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P H Y S I C S

Internal friction controls active ciliary oscillations near 
the instability threshold
Debasmita Mondal1, Ronojoy Adhikari2,3, Prerna Sharma1*

Ciliary oscillations driven by molecular motors cause fluid motion at micron scale. Stable oscillations require a 
substantial source of dissipation to balance the energy input of motors. Conventionally, it stems from external 
fluid. We show, in contrast, that external fluid friction is negligible compared to internal elastic stress through a 
simultaneous measurement of motion and flow field of an isolated and active Chlamydomonas cilium beating 
near the instability threshold. Consequently, internal friction emerges as the sole source of dissipation for ciliary 
oscillations. We combine these experimental insights with theoretical modeling of active filaments to show that 
an instability to oscillations takes place when active stresses are strain softening and shear thinning. Together, 
our results reveal a counterintuitive mechanism of ciliary beating and provide a general experimental and theo-
retical methodology to analyze other active filaments, both biological and synthetic ones.

INTRODUCTION
Cilia and flagella are prototypical engines of micron-scale motility, 
used by the biological world in myriad contexts (1, 2). They are classic 
examples of nonequilibrium active filaments that undergo sponta-
neous oscillations by converting stored or ambient energy into me-
chanical motion (3). Their elemental structure, called axoneme, 
consists of cross-linked microtubule (MT) doublets and dynein 
motors, which apply forces on MT, through adenosine triphosphate 
(ATP) hydrolysis, to cause periodic bending of the whole structure 
(4). In addition to its importance in the cellular context, ciliary beat-
ing has been mimicked in synthetic filaments for applications in 
cargo transport, microfluidics, and drug delivery (5, 6).

Naturally, there have been a number of studies devoted to un-
derstand the microscopic mechanisms of ciliary oscillations (2, 7–12). 
Most of them analyze beating based on passive elastic stresses calcu-
lated from measured filament waveform, models of active drive, 
and dissipation stemming from external fluid. The dissipation is 
usually computed using slender body integral equations since filament 
waveform alone cannot be used to validate its form. Intuitively, hydro-
dynamics should play an essential role as cilia operate in the regime 
of low Reynolds number (∼10−3). However, its contribution to syn-
chronization and collective behavior of cilia is highly debated be-
cause most of these in vivo experiments are conducted on live cells 
where it is difficult to delineate hydrodynamics from other coupling 
mechanisms such as cell body rocking or intracellular means (13–17). 
In addition, biopolymers often have substantial internal friction (18). 
Hence, to determine the dominance or lack of hydrodynamics in 
ciliary oscillations, an accurate measurement of the external viscous 
drag and its competition with the other elastic stresses for an in vitro 
system of cell-free isolated cilium is required, where cell body rocking 
and intracellular basal body coupling are eliminated. This can be 
accomplished by measuring its flow field along with the waveform.

Here, we present the first simultaneous measurement of the bend-
ing waveform and flow field of an isolated and active Chlamydomonas 
axoneme, beating near the critical ATP concentration at which oscil-

lations set in, at high spatiotemporal resolution to address the role 
of external fluid in its beating. Our measurements demonstrate that 
hydrodynamic dissipation, accurately described by resistive force 
theory (RFT), is negligible compared to internal elastic stresses. 
Consequently, a dissipation mechanism internal to the filament is 
essential for stable driven oscillations, in contrast to the widely held 
view that fluid friction is the only important source of dissipation 
(9, 12). We combine these insights with a theoretical model of fila-
ment motion that includes a minimal spring-dashpot form of active 
stress. We show that there exist critical values of active stress beyond 
which the model exhibits oscillations, namely, active stresses should 
be strain softening and shear thinning.

RESULTS
Experimental system
Isolated and reactivated axonemes of ~11 m length and ~0.2 m 
diameter (4), purified from the unicellular algae Chlamydomonas 
reinhardtii, are clamped at one end on a glass coverslip. Their oscil-
lations, with beat frequency b ∼ 16.22 Hz, are approximately planar 
with an average centerline height h ∼ 0.9 m from the surface. Passive 
microspheres are introduced into the suspension as tracers for mea-
suring flow of the ambient fluid using particle tracking velocimetry 
(PTV) (see Materials and Methods). We capture motion of both the 
axoneme and tracers at high spatiotemporal resolution using a 60× 
phase objective coupled with a high-speed camera (Fig. 1A and 
movie S1). The detailed experimental procedure is described in Mate-
rials and Methods. The position of the axoneme is sampled at many 
points over its length to construct a global Chebyshev polynomial 
interpolant of the parametric form R(s) = S an(t)Tn(s), where 0 ≤ s 
≤ L is the arc length and an is a vector of Chebyshev coefficients for 
the x and y components of the position (Fig. 1B).

Filament geometry and mechanics
We perform experiments near the critical ATP concentration at 
which the axoneme transitions from quiescent to oscillatory state 
through an instability threshold (Fig. 1C) (19). Near this threshold, 
details of the internal structure of the axoneme become irrelevant. 
Therefore, we model it as an inextensible, but shearable, active rod 
of uniform circular cross section of diameter a and length L, with a 
centerline described by the curve R(s) to calculate stresses averaged 

1Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, 
India 2The Institute of Mathematical Sciences–Homi Bhabha National Institute, Chennai 
600113, India. 3Department of Applied Mathematics and Theoretical Physics, Centre 
for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.
*Corresponding author. Email: prerna@iisc.ac.in

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/334411061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Mondal et al., Sci. Adv. 2020; 6 : eabb0503     12 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 7

over its cross section. We attach an orthogonal Frenet-Serret frame 
to each point of the curve. Planar motion of the filament results in 
the curve tangent to be parameterized by the tangent angle  as t(s) = 
[cos (s), sin (s)], which automatically satisfies the inextensibility 
constraint, t · t = 1. The position of the curve is obtained in terms of 
the tangent angle by integrating ∂sR = t. The shear strain of the rod 
is u(s), which is assumed to vanish at the clamped base, u(0) = 0. 
Inextensibility then requires the shear strain to accommodate the 
filament bending as u(s) = a[(s) − (0)] ≡ a(s), and the kinematics 
of the filament is completely specified by  or equivalently by shear 
angle,  (7). Notably, the unobservable shearing of the filament can 
be inferred from its observable curvature,  = ∂s ≡ ∂s. There is 
no assumption of small curvature in this kinematic description. Inter-
nal active stresses cause the filament to shear and, by the kinematic 
constraint, to curve.

We assume that the rod supports an internal stress whose stress 
and moment resultants on the cross section at s are, respectively, F(s) 
and M(s) and that it is acted upon by forces and moments whose 
sum per unit length are, respectively, f and m. Then, in the absence 
of inertia, the balance equations for force and torque are (20)

   ∂  s   F + f = 0,   ∂  s   M + t × F + m = 0  (1)

Internal moments included in m, which can exist only if the internal 
stress is antisymmetric, are generally omitted in the elasticity of rods 
but are essential to our model (20). The above equations are closed 
by identifying the relevant forces, moments, and their constitutive equa-
tions in terms of the kinematic variables. Integrating the force equation, 

the stress resultant can be expressed as  F(s ) =  ∫s  
L    f(s ) ds + F(L) , 

where F(L) = 0 at the free terminus of the rod. The only force per 
unit length relevant here is the external hydrodynamic drag, f v.

External viscous drag
A rod moving through a viscous fluid experiences a drag f v(s) and 
creates a flow v(r). In the experimentally relevant limit of slow vis-
cous flow and a slender rod, L ≫ a, the integral representation of 
Stokes equation gives

  v(r ) = −  ∫0  
L
   G(r, R(s ) ) ·   f   v (s) ds  (2)

This represents a distribution of Stokeslets of strength fv(s), where 
G is a Green’s function of the Stokes equation. The matching of the 
fluid flow to the velocity of the rod at its surface yields the slender body 
integral equation whose formal solution is   f   v (s ) = −  ∫0  L    (s,  s ′   ) ·   R ̇  ( s ′  ) d s ′   . 
The friction kernel is often approximated by a local form with a con-
stant friction coefficient, (s, s′) = (s − s′). In this RFT limit, the 
drag is

   f   v (s ) = −  ·  R ̇  (s ) ,  =    n   n ⊗ n +    t   t ⊗ t  (3)

where n and t are the normal and tangential components of the 
friction coefficient, respectively, and   R ̇   =   R ̇    n   n +   R ̇    t   t  is the centerline 
velocity of the rod in terms of its normal and tangential components.

With the viscous drag thus determined in terms of the centerline 
velocity, we now validate RFT using experimentally measured in-
stantaneous flow fields (Fig. 2, A and B). We compare these experi-
mental flows with theoretically computed ones using Eqs. 2 and 3 
(Fig. 2, C and D), where   R ̇    is determined from the measured wave-
form, n = 4/ ln (4h/a) = 4.35 mPa·s, t = n/2 (21) (fluid viscosity, 
 = 1 mPa.s), and G is the Lorentz-Blake tensor for flow near a no-slip 
wall (22). Representative cuts along the experimental and theoretical 
flows show that there is a good agreement between the two (Fig. 2, 
E and F). A more comprehensive comparison is given by root mean 

square deviation of the flows,  RMSD =  √ 
__________________

   ∑ i=1  NS     ( v i  
expt  −  v i  

th )   
2
  / NS   , 

where NS is the number of grid points and   v i  
expt   and   v i  

th   are the ex-
perimental and theoretical flow magnitudes at the ith grid point, 
respectively. RMSD of vx, vy, and ∣v∣ in Fig. 2 are 4.32, 8.28, and 
7.47 m/s (A and C) and 7.26, 7.89, and 9.81 m/s (B and D), re-
spectively, all of which are within the Brownian noise regime implying 
a good match. Therefore, we have now verified by direct measure-
ment that the hydrodynamic drag force is unambiguously given by RFT. 
This form of drag is used to evaluate the stress resultant, F, and its 
normal component, Fn, is used in the torque balance equation below.

Scalar equation of motion of the filament
In slow viscous flow as is shown above, the drag acts in the plane 
of motion, and the stress resultant remains in that plane. There-
fore, the couple resultant M is normal to the plane of motion, 
along the frame binormal b, and vanishes at the free terminus, 
giving M(L) = 0. As the only nonzero components of t × F = Fnb and 
m are normal to the plane, torque balance reduces to a scalar 
equation, ∂sM + Fn + m = 0. The dissipation in this equation is 
contained in the normal component of the stress resultant due to ex-

ternal viscous drag as   F  n  (s ) = n(s ) · ∫s  
L
     f   v (s') ds'= −  γ  n   g n  '  (s)  where   

g n  '  (s ) = n(s ) · ∫s  
L
    [  R  ̇   n  (s ')n(s ')+  R  ̇   t  (s ')t(s ')/2]ds'  using Eq. 3. Here, the 
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filament velocity components can be expressed in terms of the tangent 

angle, , using   R ̇  (s ) =  ∫0  
s
    t ̇  (s') ds' . The simplest elastic contributions for 

an inextensible and shearable active rod are that due to bending, 
M = EI, and shear, m = −aku (7). The source of filament motion 
is included as the active moment per unit length, mA. Material pa-
rameters in these constitutive relations are bending rigidity, EI = 
600 pNm2 (12, 23), and shear stiffness, k = 2000 pN/m2 (23, 24). 
Torque balance, closed by the constitutive relations and the expres-
sion for Fn, yields the following dynamical equation

  EI  ∂  s    − aku −    n    g  n  ′   +  m   A  = 0  (4)

All the passive terms in this equation can be expressed completely 
in terms of the tangent angle, . Experimental data reveal that the 
tangent angle can be parameterized by a traveling waveform,  
(s, t ) =    0  (s ) sin [t − (s ) ] +   ̄  (s) , where 0, , , and    ̄    are the am-
plitude, angular frequency, phase, and offset, respectively (Fig. 3) 
(8, 12). As we are interested in oscillations about the time-averaged 
shape of the beat,    ̄   , we define    ′  (s, t ) = (s, t ) −   ̄  (s) . In the following, 
we focus on ′ and drop the prime such that (s, t) ≡ 0(s) sin [t − 
(s)], which represents the dynamic oscillatory beat of the filament 
about the mean shape. Therefore, we use this parametric form, in-
stead of the Chebyshev interpolant, to estimate all angle-dependent 
quantities in the dynamical equation.

The dimensionless equation of motion with   l     =  √ 
_

 EI /  a   2  k   = 2.74  m as 
the curvature penetration length scale and     h   = EI /    n    l   4   = 2447  Hz as the 
hydrodynamic relaxation frequency scale of the system is

   ∂ s  
2   −  −  g  n   +  m   A  = 0  (5)

Here,   g  n   =  g n  '   /  l κ  2    ν  h    and mA is rescaled by   l   2   / EI . Using  from 
the traveling wave parameterization of experimental data and con-

stitutive parameters from the literature, the space-time variation of 
elastic and viscous terms of Eq. 5 is plotted in Fig. 4  (A  to C). It 
shows that the nonlinear viscous dissipation has a standing wave 
component in contrast to the linear elastic terms (8). On comparing 
their colorbars, we conclude that the hydrodynamic dissipation, 
gn ∼ O(0.01), is negligible compared to the elastic forces, which are 
of O (1).

The axoneme consumes energy in the form of ATP and exhibits 
stable oscillations. Such a continuously driven system can be in a 
dynamical steady state only when the elastic stresses due to the 
drive are balanced by some dissipation. Since external fluid friction 
cannot account for this dissipation, consistency demands that the 
internal stress has, in addition to an elastic component, a dissipative 
frictional component. Each kinematic degree of freedom, i.e., bend-
ing and sliding, can contribute to dissipation. Notably, bending fric-
tion in MTs has been experimentally demonstrated to be dominant 
over hydrodyamic friction for length scales smaller than 20 m and 
attributed to slow structural rearrangements (18, 25, 26). The bend-
ing friction coefficient of an 11 m-long axoneme,  = 1.6 pNm2s, 
is the same as that of a single MT since it is an intensive quantity 
(25, 26). Although there is no experimental measure of the shear 
friction coefficient of an axoneme, u, several experimental studies 
suggest the presence of inter-MT sliding friction (24). We consider 
u = 10 pNs/m from estimates of nexin protein friction (see table 
S1) (27). Earlier work introduced similar terms for internal viscous 
stresses for either stabilization of the numerical simulations of bend 
propagation in active filaments (9, 28–30) or on the basis of theory 
alone (11, 31). However, here, we have shown experimentally that 
such terms are necessary to completely account for dissipation in 
ciliary motion.

Dynamical equation without external friction
We, therefore, neglect the external viscous drag and include the in-
ternal viscous stresses to rewrite the scalar torque balance equation, 
∂sM + m = 0. Hence, the constitutive equations are modified as  
M = EIκ +  Γ  κ   κ  ̇   and  m = − aku −    u   u  ̇  +  m   A  . The modified dynamical 
equation in terms of the shear angle, , is  EI  ∂ s  

2   +        ∂ s  
2   ∂  t    −  

a   2  k − a    u    ∂  t    +  m   A  = 0 . The negligible role of fluid friction 
leads to a second-order reaction-diffusion equation for the shear angle 
rather than fourth-order partial differential equations that are com-
monly obtained when fluid friction is retained (10, 11, 29). Identifying 
the two frequency scales of the system, a curvature relaxation fre-
quency scale,  = EI/, and a sliding relaxation frequency scale, 
u = ak/u, we note that /u = 9.38, i.e., both kinematical degrees 
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of freedom contribute to dissipation. The dimensionless equation 
of motion with  as the frequency scale is

   ∂ s  
2   +  ∂ s  

2   ∂  t    −  −         ─    u      ∂  t    +  m   A  = 0  (6)

where mA is rescaled by   l   2   / EI . Figure 4 (D and E) shows the varia-
tion of the internal viscous stresses over three beat cycles along the 
filament length. The colorbars in Fig. 4 (A to E) indicate that the 
internal viscous stresses due to bending friction of O(0.1) and shear 
friction of O(1) compete with the elastic stresses of O(1), unlike the 
negligibly small external drag of O(0.01).

The internal passive stresses being completely defined, a consti-
tutive relation for the active moment in terms of kinematic variables 
is required. The axoneme having both elastic and viscous material 
parameters, the motor activity will induce a viscoelastic response. 
Hence, we assume a minimal spring-dashpot form for the dynamics 
of mA, ∂tmA + b1mA = b3 (19, 32), whose Fourier representation 
describes the spring-like elastic and dashpot-like viscous dampen-
ing response of the system under oscillating shear as shown later. 
Here, the active stress is parameterized by two constants: b1 controls 
the autonomous dynamics of mA, and b3 controls the amount of 
feedback it receives from the sliding kinematics. We have chosen 
this simplest form of constitutive relation as it is first order in time, 
lowest order in wave number, and linear in . This minimal con-
stitutive relation is most relevant for a coarse-grained description 
of axoneme as used here. This relation for mA together with Eq. 6 
forms a pair of coupled equations

    ∂  t   [   ( ∂ s  
2  −       /    u   )   

 m   A 
   ]   =  [   1 −  ∂ s  

2   − 1  
 b  3  

  
−  b  1  

  ]   [      
 m   A 

  ]     (7)

which emphasizes that the passive and active parts in this model are 
independent, but coupled, degrees of freedom.

These dissipative linear partial differential equations can sustain 
stable oscillations only in the presence of nonlinearities whose choice 
will become crucial far from the instability threshold (11, 19, 33). 
We now focus on the linear regime and seek to identify the thresh-
old for the onset of oscillations and its frequency near threshold. 
This is relevant to our experimental results because the axoneme in 
this study beats at 60 M ATP, near the critical ATP concentration 
of 45 M at which oscillations set in (Fig. 1C). Hence, the axoneme 
is beating near the instability threshold, where the nonlinearity is 
weak and the oscillation frequency of the limit cycle is that of the 
linear analysis evaluated at the threshold (19, 33).

We perform linear stability analysis on the coupled Eq. 7 in the 
Fourier domain (see section S2 for detailed analysis). The disper-
sion relation is quadratic in complex frequency z,  [(1 +  q n  2   ) − iz( q n  2   +  
     /    u   ) ] (iz −  b  1   ) +  b  3   = 0 . The clamped head-free end boundary 
conditions of the filament discretize the wave numbers to   q  n   =   n _ 2(L /  l    )   
for odd n. Unstable oscillations are possible only when both b1 < 0 
and b3 < 0 (Fig. 4F). These parameters can alternatively be related to 
the elastic, G′, and viscous, G′′, response coefficients of the active stress 
through its fundamental Fourier mode of oscillation frequency  as 
  ̃   m   A   = ( G ′   + i  G   ′′ )  ̃    , where   G ′   =  b  1    b  3  /( b 1  2  +     2 )  and   G   ′′  = −  b  3   / ( b 1  2  +  
   2 )  (10, 19). The sign of response coefficients determines the nature 
of active stress. If G′, G′′ < 0, the system’s passive spring constant 
and friction coefficient get renormalized by the ATP-dependent 
dynein activity. In our case, b1, b3 < 0 ⇒ G′, G′′ > 0, i.e., activity works 
against the material response and leads to strain softening (G′ > 0) 
and shear thinning (G′′ > 0) in the system (see section S3 for de-
tailed discussion). The experimental beat frequency of the axoneme 
(expt = 2b/ = 0.272), operating close to the threshold, con-
strains the parameters of the constitutive relation at hand, namely, 
b1 = − 0.121, b3 = − 0.85 for the fundamental oscillatory mode (Fig. 4G). 
Elastoviscous response coefficients of the active stress computed 
with these values, G′ = 1.16, G′′ = 9.6, imply that the viscous response 
of the active stress dominates the elastic one in our experiment. 
On comparing the nature of active stress so obtained with a micro-
scopic model of load-dependent detachment of motors in the ex-
perimentally relevant dominantly linear regime of the post- threshold 
dynamics (10, 19, 33), we infer that axonemal dyneins are low-duty 
ratio motors (see section S4 for details), which agrees with previous 
studies (21).

We emphasize again that the existence and dominance of in-
ternal friction over hydrodynamic drag in isolated ciliary dynamics 
is borne out of experimental measurements alone and not through 
detailed modeling. Simultaneous measurement of flow field and 
waveform of an active cilium gives us the unambiguous measure 
of the hydrodynamic drag force, i.e., the external fluid friction. 
The passive internal elastic stresses are calculated from the exper-
imental waveform using minimal constitutive relations for bend-
ing and shear elasticity, which are widely accepted in the literature 
for elasticity of rods. Comparing the experimentally measured 
fluid friction with that of the passive elasticity led to the conclusion 
that fluid friction is not enough to counteract the elastic stresses due 
to the active drive, and consequently, stable ciliary oscillations need 
internal friction to reach their dynamical steady state. The above 
theoretical analysis of the filament equation of motion using a min-
imal constitutive relation for the active drive is simply to illustrate 
that oscillations exist in the presence of internal friction, too.
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DISCUSSION
In conclusion, to the best of our knowledge, this is the first direct 
experimental evidence of the negligible role of external fluid friction 
in ciliary oscillations near the instability threshold, thereby suggest-
ing that internal dissipation mechanisms are essential to have a 
self-consistent understanding of ciliary beating. Our results are com-
plementary to studies conducted on live cells/sperms (34) and reac-
tivated cilia at high ATP conditions (35) wherein changing the fluid 
viscosity alters both waveform and beat frequency of cilia by about 
20%. At low ATP concentration investigated in this study, ciliary 
beat frequency and waveform are almost independent of the viscosity 
of ambient fluid (35). It is crucial to study this regime near the insta-
bility threshold because, here, the system is governed by linear 
terms that are generic and do not depend on the minor structural 
details of the system, leading to an understanding that is universal 
in nature (19). As in this study, our results imply that one should 
include the contribution of internal friction with the obvious source 
of external fluid friction in constructing balance equations for ac-
tive filaments in viscous fluids to correctly understand the dynami-
cal regimes in which they operate.

This result will inspire further studies on the role of fluid friction 
in ciliary beating far from the threshold and in collective behavior of 
cilia. In addition, the measured flow field can distinguish internally 
active filaments from those driven by surface forces, for example, in 
phoretic chains (see fig. S1) (36). Therefore, a measurement of the 
flow field of an oscillating cilium provides vital information on its 
mechanisms of operation that cannot be obtained from the mea-
surement of motion alone. Our forward approach of using the 
experimental insights from simultaneous waveform and flow mea-
surements to build a theoretical model of active filament is in con-
trast to the existing reverse approaches of starting with microscopic 
models of active stress to match the observed macroscopic wave-
form of the filament (10–12). Lastly, our approach can serve as a par-
adigm for analysis and regulation of any active slender body, both 
biological and synthetic one, in a viscous fluid.

MATERIALS AND METHODS
Axoneme purification and reactivation
Wild-type C. reinhardtii cells (strain: CC1690) are synchronously 
grown in 12:12 hours light:dark cycle in TAP+P medium (tris acetate 
phosphate) (37). They are collected 2 to 3 hours after the beginning 
of light cycle, at OD750 (optical density at 750 nm) ≈0.15 to 0.25, 
followed by washing in HES buffer [10 mM Hepes (pH 7.4), 1 mM 
EGTA, and 4% sucrose] thrice. The plasma membrane covering the 
cells is disrupted by adding 0.15% of a nonionic detergent IGEPAL 
CA-630 (I8896, Sigma-Aldrich) in HMDEK buffer [30 mM Hepes 
(pH 7.4), 5 mM MgSO4, 1 mM dithiothreitol (DTT), 1 mM EGTA, 
and 50 mM K-acetate] to the cell pellet. The cells in IGEPAL are 
then kept in ice for ∼5 to 7 hours. These cells are devoid of cell 
membranes and are called cell models. Some of them shed their de-
membranated flagella, called axonemes, due to weakening of the 
attachment to the cell body. Isolated axonemes are then separated 
from the cell models by centrifugation. Axonemes are then mixed 
with 30% saturated sucrose, flash-frozen, and stored at −80∘C for 
long-term usage.

This method of purification, by long-term exposure to detergent, 
yields nonsticky axonemes, in contrast to the commonly used dibu-
caine procedure (37, 38), hence, essential for flow field measurements. 

These nonmotile axonemes regain their motility in the presence of 
45 M to 1 mM ATP in HMDEKP buffer (HMDEK + 1% PEG-20k) 
and are said to be reactivated. There was no distinction in the nature of 
beating of the frozen axonemes, when thawed, from those that were 
not frozen. We use an ATP regeneration system, to hold the ATP 
concentration constant within the sample for approximately 40 min, 
enough for imaging approximately six to seven isolated axonemes 
in one sample. The ATP regeneration system composes of 6 mM 
sodium creatine phosphate (27920, Sigma-Aldrich) and 40 U/ml 
creatine phosphokinase (CPK) from bovine heart (C7886, Sigma- 
Aldrich). The commercially available CPK is typically oxidized; 
hence, we reduce it by DTT at room temperature for efficient re-
activation (39).

Tracer particles
The tracer particles chosen, for flow field measurements, are neu-
trally buoyant (polystyrene microspheres with a density of 1.055 g/cc) 
and small (diameter of 200 nm, the lowest size that can be used with 
diffraction-limited optical imaging) so that their motion is nearly 
identical to the fluid in which they reside. Commercially available 
charge-stabilized microspheres stick to each other and to the axoneme 
due to screening of electrostatic interactions by the divalent ions and 
salts present in the reactivation buffer. We graft long chains of block 
copolymer PLL-PEG20k [poly-l-lysine (PLL), P7890, 15 to 30 kDa, 
Sigma-Aldrich; mPEG-SVA-20k, NANOCS] onto 200-nm negatively 
charged sulfate latex beads (S37491, Thermo Fisher Scientific) to 
impart additional steric stabilization.

Surface modification of glass surfaces and sample 
preparation
The coverslips and slides are cleaned with a hot soap solution (1% 
Hellmanex III), followed by rinsing with ethanol and 100 mM po-
tassium hydroxide. We graft polyacrylamide brush on these clean 
glass surfaces to suppress depletion interaction of beads and filament 
with the surfaces. The coverslips are further modified with randomly 
located sticky patches of 0.05% PLL over the polyacrylamide brush, 
to clamp the axonemes at one end. We introduce the reactivation 
buffer containing axonemes and tracer particles inside a sample 
chamber made up of a glass slide and coverslip sandwich with double- 
sided tape with a thickness of 65 m as the spacer.

Imaging and depth of focus
The sample is mounted on an inverted microscope (Olympus IX83), 
equipped with 60× oil immersion phase objective [0.65 to 1.25 nu-
merical aperture (NA), UPlanFL N, PH3] and connected to a high-
speed complementary metal oxide semiconductor (CMOS) camera 
(frame rate, 1200 frames per second; Phantom Miro C110, Vision 
Research) for imaging. We use an intermediate NA between 0.65 
and 1.25 for the 60× variable NA phase objective, to capture most 
of the filament beat in focus. We have measured the depth of focus 
(Z) of the objective at this intermediate NA to be 1.4 m. We only 
image time lapse sequences of those axonemes that are clean, 
clamped at one end with proper beating, having 80 to 90% of the 
filament in focus at a Z of 1.4 m, and do not have another reacti-
vated filament in the surrounding area of 30  m × 30  m. The 
frame rate in the high-speed imaging is suitably chosen to capture 
approximately 1000 beat cycles per axoneme, with ∼55 to 75 con-
formations per beat cycle, for example, 1200 frames per second for the 
axoneme in movie S1, whose beat frequency is approximately 
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16.63 Hz. Furthermore, the theoretically computed flow field is 
also depth averaged over this Z for appropriate comparison 
with the experimental flow field.

Extracting filament conformation from images
We manually identify position coordinates of the axoneme for three 
beat cycles from the recorded time lapse sequences, which are then 
smoothened along s and t by using Savitzky-Golay filter of orders 
3 and 5, respectively. The filament positions R(s) and arc length s are 
nondimensionalized with the filament length L and time t with beat 
period T, followed by setting the clamped end of the filament to 
(0,0). These nondimensionalized experimental positions are used to 
construct their Chebyshev interpolant as mentioned in the Results 
section. Higher-order derivatives of the interpolation lose accuracy 
at the ends of the axoneme and data from those parts are, accord-
ingly, discarded (fig. S2). Hence, we consider s/L ∈ [0.1,0.9] when 
computing derivatives higher than first order and neglect the end 
values (as shown in Fig. 4, A to E).

Particle tracking velocimetry
The recorded movies are background subtracted, before tracking 
the tracer displacements, to consider only those tracers that are not 
stuck to the coverslip and are following the flow. We track the tracer 
displacements in between two filament conformations with an in-
finitesimal time gap, t (for example, t ≈ 3.33 ms for power stroke 
waveforms and t ≈ 4.98 ms in revovery stroke waveforms). As the 
filament has a nonuniform beat frequency b = 16.63 ± 0.62 Hz, 
more than ∼940 beat cycles, each conformation will not exactly re-
peat itself after one beat period. Hence, we cross-correlate each fila-
ment conformation for a given beat period with the whole recorded 
sequence of ∼940 beat cycles. The correlation peaks indicate the 
frames that have similar conformation. The stack of matched con-
formations is checked manually to delete any conformation with 
more than 10% dissimilarity. The displacement of tracers in be-
tween these two conformations is calculated using standard MATLAB 
tracking routines, and velocity vectors are obtained from ∼500 to 
700 beat cycles. The resulting velocity vectors are placed on 29 × 
29 mesh grid, each of size 0.74 m × 0.74 m over the image, and the 
mean at each grid point is computed. The gridded velocity vectors are 
further smoothened using a 2 × 2 point averaging filter.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/33/eabb0503/DC1
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