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Abstract

Recent works have highlighted a double role for the Transforming Growth Factor b (TGF -b): it inhibits cancer in healthy
cells and potentiates tumor progression during late stage of tumorigenicity, respectively; therefore it has been termed the
‘‘Jekyll and Hyde’’ of cancer or, alternatively, an ‘‘excellent servant but a bad master’’. It remains unclear how this molecule
could have the two opposite behaviours. In this work, we propose a TGF -b multi scale mathematical model at molecular,
cellular and tissue scales. The multi scalar behaviours of the TGF -b are described by three coupled models built up together
which can approximatively be related to distinct microscopic, mesoscopic, and macroscopic scales, respectively. We first
model the dynamics of TGF -b at the single-cell level by taking into account the intracellular and extracellular balance and
the autocrine and paracrine behaviour of TGF -b. Then we use the average estimates of the TGF -b from the first model to
understand its dynamics in a model of duct breast tissue. Although the cellular model and the tissue model describe
phenomena at different time scales, their cumulative dynamics explain the changes in the role of TGF -b in the progression
from healthy to pre-tumoral to cancer. We estimate various parameters by using available gene expression datasets. Despite
the fact that our model does not describe an explicit tissue geometry, it provides quantitative inference on the stage and
progression of breast cancer tissue invasion that could be compared with epidemiological data in literature. Finally in the
last model, we investigated the invasion of breast cancer cells in the bone niches and the subsequent disregulation of bone
remodeling processes. The bone model provides an effective description of the bone dynamics in healthy and early stages
cancer conditions and offers an evolutionary ecological perspective of the dynamics of the competition between cancer and
healthy cells.
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Introduction

A full systemic understanding of cancer process will benefit from

investigating cell-tissue interaction. We can observe what happens

at more or less all scales, from the disease at the whole organism

down to the molecular level of cancer, and we have good amount

of experimental data on all levels of biological organization.

However, putting things together in order to obtain real

understanding is much more difficult and much less developed.

A way to build up multi scale models is by using proteins that are:

1) mutational drivers, meaning the mutation of one of the related

genes causes the change of the phenotype, 2) able to interact with

proteins which have intracellular and extracellular effects; hence,

involving multi-cellular phenomena. Here, we start with the

consideration that tissue modeling is the missing link between basic

research and clinical practice, and we aim at using a modeling

approach to bridge the cell to tissue scale in health and disease

(cancer) dynamics. A key player of this multi scale process is TGF -

b family of cytokines that control numerous cellular responses,

including proliferation, differentiation, apoptosis and migration.

TGF -b is always produced as an inactive cytokine that cannot

bind to its receptor and function unless the latent complex is

somehow activated. This regulation provides a complex control of

TGF -b function, thereby ensuring that its potent effects are

produced in appropriate locations and times. TGF -b interacts

with cytoskeleton, epithelial cadherin (E-cad) and integrins

producing a multi scale mechanobiological effects on tissue [1].

Cancer is a multi scale, multifactorial and multi step process [2,3].

The cancer cells undergo a cascade of mutations, some of them

changing the phenotype, to obtain the ability to metastasise, and

are constantly exposed to signals that induce apoptosis. Acquisition

of antiapoptotic properties by cancer cells is important for

metastasis, and recent studies suggest that TGF -b promotes the

survival of certain types of cancer cells [4,5]. TGF -b both inhibits

and facilitates tumor progression during early and late stage of

tumorigenicity, respectively. However, it still remains veiled how

TGF -b plays both contrasting roles [6–8]. Therapies based on

TGF -b seem promising [9]. Tumorigenesis is in many respects a

process of disregulated cellular evolution that drives malignant

cells to acquire several phenotypic hallmarks of cancer, including

the ability of growing autonomously, disregarding cytostatic

signals, ignoring apoptotic signals, stimulating angiogenesis,

invading, metastasising and becoming immortal. In the next

section, we introduce the role of TGF -b in breast cancer.

The Ductal Lobular Unit and Breast Cancer
The terminal ductal lobular unit is the basic functional and

histopathological unit of the breast, and it has been identified as
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the site of origin of the most common breast malignancy. The

ductal carcinoma corresponds to a specific stage of cancer

development of the mammary parenchyma, Figure (1). Recent

works showed that TGF -b is abundantly expressed by highly

metastatic breast cancer cells and promotes their survival. In

particular, TGF -b autocrine signaling, in certain breast cancers,

promotes cell survival via inhibition of apoptotic signaling [10].

Major determinants of the ‘‘tissue identity’’ are the cadherins and

integrins which are adhesion molecules regulating cell-cell and

cell-matrix interactions. Cells containing a specific cadherin

subtype tend to cluster together to the exclusion of other types,

both in cell culture and during development. In vitro and in vivo

studies have demonstrated the existence of crosstalk between

integrins and cadherins in cell adhesion and motility.

Integrins play a key role in activating the latent complex of

TGF -b. The binding of integrins to the latent complex induces a

conformational change that produces active TGF -b that binds to

its receptor. Evidence now points to a crucial role for cell

contraction in the activation of TGF -b via few types of integrins.

An intact actin cytoskeleton is required for TGF -b activation by

these integrins; activation is greatly reduced by treatment of cells

with the actin polymerization inhibitor cytochalasin. Additionally,

treatment of cells with inhibitors of cell contraction, greatly

reduces integrin-mediated TGF -b activation, whereas agents that

stimulate cell contraction, such as thrombin, angiotensin-II and

endothelin-1 enhance TGF -b activation by integrins [1].

In breast cancer, the expression of E-cad is a hallmark of a well

differentiated epithelium that functions to maintain cell-cell

junctions, thereby inhibiting aberrant cell proliferation and

migration. The loss of E-cad function via genetic inactivation by

TGF -b or via epigenetic silencing is a common characteristic of

systemically invasive carcinomas. Down-regulated E-cad expres-

sion is required for the outgrowth of breast cancer cells. Breast

cancer cells show a typical pattern of dissemination by 1) down-

regulating E-cad expression or activity; 2) separating cell-cell

junctions; 3) invading the surrounding tissues; and 4) intravasating

the vasculature or lymphatic system [11]. Recent works show that

down-regulated E-cad expression induced by TGF -b was suffi-

cient to prevent mammary epithelial cell differentiation and

instead, produced dense and more spherical cultures that

underwent metastatic outgrowth [12] [13].

Here, we model the molecular and cellular mechanisms that

underlie the TGF -b capacity in suppressing tumor development in

normal cells, and conversely, to facilitate cancer progression and

increase number of malignant cells. Our multi scale model focuses

on the TGF -b activation requirement, its autocrine properties of

TGF -b, its role in promoting cell contraction and being activated

by cell contraction [6]. First we model the single cell and then the

cell population by investigating the autocrine and paracrine of

TGF -b in a generic epithelial tissue. We investigate the relation

between the concentration of TGF -b and its receptors with respect

to the stage of the cancer. In this perspective, we model the early

invasion of few malignant cells in a healthy tissue and the different

role of autocrine and paracrine TGF -b secretion. The autocrine

and paracrine behaviour are explored on the light of the

evolutionary ecology principle of malignant and healthy cell

competition. It is known that the bone tissue is the preferred niche

of breast cancer colonization; we present a model of the role of

TGF -b in bone invasion and alteration of bone tissue remodeling

dynamics.

In summary, here, we introduce a set of scale specific

mathematical models that render the multi scale behaviours of

TGF -b allowing us to describe the early breast cancer develop-

ment and the initial condition of the metastasisation process by

using a level of description familiar to biologists in order to

encourage experimentation and hypothesis testing.

Results

The development and spread of cancer, although caused by

driver mutations producing variations in gene expression and

signaling disfunctions, involves cytoskeleton biomechanical chang-

es that modulate cell dynamics at the tissue level. The

development of a tissue mathematical model requires considering

the TGF -b autocrine and paracrine behaviour of the cells.

Therefore, we focused on the interface between intracellular and

extracellular compartments. Given the different time dynamics of

the reactions at the intracellular pathways level and the cell

dynamics at tissue levels, we prefer to build distinct models,

coupled by time averages of the fastest dynamics. Following the

model developed by Laise et al. [14], we have focused on

autocriny and paracriny behaviours of the TGF -b. Next, we have

considered a tissue model to describe the effects of the TGF -b on

cellular populations characterized by different driver mutations.

Finally, we consider the bone niche model which allows us to

describe the effects of the tumoral cells on the BMU (Basic

Multicellular Unit) remodeling cycle. Each of these models

describes different aspects of the TGF -b at a particular scale

and they are loosely coupled by using averaged quantities of TGF -

b in such a way to mimic the interactions between different scales;

This allows us to consider each model as a ‘‘sub-model’’ which is

part of a more comprehensive multi scale model. From here on,

when we refer to the multi scale model, we will use the single term

model, and we will specify otherwise when referring to one of the

scale specific model. Describing the dynamic development of

tumors requires the knowledge of numerous degrees of freedom,

which often are not experimentally available, and a complex

model able to correctly analyse all the data, retrieve the relevant

information of the present state and simulate its future evolution.

Here, we propose a model to explain the early stages of tumor and

its evolution in bone tissue based on production and sensing of

TGF -b in both the paracrine and autocrine processes.

The Intracellular Generation of TGF -b Fluxes
In this work, we follow the model of Laise et al. and [15,16] that

for the sake of completeness, we will re-propose and adapt into the

structure and the aims of a multi dimensional model that embrace

both the intracellular/cell and cell/tissue interfaces. They

considered a simple biochemical model which explicitly describe

the key features of the Smad pathway. The first three equations of

the model, see system of equations (1), accounts for the interaction

between TGF -b (bec) and the inactive membrane receptor (Rec).

Following a successful encounter, the receptor turns into its active

form here denoted R?
ec. In reality, different isoforms of TGF -b and

of its receptor exist. In [14], the authors simplify the model setting

by considering just one receptor type, which can operate in its

active (bound to TGF -b) or inactive configuration. The activated

receptor is able to phosphorylate the R-Smad proteins (Sc) in the

cytoplasm, resulting in the formation of a new species, the

phosphorylated Smad protein, here labelled pSc. Once phosphor-

ylated, the Smad proteins head towards the nucleus. The

translocation of the Smad proteins into the nucleus (pSn) is

necessary to activate the transcriptional activity. This is a complex

process, possibly organized in cascade regulatory cycles. Note that

cytoplasmatic pSc are modified into nuclear pSn with a rate

specified by the control parameter kin. The presence of

phosphorylated Smad in the nucleus is in turn associated to an

increase of the hmga2 gene expression [17]. The nucleus is also
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enriched by phosphates (PPase) targeting phosphorylated Smad

[16]. The dephosphorylation of the nuclear Smad proteins pSn

results in non-phosphorylated nuclear Smad elements Sn. The

model is composed of eight variables, respectively bec, Rec, R?
ec, Sc,

pSc, pSn, Sn and hmga2. The associated concentrations obey to

the following set of ordinary differential equations:

Lt bec~{rb bec(t) Rec(t),

Lt Rec~{rb bec(t) Rec(t),

Lt R?
ec~rb bec(t) Rec(t){kp R?

ec(t) Sc(t),

ð1Þ

Figure 1. 3D representation of the mammary duct. The mammary duct is formed by epithelial cells. Normal ductal cells (w~0) are regularly
arranged on a single 2-dimensional layer. Tissue irregularities appear in presence of benign ductal cells, but cells still lie on a surface. When epithelial
cells develop an aggressive phenotype (w~3), they begin to stratify.
doi:10.1371/journal.pone.0088533.g001
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Lt Sc~{kp R?
ec(t) Sc(t)zkex Sn(t),

Lt pSc~kp R?
ec(t) Sc(t){kin pSc(t),

Lt pSn~kin pSc(t){ks pSn(t){kdephos pSn(t) PPase,

Lt Sn~kdephos pSn(t) PPase{kex Sn(t),

Lt hmga2~km pSn(t):

where the notation Lt represents the partial derivative in respect

to the dependent variable t indicating the variation in time of the

following quantity on the right. In the last equation of the system

(1), hmga2 measures the mRNA amount and as such assumes

arbitrary units. All the other concentrations are instead expressed

in nmol. Notice that the concentration of PPase remains

unchanged all along the dynamical evolution. Asymptotically,

the system admits a family of stable fixed points. From the

experimental results in [16], eventually the TGF -b amount as well

as the activated receptors amount go to zero, and consequently,

there is only one fixed point that satisfied such conditions.

Analogously, according to the model specification, we have

bec~R?
ec~pSc~pSn~Sn~0. The quantities Rec, Sc and

hmga2 converge instead to stationary solutions, function of the

initial condition and of the kinetic parameters involved. The TGF -

b pathway is in particular reduced to a limited set of meaningful

chemical reactions that are presumably implicated in the

transmission of the signal from the cell surface, as triggered by

TGF -b, to the cell nucleus. The analysis conducted by the authors

in [14] is in particular aimed at inspecting the out-of-equilibrium

dynamics of the system, as driven by the externally imposed TGF -

b. The model proposed by Laise et al. for the epithelial-

mesenchymal transition predicts the concentration of mRNA

associated to gene hmga2, properly describes the results of the in-

vitro experiments set up by [16] and reproduces the right

unperturbed steady state characterized by specific concentrations

of cytoplasmatic Smad proteins Sc and unbound receptors Rec,

which have been carefully evaluated by Schmierer and collabo-

rators.

To address the problem of building a model which takes into

consideration the effects of the TGF -b pathway signaling and

tumor regulation at different scales, we adopt this intracellular

model as a starting point. In our multi scale approach, we

introduce two main re-adaptation of the previous intracellular

model. First, we have done a model order reduction regarding the

Smad and the hmga2 concentrations by imposing kp Sc constant

in time, which allows us to simplify the intracellular processes

disregarding the effect of the Smad signaling cascade reactions, see

equations (1) in the dashed line box, in order to focus on the TGF -

b pathway, see equations (1) in the continuous line box. The

justification for such approximation, as explained in [14], is due to

the large amount of Sc in comparison to R?
ec and to the re-

integration of Sc which permits us to consider the variation of the

Smad in the cytoplasm negligible. Second, for a description of

processes that occur not only at different spatial scales, but also at

different time scales, we need to introduce source terms (and sink

terms when necessary) for the synthesis of both the TGF -b and its

receptors in order to move the fixed point in such a way the

remaining quantities, at intracellular scale, are all different from

zero. This is much more reasonable for long and continuously

ongoing processes; while positive quantities, like the concentra-

tions, approaching zero implies the processes will come to a

standstill irremediably affecting the system at all scales.

The Cellular Model
The cellular model is the first of the three models where we

discuss the intracellular/cell interface and take into consideration

the dynamic effects of the TGF -b in a small patch of cells. With

this model, we address the problem of production and internal-

ization of TGF -b along with the binding of autocrine or paracrine

TGF -b to the receptors on the membranes without considering

the detailed spatial disposition of cells. Even though the autocrine

and paracrine signaling are completely distinct forms of exchang-

ing chemicals, it is impossible to distinguish between the two when

they occur at the same time. It is true that a cell can sense the local

spatial inhomogeneity of chemicals and the heterogeneity of and

positions of other cells it is in contact with; hence, the cell can

regulate itself to secrete the chemical compounds along preferred

directions in such a way the chemicals will most probably follow an

autocrine pathway or a paracrine one. Nevertheless, these cellular

behaviours and this level of detail are unknown and unavailable

for the TGF -b signaling.

On the other hand, it is important to stress that, if all the cells

have similar behaviours in respect to the TGF -b secretion/

absorption, and they are homogeneously distributed, then the

average paracrine signaling to and from other cells cancel out one

another. In the case proposed here, the paracrine signaling inward

and toward the neighbour cells do not cancel out because cells

with different phenotypes do not behave in the same way. To

overcome such difficulty, we propose to subdivide the space where

cells are placed by adopting a ‘‘cell-centric’’ point of view.

Therefore, for each cell, we consider a spheric volume containing

and centred on the cell itself. The surface of the cell membrane

divides this volume between the intracellular part and the external

part. The latter is divided in the extracellular region, which is the

closest neighbourhood just around the surface of the cell

membrane where the TGF -b produced by the cell is released

and can bind with the receptors of the specific cell at the centre of

the volume, and the diffusive region representing the farthest part

of the spherical volume from the cell where the TGF -b cannot

reach the receptors on the cell surface of any cell. Between two

nearest cells, the farthest parts of the respective diffusive regions

are the intangible frontiers where the two ‘‘cell-centric’’ spatial

subdivisions join together. Furthermore, we extend the previous

definition by considering the diffusive region of each cell as the

place where all surround ‘‘cell-centric’’ spaces join together;

therefore, the diffusive region is the common area between a cell

and all its nearest neighbour cells. The TGF -b entering in the

diffusive region loses the possibility to bind with cells and also loses

any dependency on the cell from whom it has been produced. In

other words, the TGF -b produced by the cells, which does not

bind autocrinely, flows before into the diffusive region and then

flows back toward all the cells in the neighbourhood indistinctly, so

that it can bind in a paracrine way.

The portion of volume occupied by the union of all the external

parts depends on the volume of the cells and the distances between

their membranes. This intercellular space is filled with the

extracellular matrix (ECM), a fibrous mesh which gives it the

peculiar behaviours of the porous media. The ECM is responsible

for the reduced diffusivity of the active TGF -b. As a consequence,

the TGF -b in the diffusive region cannot easily diffuse toward the

cells, and the TGF -b in the proximity of the cells is more easily

conveyed toward the receptors on the cell surface. The

prolongated time of diffusion is also responsible for the dispersion

of TGF -b. The obstructions in the porous media introduce non-
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linearity in the diffusion equation. Excessive non-porosity can

forbid the diffusion of molecules through the media, or it will

oblige molecules to follow highly crooked paths. To avoid

excessive complications in the diffusion of TGF -b due to the

complex geometry produced by the disposition of the fibrous

mesh, we can take into consideration the averaged conformational

characteristics of the ECM in the diffusive region by using an

effective diffusion coefficient which can be experimentally

measured. Furthermore, the compartmental description of the

ECM as a region with impaired diffusivity also reproduces the

function of storing growing factors.

Using the first Fick’s law [18], the flux of molecules of TGF -b
crossing a unitary orthogonal surface is given by

J~{DeffLx(b=Vdf ) where the effective diffusion coefficient Deff

includes the porosity of the ECM, and the density of TGF -b is

expressed as the quantity of molecules over the diffusive region

volume Vdf . Discretizing the first Fick’s law and multiplying both

sides of the equation by the orthogonal surface Adf crossed by the

TGF -b during the diffusion between the extracellular region and

the diffusive region, we get JAdf~{Deff Adf=Vdf|Db=Dx where

Vdf=Adf&Dx~10nm is the distance between two adherent cells

whose neighbouring membranes are bridged by E-cad. The

quantity of molecules escaping through the orthogonal surface per

unit of time can also be expressed in terms of the paracrine rate

JAdf~{rpcDb and hence, the TGF -b paracrine rate is equal to

Deff=Dx2.

We want to remark that the introduction of the diffusive region

makes it possible to mimic the paracriny between cells, but at the

same time, we completely disregard the relative disposition

between cells. Such approximation is not entirely appropriate to

describe the exchange of TGF -b between two specific cells.

However, it is justifiable when describing an averaged effective

exchange of TGF -b between different groups/types of cells.

After the TGF -b binds with the receptors, a series of reactions

involving the Smad proteins follow their internalization. For the

sake of simplicity, we do a model order reduction on the

intracellular model proposed in [14] by considering the non-

phosphorylated Smad proteins in the cytoplasm constant in time,

see last equation in the continuous line box and first equation in

the dashed line box of the system of equations (1).

Due to the importance of TGF -b for different aspects of the

cellular life cycle, degradation of TGF -b in the intracellular

compartment can not be neglected especially in healthy cells

where the over-accumulation of TGF -b can produce a large

disregulation. Therefore, we consider that healthy cells ubiquiti-

nate part of its TGF -b, while mutated cells do not perform such

activity. The set of partial differential equations for the cellular

model are:

Lt bec(w,t)~rsyn b?sM(w){bec(w,t)
� �

{

rb bec(w,t) Rec(w,t)zrpc
bdf (t)PW

Q~0 r(Q,t)
{bec(w,t)

" #
,
ð2Þ

Lt Rec(w,t)~rsyn RsM(w){Rec(w,t)½ �{rb bec(w,t) Rec(w,t), ð3Þ

Lt R?
ec(w,t)~rb bec(w,t) Rec(w,t){ rsgnzdw,0 ru

� �
R?

ec(w,t), ð4Þ

The system of equations (2–5) defines the evolution in time of the

TGF -b produced (bec), its receptor on the cell membrane (Rec), the

internalised TGF -b (R?
ec) and the TGF -b in the diffusive region

(bdf ), see Table (1). While the TGF -b in the diffusive region

represents the total amount of TGF -b that all the cells in the nearest

neighbourhood are paracrinely exchanging, the other variables are

intended as averages all over the sub-populations of cells with the

same phenotype. Therefore, the quantities bec, Rec and R?
ec depend

on the phenotype expressed by the index w (and Q). The region of

interest within the tissue where the tumor begins to develop is also

partitioned in sub-populations of cells, r, identified by the

phenotype index which goes from 0 to a maximum value W. The

phenotype index is associated with the cell aggressiveness and

sensibility to the TGF -b so that w~0 corresponds to the healthy

cells and as w increases, the more cells are aggressive and need more

TGF -b in order to respond to its signal.

In equation (2), the first two terms describe the synthesis of TGF -b
that is secreted in the external region where it is activated and the

binding between the TGF -b and its receptor. The third term takes

into account the averaged values of TGF -b transferred by one cell

with phenotype w toward to the diffusive region and the mean TGF -

b per cell received from the diffusive region. Similarly, equation (3)

describes the synthesis of TGF -b receptors which are displaced on

the cell membrane and binds with the TGF -b present in the

extracellular region. The TGF -b binds to its receptor on the

cytoplasm membrane, and it is internalized. Inside the cell, the TGF -

b interacts with the Smad [14] at rate rsgn, and to avoid an excessive

abundance of this protein, ubiquitination occurs with rate ru, see

equation (4). The operator di,j in equation (4) is a delta of Kronecker

which takes value 1 when the indexes i~j and zero when the two

indexes are different. The variation of total TGF -b in the diffusive

region is due to the incoming TGF -b which each cell exchanges

paracrinely and the out coming flux shared among all the nearest

neighbour cells, first and second term in equation (5) respectively.

We have used the TGF -b and TGF -b receptors gene expression

data in the cellular model equations (2–5) to evaluate the

respective synthesized quantities and the concentration of the

active TGF -b in the intracellular compartment for each sub-

population with phenotype index in the range ½0,W�. In Figure (2),

we show the results for different TGF -b isoforms. Due to the

disregulations of TGF -b production in cells with driver mutations,

we can observe that the concentration values of TGF -b fluctuate

between healthy, pre-tumoral and tumoral cellular phenotypes,

and there is no clear trend which follows the severity of the tumor.

On the other hand, some particular cases are characterized by a

monotonic relationship between the populations’ phenotype and

the concentration of the TGF -b quantities, see the Rec for the

isoforms TGFB1I1/TGFBR3, both R?
ec and bec for the isoforms

TGFB1/TGFBR2, the R?
ec for the isoforms TGFBI/TGFBR2

ð2Þ
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and the Rec for the isoforms TGFB3/TGFBR3. These particular

isoforms are useful to identify the tumor cell phenotype. For

example, the expression for the TGFB1I1 receptors, which have

an antitumorigenic effect, decreases with the increase of cellular

aggressiveness.

It is important to stress that the dynamics of the TGF -b pathway

of a sub-population with a specific phenotype described by the

system equations (2–5) depends on the dynamics of the TGF -b of

the other cellular sub-populations in two different ways. The first

one is the paracrine exchange of TGF -b with rate rpc between the

sub-populations expressed in equation (2) and equation (5). The

second way the equations (2–5) are coupled between different

phenotypes with one another is given by the average number of

nearest neighbour cells r(w,t). The former describes a cellular scale

phenomenon, while the latter is a tissue scale phenomenon. Hence,

if the number of cells of the different sub-populations is not constant,

but changes dynamically, then it is necessary to supply the cellular

model with a set of equations for the cellular evolution of the tissue

(see next subsection for the tissue model).

The Tissue Model
Mutations are responsible for the behavioural changes of cells

that, from a healthy state in which they are capable of correctly

sensing and responding to the surrounding signaling, enter to a

mutated state, where the cells cannot self-regulate in response to

the homeostatic signals. Mutations induced by external agents, or

due to the occurrence of casual variations in the DNA’ s

transcription while proliferating, can be easily accumulated during

a cell life or in multiple progenies. Hence, the increasing in the

population number and the survival of mutated cells can obstruct

the tissue integrity and its functional activity well before the cells

acquire a highly malignant phenotype. As previously stated, the

TGF -b signaling has a pivotal role in maintaining homeostasis at

the cellular scale and the functional integrity at the tissue scale.

Indeed, the TGF -b downregulates the cell proliferation, is

responsible for the cell cohesion at high concentration, induces

cell apoptosis [7]. Nevertheless, the anti-tumorigenic mechanisms

provided by the TGF -b, and their effectiveness, depend on the

capability of the cells to properly sense its signal. DNA mutations

(in particular, driver mutations [19]), on one side, can induce

changes in cell phenotype which destabilize the correct cell

functions. The weakening of a cell and loss of its stability are

responsible for the increase of active TGF -b. On the other side,

mutations can produce a resistance of the cell response to the

TGF -b signaling. Cells with these driver mutations can also

acquire the capability to produce a higher concentration of TGF -b
which is required to reach a different homeostatic level without

incurring in apoptosis. Eventually, a cell can always undergo a

mutation resulting in the failure of the anti-tumorigenicity of the

TGF -b and in an inversion of its role, meaning the transformation

of TGF -b from Dr Jekyll to Mr Hyde occurs [8]. In the latter case,

the TGF -b fails in downregulating cell proliferation and inducing

cell apoptosis; while the excessive production of TGF -b becomes

dangerous for the surrounding cells which have not yet acquired

sufficient resistance to the growing factor.

As previously said, cell mutations are random, and each

mutation can induce apoptotic cell resistance to certain signals, or

it can introduce cellular instability and put the cell to death.

Nevertheless, this does not mean there is no relation between

mutations, or that a mutated cell can accumulate mutations and

return to its original state. Indeed, the cell behavioural changes

induced by mutations can be associated to a stage. This cell stage

indicating the results of mutations does not variate continuously,

but, on the contrary, it is characterized by abrupt phenotype

changes. Therefore, mutations make the cell change from one

stage to another with given probabilities, and the presence of

correlations or constraints between mutations oblige the cell each

time to variate its stage going through a small subset of all the

possible mutation states. Indeed, the mutation state of a cell

monotonically increases during its life, producing a progressive

change of its phenotype which from a normal stage goes through a

series of pre-neoplastic steps to a neoplastic phenotypical stage.

On the other hand, not all the occurrences of a mutation imply a

change of the cellular phenotype or a change in the production of

and response to the TGF -b. Furthermore, at each stage, a cell has a

given probability in acquiring a complete resistance to the tumoral

suppressor action of the TGF -b by switching to a phenotype where

the TGF -b becomes a tumoral promoter. To address the differences

between cell tumoral behaviours and cell response to TGF -b, we

introduce a discrete positive variable w that represents the cell

phenotype. The index w subdivides cells into groups which share the

same phenotype without considering the specific mutations

accumulated by each single cell; therefore, each cell in a group

has the same sensibility to the signaling induced by the active TGF -

b bound to the membrane’s receptors and activates the same

amount of TGF -b per unit of time. From a biological point of view,

in our prospective, the values of w has some relativeness with the

hallmarks of cancer [2,3], and from a medical point of view, it may

be related with the diagnostic stage of cancer.

All quantities and characteristics which refer to a particular cell

stage, or mutated cell population, will depend on the phenotype w.

Therefore, normal cells have a phenotype w~0, pre-neoplastic cells

correspond to w~1, tumoral cells are indexed as w~2, and cells with

aggressive tumoral behaviours and strong resistance to TGF -b
inhibiting signaling have phenotype w~W~3, [20,21]. A possibility

of explaining the different responses to TGF -b signaling by cells

with different phenotypes is thinking that a normal healthy cell has

W different mechanisms working in series to regulate the response/

Table 1. List of variables.

variable/unknown symbol initial value

extracellular TGF -b bec {2,2,2,2} [nmol]

receptors on the
membrane

Rec {2,2,2,2} [nmol]

internalized receptor-
ligand

R?
ec {1,1,1,1} [nmol]

autocrine TGF -b b?df 0.1 [nmol V {1
df ]

number of nearest
neighbor cells with
phenotype w

r(w,t) {6,0,0,0} ½V {1
neigh �

osteocytes Ocy 900 ½V {1
osteon �

osteoclasts Oc 0 ½V {1
frac �

lining cells Lng 0 ½S {1
frac �

osteoblasts Ob 0 ½S {1
frac �

RANKL RANKL 0 ½nmol V {1
frac �

BMP BMP 0 ½nmol V {1
frac �

CSF CSF 0 ½nmol V {1
frac �

BMD BMD 100 ½%�

If the variable depends on the phenotype w, then we give a list of values sorted
by increasing order of the phenotype. References and choices for the numerical
values of the initial values are discussed in the data analysis section.
doi:10.1371/journal.pone.0088533.t001
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Figure 2. Table of TGF -b synthesized, TGF -b receptor synthesized and TGF-b internalized for each phenotype w. These values are
obtained from the numerical solution of the cellular model equations (2–5) at time T~10 days. The various types of TGF -b and receptors are
expressed on top of each box. The tumor grades are sorted into increasing order of severity and aggressivity.
doi:10.1371/journal.pone.0088533.g002
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sensing of TGF -b. Therefore, at the beginning, the signal R?
ec

entering the cell is amplified to (cR?
ec)a where 0vav1 and c is a

suitable scaling constant. Then, the amplified signal is sent to all the

W mechanisms and a binary information s[f0,1g, which indicates if

there is an absence or presence of entering TGF -b respectively, is

sent to the first regulating mechanisms in the series. Each

mechanism uses the entering signal to amplify the binary

information s of a factor (cR?
ec)a. After all the W mechanisms are

applied, the outcome (cR?
ec)Wa is compared with the amplified signal

(cR?
ec)a and their ratio is used as an upregulation of the apoptotic

signaling and as a downregulation of the cell proliferation. For a

normal cell (w~0), all the W mechanisms regulating the response of

the TGF -b are functioning, while for the successive phenotype

w~1, there is one mechanism which always fails to function. The

failure of the mechanism results in no contribution to the

amplification of the binary signal. As the phenotype w increases so

does the number of failing mechanisms. When all the mechanisms

which amplify the entering signal are non-functioning due to the

severe mutations like in aggressive tumoral cells, the binary signal s
(non amplified) compared with the entering signal (cR?

ec)a
w1

produces a reduction/dumping of the TGF -b signaling. Conse-

quently, the cells respond by increasing the proliferation and

decreasing the apoptosis.

To describe the dynamic evolution of the cell populations for

each phenotype w, we propose a model based on the effectiveness

of the cell response to the TGF -b signaling. To easily describe the

exchange of TGF -b between cells and their phenotypical

evolution, we focus our attention on a small region of healthy

tissue in which cancer cells will form. Precisely, we consider a

volume containing a cell, all its neighbour cells and part of the

empty space inside the mammary duct, see Figure (1). Cells in a

normal mammary duct are regularly arranged in such a way to

form a tubular surface one cell thick. Even when cells start to

present some pre-neoplastic phenotypical behaviours, they con-

tinue to lay on the mono layer duct surface, but with a less regular

arrangement. Therefore, after having set the volume of the region

of interest, we can consequently fix the average maximum number

of cells, Cw~C0~C1~C2, which can lay on the surface of the

mammary duct. On the other hand, neoplastic epithelial cells in

the mammary duct tend to form multi-layers; therefore, the

volume capacity, CW, of this type of cells is bigger than in the other

cases. The average number of cells r(w,t) within the volume of

interest is described by the following equation:

Ltr w,tð Þ~rp wð Þ 1{

PW{1
Q~0 r Q,tð Þ

Cw

 !
r w,tð Þ

cR?
ec w,tð Þgp wð Þ

h i
{ra cR?

ec w,tð Þga wð Þ
h i

r w,tð Þ{rdr w,tð Þ

zrm dw,WpW

XW{1

Q~0

r(Q,t)z(1{dw,W) (1{dw,0) 1{pWð Þr(w{1,t){r(w,t)
� �( )

z(1{dw,0{dw,W)
rmrp(w{1)

a
1{

PW{1
Q~0 r(Q,t)

Cw{1

 !
r(w{1,t)

½cR?
ec(w{1,t)�gp(w{1)

,

ð6Þ

with the additional condition that r(w,t)~0 for wv0 (the

phenotypes wv0 are set constantly equal to zero, because they

do not have any biological meaning and they can be disregarded).

The first term on the right hand side of equation (6) describes the

proliferation limited by the volume capacity Cw, and downregu-

lated by both the TGF -b entering the cell, R?
ec, and the capability

to respond to it, gp(w). The second and third terms express the

cellular death induced by the TGF -b signaling, which also

depends on the phenotype sensing exponent ga(w), and by the cell

instabilities induced by random mutations. The fourth term

describes the changes of phenotypes (the increase of w) as a

consequence of the mutations. The delta of Kronecker shows that

normal cells can only develop anomalous behaviours, and

aggressive cells (w~W) do not change their phenotype. Similarly,

the fifth term describes the occurrence of important mutations and

of phenotype changes during the cell proliferation. We introduce a

upper limit W for the phenotype values because when cells

accumulate to many mutations, they reach a stage of instability

which are inconsistent with both the aggressiveness of the cell

phenotype and the diagnostic stage of cancer. A similar upper limit

used to label the tumoral stage of the cancer cells has been adopted

in [22] as the limit in which cells are prevalently characterized by

an apoptotic regime instead of those characteristic hallmarks

associated to cancer development [2,3].

In Figure (3), we show the numerical solution of the tissue model

coupled with the cellular model. The figure represents the

evolution of the average nearest neighbour cell sub-populations’

densities inside the mammary duct. The occurrence of driver

mutations inducing phenotype variations and the following

disregulation of TGF -b cell production results in an increase of

cell populations with higher phenotype indexes to the detriment of

the healthy cell population, Figure (3.A). In Figure (3.B) and

Figure (3.D), we can see that pre-tumoral cells, having developed

only a partial resistance to TGF -b signaling, proliferate much

slower than cells with aggressive tumoral behaviours. Nevertheless

due to rare occurrences of driver mutations inducing phenotype

changes, the cell population with phenotype w equal to 2 increases

much slower than pre-tumoral cells, Figure (3.C). In Figure (3.D),

the tumoral cell sub-population with phenotype w equal to 3 is

characterized by a long initial part where they are almost zero

followed by a high proliferation phase until the maximum cell

capacity is reached. This shows that, even though TGF -b has lost

its anti-tumorigenic role on aggressive cells by increasing their

proliferation and driver mutations immediately changing the cell

phenotype to the maximum value W can occur at any moment, the

delay with which aggressive tumoral cells form points out that they

are prevalently originated by sub-populations which have already

developed TGF -b resistance more than by healthy cells. Hence

this highlight the strong capability of TGF -b in slowing down the

cancer development by acting on pre-tumoral cells. On the other

hand the steep increase of aggressive cancer cells, after the first

plateau-like phase, remarks the role of TGF -b as cancer promoter

on aggressive tumoral cells.

It is important to point out that both the cellular model and the

tissue model describe the dynamic of averaged quantities. Also the

coupling between the two is regulated by the average of the TGF -

b entering the epithelial cells and the average numbers of

neighbour cells with a specific phenotype which compose the

mammary duct tissue in the region of interest. The differences in

the order of magnitude between the rates in the cellular model

with respect to tissue model, see Table (2), allow us to overcome

such difficulties; in fact, phenomena occurring at the cellular scale

are much faster and relax to a steady state more rapidly than the

events happening at the tissue scale. Hence the difference between

the two time scales and the loosely coupling, due to averaged

TGF -b quantities, makes it possible to reduce the coupling

between the extracellular and the tissue scales resulting in multi

scale model consistent with the biological phenomena.

Different factors play a role in the prediction of cancer

evolution. The presence of characteristic time scales in the
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development and the dynamics of breast cancer is not so easy to

define or to detect. Nevertheless, few considerations can be made.

Observing the values of the parameters of the multi scale model,

some of which are given in the literature and others are chosen so

that their order of magnitude is consistent with the range of values

present in similar biological situations (see Sec. Methods), one can

a posteriori pinpoint that there are two distinct time scales. The

first describes processes occurring at intra-extra cellular time scale

and the other, at tissue time scale. Hence, the differences between

the two time scales reflect the velocities at which the processes

happen at both the cellular level and the tissue level. This implies

that fluctuations due to various cells activities, even when they are

large, rapidly decay and cancel out. From the tissue scale point of

view, we can disregard large rapid cell variations, and conse-

quently, a posteriori, we are justified in adopting the mean-field

form of interaction between the cell and the tissue scales.

Looking at various clinical cases and at their respective gene

expressions, these two time scales cannot be explicitly determined

due to the lack or impossibility of direct experimental measure-

ments. On one hand, using the information for each patient to

adjust the model parameters so to better fit each dynamics of the

disease, we can observe that there are two distinct time scales, even

though they are not unequivocally defined. On the other hand,

these two time scales do not identify different steps of the cancer

development, nor do they represent two different dynamics. They

only express that an abrupt event which suddenly changes the

behaviours in a small group of cells may initiate the disease, but its

effect will be felt at larger scales only at longer times thanks to the

TGF -b which represents the vector of the interaction.

The bone Niche Model and the Effect of TGF -b in Bone
Remodeling

Breast cancer bone metastases are predominantly osteolytic and

accompanied by bone destruction, bone fractures, pain, and

hypercalcemia, causing severe morbidity (bone metastases occur in

about 70% of patients with advanced breast cancer). Comorbidity

addresses the occurrence of different medical conditions or

diseases, usually complex and often chronic ones, in the same

patient. There is a causal effect, and the bone is a unique

microenvironment in which breast cancer thrives [23]. Bone is

continuously being formed by osteoblasts and resorbed by

osteoclasts, not only to maintain mineral homeostasis but also to

cope with the microfractures that occur naturally [24–27]. We

believe that computational modeling could be very effective in

shedding a light across the intrinsic difficulties of integrating

evidence obtained from experiments and observations spanning

different scales of time and space. There is a growing number of

mathematical and computational models investigating the com-

plexity of this dynamics [28–34] and the interaction with cancer

cells [35,36]. In the adult skeleton, TGF -b is abundant in the bone

matrix, where is released following the initiation of resorption

TGF -b is released from bone matrix [6,37,38]. Few recent studies

have highlighted the complexity of breast cancer metastasis in

bone microenvironment [6,9,39,40]. Although TGF -b enhances

the recruitment and proliferation of osteoblast progenitors, TGF -b
potently inhibits later phases of osteoblast differentiation and

Figure 3. Evolution in time of the average sub-populations’
densities. Given a volume Vneigh of a size equal to the average volume
that, in a healthy mammary duct tissue, contains exactly a cell and all its

nearest neighbour cells arranged on one layer, the densities for each
sub-population in the volume Vneigh is shown. Starting from the top, A)
the healthy cells, B) the pre-neoplastic cells, C) the tumoral cells and, D)
the aggressive tumoral cells are graphed respectively. On the abscissa
the time in months.
doi:10.1371/journal.pone.0088533.g003
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maturation and suppresses matrix mineralization [41–45]. Oste-

oblasts are derived from mesenchymal stem cells and their primary

function is to synthesize the organic collagenous matrix and

orchestrate its mineralization by producing bone matrix proteins

including osteocalcin, osteopontin and bone sialoprotein, and

providing optimal environmental conditions for crystal formation.

Fully differentiated osteoblasts that are surrounded by mineralized

bone tissue are called osteocytes and act as mechanosensors in

bone tissue. They are the most numerous cells within the bone

tissue and scattered evenly through the matrix. With their

flattened morphology and long processes, they form a sensory

network which allows the detection of abnormal strain situations

such as generated by microcracks. Osteocytes are connected to

one another and to surface osteoblasts (bone lining cells) via gap

junctions. Osteocytes secrete sclerostin which is a master switch to

prevent the body from making too much bone. The tuning of

sclerostin allows osteocytes to control the osteoblast’s activity in

bone formation. Under physiological mechanical stimuli osteo-

cytes prevent osteoclast’s bone resorption by changing the

RANKL/osteoprotegerin (OPG) ratio. By communicating these

signals to bone lining cells (the second terminally differentiated

osteoblast cell type) or secrete factors that recruit osteoclasts,

osteocytes initiate the repair of damaged bone. We described a

model of the interplay between osteocytes, osteoblasts and

osteoclasts. This model focuses on the release of TGFb during

resorption phases. Pathological conditions can alter the equilibri-

um between bone resorption and bone formation. Often,

disregulations favouring osteoclastogenesis; osteoporosis is an

example of negative remodelling: the resorption process prevails

on the formation one and this reduces bone density, so increasing

the risk of spontaneous fractures. Here we model the release of the

TGF -b from the bone matrix upon the action of the osteoclasts

which favour the breast cancer metastasis and the unbalance of the

bone dynamics. While experimental works represent primary

sources of parameter values [46], the mathematical and compu-

tational recent works, such as [28–30,32], provide a valuable

validation and discussion of the range of parameters value. Here

we have used parameters values accepted by various literature.

There is a growing use of omics genome wide analysis, see [47]

among others. In our work we have estimated some parameters

from gene expression data. It has been pointed that the difference

between an approximate and exact model is usually remarkably

smaller than the difference between the exact model and the real

biological process [48]. Taking into account the recent experimental

results on the central role of osteocytes [24] and the most recent

mathematical models, in particular Pivonka [43] we have developed

the following conceptual model: first we stress the importance of the

osteoblasts forming the lining of cells attached to the bone tissue. It is

likely they are in communication with the osteocytes in the bones via

a network of canaliculi. When osteocytes die because of fracture

there is a loss of communication of the lining osteoblasts with the

osteocytes. This happens together with a release of RANKL which

is a signal for osteoclasts to arrive and it is a differentiation signal for

the osteoblast which may take sometime to happen. We have

modeled this delay by using a delay differential equation. The

osteoclasts will carry on a resorption of the bone which could be

stopped by decrease of RANKL or by the release of TGF -b by the

bone. Then the osteoblasts with start deploying bone material and

proteins and complete the differentiation process by rebuilding the

network of canaliculum processes. One can think that cancer cells

would take the advantage of absorbing part of the TGF -b so

decreasing the apoptotic probability of the osteoclasts. We have

used DDE to implement both the differentiation lapse of the

osteoblasts. Delays not only are an explicit representation of the

time necessary for spatial transfer of information, but are important

also to take into account the presence of other reactions which are

not explicitly expressed, or included and the lapse of time for them

to happen. The osteoblasts during the bone resorption and bone

formation appears in three forms: uncommitted osteoblasts, pre-

osteoblasts and active osteoblasts. The differentiation from the first

type and the second is accelerated by the presence of TGF -b and

the differentiation from the second type to the third is inhibited by

the TGF -b. Uncommitted osteoblasts lay on the surface of the bone

vessel and their differentiation process is influenced by the

osteoclasts’ resorption activity which is mainly triggered by bone

fracture (and microfracture). This event propagates and after an

average time t0 uncommitted osteoblasts begin to differentiate. The

presence of TGF -b can be of help for their differentiation, or even

necessary, but the TGF -b cannot abbreviate it because it does not

speed up the travel of information. On the other hand TGF-b can

delay the activation of osteoblasts. The complete and complex

differentiation process of the osteoblasts can be summarized from

the first stage to the last stage by packing all the complexity of the

process inside a delay ttot(b)~t0ztdiff (b) dependent on the TGF -

b, b. The delay tdiff (b) must be positive and finite, because the

TGF -b does not preclude the osteoblast activation and second

important factor to remark is that the effect of TGF -b on the

osteoblasts is local (at contact) in space and picked (rapid effect and

defined delay ) in time. On the other hand the diffusion of TGF -b,

osteoblasts and their concentration are much more sensible to space

inhomogeneities and large time distributed events. Our DDE model

equations are listed below:

Lt Oc~rOc RANKL(t):CSF (t){aOc Oc(t), ð8Þ

Lt Lng~pLng BMP(t){mLng BMP(t{t(b))

{aLng Lng(t),
ð9Þ
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Lt Ocy~fOcy Ob(t){aOcy H(t) H(1{t),                           ð7Þ

Lt Ob~mLng BMP(t{t(b)){nfOcy Ob(t){aOb Ob(t),  ð10Þ

Lt RANKL~pRKL Ocy{Ocy(t)
� �

H(t) H(1{t)

zrRKL Ob(t){dRKL

ð11Þ
RANKL,

Lt BMP~pBMP Ocy{Ocy(t)
� �

{dBMP BMP(t),         ð12Þ



Table 2. List of parameters.

parameter symbol value

gene expression of the TGF-b bsM(w) {–1.853, 1.724, 1.614, 1.669} [nmol]

gene expression of the receptors RsM(w) {–7.47, 6.713, 5.017, 4.128} [nmol]

rate of synthesis rsyn 133.333 [s21]

Smad signaling rate rsgn 0.003018 [s21]

paracrine rate rpc 10 [s21]

binding rate rb 0.0074 [nmol21 s21]

ubiquitination rate ru 0.007 [s21]

total number of phenotypes
and malignant phenotype

W 3

proliferation rate rp(w) {–1. 61026, 1. 61026, 1. 61026, 1. 61026} [s21]

apoptosis rate ra 9. 61028 [s21]

degradation rate rd 1. 61028 [s21]

mutation rate rm 1. 610214 [s21]

cell capacities Cø {–6, 6, 6, 8} [Vneigh
21]

dimensional constant a 1 [s21]

dimensional constant c 1 [nmol21]

Osteocytes formation rate fOcy 0.00032 [Sfrac Vosteon
21 day21]

Osteocytes apoptosis rate aOcy aOcy 30 [Vosteon
21 day21]

Osteoclasts recruitment rate rOc 0.8 [Vfrac nmol22 day21]

Osteoclasts apoptosis rate aOc 0.0625 [day21]

Lining cells proliferation rate pLng 50 [mm nmol21 day21]

Lining cells maturation rate mLng 50 [mm nmol21 day21]

Lining cells apoptosis rate aLng 0.1525 [day21]

Osteoblasts apoptosis rate aOb 0.1525 [day21]

RANKL production (Osteocytes) pRKL 300 [nmol Vosteon Vfrac
21 day21]

RANKL production (osteoblasts) rRKL 2.5 [nmol Sfrac Vfrac
21 day21]

RANKL degradation rate dRKL 8.6643 [day21]

BMP production rate pBMP 1 [nmol Vosteon Vfrac
21 day21]

BMP degradation rate dBMP 8.6643 [day21]

CSF production rate pCSF 0.1 [nmol Vosteon Vfrac
21 day21]

CSF degradation rate dCSF 69.3147 [day21]

Bone resorption rate rbn 9.461024 [Vfrac nmol21 day21]

Bone formation rate fbn 5.909861026 [Sfrac nmol21 day21]

TGF-b extraction rate rb 2.2610210 [nmol day21]

TGF-b degradation rate db 0.1189 [day21]

Number of cancer cells Nc 2000

Constant time delay T 0 6.02 [day]

Constant time delay D 22.36 [day]

Maximum amount of osteocytes Ocy Ocy 900 [Vosteon
21]

Minimum effective amount of TGF-b inducing delay b 861028 [nmol Vfrac
21]

Burried osteoblast factor n 1 [Vosteon Vfrac
21]

If the parameter depends on the phenotype w, then we give a list of values sorted by increasing order of the phenotype. References and choices for the numerical
values of the parameters are discussed in the data analysis section.
doi:10.1371/journal.pone.0088533.t002
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probability of malignant mutation pW 5. 61027

proliferation exponent gp(w)                                                                     {–0.12, 0.06, 0.,20.06}

apoptosis exponent                                                     ga(w)                                                                    {–0.12, 0.06, 0.,20.06}



Lt CSF~pCSF Ocy{Ocy(t)
� �

{dCSF CSF (t), ð13Þ

Lt BMD~fbn Ob(t){rbn Oc(t), ð14Þ

Ltb~rb Oc(t){db b(t){Nc rpc b(t), ð15Þ

t(b)~t0zD
b

b(t)zb
: ð16Þ

The equation (7) describes that a microfracture occurring at

t = 0, is sensed by osteocytes that undergo apoptosis which ends in

about one day [46,49]. In equation (8) the osteoclasts are recruited

to the BMU in response to a combination of RANKL and CSF,

and die at a rate aOc; The equation (9) shows that immature

osteoblasts are recruited in response to TGF -b here represented as

BMP, and differentiate into mature osteoblasts after 20 days.

Mature osteoblasts can either self-bury with a rate nfOcy and

differentiate into osteocytes at rate fOcy or die at rate aOb, see

equation (10). References could be found in [46]. The equation

(11) describes that surviving osteocytes secrete RANKL at a rate

proportional to the ‘‘size of the fracture’’ i.e. number of osteocytes

that underwent apoptosis; osteoblasts produce both RANKL and

OPG at rates dependent on their maturity and with characteristic

delay [36]. The equations (12, 13) describe that BMP and CSF are

secreted by osteocytes in response to the microfracture damage.

Both chemicals decay, but CSF is also depleted by osteoclasts;

representing the idea that CSF is a chemoattractant and the

osteoclasts move on when its concentration becomes low [50,51].

Note that TGF -b and bone morphogenetic protein (BMP) have

often opposite behaviour. In a hair follicle stem cell niche BMP

signaling maintains stem cell quiescence while TGF -b stimulates

stem cells both in vivo and in vitro and antagonizes repressive

BMP signaling [52].

The equation (14) follows [28] equation where bone is rebuilt at

rate fbn by mature osteoblasts and resorbed at rate rbn by

osteoclasts. The equation (15) describes the TGF -b from the

resorption action of the osteoclasts.

In Figure (4) we show the simulated results of the ODE model:

Bone density (A, B), number of osteoblasts (C, D), number of

osteoclasts (E, F) and TGF -b (G, H) compared between control (A,

C, E, G) and cancer condition (B, D, F, H). Results show a

negative remodelling balance in the cancer case. The values in

Figure (4) are expressed in terms of averaged quantities which are

the osteon volume, the fracture volume and the fracture surface.

Considering a microfracture of 1mm width which caused the

damage of a number of osteocytes 30 times smaller than the

number of osteocytes in the osteon, the relation between them are

Vosteon^30Vfrac and Vfrac^Sfrac
:1mm, see [53].

The negative balance of the bone density matrix due to the

effect of cancer cells in the bone niche, where metastasis occurs, is

strongly depending on the number of cancer cells. Even though

breast cancer cells find in the bone tissue a richer environment of

TGF -b favouring their proliferation, the formation of metastasis is

not a very easy and probable event. Different biological defensive

systems and causes concur to avoid the formation of metastasis.

Nevertheless maybe due to the high number of breast cancer cells

detaching from the main tumor and reaching the bone tissue

though the vascular system, or maybe due to the occurrence of the

rare event in which all the metastatic defensive systems fail, few

cancer cells (not necessarily in positions close one another -

information neglected in the models proposed) initiate the

metastasis. In the very initial development stage, the few metastatic

cells do not really affect the bone system. On the other hand, at

this stage, a microfracture and the successive remodeling process

proceed faster than the increasing of the local cancer cell

population. In the early stages of metastasis formation process,

we assume that during the remodeling process, the number of the

tumoral cells in the bone niche is constant, but after successive

microfracture, due to the abundance of TGF -b, the cancer cell

population increases. The more cancer cells increase the more

they affect the bone remodeling process. When cancer cells

increase in number, on one side, they increase the time of

maturation of lining cells into osteoblasts through the action of

TGF -b on the BMP, on the other side, they obstruct the tissue re-

mineralization. The result is a weaker and less dense bone.

he TGF -b is responsible for the delay in the maturation of

osteoblasts. An excessive quantity of TGF -b released during the

bone remodeling process is the cause of the reduction of the bone

density. In the same way, a reduced quantity of TGF -b induces a

rapid maturation of osteoblasts. This prevents osteoclats resorption

in the BMU causing a local increase of bone mass with less

structural strength.

Absence of a spatial representation of the bone niche does not

allow us to completely describe the dishomogeneities in the bone

mineral density caused by the cancer cells in bone tissue which are

known as mixed lesions. Cell-to-cell spatial interactions like

volume exclusion and chemotaxis are necessary to reproduce

mixed lesions. In order to mimic the presence of mixed lesions, we

can use our model to simulate the occurrence of multiple fractures

in which the intensity of the released TGF -b fluctuates randomly.

The variability of the bone density accumulated at the end of each

remodeling by spatially independent BMUs can be considered as

an index for mixed lesions. Hence, high variability will be an

indication of mixed lesions, while low variability will represent the

cases of osteolytic or osteoblastic lesions depending on negative or

positive changes of the averaged bone density, respectively.

Nevertheless, such variability is related to the probability

distribution used for the intensity of the released TGF -b.

In Figure (4), we show the evolution of the bone remodeling

process after a small fracture when the population of cancer cells

in the bone niche is of the order of 103. This is sufficient to see that

in the local region of bone in which metastasis is developing, the

bone density matrix decreases of 1%. The bone mineral density

represents a marker to identify the development of metastasis and

its effectiveness is based on the causal relation or on comorbidity

between breast cancer and osteoporosis.

Discussion

We have developed a mathematical model describing the multi

scalar behaviours of the TGF -b, first by representing the actions of

the behaviours of the TGF -b from the intracellular to the

extracellular scale using a cellular model which is based on the

results of the work published by Laise et al. for epithelial-
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mesenchymal transformation [14] and which also addresses the

important aspect of autocrine/paracrine signaling induced by

the protein. Then we have further developed the model to

investigate the extracellular mechanisms of action of TGF -b at

larger scale and its involvement in cancer. This has led to a

tissue model of breast cancer, which usually metastasise to the

bone tissue. Therefore, we have also studied the relation between

the metastatic cell, the bone tissue and the TGF -b. We have

identified the TGF -b as one key molecule involved in cancer

because it is antioncogenic and pro-apoptotic at low concentration

and pro-tumorigenic at high concentration due to its mechan-

obiology properties through the interaction with the cytoskeleton

and with the extracellular integrins/E-cad proteins. This multi

scale model is based on a multi scale multifunction molecule, in

other words it is a sort of hub for apoptosis signaling at one scale

and for the cytoskeleton function and cell-to-cell interaction at

another scale.

Our work has focused in generating and connecting three

models: one cellular model (intracellular and extracellular TGF -b)

and two tissue models (the breast cancer in the mammary duct and

the bone tissue). Each of these models refers to a specific level of

organization, and hence it is possible to approximately associate

each of them to a specific length scale. Such spatial subdivision of

the models is also reinforced by their temporal subdivision in the

dynamic processes (cell/tissue scales) and in the cancer disease

progress (breast/bone tissues). The differences in temporal scales

of the various processes described in these models hamper the

aggregation of all these models into a single one. Indeed, the time

scales of TGF -b inside the cell are usually much shorter than

events at the tissue level. This has been resolved by considering

that the variables at the cellular level are passed as ‘‘averages’’ to

the tissue level. The information related to the spatial positioning

of cells in the tissue has been neglected in order to find results not

dependent on the tissue geometry. In other words, we do not

consider cellular specialisation in the tissue; therefore, cellular

parameters are space and cell type independent, but, if necessary,

only phenotype dependent. In this way we avoid an increase in

the number of degrees of freedom; furthermore, our approach

leads to a model order reduction with no bias for the position of

the cell.

The TGF -b has been reported to show an autocrine control

system to inhibit cell replication, thus maintaining the tissue

cell homeostasis. We have modeled the process that, following

mutations, drives the inhibition into cell cycle progression. So

the cell increases the autocriny i.e. the production and endocytosis

of TGF -b in order to regulate the cell cycle progression, but this

results in an increase of tumorigenicity; meanwhile, the TGF -b
also acts in disrupting the actin cytoskeleton which disrupts

the actin and E-cad anchorage; hence, the cell contracts and,

as consequence, this increases the activation of extracellular TGF -

b; therefore the cell without contact inhibition starts replicating

actively. The end of this is a high replication rate of cancer cells

that needs to produce TGF -b to sustain such growth rate.

In our opinion the downregulation of the TGF -b from the

internalized TGF -b has a defensive effect because it helps to

reduce the internalization of TGF -b [54]. In the bone niche, bone

and cartilage contain large amounts of TGF -b and target cells for

TGF -b activity. The autocrine and paracrine stimulation by TGF -

b is important for osteoblasts differentiation. The TGF -b
promotes osteoblast differentiation and the TGF -b from the

osteocytes in the bone make them lining up to the bone. In case of

fracture the osteocytes secrete RANKL which activates the

osteoclasts. The demolition of the bone around the fracture frees

lot of TGF -b which further attracts the osteoclasts but in the long

term induces apoptosis.

The model proposed suggests an ecological perspective of the

cancer. Cancer cell changes are associated with alterations in the

mechanical properties of the microenvironment; as tumor expands

there is an increase in tissue compression and interstitial pressure,

generating cell and tissue tension within the confined stroma.

These forces induce the release and activation of various growth

factors and subsequent changes of the contractility and viscoelas-

ticity of tumor cells. In breast cancer, the different stages of cancer

cell determine different mechanical interaction with basement

membrane (BM) architecture and ECM. TGF -b plays a key role

in orchestrating the cell-ECM tension. A hyperplasia lesion

typically involves the loss of normal cell polarization and

organization, the changes in cell-cell contacts and cell-ECM

interactions, which result in altered cellular tension and mechano-

sensing and transduction. In carcinoma in situ lesions, cell polarity

is lost and the lumen is filled by cells. This volume expansion and

resistance from the BM and interstitial ECM lead to increased

mechanical forces between tumor cells and the stromal matrix.

Simultaneously, ECM components are abnormally deposited and

remodeled, which results in increased ECM and tissue stiffness,

and in turn, cell generated tension. In invasive lesions, tumor cells

break down the BM and invade into the interstitial ECM. The

reciprocal forces between tumor cells and the ECM continuously

increase. The abnormal deposition and remodeling of ECM

collagen further increase ECM and tissue stiffness. Tumor cells

generate greater tension in response to this increased mechanical

stimulation. As tumor cells invade through the BM and ECM, they

experience a range of different forces from the dense ECM

network.

Although TGF -b is a growth inhibitor for most epithelial cells, it

has multiple and often opposing effects depending on the tissue

and the type of cells. Why TGF -b is not regulated more tightly?

We believe that cancer is a disease related to the ageing; it is still

very rare in young and mature organisms, while is very common in

the elderly; so there is no great selection feedback and cancer is a

mean to send in apoptosis an aged organism when most of the cells

have accumulated mutations, so in some analogy it has the same

role that TGF -b has with single cells when energy becomes

limited.

Methods

We have considered parameter estimates from experiments

reported in literature and from published mathematical and

computational models. Furthermore, some parameters are explic-

itly obtained from gene expression analysis, while some other are

derived from the models so that their estimation as well as the

models’ outputs remain inside ranges of validity consistent with the

biological phenomena. The values of the parameters and the

Figure 4. Bone remodelling process. Evolution in time of the bone density (A,B), the osteocytes (C,D), the osteoclasts (E,F), the osteoblasts (G,H),
and the TGF -b in the bone niche released during the resorption (I,J). Control (first column) versus cancer condition (second column) is shown. The
bone densities are expressed in percentage, the osteocytes are in number of cells per osteon volume (Vosteon), the osteoblasts are in number of cells
per fracture surface (Sfrac), the osteoclast are in number of cells per fracture volume and the TGF -b in nanomoles per fracture volume. On the
abscissa the time is in days.
doi:10.1371/journal.pone.0088533.g004
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boundary conditions for the ODEs and DDEs used in the

numerical simulations of the models are given in Tables (1, 2).

In the cellular model, the values for the amount of the various

isoforms of TGF -b and receptors are extracted from gene

expression data. In the specific case shown in Figure (3) and

Table (2), where the cellular model and the tissue model are

coupled together, we have considered the TGFB2 and TGFR3

isoforms for the cytokine and its receptor respectively.

The TGF -b paracrine rate is derived as a direct consequence of

the first Fick’s law with an effective diffusion coefficient that takes

into consideration the effects of the ECM. The order of magnitude

for rpc is estimated from the data in [55–58] relative to a healthy

mammary epithelial cell. The reduction of volume in cancer

mammary epithelial cells, as highlighted in [56], is the sign of cell

cytoskeletal instabilities due to mutations. As consequence of the

cell contractions, a small empty volume, which we have named

diffusive region, appears between the cancer cell and the nearest

cells of the tissue. The relation between the diffusive region volume

and the neighbour volume is Vneigh&7(VcellzVdf ) and Vcell is the

averaged volume of a healthy mammary epithelial cell [56]. For

the numerical values of rsyn linking the production of TGF -b to

their gene expression, of the TGF -b signaling rate to initiate the

reactions with the Smad proteins in the cytoplasm and of the

TGF -b binding rate occurring at the cell surface, we refer to the

experimental results in [16] with the assumption that Smad

concentrations remain constant. The order of magnitude of

mammary epithelial cell proliferation rate is based on the data

reported in [59,60]. For the tissue model, the mutation rate and

the probability, pW, that a mammary cell undergoes malignant

mutation showing a strong resistance to TGF -b apoptotic

signaling, are extracted from [21]. Based on the works [20,21],

we have estimated the proliferation and the apoptosis exponents

such that the local cell sub-population with highly malignant

phenotype (w~3) reaches the 10% of the local collective cell

population approximatively after 2 years and the cell with

phenotype w~2 represents those cells with sufficient driver

mutations so that the signaling induced by the TGF -b begin to

change from anti-tumorigenic to pro-tumorigenic. Most of the

parameters used in the bone niche model are taken from the

following works: [47,53,61]. For the time immature osteoblasts

take to differentiate into mature osteoblasts, the rate of osteocytes

formation, the apoptosis rate of the osteoblasts and the rate at

which the RANKL is released by the osteoblasts, we refer to the

results in [46,62]. For the quantity of TGF -b stored in the bone,

we refer to the work of Janssens [63].

Gene Expression Data
Despite the wealth of molecular data (such as sequence and

gene expression data) and physiological and pathological data

from different populations, there is a lack of cell abundance

estimate in the different tissues. Therefore we extracted informa-

tion from gene expression data. Gene expression patterns supply

insight into complex biological networks. Gene expression

profiling of the tumor microenvironment during breast cancer

progression distinguishes breast carcinomas from normal breast

tissues. We have re-analysed several gene expression data related

to breast cancer dynamics from the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/); after an exploratory analysis

and literature analysis, we focused on the following datasets:

(accession numbers): GSE14548, GSE33450 and GSE8977. These

datasets originate from experimental design on early stages breast

cancer progression and tumor microenvironment. Normalization

procedures and statistical analysis are performed by using

Bioconductor R packages [64]; the background correction and

normalization is performed by using PLIER algorithm. PLIER

algorithm produces an improved gene expression value [65] as

compared to the other algorithms. It accomplishes this by

incorporating experimental observations of feature behaviour

Specifically, it uses a probe affinity parameter, which represents

the strength of a signal produced at a specific concentration for a

given probe. The probe affinities are calculated using data across

arrays. The Bioconductor package limma was also used to

calculate average expression levels, log fold changes and adjusted

p-values for each probe. Standard anova and Box plots

representation were used to analyse and check out visually the

expression levels of these genes for different conditions. We have

used gene expression averaged quantities to better unveil the

functions of the TGF -b in the cancer dynamics; nevertheless, the

model proposed should be used with a pinch of salt. Single patient

gene expression values may not be sufficient to catch the specificity

of the evolution of the disease for each patient and the role of the

TGF -b. Comorbidities, patients’ previous medical conditions and

the exact initial time of breast cancer formation may be unknown,

but they affect the prediction of cancer evolution. We have also

considered Transforming Growth Factor beta 3 (TGFB3) involved

in cell differentiation and which interacts with TGF -b receptor 2

(TGFBR2), a tumor suppressor gene.

Sensitivity Analysis
The correctness of the proposed multi scale model and its

predictive ability on development and progress of the disease

strongly depend on the knowledge of the parameters and the

respective errors; hence, it is important to rightly identify and

estimate the parameters whose the multi scale model is more

sensitive. Using the Local Sensitivity Analysis method (LSA) in

[66], we compute the first order sensitivity indexes for each of the

three models separately. Even though the non-linearity of the

models suggests that the second order sensitivity indexes analysis

could be relevant to identify the most sensitive model’s parameters

couples, for sake of simplicity, we neglect the second order

variance decomposition, and we show the LSA for all single

parameters. The first order sensitivity index Si for a parameter Xi

given the parameters X and the output Y~f (X) is a pure number

defined as Si~V (E(Y jXi))=V (Y ), where E(Y jXi) is the condi-

tional expectation value obtained by sampling all the parameters

X from their prior distributions except Xi which is maintained

constant, V(E(Y jXi)) is the variance of E(Y jXi) due to the

variation of Xi and V (Y ) is the variance due to variation of all the

parameters X.

In the cellular model, the concentration of active TGF -b
present in the extracellular region is strongly sensitive only to those

parameters directly related to their gene expressions, Figure (5.A,

5.B). The same holds true for the TGF -b receptors on the cell

membrane, Figure (5.C, 5.D). Consequently, accurate information

regarding the gene expression are much more important than

other parameters to finely tune the outputs of the model and

reduce the error on the capability of the model to be predictive.

The fact that gene expressions play a fundamental role on the

model is because they appear as terms of source of the proteins.

Indeed, the other parameter that partially influence the model is

the rate of synthesis, which also appears as factor in the source

terms of equations (2, 3). Nevertheless, being the prior of the

parameters uniformly distributed with a variance of 10% of their

values expressed in Table (2), the sensitivity of the system to rsyn is

approximatively two orders of magnitude less than to the gene

expressions. On the other hand, the internalized compound not

only is sensible to the gene expressions of the TGF -b and its

receptors, but also to the possibility cells have to internalize the
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Figure 5. Cellular model LSA. The first order sensitivity index of the cellular model’s parameters for (A,B) the TGF -b, (C,D) the receptors, (E,F) the
TGF -b internalized and (G) active TGF -b in the diffusive region. On the left column the phenotype w~0 and on the right column w~4 with
exception of the TGF -b in the diffusive region (G) which is independent of the phenotype.
doi:10.1371/journal.pone.0088533.g005
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active form of TGF -b through the receptors. In Figure (5.E, 5.F),

we see that the quantity of TGF -b accumulated in the cell

cytoplasm depends on the capability of each specific cellular sub-

population to respond to the TGF -b signaling as well as on the

capability of healthy cells to ubiquitinate the TGF -b. The TGF -b
in the diffusive region depends on how fast it diffuses in the

surrounding space and on its production by the healthy cells,

Figure (5.G). Indeed, we are observing the system, which is in an

out-of-equilibrium condition, at a time when the quantity of

healthy cells is the predominant cell sub-population component of

the total cell population; therefore, in this case, there are no

contradictions in saying that the major sources of TGF -b are the

healthy cells.

The sensitivity analysis for the tissue model presents a more

complex scenario of the relevant parameters affecting the densities

of each cell sub-population based on the cells phenotypes, see

Figure (6). Due to the interaction driven by the paracrine

exchange of TGF -b, the volume exclusion constraints between

the cellular capacities and the strong non-linearity produced by the

different cell capabilities of sensing/responding to the TGF -b, we

see that the dynamical evolution of a cell sub-population with

specific phenotype depends on parameters strictly non-related to

that specific sub-population phenotype. The simplest case is given

by the healthy cell sub-population which is prevalently sensitive to

its proliferation/apoptosis rates, its exponential indexes, and the

healthy cell capacity, Figure (6.A). Depending on the time at which

the system is observed, we can see a more or less dependency of

the healthy system on the proliferation rate of the pre-tumoral

cells. The cell sub-populations characterized by driver mutations

show all the same behaviours of being sensitive to the prolifera-

tion/apoptosis rates and exponential indexes not only of their

same phenotype, but also to those with less aggressive phenotypes,

Figure (6.B, 6.C, 6.D). The small dependency on the parameters

with phenotype w~2 is due to the particular transition role of this

cell sub-population in respect to its response/sensing of the TGF -b
and consequently to the small range of the proliferation/apoptosis

indexes (meaning small variance of the prior distribution adopted

in the LSA). All cell sub-populations do not show any sensitivity on

the capacity C3, exception done for the highly aggressive tumoral

cells which depend on both values of the cell capacities,

Figure (6.D).

From the LSA, Figure (6), we see the emersion of an explicit

pattern on the parameters which reflects the behavioural evolution

of the tissue in terms of dynamics. In fact, even though all the cells

compete for limited room by obstructing or killing the cells with

different phenotypes, the number of tumoral cells and their

survival, during the early stage of cancer, are strongly linked to

their phenotypical ancestors. Hence, the two major sub-systems of

the tissue, healthy tissue and tumor, show the dual behaviour of

two resources competing systems like in the predator-prey model,

on one side and of two shearing TGF -b systems in which one try

to stabilize via TGF -b the other sub-system without any success

because the driver mutations in the aggressive cancer cells have

changed the apoptotic signaling of the TGF -b into a tumor

promoter, on the other side.

The LSA in the bone model shows two groups of variables:

those which are mostly sensitive to the number of osteocytes in the

BMU before a fracture occurs, but do not show any relevant

sensitivity to the TGF -b related parameters, and those variables

which, even though depend on the osteocytes, are sensitive to the

Figure 6. Tissue model LSA. The first order sensitivity index of the tissue model’s parameters for the tissue sub-population: (A) w~0, (B) w~1, (C)
w~2, and (D) w~3.
doi:10.1371/journal.pone.0088533.g006
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delay induced by the TGF -b as well as to the other parameters

responsible to the high concentration of TGF -b in the bone niche,

Figure (7). The number of lining cells depends on the time they

take to differentiate and hence they are sensitive to the TGF -b,

Figure (7.C). On the other hand, mature osteoblasts are not very

sensitive to the TGF -b, but are sensitive to the apoptotic rate of

the lining cells because soon or later all the lining cell, which do

not undergo apoptosis, follow through maturation, Figure (7.D).

We have also observed that the RANKL presents a strong

sensitivity to the TGF -b which is an indication that the small

quantity of RANKL released by the osteoblast compared to that

released by the damaged osteocytes network is important to affect

the dynamics of the bone remodelling, Figure (7.E). Consequently,

the dependence of osteoclasts on TGF -b is due to the RANKL,

Figure (7.B). The mineral bone density is the variable with the

highest sensitivity to the TGF -b, Figure (7.F), showing that the

resorption and remineralization are carefully synchronized by the

TGF -b which regulates the time interval between osteoclasts and

osteoblasts actions.

It is important to highlight that the roles of osteoclasts and

breast cancer cells, in the bone niche, are the same in terms of

TGF -b, but are extremely different in their resultant actions. The

first (osteoclasts) produce TGF -b to induce a delay necessary to

complete the bone resorption and to carefully balance the

maturation of lining cells, but at the same time, they are miners

releasing a strong chemoattractant for the tumoral cells from the

breast lobular duct. The last (breast cancer cells) remaining in the

bone niche because rich of TGF -b, which is a fundamental

resource for their survival, release TGF -b to prolongates the

Figure 7. Bone model LSA. The first order sensitivity indexes of the bone model’s parameters for (A) osteocytes, (B) osteoclasts, (C) lining cells, (D)
osteoblasts, (E) RANKL, and (F) bone mineral density.
doi:10.1371/journal.pone.0088533.g007
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mining of the osteoclasts, to make themselves space and to

maintain their cell cycle progression.

As previously stated the LSA is a useful tool to determine the

importance of the parameters based on the fact that a parameter

of the model with high sensitivity and low variance should be

carefully chosen and/or measured because highly affecting the

outcomes of the model while a parameter with low sensitivity and

high variance does not influence the system dynamics. Further-

more, we have used the LSA to reveal the relationships of and the

patterns of variables depending parameters in the tissue and in the

bone model.
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