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Abstract

We analyze the passengers’ traffic pattern for 1.58 million taxi trips of Shanghai, China. By employing the non-negative
matrix factorization and optimization methods, we find that, people travel on workdays mainly for three purposes:
commuting between home and workplace, traveling from workplace to workplace, and others such as leisure activities.
Therefore, traffic flow in one area or between any pair of locations can be approximated by a linear combination of three
basis flows, corresponding to the three purposes respectively. We name the coefficients in the linear combination as traffic
powers, each of which indicates the strength of each basis flow. The traffic powers on different days are typically different
even for the same location, due to the uncertainty of the human motion. Therefore, we provide a probability distribution
function for the relative deviation of the traffic power. This distribution function is in terms of a series of functions for
normalized binomial distributions. It can be well explained by statistical theories and is verified by empirical data. These
findings are applicable in predicting the road traffic, tracing the traffic pattern and diagnosing the traffic related abnormal
events. These results can also be used to infer land uses of urban area quite parsimoniously.
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Introduction

Urban traffic has drawn the attention of physicists since more

than one decade ago. Generally, there has been two kinds of

approaches for the traffic analysis. In microscopic models, some

researchers represent vehicles as particles interacting with each

other [1,2], while some others use the cellular automata

framework [1,3,4]. Based on game theory, the impact of

individuals’ irregular behaviors on traffic system is also empha-

sized [5]. On the other hand, from the macroscopic perspective,

the idea of fluid dynamics is introduced [1,6].

In recent years, a new and more fundamental approach for

traffic analysis is emerging: human mobility, by drawing statistical

inferences from the enormous empirical data [7–9]. Several

reasons boost the research in this area.

Firstly, the knowledge of the mobility pattern is essential in

traffic modeling [10,11] for simulation, forecasting [12,13] and

control [11]. In addition, by measuring the traffic flow during

some time interval to see whether or not it agrees with the verified

estimation, the collective mobility analysis can serve as a tool for

abnormality definition and detection [14,15]. Compared to

computer vision based detection [16,17], collective mobility model

based abnormality detection can be applied in a much larger scale

of area, for example, the whole city.

Secondly, the mobility pattern and the consequential traffic flow

can also interact with the land use. The characteristics of traveling

strongly influence urban formation, evolving, and future planning

[18–21], whereas the land use can also affect the urban traffic [22–

24] and the human mobility [25].

Thirdly, the better understanding of human mobility can help

to more easily control the spreading of contagious diseases by

limiting the contact among individuals [26], since the transmission

of infected people from one place to another is an important way

to infect the susceptible ones, either in a small scale area [27,28] or

from a worldwide viewpoint [29–31]. Similar theories hold for

viruses contamination with malicious code among wireless

communication devices [32,33].

Due to the high importance of human mobility research, and

the availability of the large amount of empirical data as a

consequence of the prevalence of wireless communication devices,

researchers become more and more interested in the statistical

features of human mobility pattern via real world data [34]. Ref.

[7] and Ref. [9] suggest that human travels are reminiscent of

Lévy Flights [35] according to the trajectories of bank notes and

taxies respectively, while Ref. [36] reports some variances by the

GPS information from volunteers. These differences are later

recognized as a result of the periodic pattern of individual’s

traveling [8] and recently Ref. [37] discovers up to 93% of total

time when individual locations are predictable in their data set,

which contains trajectories of mobile phone users. For taxi trips,

Ref. [38] studies the distribution of the travel distances and time.
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Nevertheless, previous statistical inferences of human mobility

mostly focus on individual level, while this article analyzes the

citizens’ collective dynamics in the urban area. In our research,

based on the traveling purposes, we discovered three distinct basis

patterns for collective traffic flow regardless of the location. In

addition, a distribution is revealed that can characterize the

fluctuation of the traffic flow at any time in each location. As

mentioned above, these findings can be useful for urban planning,

traffic estimation and anomalous detection. Further studies on

interaction between different areas will provide a more detailed

collective mobility model, and would additionally benefit the

research on epidemic spreading in urban area.

Analysis

Data Description and Background Assumptions
In this research, the data [39] are collected from about two

thousand taxies operating within the urban area of Shanghai,

China. These data mainly focus on the central part of city, and the

population in this part is about seven million according to the fifth

national population census [40]. The information about when and

where passengers were picked up and dropped off can be retrieved

from the raw data, and every pair of picking and dropping

information is defined as a taxi trip. The data set includes about

1.58 million taxi trips. The longitude and latitude location

information in the data by GPS is converted to positions in a

planar coordinate system, with the city landmark Oriental Pearl

Tower as the origin. For the ease of analyzing and representing,

the urban area is divided into squares, similar to a chessboard. The

side lengths of each square is identically 200 meters. In our

context, each location corresponds to one of these squares. More

details can be found in Appendix S1.

Basis Traffic Flows: the Constancy
As we know, even a 200m|200m area in a city can possess

land of several different types, for example, containing schools,

shops and apartments at the same time. In this section, we will

discuss how to categorize the taxi trips according to the traveling

purposes, and then use these categories to infer the land use

composition for each square.

First of all, we consider the taxi trip categorization. People

setting out in the same location would possibly have different

purposes: some may go to workplaces while some others may go

for entertainment. Meanwhile, for trips belonging to the same

category but in different locations, the collective pattern should be

similar, regarding to the departure and arrival time in a large

amount of data. For example, if the number of trips between

residential area and workplaces (for commuting purpose) reaches

the highest at 8:00 am (going to work) and 5:00 pm (getting off

work), then the number of trips in this category in any place would

peak almost at the same time, although the scale may be different.

In short, we can define a set of basis collective patterns, each of

which corresponding to a trip category respectively. Then linear

combinations of these patterns can describe the macro traveling

pattern of each location. Finally, the coefficients in a linear

combination can reflect the land uses of the location.

Directly from the taxi data, we can only calculate the macro

patterns. Therefore, we should adopt appropriate inference

methods to find the basis patterns and the coefficients for each

location.

To represent our method more formally, we define (i,j) to index

the square in ith row and jth column among all the squares

divided within the city. If m is the number of rows and n is the

number of columns for squares in the map, then i [ ½1,m�\Z, and

j [ ½1,n�\Z. Let h be the number of time slots, normally 24 for

one day. Therefore for location (i,j), the numbers of departure and

arrival trips (macro pattern) along time each day can be

represented by a 1|h vector Si,j , which is easy to calculate. We

can also define a set of 1|h vectors containing normalized

numbers of trips along time: B1, B2, B3, . . . , BK , each for one

basis pattern that we seek for.

The macro pattern is a linear combination of basis patterns, so

we have

Si,j~Pi,j

B1

B2

B3

..

.

BK

2
66666664

3
77777775

ð1Þ

where Pi,j is a row vector containing K coefficients for the linear

combination on the right-hand side.

By taking all the locations into account, it can also be written as

S1,1

S1,2

..

.

S1,n

S2,1

S2,2

..

.

S2,n

..

.

Sm{1,n
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..

.
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6666666666666666666666666666664
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7777777777777777777777777777775

~
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P1,2

..

.

P1,n
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..

.

P2,n

..

.
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Pm,1

..

.
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6666666666666666666666666666664

3
7777777777777777777777777777775

B1

B2

B3

..

.

BK

2
66666664

3
77777775

ð2Þ

and abbreviated as

S~PB ð3Þ

Because the two matrices on the right-hand side of Eq. (3) are

unknown, there are many matrix decomposition methods that

may apply. However, according to the physical meaning of P and

B, all the entries of these two matrices should be nonnegative.

Therefore, we choose nonnegative matrix factorization (NMF)

[41,42] for the decomposition.

In our context, it is a method to factorize a matrix S [ Rmn|h
z

into two nonnegative factors P [ Rmn|K
z and B [ RK|h

z approx-

imately. By this approach, we can find the basis patterns (the row

vectors of B) and the parameter vectors (the row vectors of P)

simultaneously. As vector Pi,j (the ½(i{1)mzj�th row of matrix P)

is only responsible for vector Si,j (the ½(i{1)mzj�th row of matrix

S), in fact, each element of Pi,j denotes the scale of traffic flow with

respect to the corresponding category, in location (i,j). Hence, we

also call these elements the traffic power because they reflect how

strong the traffic flows of different categories are.

Collective Human Mobility Pattern
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Now the only thing left is to determine K , the number of the

basis patterns.

From the algorithmic perspective, we noticed that NMF starts

with random initial conditions [41]. By experiments on the taxi

data with many different random initial conditions, we find that

only when K equals 3, the factorization results can be stable. This

fact indicates that with parameter K~3, NMF can find out

statistically significant characteristics for the data, and Fig. 1

demonstrates the resulted basis pattern B1, B2 and B3.

On the other hand, from the land-use and trip-category

perspective, K~3 is a reasonable choice in categorizing trip

purposes.

There are several land-use definitions related to the topic of

mobility. For example, each place may be classified as a residential

(home), working, shopping, or recreational location [27]. It may

also be regarded as one of the following types: a residential area, a

workplace, a commercial zone, a recreation area and educational

facilities [43]. In Ref. [44], these types are simplified into

workplace, home and shop. Specifically for the city of Shanghai

based on GIS information, Ref. [45] refers to the land types

including residence, industry, agriculture, roads, water, land for

construction and other urban land. In our context, we can simplify

the land-use definition to be: residences, workplaces and others.

Here workplaces shall include any industrial and office workplaces

as well as schools, and other places can include shopping and

recreational facilities, hospitals, etc.

For trips, some scientists categorize these individual activities

into several orientations: family, work, leisure and service-based

movement [46]. Similarly, according to our land-use definition, we

can use three purpose-based categories for the trips: commuting

between home and workplace (B1), business traveling between two

workplaces (B2), and trips from or to other places (B3). This

representation is in accordance with the algorithmic result in Fig. 1.

Take a typical workday as an example, based on our three

categories, the major traffic flows in the city are supposed to be as

follows: those from home to workplaces in the early morning

(green line), from one workplace to another in the daytime (red

line), from workplace to home or to other places at dusk (green line

again), and those between other places and home in the night (blue

line).

Therefore, K~3 is an effective and reasonable choice.

In the following sections with K~3, for clarity, we will use Bc,

Bw and Bo to replace B1, B2 and B3 respectively:

B~

B1

B2

B3

2
64

3
75 ~

Bc

Bw

Bo

2
64

3
75 ð4Þ

We also use Pci,j , Pwi,j and Poi,j to represent the three entries in

vector Pi,j :

Pi,j~ Pci,j ,Pwi,j ,Poi,j

� �
ð5Þ

Appendix S2 describes the detailed implementation about

applying NMF to this problem. The basis pattern on different

days are averaged to SBT. Then, Pi,j , the traffic power, can be

recalculated based on SBT for different day. If it variants in an

acceptable interval day by day, the daily average of Pi,j ,

represented by SPi,jT, can indicate the land use of location (i,j).
For example, if SPci,jT is large, then the traffic flow corresponding

to basis pattern SBcT is large, suggesting that location (i,j) serves

mainly for residences or workplaces, while if SPwi,jT is the largest,

we can be quite sure that this location is mainly for workplaces. In

addition, if the variation of Pi,j on some day goes out of the

acceptable interval, it indicates that something abnormal happens

on that day. This feature can be helpful for anomaly detection on

human activities in a large area. In the next section, we will

analyze the variance of Pi,j , to determine what is an acceptable

interval.

Daily Traffic Power: the Variation
Typically in a city, the volume of the traffic flow is quite regular

everyday [8]. However even for the same time in the same location

but on different days, the volume is vulnerable to change within a

certain range. This section is devoted to analyze how Pi,j fluctuates

everyday. In this case, P is calculated from the average basis

pattern SBT according to Appendix S2.

We define a random variable a to represent the relative variance

of the traffic power.

The empirical distribution function of a can be simply extracted

from a collection of the following expressions in different locations

on different days:

Pci,j

SPci,jT
,

Pwi,j

SPwi,jT
,

Pwi,j

SPwi,jT
ð6Þ

where S:T means the daily average, as we have used.

We also find the theoretical distribution function of a, which is

more complex.

First, we try to find a only for the first category of trips in

location (i,j). We define pn as the potential population that may

affect the first-category traffic in this location, and r as the

probability (ratio) that an individual in the population finally

becomes part of that traffic flow. Then the number of such trips

follows a binomial distribution:

PTN (tn)

~
pn

tn

� �
rtn(1{r)pn{tn ð7Þ
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Figure 1. Basis Pattern B: Green is B1, Red is B2, and Blue is B3.
Solid Lines Represent the Mean SBT, while Dashed Lines Represent the
Positive and Negative Deviations Averaged on Different Days.
doi:10.1371/journal.pone.0034487.g001
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where tn can be any non-negative integer less than pn. Because it

is a binomial distribution, the corresponding CDF can be written

in terms of the beta functions:

DTN (tn)

~ PTN (TNƒtn)

~ 1{PTN (TN§tnz1)

~ 1{Ir(tnz1,pn{tn)

ð8Þ

where Ir(tnz1,pn{tn)~
B(r : tnz1,pn{tn)

B(tnz1,pn{tn)
. B(x : c1,c2) is the

incomplete beta function as B(x : c1,c2)~

ðx

0

uc1{1(1{u)c2{1du

and B(c1,c2) is the beta function as

B(c1,c2)~

ð1

0

uc1{1(1{u)c2{1du. Eq. (8) is strictly equal when

tn is a positive integer, while for a real positive number of tn, we

may use this approximation:

DTN (tn)

&
1

2
f½1{Ir(tnz1,pn{tn)�

z½1{Ir((tn{1)z1,pn{(tn{1))�g

ð9Þ

According to the definition, a~
Pci,j

SPci,jT
~

TN

STNT
, where STNT is

equivalent to pn|r by the property of expectation of the binomial

distribution, and can be treated as a constant for a given location.

Therefore, the probability density function (PDF) of a is:

Pa(a)

~ Pa|STNT(a|STNT)

~ PTN (a|STNT)

~
pn

a|STNT

� �
ra|STNT(1{r)pn{a|STNT

ð10Þ

where a should satisfy the condition that a|STNT is a non-

negative integer. The cumulative distribution function (CDF) is

Da(a)

~ Pa(aƒa)

~ PTN TNƒta|STNTsð Þ
~ DTN ta|STNTsð Þ

~
Xta|STNTs

k~0

pn

k

� �
rk 1{rð Þpn{k

ð11Þ

where t:s where represents the floor function. We call this

distribution the normalized binomial distribution of a. As listed in

Appendix S3, the moment generation functions of a indicate that

STNT plays an essential role in the distribution. Numerical

simulations also provide evidence that the distribution of a is

strongly affected by STNT (the product of pn and r), but is almost

irrelevant to pn or r alone. Therefore, we can assign an constant

integer N to pn.

Let v be a vector containing all the possible values of STNT.

Then the PDF of a with STNT~vk can be written in this form

Pa,vk
(a)~

N

a|vk

� �
ra|vk (1{r)N{a|vk ð12Þ

and the CDF is

Da,vk
að Þ~

Xta|vks

k~0

N

k

� �
rk 1{rð ÞN{k ð13Þ

Finally, we discuss how to make a representative for variations

of any traffic category in any location. We define a vector s, in

which each entry sk denotes the proportion of traffic flow

corresponding to STNT~vk. Then for a randomly selected traffic

flow, when the average number of trips STNT is not given, a

general expression for the CDF of a is

Da(a)~
X

k

skDa,vk
(a) ð14Þ

By beta approximation as in Eq. (9), it can be written into a

continuous version

Da(a)

~
P
k

skDa,STNT(a,vk)

&
P
k

1

2
skf½1{Ir(a|vkz1,N{a|vk)�

z½1{Ir((a|vk{1)z1,N{(a|vk{1))�g

ð15Þ

Results

In this section, we demonstrate how our theoretical results are

supported by the empirical investigation.

The general characteristics of our data set, such as the

displacement distribution in Fig. 2 and the visiting frequency

distribution in Fig. 3, are similar to others’ [8,38]. The plot of daily

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

Displacement Distribution

Displacement [km]

P
D

F

Figure 2. Traveling Distance Distribution.
doi:10.1371/journal.pone.0034487.g002
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traffic flow in Fig. 4 exhibits some hot areas by red, including the

most flourishing commercial street Nanjing Road as the largest red

block, Shanghai Railway Station, Shanghai South Railway

Station, Lujiazui Finance & Trade Zone, etc. The largest isolated

area in blue is the Pudong International Airport.

Without any intentional intervention, by NMF with random

initial values, we find that the normalized basis pattern on

workdays is generally quite similar (Fig. 1). Therefore, we can use

the traffic power P to analyze the mean and the deviation of daily

traffic.

In Fig. 5, the three components of Pi,j in every location is

normalized and represented by yellow, red and blue respectively.

For example, a location in yellow color means the traffic flow of

the first category (Bc: commuting between home and workplace) is

dominant there. Mixed colors in some places indicate a mixture of

traffic flows of different categories. It is noticeable that in area

where the traffic flow is large, the positive (Fig. 6(a)) and negative

(Fig. 6(b)) deviation of the traffic power P is quite small. The

distribution of this deviation can be represented accordingly by

Fig. 7(a) and Fig. 7(b), which is fitted well with Eq. (15). This fitting

result is quite different from the best fitted normal distribution by

the central limit theory, which verifies Eq. (14) and Eq. (15) that a
should be a collection of random variables following a set of

distributions with different parameters. The proportion of traffic

flow with STNT~vk is sk, as plotted in Fig. 8. Here we limit each

sk to be no larger than twice of the empirical value. According to

the result in Fig. 7, for the whole city, 80% of the deviations are

within the range of 0:5*1:5. Although the lengths of vectors s and

v are identically 50 in our estimation, the number of active pairs

(&0) of sk and vk is only about 10, and this number can be

reduced if we only calculate for a small area given the sufficient

amount of data. In short, we can see that Eq. (15) can be a

reasonable approximation for the relative deviation of the daily

traffic flow. Fig. 9(b) presents the components of P for the central

part of the city in comparison with the urban planning map for

Year 2004–2020 in Fig. 9(a). Generally, it can be seen that the

residence area have a large volume of traffic with respect to Bc
and Bo, corresponding to trips between home and workplaces and

trips for other purposes, while in the workplace area especially for

business, there are lots of flows corresponding to the second

category Bw, and in the remaining area, the third one Bo is quite

significant. We should note that the urban planning map (2004–

2020) is not an exact description for the land uses of Year 2007,

and consequently, the patterns of the two figures may not agree

well in some small areas. For example, the red patch around point

({5,{5) in Fig. 9(a) is planned as an industrial land, namely,

10
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10
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10
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10
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10
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10
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10
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Visiting Frequency of Different Locations

Number of Visitings
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Figure 3. Visiting Frequency Distribution of Different Loca-
tions.
doi:10.1371/journal.pone.0034487.g003

Figure 4. he Average Traffic Flow of Each Location, and the
Tags Corresponding to Following Locations: q1 Shanghai Railway
Station; q2 Nanjing Road & People’s Square; q3 Lujiazui Finance & Trade
Zone; q4 Shanghai South Railway Station; q5 Pudong International
Airport.
doi:10.1371/journal.pone.0034487.g004
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doi:10.1371/journal.pone.0034487.g005
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workplace in our context, while in fact it was a construction site for

Expo 2010 Shanghai China with very few taxi traffic in

Year 2007. Yet it is still reasonable for a construction site to have

the major taxi flows of type Bo as shown in Fig. 9(b) because in the

evening workers would be very likely to go out for recreation,

entertainments, etc.

In addition, we can see how the government planning [47] is

affected by what it is now. For example, Nanjing Road and near

by is the largest block with high traffic throughput, and traffic

flows are constituted mainly by those of workplaces related (Bw)

and other facilities related (Bo) categories. In the planning, it is

designed to be a public activity center for administrative, business

and shopping purposes. Lujiazui is another similar but smaller

zone, which is planned mainly for business and shopping centers.

Discussion

In this research, we find that the traffic on workdays can be

divided into three categories according to the different purposes:

Figure 6. The Relative Deviation for Components of Pi,j in Each

Location: (a) the Average Positive Deviation; (b) The Average

Negative Deviation.
doi:10.1371/journal.pone.0034487.g006
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commuting between home and workplaces, traveling from

workplace to workplace, and others such as leisure activities.

Each of these categories has a highly distinguishable basis pattern:

Bc, Bw or Bo. The relative daily deviation of the traffic flow in

each category can be modeled as Eq. (14), which is a mixture of

normalized binomial distributions, with a continuous approxima-

tion as Eq. (15).

This basis pattern theory is applicable to data sets containing the

beginning and ending information of trips, such as the bicycle

departure and arrival data [48], cell phone based mobility

information [8], GPS based data, etc.

The first contribution of this research is, it provides a very

economical approach to understand how the urban traffic at

different locations are composed from the three categories. For

instance, a large Pci,j means there is a large portion of traffic

between home and workplaces at location (i,j). This theory can

also help to infer the land use composition by a quite easy, real-

time, and automated way. For example, the evidence of a large

Pci,j everyday indicates location (i,j) is mainly for residential or

working purpose, while a large Pwi,j can imply that it has lots of

workplaces. A mixture of different land uses in a single location

can be found by this method as well.

Second, based on the NMF approach, the time series of the total

traffic at any location can be expressed as a linear combination of

the basis patterns. Therefore, we can compress the traffic data of a

large area into a very small data size, but still with a quite high

resolution. Namely, we only need to store the global basis patterns,

and for each location, we use a small vector for the traffic power to

represent how strong each basis pattern is.

Third, we find that the distribution of the relative deviation is

not a normal distribution, indicating that the random variable a is

not identical from one place to another, or from time to time. The

significance of Eq. (14) and Eq. (15) is, they provide an expression

of how traffic fluctuates for various unknown positions and time

intervals. This description of relative deviation can also be helpful

to estimate the change of the traffic flow, which would be

important in traffic predicting, controlling and urban planning.

Finally, with the deviation distribution, we can not only predict

the change of traffic, but also diagnose the abnormality of the

traffic: where, when, why, and how. The first two functions are

obvious, while ‘why’ abnormal can be disclosed by the traffic

power, and ‘how’ abnormal can be revealed by the probability of

the deviation. For example, if some traffic flow is very abnormal

one day, the probability density of the variance on that day should

be very small.

Our analysis focusing on the traffic flows in different locations

on different workdays. Our results can also be extend to the traffic

on a road. The road traffic is a summation of the traffic passing

this road from several sources and to several destinations.

Therefore, the volume and the deviation of the road traffic flow

can also be explained in our framework.
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