
Fundamenta Informaticae XXI (2018) 1001–1023 1001

DOI 10.3233/FI-2016-0000

IOS Press

Computational Intelligence for Life Sciences

Daniela Besozzi1, Mauro Castelli2, Paolo Cazzaniga3,4, Luca Manzoni1,12,

Marco S. Nobile1,4, Stefano Ruberto5,6, Leonardo Rundo7,8,1, Simone Spolaor1,

Andrea Tangherloni9,10,11,1, Leonardo Vanneschi2
1Department of Informatics, Systems and Communication, University of Milano - Bicocca,

Milano, Italy
2NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa,

Campus de Campolide, Lisboa, Portugal
3Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
4SYSBIO.IT Centre of Systems Biology, Milano, Italy
5Penn, University of Pennsylvania, PA, USA
6GSSI, Gran Sasso Science Institute, INFN, L’Aquila, Italy
7Department of Radiology, University of Cambridge, Cambridge, UK
8Cancer Research UK Cambridge Centre, Cambridge, UK
9Department of Haematology, University of Cambridge, Cambridge, UK
10Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
11Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK

Abstract. Computational Intelligence (CI) is a computer science discipline encompassing the
theory, design, development and application of biologically and linguistically derived computa-
tional paradigms. Traditionally, the main elements of CI are Evolutionary Computation, Swarm
Intelligence, Fuzzy Logic, and Neural Networks. CI aims at proposing new algorithms able to solve
complex computational problems by taking inspiration from natural phenomena. In an intriguing

Address for correspondence: Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale
Sarca 336, 20126 Milano, Italy. E-mail: daniela.besozzi@unimib.it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/334411025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1002 D. Besozzi et al. / Computational Intelligence for Life Sciences

turn of events, these nature-inspired methods have been widely adopted to investigate a plethora of
problems related to nature itself. In this paper we present a variety of CI methods applied to three
problems in life sciences, highlighting their effectiveness: we describe how protein folding can
be faced by exploiting Genetic Programming, the inference of haplotypes can be tackled using
Genetic Algorithms, and the estimation of biochemical kinetic parameters can be performed by
means of Swarm Intelligence. We show that CI methods can generate very high quality solutions,
providing a sound methodology to solve complex optimization problems in life sciences.

Keywords: Computational Intelligence, Evolutionary Computation, Swarm Intelligence, Genetic
Programming, Genetic Algorithm, Particle Swarm Optimization, Protein Folding, Haplotype
Assembly, Parameter Estimation

1. Introduction

The longstanding synergy between computer science and life sciences has always been fruitful and
plenty of novel ideas. Since its inception, computer science has taken inspiration from biology and
nature to define more powerful and flexible computational models. Already in the 1940s and 1950s,
the observation of the natural phenomena of pattern formation and self-reproduction allowed two
“fathers of computer science”, Alan M. Turing and John von Neumann, to formulate the basis of the
computational model known as Cellular Automata [1, 2]. The inner working of neurons in the brain
inspired the creation of the perceptron [3], which is the basic component of artificial neural networks
that were popularized during the current “deep learning revolution” [4]. The Darwinian theory of
evolution [5] was the inspiration for the development of efficient and effective optimization methods,
such as Genetic Algorithms (GAs) [6] and Genetic Programming (GP) [7]. The coordinated movement
of flocks of birds and schools of fish inspired another important optimization algorithm, called Particle
Swarm Optimization (PSO) [8, 9]. The process of taking inspiration from nature also considered
the behavior of social insects, leading to the definition of optimization methods such as Ant Colony
Optimization (ACO) [10] and Artificial Bee Colony (ABC) [11].

Noteworthy, the interplay between computer science and nature has generated a virtuous circle, in
which natural phenomena are used to inspire Computational Intelligence (CI) methods that are then
used to solve complex problems related to different fields of life sciences. In this survey, we focus on
this two-way interaction by describing the application of different CI methods for the solution of three
problems in biology, characterized by an increasing level of complexity. Namely, we move from the
inference of the three-dimensional structure of single molecules (specifically, proteins), to the assembly
of large sets of data related to the genome, up to the estimation of kinetic parameters that drive the
temporal evolution of biochemical reaction networks. Although they are characterized by very different
features and deal with distinct types of data, these problems can be stated as optimization problems and
hence solved by means of nature-inspired CI methods.

As a first example of application, in Section 2 we show how GP, an evolutionary method that can
produce symbolic expressions or even entire programs, can be employed to tackle the complex problem
of protein folding. Protein folding consists in determining the native structure of a protein—that is,
the conformation corresponding to the functional state of the molecule—by considering as input the

D. Besozzi et al. / Computational Intelligence for Life Sciences 1003

sequence of its aminoacids. This problem can be formulated as an optimization problem, where the best
solution corresponds to the folding characterized by the minimum value of the Gibbs free energy [12].
We show here that a new GP variant based on semantic equivalence classes, that was first introduced
in [13], can be exploited to derive better solutions for the protein folding problem with respect to the
state-of-the-art GP.

Section 3 is dedicated to the haplotype assembly problem. We show that GAs, a search heuristic
inspired by the processes of selection, mutation and genetic crossover, can be exploited to reconstruct the
two distinct copies of each chromosome1, called haplotypes. GenHap [14, 15], a novel computational
method based on GAs specifically developed for the haplotyping problem, has the relevant advantage of
taking into account huge datasets produced by the latest sequencing technologies. Haplotype assembly
represents indeed an important problem in bioinformatics and genome analysis, since it allows for the
characterization of the genome of an individual [16].

Finally, in Section 4 we show how Swarm Intelligence can be effectively applied to the parameter
estimation problem, by comparing the performances of five techniques and discussing the role of reboot
strategies [17, 18, 19, 20]. In the field of Systems Biology, simulating the dynamics of models of
cellular processes represents one of the most effective methodologies to understand their functioning
in physiological or perturbed conditions. However, the lack of kinetic rates, necessary to accurately
mimic the occurrence of biochemical reactions over time, strongly limits the scope of these analyses.
Parameter estimation, which consists in identifying a proper model parameterization, is a non-linear,
non-convex and multi-modal optimization problem that is typically tackled by means of CI.

The examples presented in this survey provide an evidence of the effectiveness of various bio-
inspired CI methods in solving hard problems in life sciences.

2. Genetic Programming for Protein Folding

Genetic Programming (GP) belongs to the CI research field called Evolutionary Computation: it
consists of the automated learning of computer programs by means of a process inspired by Charles
Darwin’s theory of biological evolution. In the context of GP, one can interpret the word program in
general terms, and therefore, GP can be applied to the particular cases of learning expressions, functions
and, as in this work, data-driven predictive models. In GP, programs are typically encoded by defining a
set, F , of primitive functional operators and a set, T , of terminal symbols. GP’s objective is to navigate
the space of all possible programs that can be constructed by composing symbols in F and T , looking
for the most appropriate ones to solve the problem at hand. Generation by generation, GP stochastically
transforms populations of programs into new, hopefully improved, populations. The appropriateness
of a solution in solving the problem (i.e., its quality) is expressed by using an objective function (the
fitness function).

In order to transform a population into a new population of candidate solutions, GP selects the
most promising programs that belong to the current population and applies to those programs some
particular search operators called genetic operators, typically crossover (to exchange genetic material
between individuals) and mutation (to add new genetic material). In their traditional form, crossover
1Somatic diploid human cells contain 22 different pairs of homologous chromosomes and a pair of sex chromosomes, where
one copy is inherited from the mother and one from the father.

1004 D. Besozzi et al. / Computational Intelligence for Life Sciences

and mutation operators create new candidate solutions by performing a transformation that works at
the syntactical level, where the syntax corresponds to the structure of a GP individual: new solutions
are generated by exchanging subtrees among the parent solutions (crossover), or by replacing an
existing subtree with a randomly generated one (mutation). Thus, standard crossover and mutation
operators perform a blind transformation of the parent individuals, without taking into account the
information about the behavior of the parent solutions. This is an important limitation because the
behavior, or semantics, is actually what defines the output produced by a GP model. Given two parent
solutions, the use of syntax-based genetic operators makes impossible, or at least complicated, to get a
prediction about the behavior of the newly generated solutions. This, in turn, results in an inherently
difficulty in understanding the dynamic of the underlying evolutionary process [21]. To counteract the
aforementioned limitations associated with the use of syntax-based genetic operators, in recent years
the scientific community started to investigate and develop genetic operators that are able to directly
work on the semantics of the individuals [21]. In particular, the use of semantic methods [21, 22, 23]
is one of the hottest topics in GP and has recently attracted a significant attention from researchers,
particularly in the applied domain of symbolic regression [24, 25, 26, 27, 28, 29].

Let X = {x1,x2, . . . ,xn} be the set of input data (each of them a vector of values), or fitness cases,
of a symbolic regression problem, and t = [t1, t2, . . . , tn] the vector of the respective expected output
or target values (in other words, for each 1 ≤ i ≤ n, the value ti is the expected output corresponding
to input xi). A GP individual (or program) P can be seen as a function that, for each input vector xi,
returns the scalar value P (xi). We call the semantics of P the vector sP = [P (x1), P (x2), . . . , P (xn)].
This vector can be represented as a point in an n-dimensional space, which is also called the semantic
space. It can be counterpoised to the syntactic or genotypic space, where individuals are represented by
programs. The target vector t itself is a point in the semantic space and, in general, the objective of GP
is to find at least one program in the genotypic space that maps into t in the semantic space.

The most significant contribution for the definition of semantics-based genetic operators for GP
was presented in the work by Moraglio and coauthors [30], where genetic operators that have a
direct effect on the semantics of the newly created individuals were proposed. These operators are
known as Geometric Semantic Operators (GSOs), and the GP algorithm that uses these operators is
known in the literature as Geometric Semantic Genetic Programming (GSGP). The main property of
GSOs is that they induce a unimodal fitness landscape for any problem consisting of finding a match
between outputs and known targets. Thus, GSGP can be used to explore a semantic search space that
contains no local optima. An implementation of GSGP was proposed in [22, 31], and its generalization
ability—an important and widely studied concept in GP [32, 33, 34, 35]—was discussed in the work
by Gonçalves [36]. In particular, GSGP is characterized by a better generalization ability. Despite
its ability in outperforming traditional syntax-based genetic operators over several domains and its
theoretical properties [37, 38, 39, 40], GSGP is characterized by a rapid growth of the individuals when
crossover and mutation are applied [30]. This is an important issue because it prevents GP practitioners
to understand the final model produced by GSGP. Thus, the technique presented in Section 2.1 exploits
the idea of direct semantic manipulation like GSGP, but traditional genetic operators are used. While
this approach, based on semantic equivalence classes, results in losing the property of exploring a
unimodal fitness landscape, it allows obtaining human-readable solutions that are compact in size. This
is an important feature for a predictive model. The technique is a generalization of the work by Ruberto

D. Besozzi et al. / Computational Intelligence for Life Sciences 1005

and coauthors [41], where two optimally aligned individuals in the error space are combined into a new
one that approximates the target, using a method called Error Space Alignment Genetic Programming.

In Section 2.1 we introduce the notion of GP with equivalence classes, and how it relates to opera-
tions on the semantic space. Then, two GP systems that use different definitions of equivalence class
are defined. Finally, GP with equivalence classes is used for solving the biologically important problem
of protein folding, comparing its performance with the one achieved by other existing GP systems.

2.1. Genetic Programming with Semantic Equivalence Classes

One recent approach to improve the search in the semantic space by means of GP is to actually perform
some kind of partition of the individuals in the semantic space. The main idea is that even if two
individuals might not have a good quality, there might be an automated and deterministic way to
combine them to produce a higher quality individual. The easiest way to define GP with semantic
equivalence classes is probably to start with a general definition of our idea of equivalence function (EF).
Each of them is a function that takes two semantics as arguments and returns a vector of the same
cardinality, that is, EF : Rn ×Rn → Rn. We say that two GP individuals P and Q are equivalent (i.e.,
they belong to the same Equivalence Class – EQC) if EF (sP , sQ) (i.e., the result of EF applied to the
semantics of the two individuals) is a constant vector (i.e., a vector whose components are all identical).

Starting from this definition, we are interested in understanding when a GP individual P is
equivalent to a globally optimal solution (i.e., an individual whose semantics is exactly equal to the
target vector t). This happens when

EF (t, sP) = k, (1)

where k, for k ∈ R, is the constant vector [k, k, . . . , k] of length n. Once we have a GP individual
equivalent to t, we can reconstruct an individual whose semantics is identical to t (i.e., a globally
optimal solution) analytically. The operation is possible if the function EF is invertible, and it becomes
trivial if EF is easy to invert, like for instance in the case of a linear function. In order to reconstruct
a globally optimal solution, we first have to obtain t from Equation (1). This can be done as in
Equation (2):

t = EF−1(k, sP). (2)

At this point, reconstructing the genotype of an optimal solution is straightforward: it is sufficient to
combine the genotype of P and the constant k by means of the operator EF−1, which represents the
root node of the genotype of the optimal individual.

With this in mind, it now makes sense to investigate the possibility of defining a new GP system
whose objective is finding a solution that belongs to the same EQC as the global optimum. In order to
obtain this, we need to define a new fitness function, to be minimized, able to quantify the dissimilarity
between the EQC of an individual and the EQC of the global optimum. A simple possibility is to
measure the dispersion of the components of vector k in Equation (1). For this purpose, we can, for
instance, use the variance of the components of k.

Here, these general concepts will be instantiated by defining two different concrete EF functions.
An important observation is that, for continuous values, it is unlikely for two individuals to be exactly
in the same EQC. For this reason, a threshold is used to establish the EQCs. We also point out that in
none of the above phases we have considered an error function (as, for instance, the Root Mean Square

1006 D. Besozzi et al. / Computational Intelligence for Life Sciences

Error (RMSE)) to drive the evolutionary process: the evolved individuals can have a very poor value of
the error function. Finally, it is worth noticing that once we find an individual that belongs to the same
EQC as another individual that is already in the population, it may be useful to reject it. After all, if we
consider our system as exploring the space of EQCs, then we do not need an EQC to be represented by
more than one individual. In what follows, we propose a filtering process to implement this rejection:
when a new individual is generated, it is checked against all other individuals in the population and
rejected if it belongs to an EQC that is already represented by at least one other individual. In that
situation, a new individual is immediately generated in substitution and checked again.

GPPLUS: GP by Translation. Here, we propose the first instance of the general framework dis-
cussed so far. In this case, given two GP individuals P and Q, the equivalence function EF is defined
as in Equation (3):

EF (sQ, sP) = sP + sQ. (3)

Let us assume that one among P and Q is a globally optimal solution (say, without lost of generality,
Q). Then, sQ = t. So, Equation (3) becomes:

EF (t, sP) = sP + t. (4)

Now, by replacing Equation (4) in Equation (1) we obtain:

sP + t = k, (5)

where k is the constant vector of value k ∈ R. This means that we are able to analytically reconstruct a
globally optimal solution if we are able to find a solution P whose semantics is directly proportional to
the target, with a constant of proportionality k. In that case, from Equation (5) we have that t = k− sP ,
and so the genotype of the globally optimal solution is simply a tree that has a “−” binary function at
the root, a single node with constant k as the left subtree, and the genotype of P as the right subtree.

GPMUL: GP by proportions. In this case, for any two GP individuals P and Q, we define:

EF (sP , sQ) =
sP
sQ
, (6)

and so, if Q is a globally optimal solution, we have:

EF (sP , t) =
sP
t
, (7)

which allows us to reconstruct the target using t = sP /k, where k is the constant vector of value k ∈ R.
In this case, if GP is able to evolve an individual P such that the target multiplied by a constant k
is equal to the semantics of P , then a globally optimal solution can be reconstructed by building a
genotype that has the symbol of binary division as root, the genotype of P as the left subtree, and
a single node with constant k as the right subtree. It is worth noticing that the event of accidentally
introducing a division by zero can be simply avoided. In fact, Equation (7) contains a division by zero
only if the semantics of P or the target are constant zero vectors, which, besides being an extremely
rare situation, can easily be prevented with a simple test.

D. Besozzi et al. / Computational Intelligence for Life Sciences 1007

2.2. Protein Folding

Protein folding is a part of the problem of understanding the physicochemical properties of proteins.
Proteins are polymers composed of aminoacids, which are joined together by amide links, called
peptide bonds. A protein can then be considered as a sequence of different aminoacids. While it is
important to know the properties of the single aminoacids, the properties of the proteins are not simply
a sum of the properties of their components. An important part of the physicochemical properties of a
protein derives from their three-dimensional structure. The aim of the protein folding problem is to
derive the native structure of a protein, given its sequence of aminoacids.

The dataset used in this work to test the use of semantic GP for protein folding is available
from the UCI machine learning repository (http://archive.ics.uci.edu/ml/). It consists of
approximately 45000 instances, each of them with 9 attributes (total surface area, non polar exposed
area, fractional area of exposed non polar residue, fractional area of exposed non polar part of residue,
molecular mass weighted exposed area, average deviation from standard exposed area of residue,
average deviation from standard exposed area of residue, Euclidean distance, secondary structure
penalty, and spatial distribution constraints) and a single target value, defined as the root-mean-square
deviation of atomic positions (RMSD).

2.3. Results

Usually GP has the advantage, with respect to many other machine learning methods, to provide models
that are not complete black-boxes, whose predictions are impenetrable and cannot be understood. The
individuals resulting from the GP evolutionary process can be complex but still understandable (a
“grey box” in some sense). This means that GP can be applied to problems like the one of estimating
the RMSD in such a way to find not only the distance between a model of a protein structure and
a target model, but also to understand why the prediction works, what are the interactions between
the different input attributes, and possibly gaining additional insights. Therefore, in this section
we compare GPPLUS and GPMUL to their filtered counterparts (called FGPPLUS and FGPMUL,
respectively). Furthermore, in order to have a more general vision on the usefulness of filters, we
include in the comparison also a well-known GP system, i.e., GP with Linear Scaling (LS), and its
filtered counterpart (FLS). We compare the results also with one of the most recent trends of GP, i.e.,
Geometric Semantic GP (GSGP), considered as the state-of-the-art GP technology in several application
areas [42, 43, 44, 45, 46].

The parameters for all the problems were selected after a first tuning phase using a grid search.
The selected parameters configuration was selected among the ones with the best performances and,
among them, the one minimizing the running time. In particular, the population size was 200, the
maximum number of generations 200, the trees were initialized with a maximum depth of 6 using
the Ramped Half-and-Halt method (no limit was imposed on tree depth at runtime). Selection was
performed by means of a tournament with a size of 4, the crossover rate was 0.9, and the mutation
rate 0.1. Elitism was realized by preserving the best individual in the population. The functional
set consisted of {+,−,×, /}, where the division was protected by returning 1 in the presence of a
denominator equal to 0. Finally, the terminal set consisted of n variables corresponding to the number
of features in the dataset. One of the parameters was not shared among all tested methods: the filter

1008 D. Besozzi et al. / Computational Intelligence for Life Sciences

parameter. A large extensive study was performed to understand its impact on the performances. After
this initial study, the values of the filter parameter were set to 10−5 for FGPPLUS, 10−3 for FGPMUL,
and 10−7 for FLS, in order to obtain the best result for each of the considered methods. For all test
problems 100 independent runs were performed, each one with a randomized partition into training
(70%) and test (30%) data. Even if the values reported are the RMSE on the training and test data, it is
important to stress that only GSGP was using the minimization of the RMSE as its target. That is, the
objective is to minimize the error between our prediction and the target, the RMSD.

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

6.
0

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

6.
0

Computational Effort

M
ed

ia
n

Be
st

 R
M

SE

FGPPLUS
GPPLUS

0e+00 1e+06 2e+06 3e+06

5.
35

5.
45

5.
55

5.
65

0e+00 1e+06 2e+06 3e+06

5.
35

5.
45

5.
55

5.
65

Computational Effort

M
ed

ia
n

Be
st

 R
M

SE

FGPMUL
GPMUL

0e+00 1e+07 2e+07 3e+075.
1

5.
2

5.
3

5.
4

5.
5

0e+00 1e+07 2e+07 3e+075.
1

5.
2

5.
3

5.
4

5.
5

Computational Effort

M
ed

ia
n

Be
st

 R
M

SE

FLS
LS

FG
PP

LU
S

FG
PM

U
L

FL
S

G
SG

P

5.
0

5.
2

5.
4

5.
6

Be
st

 R
M

SE

(a) (b) (c) (d)

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

Computational Effort

M
ed

ia
n

Be
st

 R
M

SE

FGPPLUS
GPPLUS

0e+00 1e+06 2e+06 3e+06

5.
40

5.
50

5.
60

0e+00 1e+06 2e+06 3e+06

5.
40

5.
50

5.
60

Computational Effort

M
ed

ia
n

Be
st

 R
M

SE

FGPMUL
GPMUL

0e+00 1e+07 2e+07 3e+07

5.
2

5.
3

5.
4

5.
5

5.
6

0e+00 1e+07 2e+07 3e+07

5.
2

5.
3

5.
4

5.
5

5.
6

Computational Effort

M
ed

ia
n

Be
st

 R
M

SE

FLS
LS

FG
PP

LU
S

FG
PM

U
L

FL
S

G
SG

P

5.
0

5.
1

5.
2

5.
3

5.
4

5.
5

Be
st

 R
M

SE

(e) (f) (g) (h)

Figure 1. Plots (a)-(d) report the results on the training set. Plots (e)-(h) report the results on the test set.
Plots (a) and (e) report the results of GPPLUS. Plots (b) and (f) report the results of GPMUL. Plots (c) and (g)
report the results of LS. Plots (d) and (h) report the performance of GSGP, as well as those achieved by the 3 best
variants (with or without filters) of the proposed methods based on equivalence classes.

The experimental results are shown in Fig. 1. It is possible to observe that for GPPLUS and LS, and
their filtered counterparts, the behaviors on the training set are similar, with a gradual decrease in the
error (therefore, a better fitness is obtained). In both cases the filtered version obtains better results. It is
important to notice that with the increase in the computational effort the difference between a method
and its filtered variant is preserved. The behavior is different for the case of GPMUL and its filtered
variant. The fitness rapidly improves for both GPMUL and FGPMUL, but then further improvements
are not as significant and there are some large fluctuations in the error value. Contrarily to the GPPLUS
and LS cases, there is not a clear gap between GPMUL and its filtered variant. The same behaviors are
observed in the training set. As it is possible to observe from the boxplots presented in Fig. 1, both
GPPLUS and LS have a small variance with an average fitness comparable to GSGP that, however, has
a larger variance with respect to all other methods. GPMUL has a small variance but the higher error
shows that it is not able to reach the same quality of the solutions of the other methods. The filtered

D. Besozzi et al. / Computational Intelligence for Life Sciences 1009

versions of the methods have the same behaviors of the unfiltered ones.
The Wilcoxon rank-sum test for pairwise data comparison with a significance value of α = 0.05

confirms that the differences between GPPLUS and FGPPLUS are statistically significant, both on
the training and on the test set, while the ones between GPMUL and FGPMUL are not statistically
significant. Also, the differences between LS and FLS are statistically significant. Finally, concerning
plots (d) and (h) of Fig. 1, where Bonferroni correction was applied, the differences between FGPPLUS,
FLS and GSGP are not statistically significant2.

From these results, we can conclude that (1) filters are useful: both GPPLUS and LS, with filters,
are competitive with the most advanced GP system, GSGP, obtaining models of comparable accuracy,
but of incomparably smaller size; (2) GPPLUS, although it implements a very simple preliminary idea
of equivalence function, is competitive with the state-of-the-art GP systems. In the future, we plan to
define more complex equivalence functions to further improve the presented results.

3. Genetic Algorithms for Haplotype Assembly

Genetic Algorithms (GAs) are population-based optimization strategies that mimic Darwinian processes
[47], where a population P of randomly generated individuals undergoes a selection mechanism and is
iteratively modified by means of genetic operators (i.e., crossover and mutation, applied with probability
pc and pm, respectively). In the most common and widespread formulation, each individual cp of the
population (with p ∈ {1, . . . , |P|}) encodes a possible solution of the given optimization problem
as a fixed-length string of characters taken from a finite alphabet. The individuals characterized by
better fitness values have a higher probability to be selected for the next iteration. Then, the selected
individuals undergo crossover and mutation operators to possibly improve offspring and introduce new
genetic material in the population.

Several methods exploiting heuristic and meta-heuristic strategies have been proposed to solve the
haplotype assembly problem. Among the meta-heuristic approaches, GAs were effectively applied
thanks to the discrete structure of the candidate solutions [48], which is well-suited to efficiently address
the intrinsic combinatorial nature of this problem.

3.1. The Haplotype Assembly Problem

Haplotyping is the inference process that consists in assigning all the heterozygous Single Nucleotide
Polymorphisms (SNPs) to exactly one of the two chromosome copies in order to fully leverage the
available haplotype information. SNPs are one of the most studied genetic variations since they play a
fundamental role in many biomedical applications (e.g., drug-design, disease susceptibility studies), as
well as in the characterization of the expression of phenotypic traits [49]. Nowadays, computational
approaches are largely used to face this problem since direct experimental reconstructions are not
cost-effective [50] due to the huge number of required sequencing experiments. During the years, two
completely different classes of computational methods gained ground to address this intensive task [51].
One class consists in statistical methods that infer the haplotypes of a given individual by combining
the frequency by which the SNPs are usually correlated in different populations and genotypes sampled
2The p-values of these statistical tests are not reported due to space limits.

1010 D. Besozzi et al. / Computational Intelligence for Life Sciences

in a population. The other class is composed of methods that directly leverage the sequencing data; in
this case, the two different haplotypes are reconstructed by partitioning the entire set of reads into two
sub-sets, taking advantage of the partial overlap among them [52].

Solving the Minimum Error Correction (MEC) problem is one of the most successful approaches
belonging to the second class, allowing to obtain haplotypes characterized by a low percentage of
SNPs erroneously assigned. MEC computes the two haplotypes that partition the sequencing reads
into two disjoint sets with the least number of corrections to the SNP values [53] but, unfortunately,
it was proven to be NP-hard [54]. Afterwards, Greenberg et al. [55] proposed a weighted variant of
MEC, named weighted MEC (wMEC), to take into account the weights representing the confidence for
the presence of a sequencing error. The weights associated with each SNP value of each read are then
exploited during the correction process to reduce the probability of assigning an SNP to the wrong copy.
These weights are generally correlated to Phred quality score [56], which represents the probability
that a given base is called incorrectly by the sequencer. However, the effectiveness and success of
these methods were limited by the length of the reads produced by second-generation sequencing
technologies: indeed, these sequencers produce reads that are not long enough to span over a relevant
number of SNP positions. Since these short reads do not cover adjacent SNP positions adequately, the
major issue was the reconstruction of short haplotype blocks [57], preventing the correct reconstruction
of the full haplotypes. During the latest years, the third-generation of sequencing platforms, such as
PacBio RS II (Pacific Biosciences of California Inc., Menlo Park, CA, USA) [58] and Oxford Nanopore
MinION (Oxford Nanopore Ltd., Oxford, United Kingdom) [59], stood out thanks to their capacity of
generating reads covering several hundreds of kilobases and spanning different SNP loci at once.

Among the different heuristics and meta-heuristics that have been developed for the haplotype
assembly problem [60, 15], GenHap [14] makes use of GAs to efficiently manage large instances of the
wMEC problem, obtained by taking into account the data produced by third-generation sequencing
technologies. In order to deal with the computational complexity of the wMEC problem, GenHap also
relies on a divide-et-impera approach to solve in a parallel fashion the sub-problems that are obtained
by partitioning the entire problem into smaller and manageable sub-problems.

3.2. GenHap

The structure of the individuals composing the population P in GenHap is very simple but effective,
since a partition of the fragment matrix M is encoded as a binary string. M is obtained by considering
two homologous sequences belonging to a diploid organism, consisting in n positions and m reads
obtained after a sequencing experiment. Each read can be easily reduced to a fragment vector f ∈
{0, 1,−}n, where 0 codifies the positions equal to the reference sequence (i.e., wild-type), 1 indicates
the positions in which a SNP occurred, and − denotes the positions that are not covered by the read.
A haplotype is defined as a vector h ∈ {0, 1}n, representing the combination of SNPs and wild-type
positions belonging to one of the two chromosomes. Hence, M is the m × n matrix containing all
these fragments. Two distinct fragments f and g are in conflict if there exists at least a position j
(with j ∈ {1, . . . , n}) such that fj 6= gj and fj , gj 6= −, otherwise they are said to be in agreement.
Similarly, M is conflict-free if there are two different haplotypes h1 and h2 such that each row Mi

(with i ∈ {1, . . . ,m}) is in agreement with h1 or h2. The two haplotypes h1 and h2 characterized by

D. Besozzi et al. / Computational Intelligence for Life Sciences 1011

the least number of corrections to the SNP values among the 2n candidate haplotypes are reconstructed
by solving the wMEC problem, that is, by partitioning the matrix M into two disjoint matrices M1 and
M2. These two partitions are obtained by evaluating each individual of P following this simple idea:
if the i-th (with i ∈ {1, . . . , n}) bit is equal to 0, then the read i belongs to M1; otherwise, the read
i belongs to M2. Starting from these sub-matrices, GenHap infers the two candidate haplotypes h1

and h2 for each individual of P , calculating the number of errors for each pair of candidate haplotypes.
The described procedure iterates until a termination criterion is met.

Since the required execution time, as well as the problem difficulty, increase with the number of
reads and SNPs, the fragment matrix M can be divided into sub-matrices consisting of a subset of reads.
Notice that this strategy can be applied thanks to the long reads with higher coverage produced by
the latest sequencing technologies. These overlapping reads allow for partitioning the initial problem
into easier sub-problems, avoiding the possibility of obtaining incorrect reconstructions during the
merging phase. Each sub-matrix, which corresponds to a sub-problem, is solved by an independent GA
execution that converges to a solution representing the two sub-haplotypes characterized by the least
number of corrections to the SNP values. Once all the sub-problem results are gathered, the pairs of
sub-haplotypes are combined to obtain the entire haplotypes h1 and h2. Following this divide-et-impera
approach, the computational complexity and burden are strongly reduced.

3.3. Results

In order to test the effectiveness of GenHap and show how the read length affects the number of
haplotype blocks, we generated a set of synthetic (yet realistic) instances by using two different
sequencing platforms, namely, NovaSeq (Illumina Inc., San Diego, CA, USA) [61] and Oxford
Nanopore MinION [59]. The former generates short reads (here we set 150bp) while the latter produces
long reads (here we set 6000bp). For both sequencing technologies, we generated different instances to
collect statistically sound results varying the following parameters: (i) #SNPs ∈ {500, 1000, 5000}; (ii)
cov ∈ {∼30×,∼60×,∼90×}; (iii) average fSNPs = 200 (i.e., one SNP every 200bp exists [62, 63]).
To be more precise, 10 different instances were generated for each combination of cov and #SNPs. The
results are evaluated considering the number of SNPs erroneously assigned (#SNPserr) with respect to
the provided ground truth. We calculated the accuracy of GenHap as

(
100− 100 · #SNPserr

#SNPs

)
.

As shown in Table 1, GenHap obtains better results when applied to infer the pair of haplotypes
on the MinION instances, achieving an accuracy always higher than 99% with a negligible standard
deviation (less than 0.5%). As a matter of fact, GenHap was conceived to deal with the data generated
by future generation sequencing technologies, which produce longer reads with higher coverage with
respect to the previous generations. Notice that these instances are always characterized by a single
haplotype block. The results obtained by GenHap on the instances generated by the NovaSeq sequencer
show that the accuracy is lower, ranging from 94% to 96% with a standard deviation up to ∼ 2%.
Due to the short reads characterizing this sequencing platform (i.e., ∼ 150bp), a high number of
haplotype blocks is produced. This number increases along with the #SNPs, reaching ∼2000 blocks
when #SNPs = 5000 are analyzed. The coverage is generally capable of mitigating this problem:
indeed, increasing the coverage allows for decreasing the number of haplotypes blocks affecting the
instances generated by this technology. Finally, also the running time is heavily interested by the

1012 D. Besozzi et al. / Computational Intelligence for Life Sciences

Table 1. Results achieved by GenHap on the NovaSeq and MinION datasets, by considering cov ∈ {∼30×,∼
60×,∼ 90×} and #SNPs ∈ {500, 1000, 5000}. The performances were evaluated both in terms of accuracy
and number of detected haplotypes blocks. The obtained values are expressed as average ± standard deviation
over the 10 model instances for each configuration.

NovaSeq MinION
cov #SNPs Accuracy Blocks Accuracy Blocks

∼30×
500 95.08% ± 0.99% 195 ± 6 99.98% ± 0.07% 1 ± 0
1000 94.38% ± 1.39% 388 ± 9 99.95% ± 0.07% 1 ± 0
5000 95.42% ± 0.51% 1940 ± 13 99.85% ± 0.44% 1 ± 0

∼60×
500 94.94% ± 1.26% 185 ± 6 99.94% ± 0.10% 1 ± 0
1000 96.58% ± 0.99% 382 ± 12 100.00% ± 0.00% 1 ± 0
5000 95.34% ± 0.37% 1862 ± 21 99.99% ± 0.01% 1 ± 0

∼90×
500 95.75% ± 1.48% 187 ± 4 100.00% ± 0.00% 1 ± 0
1000 95.68% ± 1.05% 370 ± 9 100.00% ± 0.00% 1 ± 0
5000 95.08% ± 0.54% 1843 ± 28 99.98% ± 0.02% 1 ± 0

length of the reads, as previously shown in [15]. The shorter the reads, the higher the number of reads
required to obtain the same coverage. As a matter of fact, GenHap is able to solve the instances with
#SNPs = 5000 and cov ' 90× produced exploiting the MinION platform in less than 3 seconds
running on 16 cores of an Intel processor based on the Skylake architecture. When the same instances
generated by using the NovaSeq platform are considered, the required running time is always greater
than 12 minutes.

4. Swarm Intelligence for Parameter Estimation

Differently from Evolutionary Computation techniques, Swarm Intelligence (SI) takes its inspiration
from the emergent behavior of groups of living organisms. According to sociobiological investigations,
some animals and social insects, like those belonging to the Hymenoptera order (e.g., ants, bees) [64],
have behavioral patterns that, collectively, allow groups to self-organize, share information and perform
complex tasks that a single individual would not be able to carry out [65]. SI techniques are inspired by
such behaviors, and are exploited to design nature-inspired holistic optimization techniques.

Ant Colony Optimization (ACO) [66] is a SI method based on the mechanism of stigmergy,
that is, the indirect communication between agents typical of pheromone-based ants signaling [67].
Foraging ants, indeed, tend to deposit a pheromone trail along a route leading to food. When other
ants meet the pheromone trail, they tend to follow that route to reach food, reinforcing the signal.
Eventually, the optimal route emerges from the collective movement of the colony, while sub-optimal
trails slowly evaporate. In ACO, simulated pheromone trails are used to stochastically generate and
iteratively improve a set of candidate solutions. Convergence theorems were proposed for this powerful
combinatorial optimization algorithm [68], which was proven to be effective in tackling problems
belonging to the NP complexity class [69, 70]. ACOR was proposed in [71] as an extension of
ACO for real-valued optimization problems, which generates new ants at each iteration by means
of a probabilistic distribution. This generative distribution, based on Gaussian kernels, is calculated

D. Besozzi et al. / Computational Intelligence for Life Sciences 1013

according to the characteristics of α ants stored in an external archive. The archive is updated at each
iteration, using the best individuals found during the fitness evaluations. A selection pressure on the ants
stored in the archive can be used to influence the new generations towards the best individuals. This bias
can be balanced by means of an additional parameter β. A third parameter ξ can be used to simulate
pheromone evaporation of ACO, to determine how fast the low quality solutions are “forgotten”.

Similarly to ACO, Artificial Bee Colony (ABC) exploits the emergent behavior of a population of
virtual insects, taking inspiration from the collective behavior of foraging honey bees. This optimization
method exploits a number ne of virtual employed, no of onlooker, and ns of scout bees [72], which
cooperate in identifying the best food resources (i.e., solutions with the best fitness value). In particular,
scouts are responsible for the exploration of the search space and become employed when they identify
a promising food source (i.e., a region with good fitness). During the iterative process, onlookers are
partitioned into groups that randomly exploit every food source assigned to an employed bee. ABC is a
global optimization method, designed to explore real-valued search spaces, which was shown to be
competitive with respect to other SI and Evolutionary Computation techniques [73].

Particle Swarm Optimization (PSO) is a SI population-based optimization meta-heuristic, inspired
by the social behavior of bird flocking or fish schooling [8]. In PSO, a population (the swarm) of n
candidate solutions (the particles) moves in a M -dimensional search space and cooperates to identify
an optimal solution. Each particle i (i = 1, . . . , n) is characterized by a position xi ∈ RM , and by a
velocity vi ∈ RM that is used to update its position. The PSO concept consists in changing, at each
iteration, the velocity of each particle towards some attractor, typically its best position bi ∈ RM found
so far, and the global best position g ∈ RM found by the swarm. The update procedure continues
until some termination criterion is met (e.g., when a maximum number of iterations ITMAX is reached).
The behavior of the swarm is influenced by two parameters: the social attraction csoc ∈ R+ and the
cognitive attraction ccog ∈ R+. These parameters control the global exploration and local exploitation
of the search space, and they are weighted by two vectors r1, r2 ∈ RM of random numbers, sampled
with uniform probability in [0, 1], to prevent particles from prematurely converging to local minima.
The velocity of particles is also limited to a maximum magnitude vMAX ∈ R+, and weighted by an
inertia factor w ∈ R+ to avoid chaotic behaviors of the swarm. This leads to the following definition of
the velocity update function for a generic i-th particle:

vi(t+ 1) = w · vi(t) + csoc · r1 � (xi(t)− g(t)) + ccog · r2 � (xi(t)− bi(t)), (8)

where � denotes the component-wise multiplication operator. Then, the position of the particle is
updated by calculating xi(t+ 1) = xi(t) + vi(t), for all i = 1, . . . , n, and 0 ≤ t ≤ ITMAX. The value
of w may be kept constant throughout the optimization process, or change according to some update
function. Several works analyzed the performances of PSO with different settings, since they have a
relevant impact on the optimization performances. For instance, some works focused on the optimal
choice of parameters csoc and ccog [74, 75, 76, 77], or w [78]. The performances of PSO strongly
depend on a proper selection of the functioning settings, in particular in the case of the parameter
estimation problem [79] considered in this section. The choice of the best functioning settings is
generally driven by the problem under investigation and the characteristics of the fitness landscape.
Thus, to solve this issue, a dynamic tuning of PSO’s settings during the optimization process by means
of fuzzy reasoning is usually exploited [80, 81, 82]. Generally, the PSO versions hybridized with fuzzy

1014 D. Besozzi et al. / Computational Intelligence for Life Sciences

logic update the settings of all particles by using a common set of values determined by means of a
fuzzy rule-based system. Alternative approaches—like PPSO [17] and FST-PSO [19, 18]—use fuzzy
logic to automatically infer at run-time a different set of PSO settings for each particle of the swarm.

Despite the lack of a proper convergence theorem, PSO was successfully applied to a plethora
of problems in many different disciplines [83], including parameter estimation in Systems Biology
[84, 79, 85]. In particular, FST-PSOnmv, a version of FST-PSO where the fuzzy rules governing
minimum velocity throttling are disabled, was shown to outperform the other methods [18].

4.1. The Problem of Parameter Estimation in Systems Biology

Systems Biology aims at a system-level investigation of biological processes, by considering the
complex interactions among biomolecules [86]. In this context, mathematical models and computational
methods represent valuable and integrative tools to experimental biology, thanks to their capability to
simulate the emergent behavior of biological processes and to elucidate the mechanisms governing their
functioning [87]. A precise assignment of the kinetic parameters involved in these models is mandatory
to perform accurate simulations of the dynamics, since their values determine the rate of the reactions
and ultimately drive the temporal evolution of the system. Unfortunately, these parameters are generally
difficult—or often impossible—to measure by means of laboratory experiments; therefore, parameters
need to be estimated by using, for instance, CI methods [88]. Specifically, parameter estimation (PE)
is an optimization problem that consists in the identification of the (unknown) vector k of kinetic
parameters able to minimize the distance between any available target time series (given by, e.g., the
concentration of some biochemical species that can be measured experimentally) and the simulated
dynamics obtained by using the vector k.

In what follows, we consider the mechanistic reaction-based modeling (RBM) approach for the
description of biochemical reaction networks [89]. Assuming the law of mass-action [90], it is possible
to derive the system of coupled Ordinary Differential Equations (ODEs) corresponding to an RBM.
ODEs describe the variation over time of the species concentrations, whose dynamics can be efficiently
obtained using deterministic simulators [91].

4.2. Results

Several CI algorithms have been exploited for the PE of biochemical systems [79, 88, 92]. In this
section, we will focus on the SI methods mentioned above. In order to compare their performances,
we generated a set of RBMs consisting in 25 species and 25 biochemical reactions. For each model
size we created 6 different RBMs, and we repeated the PE 15 times with each SI method to achieve
statistically sound results. ABC was implemented using the SwarmPackagePy library. We exploited
Victor O. Costa’s implementation of ACOR available on GitHub3. We implemented PSO from scratch,
using the Python programming language (v. 2.7.13) and the NumPy library (v. 1.13.3). FST-PSO and
FST-PSOnmv (v. 1.4.8) were downloaded from the PyPI repository. The settings used in the PE tests are
summarized in Table 2. In order to reduce the computational effort of the methodology, we leveraged

3https://github.com/vctrop/ant_colony_for_continuous_domains

D. Besozzi et al. / Computational Intelligence for Life Sciences 1015

Table 2. Settings of the SI methods used in the PE tests.

ABC ACOR PSO FST-PSO FST-PSOnmv

no = b0.5 · nc
ne = b0.4 · nc
ns = n− no − ne

α = n
β = 0.1
ξ = 0.85

w = 0.729
csoc = 1.496
ccog = 1.496

– –

the GPU-powered deterministic biochemical simulator cupSODA to execute the simulations needed to
evaluate the fitness function [93, 94, 95].

Fig. 2 shows the distribution of the fitness values of the best individuals at time t = ITMAX found
during each optimization run. These results show that FST-PSOnmv outperforms the other methods.
ABC is also characterized by good performances in the case of Models 2, 4 and 6. Interestingly, in our
tests ACOR showed mixed performances (e.g., boxplots related to Models 3 and 4) and, with respect to
the other algorithms, it also shows a small variance in the fitness value of the solution found.

0

50

100

B
es

t
fi

tn
es

s

Model 1 Model 2 Model 3

A
B

C

A
C

O
R

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O
n
m
v0

50

100

B
es

t
fi

tn
es

s

Model 4

A
B

C

A
C

O
R

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O
n
m
v

Model 5

A
B

C

A
C

O
R

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O
n
m
v

Model 6

Figure 2. The box-plots show the performances of the SI methods applied to the PE of 6 RBMs consisting in
25 reactions and 25 species.

Successively, we focused on PSO and investigated the effects of different reboot strategies, that
is, the possibility of resetting the position of particles in case of stagnation, thus preventing an early
convergence of the swarm to local minima. A reboot strategy should accurately and efficiently identify
those particles that are no longer exploring effectively the search space, and re-initialize them to
increase diversity in the swarm. In the context of continuous optimization problems in large search
spaces, different reboot strategies were integrated in PSO [96, 97], which consist in “restarting” the
algorithm by re-initializing all particles in the swarm except for the global best position found so far.
We tested three re-initialization methods on a biochemical model of Heat Shock Response in yeast

1016 D. Besozzi et al. / Computational Intelligence for Life Sciences

[98]: global, local, and distance (see [20] for further information). In these tests, we used swarms
consisting in n = 512 particles. According to our results (Fig. 3), these reboot strategies are able to
outperform the standard version of PSO, however the local and global strategies obtain considerably
better performances.

0 200 400 600 800 1000
Iterations

10

20

30

40

50

60

70

80

Av
er

ag
e

Be
st

 F
itn

es
s

Best settings
distance = 0.1
local = 50
global = 75
standard n = 512

distance = 0.1 local = 50 global = 75 standard n = 512
0

20

40

60

80

Fi
tn

es
s

Figure 3. Left: Average Best Fitness achieved by the standard PSO and PSO with the three reboot strategies,
performed with their respective best threshold values θ and η (see [20] for an extensive overview of the settings).
Right: box-plots obtained considering the best fitness values reached at the last iteration of 30 optimizations,
with the same settings specified above. The solid (dashed) line corresponds to the median (mean).

Due to the advantage provided by these reboot methods, we argue that the performances of
FST-PSOnmv could be further improved by integrating the local reboot strategy. Unfortunately, the
implementation of such method is not straightforward, since resetting the position of a particle could
hinder the effectiveness of the fuzzy reasoner. We plan to investigate possible solutions to this problem
and implement a reboot version of FST-PSOnmv in the near future, which will provide the foundation
for the PE of large-scale biochemical systems as those defined, for instance, by rule-based models [99].

5. Final Remarks

The practice of watching closely the occurrence of natural phenomena, and trying to understand the
general laws behind them, has always been a source of inspiration in physics, mathematics and computer
science. For instance, the question of how natural selection and the laws of evolution drive the “survival
of the fittest” organisms and, over millennia, have shaped the emergence of life on earth—sometimes in
beautiful, astonishing ways [100]—led to the definition of efficient optimization methods that can be
effectively exploited to solve complex problems in a plethora of real life applications. Similarly, the
emergent behavior of social insects, which are naturally able to determine the best solution to daily jobs
to ensure the viability of the whole colony (see, e.g., [101, 102]), provided several clues to computer
scientists on how to translate the biological principles of communication among simple living beings,
into more general foundations that might govern the interaction among abstract algorithmic agents.

In this paper we have shown three significant examples of how biologically-inspired computer
science methods can help the discipline that brought them on: (1) Genetic Programming, inspired by
Darwin’s evolutionary theory, can help in tackling the protein folding problem; (2) the similarly inspired

D. Besozzi et al. / Computational Intelligence for Life Sciences 1017

Genetic Algorithms can be used in the context of the haplotype assembly problem, an interesting topic
within the area of genome analysis; (3) Swarm Intelligence, inspired by the movement of flocks of
birds, school of fish or social insects, can help in exploring and finding the best kinetic parameters for
the simulation of biochemical systems.

Indeed, the CI methods presented here, and the life science problems that we have explored to show
their effectiveness, do not represent an isolated case of how well many real world applications can take
advantage of nature-inspired methods. This is only a very brief overview of how computer science and
the “wet” sciences (biology, in particular) can benefit one another.

However, Evolutionary Computation and Swarm Intelligence methods share a common drawback:
being iterative and population-based algorithms, they require a massive amount of fitness evaluations.
This issue often originates a computational challenge, which prevents the use of CI in several scientific
and engineering domains. There are two potential directions to mitigate this problem. On the one hand,
since the fitness evaluations of the individuals in a population during each generation are mutually
independent, CI algorithms can be accelerated by means of a distributed or parallel architecture
[92, 85, 95, 103, 104], or leveraging high-performance simulators to reduce the running times of fitness
evaluations [105, 106]. On the other hand, surrogate models could be used in place of actual fitness
evaluations. Surrogate models are created by using sparse samples of the real fitness function and are
supposed to be orders of magnitude faster to be calculated, providing a clear performance advantage.
Interestingly, surrogate models can be implemented using Genetic Programming [107], originating a
weird embedding of CI methodologies pursuing radically different goals.

Acknowledgements

This work was partially supported by national funds through FCT (Fundação para a Cı̂encia e a Tec-
nologia) Portugal, under projects DSAIPA/DS/0022/2018 (GADgET) and PTDC/CCI-INF/29168/2017
(BINDER).

References

[1] Turing AM. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B, 1952. 237(641):37–72.

[2] von Neumann J, Burks AW. Theory of self-reproducing automata. University of Illinois Press, Urbana, IL,
USA, 1966.

[3] Rosenblatt F. The perceptron, a perceiving and recognizing automaton (Project Para). Cornell Aeronautical
Laboratory, 1957.

[4] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. The MIT Press, Cambridge, MA, USA, 1
edition, 2016.

[5] Darwin C. The Origin of Species by means of Natural Selection; or, the Preservation of Favoured Races
in the Struggle for Life. John Murray, London, UK, 6th edition, 1872.

[6] Holland JH. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor,
MI, USA, 1975.

1018 D. Besozzi et al. / Computational Intelligence for Life Sciences

[7] Koza J. Genetic Programming: On the Programming of Computers by means of Natural Selection. The
MIT Press, Cambridge, MA, USA, 1992.

[8] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc. Int. Conf. Neural Networks, volume 4.
IEEE, 1995 pp. 1942–1948.

[9] Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. In: Porto VW, Saravanan N,
Waagen D, Eiben AE (eds.), Evolutionary Programming VII, volume 1447 of LNCS. Springer-Verlag,
1998 pp. 591–600.

[10] Dorigo M, Birattari M. Ant colony optimization. In: Encyclopedia of Machine Learning, pp. 36–39.
Springer, 2011.

[11] Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M. The bees algorithm–a novel tool for
complex optimisation problems. In: Intelligent Production Machines and Systems, pp. 454–459. Elsevier,
2006.

[12] Nelson DL, Cox MM. Lehninger Principles of Biochemistry. WH Freeman & Company, New York, NY,
USA, 4th edition, 2004.

[13] Ruberto S, Vanneschi L, Castelli M. Genetic programming with semantic equivalence classes. Swarm
Evol. Comput., 2019. 44:453–469.

[14] Tangherloni A, Spolaor S, Rundo L, Nobile MS, Cazzaniga P, Mauri G, Liò P, Merelli I, Besozzi D.
GenHap: a novel computational method based on genetic algorithms for haplotype assembly. BMC
Bioinform., 2019. 20(Suppl 4):172.

[15] Tangherloni A, Rundo L, Spolaor S, Nobile MS, Merelli I, Besozzi D, Mauri G, Cazzaniga P, Liò P. High
Performance Computing for Haplotyping: models and Platforms. In: Aldinucci M, Padovani L, Torquati
M (eds.), Euro-Par 2018 Workshops, volume 11339 of LNCS. Springer, 2019 p. 650–661.

[16] Levy S, Sutton G, Ng P, Feuk L, Halpern A, Walenz B, Axelrod N, Huang J, Kirkness E, Denisov G, et al.
The diploid genome sequence of an individual human. PLoS Biol., 2007. 5(10):e254.

[17] Nobile MS, Pasi G, Cazzaniga P, Besozzi D, Colombo R, Mauri G. Proactive particles in swarm
optimization: a self-tuning algorithm based on fuzzy logic. In: Proc. Int. Conf. Fuzzy Systems. IEEE,
2015 pp. 1–8.

[18] Tangherloni A, Rundo L, Nobile MS. Proactive Particles in Swarm Optimization: a settings-free algorithm
for real-parameter single objective optimization problems. In: Proc. Congr. Evolutionary Computation.
IEEE, 2017 pp. 1940–1947.

[19] Nobile MS, Cazzaniga P, Besozzi D, Colombo R, Mauri G, Pasi G. Fuzzy Self-Tuning PSO: A settings-free
algorithm for global optimization. Swarm Evol. Comput., 2018. 39:70–85.

[20] Spolaor S, Tangherloni A, Rundo L, Nobile MS, Cazzaniga P. Reboot strategies in particle swarm opti-
mization and their impact on parameter estimation of biochemical systems. In: Proc. Conf. Computational
Intelligence in Bioinformatics and Computational Biology. IEEE, 2017 pp. 1–8.

[21] Vanneschi L, Castelli M, Silva S. A survey of semantic methods in genetic programming. Genet. Program.
Evolvable Mach., 2014. 15(2):195–214.

[22] Castelli M, Silva S, Vanneschi L. A C++ framework for geometric semantic genetic programming. Genet.
Program. Evolvable Mach., 2015. 16(1):73–81.

D. Besozzi et al. / Computational Intelligence for Life Sciences 1019

[23] Castelli M, Trujillo L, Vanneschi L, Silva S, Z-Flores E, Legrand P. Geometric semantic genetic program-
ming with local search. In: Proc. Annual Conf. Genetic and Evolutionary Computation, GECCO ’15.
ACM, 2015 pp. 999–1006.

[24] Popovic A, Castelli M, Vanneschi L. Predicting burned areas of forest fires: an artificial intelligence
approach. Fire Ecol., 2015. 11(1):106–118.

[25] Castelli M, Castaldi D, Giordani I, Silva S, Vanneschi L, Archetti F, Maccagnola D. An efficient
implementation of geometric semantic genetic programming for anticoagulation level prediction in
pharmacogenetics. In: Proc. Portuguese Conf. Artificial Intelligence. Springer, 2013 pp. 78–89.

[26] Hajek P, Henriques R, Castelli M, Vanneschi L. Forecasting performance of regional innovation systems
using semantic-based genetic programming with local search optimizer. Comput. Oper. Res., 2019.
106:179–190.

[27] Castelli M, Vanneschi L, De Felice M. Forecasting short-term electricity consumption using a semantics-
based genetic programming framework: the South Italy case. Energy Econom., 2015. 47:37–41.

[28] Enrı́quez-Zárate J, Trujillo L, de Lara S, Castelli M, Z-Flores EZ, Muñoz L, Popovič A. Automatic
modeling of a gas turbine using genetic programming: An experimental study. Applied Soft Computing,
2017. 50:212–222.

[29] Castelli M, Vanneschi L, Popovič A. Parameter evaluation of geometric semantic genetic programming in
pharmacokinetics. International Journal of Bio-Inspired Computation, 2016. 8(1):42–50.

[30] Moraglio A, Krawiec K, Johnson CG. Geometric semantic genetic programming. In: International
Conference on Parallel Problem Solving from Nature. Springer, 2012 pp. 21–31.

[31] Vanneschi L, Castelli M, Manzoni L, Silva S. A new implementation of geometric semantic GP and
its application to problems in pharmacokinetics. In: European Conference on Genetic Programming.
Springer, 2013 pp. 205–216.

[32] Vanneschi L, Castelli M, Silva S. Measuring bloat, overfitting and functional complexity in genetic
programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2010 pp. 877–884.

[33] Castelli M, Manzoni L, Silva S, Vanneschi L. A comparison of the generalization ability of different
genetic programming frameworks. In: IEEE Congress on Evolutionary Computation. IEEE, 2010 pp. 1–8.

[34] Castelli M, Manzoni L, Silva S, Vanneschi L. A quantitative study of learning and generalization in
genetic programming. In: European Conference on Genetic Programming. Springer, 2011 pp. 25–36.

[35] Castelli M, Vanneschi L, Silva S. Semantic search-based genetic programming and the effect of intron
deletion. IEEE Transactions on Cybernetics, 2014. 44(1):103–113.

[36] Gonçalves I, Silva S, Fonseca CM, Castelli M. Unsure when to stop?: ask your semantic neighbors. In:
Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 2017 pp. 929–936.

[37] Castelli M, Trujillo L, Vanneschi L, Popovič A. Prediction of relative position of CT slices using a
computational intelligence system. Applied Soft Computing, 2016. 46:537–542.

[38] Vanneschi L, Castelli M, Costa E, Re A, Vaz H, Lobo V, Urbano P. Improving maritime awareness
with semantic genetic programming and linear scaling: Prediction of vessels position based on AIS data.
In: Mora AM, Squillero G (eds.), Applications of Evolutionary Computation. Springer International
Publishing, Cham, 2015 pp. 732–744.

1020 D. Besozzi et al. / Computational Intelligence for Life Sciences

[39] Gonçalves I, Silva S, Fonseca CM, Castelli M. Arbitrarily close alignments in the error space: A geometric
semantic genetic programming approach. In: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion. ACM, 2016 pp. 99–100.

[40] Castelli M, Manzoni L, Vanneschi L, Silva S, Popovič A. Self-tuning geometric semantic genetic
programming. Genetic Programming and Evolvable Machines, 2016. 17(1):55–74.

[41] Ruberto S, Vanneschi L, Castelli M, Silva S. ESAGP – A semantic GP framework based on alignment
in the error space. In: Nicolau M, Krawiec K, Heywood MI, Castelli M, Garcı́a-Sánchez P, Merelo JJ,
Rivas Santos VM, Sim K (eds.), Genetic Programming. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014 pp. 150–161.

[42] Castelli M, Henriques R, Vanneschi L. A geometric semantic genetic programming system for the electoral
redistricting problem. Neurocomputing, 2015. 154:200–207.

[43] Castelli M, Trujillo L, Vanneschi L. Energy consumption forecasting using semantic-based genetic
programming with local search optimizer. Comput. Intell. Neurosci., 2015. 2015. Article ID 971908.

[44] Castelli M, Vanneschi L, Manzoni L, Popovič A. Semantic genetic programming for fast and accurate
data knowledge discovery. Swarm Evol. Comput., 2016. 26:1–7.

[45] Castelli M, Silva S, Vanneschi L, Cabral A, Vasconcelos MJ, Catarino L, Carreiras JM. Land cover/land
use multiclass classification using GP with geometric semantic operators. In: Proc. Eur. Conf. Applications
of Evolutionary Computation. Springer, 2013 pp. 334–343.

[46] Castelli M, Vanneschi L, Silva S, Ruberto S. How to exploit alignment in the error space: two different
GP models. In: Genetic Programming Theory and Practice XII, pp. 133–148. Springer, 2015.

[47] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1 edition, 1989.

[48] Rundo L, Tangherloni A, Nobile MS, Militello C, Besozzi D, Mauri G, Cazzaniga P. MedGA: a novel
evolutionary method for image enhancement in medical imaging systems. Expert Syst. Appl., 2019.
119:387–399.

[49] Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat.
Rev. Genet., 2005. 6(2):95.

[50] Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z, Blauwkamp T, Kertesz M, Snyder M. Whole-genome
haplotyping using long reads and statistical methods. Nat. Biotech., 2014. 32(3):261–266.

[51] Snyder M, Adey A, Kitzman J, Shendure J. Haplotype-resolved genome sequencing: experimental
methods and applications. Nat. Rev. Genet., 2015. 16(6):344–358.

[52] Patterson M, Marschall T, Pisanti N, Van Iersel L, Stougie L, Klau GW, Schönhuth A. WhatsHap: weighted
haplotype assembly for future-generation sequencing reads. J. Comput. Biol., 2015. 22(6):498–509.

[53] Wang R, Wu L, Li Z, Zhang X. Haplotype reconstruction from SNP fragments by minimum error
correction. Bioinformatics, 2005. 21(10):2456–2462.

[54] Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the single nucleotide polymorphism
haplotype assembly problem. Brief. Bioinform., 2002. 3(1):23–31.

[55] Greenberg H, Hart W, Lancia G. Opportunities for combinatorial optimization in computational biology.
INFORMS J. Comput., 2004. 16(3):211–231.

D. Besozzi et al. / Computational Intelligence for Life Sciences 1021

[56] Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using Phred. I.
Accuracy assessment. Genome Res., 1998. 8(3):175–185.

[57] Zhang K, Calabrese P, Nordborg M, Sun F. Haplotype block structure and its applications to association
studies: power and study designs. Am. J. Hum. Genet., 2002. 71(6):1386–1394.

[58] Rhoads A, Au K. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 2015.
13(5):278–289.

[59] Jain M, Fiddes I, Miga K, Olsen H, Paten B, Akeson M. Improved data analysis for the MinION nanopore
sequencer. Nat. Methods, 2015. 12(4):351.

[60] Choi Y, Chan AP, Kirkness E, Telenti A, Schork NJ. Comparison of phasing strategies for whole human
genomes. PLoS Genet., 2018. 14(4):e1007308.

[61] Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ. A large
genome center’s improvements to the Illumina sequencing system. Nat. Methods, 2008. 5(12):1005.

[62] Nachman MW. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet., 2001.
17(9):481–485.

[63] Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A,
Faggart M, et al. The structure of haplotype blocks in the human genome. Science, 2002. 296(5576):2225–
2229.

[64] Hölldobler B, Wilson EO. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies.
WW Norton & Company, New York, NY, USA, 2008.

[65] Seeley TD. The honey bee colony as a superorganism. Am. Scientist, 1989. 77(6):546–553.

[66] Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Future Gener. Comput. Syst., 2000.
16(8):851–871.

[67] Theraulaz G, Bonabeau E. A brief history of stigmergy. Artif. Life, 1999. 5(2):97–116.

[68] Gutjahr WJ. ACO algorithms with guaranteed convergence to the optimal solution. Inf. Proc. Lett., 2002.
82(3):145–153.

[69] Stützle T, Dorigo M. ACO algorithms for the traveling salesman problem. In: Miettinen K, Neittaanmäki
P, Mäkelä MM, Periaux J (eds.), Evolutionary Algorithms in Engineering and Computer Science, pp.
163–183. Wiley, 1999.

[70] Li Y, Xul Z. An ant colony optimization heuristic for solving maximum independent set problems. In:
Proc. Fifth Int. Conf. Computational Intelligence and Multimedia Applications. IEEE, 2003 pp. 206–211.

[71] Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur. J. Oper. Res., 2008.
185(3):1155–1173.

[72] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm. J. Glob. Optim., 2007. 39(3):459–471.

[73] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput., 2009.
214(1):108–132.

[74] Cagnoni S, Vanneschi L, Azzini A, Tettamanzi AGB. A critical assessment of some variants of particle
swarm optimization. In: et al MG (ed.), Proc. Workshops Applications of Evolutionary Computing, LNCS.
2008 pp. 565–574.

1022 D. Besozzi et al. / Computational Intelligence for Life Sciences

[75] Arumugam MS, Rao MVC. On the improved performances of the particle swarm optimization algorithms
with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing
optimal control of a class of hybrid systems. J. Appl. Soft Comput., 2008. 8(1):324–336.

[76] Valle YD, Venayagamoorthy G, Mohagheghi S, Hernandez J, Harley R. Particle Swarm Optimization:
Basic Concepts, Variants and Applications in Power Systems. IEEE Transactions on Evolutionary
Computation, 2008. 12(2):171–195.

[77] Rundo L, Tangherloni A, Militello C, Gilardi MC, Mauri G. Multimodal medical image registration using
particle swarm optimization: a review. In: Proc. Symp. Series Computational Intelligence. IEEE, 2016 pp.
1–8.

[78] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm
optimization. Comput. Oper. Res., 2006. 33(3):859–871.

[79] Dräger A, Kronfeld M, Ziller M, Supper J, Planatscher H, Magnus J. Modeling metabolic networks in C.
glutamicum: a comparison of rate laws in combination with various parameter optimization strategies.
BMC Syst. Biol., 2009. 3:5.

[80] Shi Y, Eberhart R. Fuzzy adaptive Particle Swarm Optimization. In: Proc. Congr. Evolutionary Computa-
tion, volume 1. IEEE, 2001 pp. 101–106.

[81] Abdelbar AM, Abdelshahid S, Wunsch DC. Fuzzy PSO: a generalization of particle swarm optimization.
In: Proc. Int. Joint Conf. Neural Networks, volume 2. IEEE, 2005 pp. 1086–1091.

[82] Abraham A, Liu H. Turbulent particle swarm optimization using fuzzy parameter tuning. In: Abraham A,
Hassanien A, Siarry P, Engelbrecht A (eds.), Foundations of Computational Intelligence, volume 3, pp.
291–312. Springer, Berlin, Germany, 2009.

[83] Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell., 2007. 1(1):33–57.

[84] Nobile MS, Tangherloni A, Rundo L, Spolaor S, Besozzi D, Mauri G, Cazzaniga P. Computational
intelligence for parameter estimation of biochemical systems. In: 2018 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2018 pp. 1–8.

[85] Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D. Estimating reaction constants in stochastic
biological systems with a multi-swarm PSO running on GPUs. In: Soule T (ed.), Proc. 14th Int. Conf.
Genetic and Evolutionary Computation Conference Companion. ACM, 2012 pp. 1421–1422.

[86] Kitano H. Systems biology: a brief overview. Science, 2002. 295(5560):1662–1664.

[87] Cazzaniga P, Damiani C, Besozzi D, Colombo R, Nobile MS, Gaglio D, Pescini D, Molinari S, Mauri G,
Alberghina L, et al. Computational strategies for a system-level understanding of metabolism. Metabolites,
2014. 4(4):1034–1087.

[88] Moles C, Mendes P, Banga J. Parameter estimation in biochemical pathways: a comparison of global
optimization methods. Genome Res., 2003. 13(11):2467–2474.

[89] Besozzi D. Reaction-based models of biochemical networks. In: Beckmann A, Bienvenu L, Jonoska N
(eds.), Pursuit of the Universal. Proc. 12th Conf. Computability in Europe, CiE 2016, number 9709 in
LNCS. Springer International Publishing, Switzerland, 2016 pp. 24–34.

[90] Chellaboina V, Bhat S, Haddad W, Bernstein D. Modeling and analysis of mass-action kinetics. IEEE
Control Syst., 2009. 29(4):60–78.

[91] Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in bioinformatics,
computational biology and systems biology. Brief. Bioinform., 2017. 18(5):870–885.

D. Besozzi et al. / Computational Intelligence for Life Sciences 1023

[92] Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D. A GPU-based multi-swarm PSO method for
parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Giacobini
M, Vanneschi L, Bush W (eds.), Proc. 7th Eur. Conf. Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics, volume 7246 of LNCS. Springer-Verlag, 2012 pp. 74–85.

[93] Nobile MS, Besozzi D, Cazzaniga P, Mauri G. GPU-accelerated simulations of mass-action kinetics
models with cupSODA. J. Supercomput., 2014. 69(1):17–24.

[94] Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D. cupSODA: a CUDA-powered simulator of
mass-action kinetics. In: Malyshkin V (ed.), Proc. 12th Int. Conf. Parallel Computing Technologies,
volume 7979 of LNCS, pp. 344–357. Springer, 2013.

[95] Nobile MS, Tangherloni A, Besozzi D, Cazzaniga P. GPU-powered and settings-free parameter estimation
of biochemical systems. In: Proc. Congr. Evolutionary Computation. IEEE, 2016 pp. 32–39.

[96] Garcı́a-Nieto J, Alba E. Restart particle swarm optimization with velocity modulation: a scalability test.
Soft Comput., 2011. 15(11):2221–2232.

[97] De Oca MAM, Stutzle T, Birattari M, Dorigo M. Frankenstein’s PSO: a composite particle swarm
optimization algorithm. IEEE Trans. Evol. Comput., 2009. 13(5):1120–1132.

[98] Petre I, Mizera A, Hyder CL, Meinander A, Mikhailov A, Morimoto RI, Sistonen L, Eriksson JE, Back
RJ. A simple mass-action model for the eukaryotic heat shock response and its mathematical validation.
Nat. Comput., 2011. 10(1):595–612.

[99] Harris LA, Nobile MS, Pino JC, Lubbock AL, Besozzi D, Mauri G, Cazzaniga P, Lopez CF. GPU-powered
model analysis with PySB/cupSODA. Bioinformatics, 2017. 33(21):3492–3494.

[100] Simon M. The Wasp that Brainwashed the Caterpillar: Evolution’s Most Unbelievable Solutions to Life’s
Biggest Problems. Penguin Books, New York, NY, USA, 2016.

[101] Hölldobler B, Wilson EO. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies.
W. W. Norton & Company, New York, NY, USA, 2008.

[102] Tautz J. The Buzz about Bees. Biology of a Superorganism. Springer-Verlag, Berlin Heidelberg, Germany,
2008.

[103] Tangherloni A, Nobile MS, Cazzaniga P. GPU-powered bat algorithm for the parameter estimation of bio-
chemical kinetic values. In: Proc. Conf. Computational Intelligence in Bioinformatics and Computational
Biology. IEEE, 2016 pp. 1–6.

[104] Ramazzotti D, Nobile MS, Cazzaniga P, Mauri G, Antoniotti M. Parallel implementation of efficient
search schemes for the inference of cancer progression models. In: Proc. Conf. Computational Intelligence
in Bioinformatics and Computational Biology. IEEE, 2016 pp. 1–6.

[105] Tangherloni A, Nobile MS, Besozzi D, Mauri G, Cazzaniga P. LASSIE: simulating large-scale models of
biochemical systems on GPUs. BMC Bioinform., 2017. 18(1):246.

[106] Nobile MS, Cazzaniga P, Besozzi D, Pescini D, Mauri G. cuTauLeaping: A GPU-powered tau-leaping
stochastic simulator for massive parallel analyses of biological systems. PLoS ONE, 2014. 9(3):e91963.

[107] Dı́az-Manrı́quez A, Toscano G, Barron-Zambrano JH, Tello-Leal E. A review of surrogate assisted
multiobjective evolutionary algorithms. Comput. Intell. Neurosci., 2016. 2016.

