𝑇𝑇𝐴𝐴 ≥ 0  imply that  
𝑞𝑞𝑇𝑇𝑞𝑞 ≥ 0.  If we write  𝑞𝑞𝑇𝑇 as [𝑦𝑦   − 𝑥𝑥 ]  then the  first of the 𝑛𝑛  inequalities is  𝑦𝑦 −  𝑔𝑔1𝑥𝑥 ≥ 0, 
which is represented by the set of points (𝑥𝑥,𝑦𝑦) lying on or above the line 𝑦𝑦 =  𝑔𝑔1𝑥𝑥 . Suppose, 
without loss of generality, that  𝑔𝑔1 is the largest grade and 𝑔𝑔𝑛𝑛 the smallest.  Then the 
points (𝑥𝑥,𝑦𝑦) that satisfy all  the 𝑛𝑛 inequalities comprise the area shaded in Figure 6.  The 
region defined by the inequality  𝑞𝑞𝑇𝑇𝑞𝑞 ≥ 0  comprises the points lying on or above the line 
𝑦𝑦 =  𝑠𝑠𝑥𝑥, and the required conclusion follows if and only if  𝑔𝑔1 ≥ 𝑠𝑠 ≥ 𝑔𝑔𝑛𝑛.  Thus Farkas tells 
us that the alligation problem has a solution if and only if the standard grade s lies between 
the largest and smallest grades available.  
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Figure 6. The Farkas Lemma, as applied to alligation. 

       It is unlikely that the medieval arithmeticians would have been impressed by this 
application of modern algebra.  A deeper insight, which was not available to them, concerns 
the ‘indeterminacy’ of the problem. Here it is convenient to replace the proportions by 
quantities  𝑤𝑤1, 𝑤𝑤2, . . .  ,𝑤𝑤𝑛𝑛, so that there is one fundamental equation  

(𝑔𝑔1 − 𝑠𝑠)𝑤𝑤1 +   (𝑔𝑔2 − 𝑠𝑠)𝑤𝑤2 + . . . + (𝑔𝑔𝑛𝑛 − 𝑠𝑠)𝑤𝑤𝑛𝑛   =   0 ,  

and the solutions form a vector space 𝑊𝑊 with  dimension 𝑛𝑛 − 1.  For us, this statement 
clearly defines the extent of the indeterminacy, but the early practitioners did not have the 
convenient framework of modern Linear Algebra.   However, they did know that many 
solutions could be produced by the pairing method.  Recall that their method was to split the 
constituents into those with better grades,    𝑔𝑔1, . . ., 𝑔𝑔𝑟𝑟 ,   and those with worse grades 
𝑔𝑔𝑟𝑟+1 , . . ., 𝑔𝑔𝑛𝑛, and mix 𝑠𝑠 − 𝑔𝑔𝑗𝑗 units of a  better grade 𝑔𝑔𝑖𝑖 with 𝑔𝑔𝑖𝑖 − 𝑠𝑠  units of a worse one 𝑔𝑔𝑗𝑗.  
This produces the mixture we should write as  

𝑤𝑤[𝑖𝑖𝑗𝑗] = �0, . . . , 0, 𝑠𝑠 − 𝑔𝑔𝑗𝑗, 0, . . .  , 0,𝑔𝑔𝑖𝑖 − 𝑠𝑠, 0, . . . , 0�.  

Assuming that 0 < 𝑟𝑟 < 𝑛𝑛 ,  the vector space 𝑊𝑊  contains 𝑟𝑟(𝑛𝑛 − 𝑟𝑟) solutions of this form, and  
since the dimension of 𝑊𝑊 is 𝑛𝑛 − 1, one might expect that they span 𝑊𝑊. Indeed,  a basis for 
𝑊𝑊 can be constructed in the following way:  choose one better-worse pair, say 𝑖𝑖 = 1    
and 𝑗𝑗 = 𝑛𝑛, and  take the solutions 

𝑤𝑤[1𝑘𝑘]      (𝑟𝑟 + 1 ≤  𝑘𝑘  ≤ 𝑛𝑛),           𝑤𝑤[𝑙𝑙𝑛𝑛]    ( 2 ≤  𝑙𝑙 ≤  𝑟𝑟) .            

     It is fitting to conclude by repeating that the idea of taking arbitrary linear combinations of 
basic solutions goes right back to Fibonacci, although it had been lost in the age of the early 
printed texts on arithmetic.  Recall (Section 2) that he discussed a problem with three kinds of 
silver, one better than standard and two worse.  His first solution was to combine equal 
amounts of the two worse kinds, and then combine the resulting mixture with the better kind 
according to the simple pairing rule of alligation.  But he also observed that the two worse 
kinds could be combined in any proportion 𝛼𝛼 ∶ 𝛽𝛽 before applying the pairing rule.  In fact this 
general method is equivalent to pairing the better kind separately with each of the worse 
kinds, and then combining these mixtures in the proportion 𝛼𝛼 ∶ 𝛽𝛽.  This result is easy to check 
with the algebraic notation outlined above, but obviously it was not so clear in the mysterious 
world of medieval arithmetic.  
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9. Conclusion 

The story told here is an illustration of how Mathematics has changed during a period of 
nearly 800 years.  Although that seems to be a long time, it is in fact quite short in the 
context of human development. The story began with an intuitive principle, the pairing rule 
of alligation, which could be implemented easily using the algorithms of Hindu-Arabic 
arithmetic, relatively new in Europe at that time.  For several centuries the routine aspects 
of the arithmetic overshadowed the underlying principle, and a deeper understanding of the 
topic did not begin to appear until the methods of symbolic algebra became available.  An 
input from a quite different area (mechanics) led to the deployment of logical and 
geometrical ideas, and eventually to the formulation of a fundamental theorem.31   
        This is an example of a general pattern of evolution, which occurs in many branches 
of Mathematics.   The unusual feature here is the economic context: a simple procedure 
that was widely used in medieval commerce has, in recent times,  grown into one of the 
major tools of modern economic activity.           
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31The Farkas Lemma is now often regarded as a corollary of a more general principle, the Separating  
         Hyperplane Theorem for convex sets, but that is another story.  
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