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Abstract

Computational Intelligence methods, which include Evolutionary Computation

and Swarm Intelligence, can e�ciently and e↵ectively identify optimal solutions

to complex optimization problems by exploiting the cooperative and competitive

interplay among their individuals. The exploration and exploitation capabilities

of these meta-heuristics are typically assessed by considering well-known suites

of benchmark functions, specifically designed for numerical global optimization

purposes. However, their performances could drastically change in the case of

real-world optimization problems. In this paper, we investigate this issue by

considering the Parameter Estimation (PE) of biochemical systems, a common

computational problem in the field of Systems Biology. In order to evaluate the

e↵ectiveness of various meta-heuristics in solving the PE problem, we compare

their performance by considering a set of benchmark functions and a set of syn-

thetic biochemical models characterized by a search space with an increasing

number of dimensions. Our results show that some state-of-the-art optimization
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methods—able to largely outperform the other meta-heuristics on benchmark

functions—are characterized by considerably poor performances when applied

to the PE problem. We also show that a limiting factor of these optimiza-

tion methods concerns the representation of the solutions: indeed, by means of

a simple semantic transformation, it is possible to turn these algorithms into

competitive alternatives. We corroborate this finding by performing the PE of

a model of metabolic pathways in red blood cells. Overall, we can state that

classic benchmark functions are not fully representative of the complexity of

real-world optimization problems, such as the PE of biochemical systems.

Keywords: Benchmark functions, Parameter Estimation, Biochemical

simulation, Systems Biology, Fuzzy Logic, Self-tuning algorithms

1. Introduction

Population-based meta-heuristics can e�ciently and e↵ectively identify opti-

mal solutions of complex computational problems, by exploiting the cooperative

and competitive interplay among the individuals. A variety of methodologies

has been proposed, inspired by processes of natural selection (e.g., Genetic Algo-5

rithms (GAs) [1], Di↵erential Evolution (DE) [2], Evolution Strategy (ES) [3]),

as well as super-organisms and the emergent intelligence of groups of animals

(e.g., Artificial Bee Colony (ABC) [4], Particle Swarm Optimization (PSO) [5]).

The performances of these meta-heuristics are typically assessed by relying

on di↵erent sets of benchmark functions, specifically designed to test the search10

capabilities of the various optimization strategies [6]. However, when the same

algorithms are applied to real-world problems pertaining to di↵erent applica-

tion domains, which can involve continuous or discrete optimization tasks, their

performances may considerably change. For instance, this phenomenon was

observed in the case of the optimization of atomic and molecular clusters [7],15

building energy systems [8] and aircraft design [9].

This circumstance is coherent with the probabilistic re-formulation of the

no-free lunch theorem (NFL) proposed by Lockett and Miikkulainen in 2017
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[10]. The original version of the NFL theorem [11, 12]—which holds in the case

of combinatorial optimization problems, and is automatically met for optimiza-20

tion algorithms running on digital computers where real values are encoded by

a finite number of bits—states that no algorithm outperforms all the competi-

tors in any optimization problem. Over the last years, the validity of NFL in

continuous search spaces has been debated [13, 14], until Lockett and Miikku-

lainen proposed a novel probabilistic approach that can be applied to prove the25

validity of the theorem in continuous domains. Hence, according to this result,

any meta-heuristics working in a continuous domain and showing outstanding

performance when applied to benchmark test functions might not work well on

(a subset of) real-world problems [15]. For instance, Da Ros et al. [16] com-

pared stochastic optimization methods (i.e., ABC, DE, PSO, and Simulated30

Annealing) for the estimation of kinetic parameters of a biochemical model for

alcoholic fermentation in bioreactors. Their results show that benchmark func-

tions are not representative of real optimization problems, and the evaluation of

global optimization meta-heuristics based on these benchmark functions alone

may induce strong biases.35

In this paper, we investigate the problem of the Parameter Estimation (PE)

of biochemical systems, typical of Systems Biology analyses [17, 18]. This re-

search field aims at a thorough understanding of biological processes at a system-

level by explicitly considering the complex interactions among biomolecules [19].

In this context, mechanistic mathematical models and computational methods40

represent valuable and integrative tools to classic experimental biology, paving

the way to a global-level understanding of the emergent behavior of biological

processes, thanks to the elucidation of the mechanisms that govern their func-

tioning [20]. A precise assignment of the kinetic parameters, which control the

rate of the reactions and ultimately drive the emergent behavior of the biochem-45

ical system, is mandatory to accurately simulate the dynamics of these models.

Unfortunately, these parameters are di�cult or even impossible to measure by

means of laboratory experiments, so that they are generally estimated using

Computational Intelligence methods [17], whereby the PE is formulated as an
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optimization (minimization) problem.50

The goal of this work is to show that state-of-the-art optimization algo-

rithms, which are generally able to largely outperform the other meta-heuristics

on classic benchmark functions, could be characterized by very poor perfor-

mances when applied to real-world problems without considering their specific

peculiarities. To this aim, we exploit six well-known benchmark functions to55

compare the performance of ABC [4], Covariance Matrix Adaptation ES (CMA-

ES) [21], DE [22], Estimation of Distribution Algorithm (EDA) [23], GA [1],

PSO [5], and its fuzzy-based settings-free variant FST-PSO [24]. Then, we

apply the same algorithms to the PE problem by using a set of synthetic bio-

chemical models of increasing size (25 or 50 molecular species and reactions).60

By measuring the convergence speed and the quality of the final results achieved

by the di↵erent meta-heuristics, we show that the algorithms able to perform

e�ciently on benchmark functions can be completely unfit for the PE problem.

We also point out that alternative semantics for the parameters can radically

change the performances of the meta-heuristics. Specifically, we show that a65

simple logarithmic transformation of the parameters can turn the previously

outperformed algorithms into competitive alternatives. We validate this finding

by executing a PE on a mechanistic model of intracellular metabolic pathways.

The paper is structured as follows. In Section 2 we recall the definition of the

optimization algorithms considered in this work, and introduce the PE problem70

together with the used fitness function. The results are described and discussed

in Section 3. Finally, conclusions and future developments are presented in

Section 4.

2. Optimization methods and problem formulation

We recall here the main concepts and the notation regarding the Compu-75

tational Intelligence methods used to optimize the benchmark functions and to

solve the PE problem of biochemical systems. In what follows, we denote by n

the size of the population, by M the number of dimensions of the search space,
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and by �min
m and �max

m (with m = 1, . . . , M) the boundaries along the m-th

dimension of the search space.80

2.1. Computational Intelligence for global optimization

We briefly describe here the Computational Intelligence techniques consid-

ered in this work, which have been analyzed in a preliminary study concerning

the PE problem [25].

Artificial Bee Colony. ABC belongs to the population-based swarm intelli-85

gence optimization algorithms [4]. In ABC, three di↵erent groups of honey bees

(i.e., ns 2 N scouts, no 2 N onlookers, and ne 2 N employees) compose the

colony and cooperate in identifying the best food resources, which correspond

to solutions with the best fitness values. This is accomplished by randomly

distributing the scouts across the search space, while employees and onlookers90

perform a local search nearby the promising positions found by the scouts. In

particular, scouts randomly establish a new food source (i.e., a position in the

search space) and they become employees; then, onlookers are assigned to the

position of employees’ food sources, proportionally to their fitness values. When

onlookers cannot improve their position anymore, the food source is abandoned95

and bees return to the hive to start a new search for food by randomly choosing

a new position.

Covariance Matrix Adaptation Evolution Strategy. CMA-ES is an evo-

lutionary computation method based on a stochastic continuous optimization

procedure [21]. During the optimization process, at each iteration, a simple ES100

using mutation operator is applied to produce new individuals by perturbing

either the best individual (deterministically selected) or a newly created indi-

vidual. In order to improve the quality of the mutation steps, CMA introduces

a dynamical adaptation of the multivariate normally distributed random de-

viates, by modifying an M -dimensional ellipsoid distribution, whose size and105

rotation are updated during the generations according to the optimization con-

vergence. To be more precise, CMA-ES relies on an M ⇥M symmetric positive

covariance matrix, which is adapted to capture possible existing pairwise depen-
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dencies among the components of the problem under investigation. Moreover,

this adaptation scheme determines the correct scaling of a given problem, al-110

lowing for invariance with respect to any orientation of the coordinate system.

According to Hansen [3], the following settings must be carefully selected: i)

the population size n, ii) the initial mean �ES
0 , and iii) the initial standard

deviations �ES
0 (here called step-size).

Di↵erential Evolution. DE is a population-based algorithm that exploits115

crossover and mutation operators during the evolutionary process [22]. Among

all the existing versions of DE and according to the classic DE taxonomy, we

selected the DE/rand/1/bin strategy wherein a di↵erential weight F 2 [0, 2] bal-

ances the recombination of three randomly selected individuals, and a random

crossover with the parent solution is applied with probability CR 2 [0, 1]. To be120

more precise, DE is based on the following iterative scheme: (i) the mutation

operator is applied to a randomly selected individual x; (ii) three individuals

are randomly selected and used to calculate the recombined individual z; (iii)

a trial vector is obtained by applying the crossover to z and x, and it replaces

x in the next generation if it is characterized by an improved fitness value.125

Estimation of Distribution Algorithm. In EDA, the promising candidate

solutions found during the optimization process are used to build probabilistic

models, which are sampled to explore the search space [26]. At the beginning

of the optimization process, a model encoding an a priori distribution (e.g.,

uniform, normal) of feasible solutions must be provided. During each iteration,130

� new individuals are used, according to their fitness values, to refine the distri-

bution and generate new o↵spring. Among the existing variants of EDA [23], we

exploit the Population-Based Incremental Learning [27] that dynamically adapts

the underlying Gaussian generative model by using the information about the

µ < � best individuals found during each generation. The initial distribution135

is initialized on the centroid �EDA
0 of the search space, and for each dimension

the standard deviation is set to �EDA
0 .

Genetic Algorithms. GAs are a population-based optimization technique

mimicking Darwinian processes on evolutionary dynamics via natural selection
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[1]. The initial population of randomly generated individuals undergoes, dur-140

ing each generation, a selection process and is modified by applying crossover

and mutation operators with probabilities pcr and pmu, respectively. Di↵erently

from the ESs that apply the selection strategy after recombination, GAs exploit

a selection procedure before the crossover. The mutation operator is then em-

ployed to introduce new genetic material into the population, thus preventing145

the premature convergence to local optimal solutions. The mutation operator

used in this work is a Gaussian perturbation with standard deviation �GA.

Particle Swarm Optimization. PSO is a population-based meta-heuristic

belonging to swarm intelligence methods and suitable for real-valued optimiza-

tion problems [5]. A swarm of candidate solutions (called particles) moves inside150

a bounded search space and cooperates to identify the optimal solution. During

each iteration, each particle changes its position according to the best positions

found so far by the particle itself and by the entire swarm. The social factor

csoc 2 R+ and the cognitive factor ccog 2 R+ are used to balance the explo-

ration and exploitation strategies, respectively. To avoid chaotic behaviors in155

the swarm, the velocity of each particle is weighted by an inertia factor w 2 R+

[28], and limited by maximum velocity values vmax = (vmax1
, . . . , vmaxM ) pro-

portional to the distance between the boundaries of the search space. A vector

of minimum velocities vmin is often used to prevent stagnation and to keep a

high diversity inside the swarm [29].160

Fuzzy Self-Tuning Particle Swarm Optimization. In order to dynamically

adjust the PSO settings during the optimization process, Fuzzy Logic can be

exploited [30]. Generally, the PSO versions hybridized with Fuzzy Logic update

the settings of all particles by using a common set of values determined by

means of a fuzzy rule-based system. Here, we consider FST-PSO [24], which165

makes use of Fuzzy Logic to automatically infer at run-time a di↵erent set of

PSO settings for each particle of the swarm [31, 32].
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2.2. Benchmark function suites for numerical optimization

Several benchmark function suites have been proposed in the literature to

evaluate the performance of global optimization techniques, since real-world170

problems cannot be straightforwardly exploited to this purpose. Indeed, real-

world problems are often characterized by additional complex features that basic

optimization algorithms might not be able to handle [33]. Considering the spe-

cific case of real-parameter numerical optimization, every year research competi-

tions are organized by the IEEE Congress on Evolutionary Computation (CEC)175

[34] and the Genetic and Evolutionary Computation Conference (GECCO).

Among them, it is worth mentioning the workshop on Real-Parameter Black-

Box Optimization Benchmarking (BBOB) [35] that exploits the COmparing

Continuous Optimisers (COCO) benchmarking platform [36]. On the other

hand, there exist real-world problems that have intrinsic discrete structure and180

solutions; in this context Doerr et al. [37] extended the COCO software by in-

troducing pseudo-Boolean optimization problems, providing an environment to

empirically analyze and evaluate the performance of pseudo-Boolean black-box

heuristics. A generalized and dynamic benchmark generator was also proposed

in [38] to construct dynamic environments in the binary, real and combinatorial185

spaces.

Even though many di↵erent benchmark functions were proposed for contin-

uous optimization (e.g., global optimization, dynamic optimization, multimodal

optimization), a complete and unified framework to generate benchmark func-

tions that can take into account di↵erent properties pertaining to real-world190

problems has not been yet proposed. Recently, an attempt in this direction

was made by Li et al., who presented a novel framework that aims at con-

structing benchmark functions having features that might be met in real-world

problems, such as non-linearity and discontinuity [39]. This framework is based

on a multidimensional tree, which is exploited to partition the search space and195

to select the best set of simple functions for each subspace, according to the

characteristics underlying the considered subspace.

Here, we employed the following functions from the CEC‘17 benchmark prob-
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lems for single-objective real-parameter numerical optimization [40], to assess

the performance of the meta-heuristics described in Section 2.1:200

• the shifted/rotated Rosenbrock’s (f4) and Levy’s (f9) functions, as repre-

sentatives of multimodal and non-separable problems characterized by a

large number of local minima and whose optimum is not centered in 0;

• the hybrid Ackley’s (f13), Griewank’s (f15), expanded Griewank plus

Rosenbrock (f19), and Scha↵er’s F7 (f20) functions.205

It is worth noting that hybrid functions are composed of multiple basic func-

tions, assigned to di↵erent components of the search space. Each component is

characterized by a specific behavior and, possibly, a di↵erent sensitivity, that

is, a measure of how much a variation in one (or more) individuals’ elements

a↵ects the final fitness value. These characteristics, along with the shifted op-210

timum and non-separability, are supposed to mimic real-world problems, hence

including the PE of biochemical systems. The goal of this paper is to show that

hybrid functions actually cannot capture all the features of the fitness landscapes

defined by the PE problem.

2.3. Parameter Estimation of biochemical systems215

Biochemical systems can be formalized as mechanistic and fully parameter-

ized reaction-based models (RBMs) [41]. A RBM is defined by specifying the

set S = {S1, . . . , SN} of molecular species, the set R = {R1, . . . , RM} of bio-

chemical reactions that describe the interactions among the species in S, the set

K = {k1, . . . , kM} of kinetic constants associated with the reactions in R, and

the initial concentration Xi 2 R+
0 of each species Si 2 S, with i = 1, . . . , N . Any

RBM can be represented in a compact matrix-vector form AS
K�! BS, where

S = (S1, . . . , SN )>, K = (k1, . . . , kM )>, and A,B 2 NM⇥N are the stoichiomet-

ric matrices whose elements [A]i,j and [B]i,j represent the number of reactants

and products occurring in the reactions, respectively. Given a RBM and as-

suming the law of mass-action [42], the system of coupled Ordinary Di↵erential
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Equations (ODEs) describing the variation in time of the species concentrations

is obtained as follows:

dX

dt
= (B � A)>[K � X

A], (1)

where X = (X1, . . . , XN ) represents the state of the system at time t, X
A

denotes the vector-matrix exponentiation form [42], while the symbol � denotes

the Hadamard product.

Generally, the definition and analysis of RBMs are hindered by the lack of

quantitative data related to the kinetic parameters—which are generally hard or220

even impossible to measure by classic laboratory experiments, but indispensable

to run simulations—therefore leading to the PE problem. In what follows, we

plausibly assume to have a complete knowledge of the stoichiometric matrices A

and B, as well as of the initial concentrations of all species, but no information

about the kinetic constants. To infer the unknown parameters, we rely on the225

availability of discrete-time target series (DTTS) consisting of experimental data

that can be measured for some species in S 0 ✓ S. In what follows, we denote by

Yq(⌧f ) the concentration of the species Sq 2 S 0 experimentally measured at time

⌧f , for some f = 1, . . . , F (where F is the number of sampled time points), and

by XK
q (⌧f ) its concentration at time ⌧f obtained as the result of a simulation230

run by using the vector of kinetic constants K.

To evaluate the quality of the individuals of the optimization algorithms,

where an individual encodes a candidate model parameterization K, we exploit

the following fitness function:

F(K) =
FX

f=1

QX

q=1

|Yq(⌧f ) � XK
q (⌧f )|

Yq(⌧f )
. (2)

F(·) is the relative point-to-point distance between the DTTS and the simula-

tion dynamics related to the species belonging to S 0. Since this fitness function

reflects the quality of the candidate parameterization with respect to the avail-

able experimental data, F(K) must be minimized to identify a vector K that is235

used to obtain a simulated dynamics overlapping at best the DTTS. The fitness
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function defined in Eq. (2) is commonly used in the field of Systems Biology,

and the reason is two-fold: (i) the function correctly reflects the overlapping

of the simulated dynamics with respect to the available experimental data; (ii)

di↵erently from common root mean squared error, Eq. (2) exploits the nor-240

malization term at the denominator to accumulate relative distances instead of

absolute distances, in order to prevent that the most abundant chemical species

could have a higher impact on the final fitness value1.

In order to investigate the performance of the optimization algorithms listed

in Section 2.1, we exploited a custom computational tool to randomly generate245

12 di↵erent instances of RBMs of increasing size (6 RBMs are characterized by

25 reactions and species, 6 RBMs are characterized by 50 reactions and species).

Each RBM satisfies the following characteristics:

• the initial concentrations of the molecular species are sampled from a log-

uniform distribution in the interval [10�6, 1);250

• the values of the kinetic constants are sampled from a log-uniform distri-

bution in the interval [10�8, 10];

• since reactions simultaneously involving more than two reactants have a

probability to take place close to zero, the stoichiometric matrix A is

created by using only zero, first, and second-order reactions (i.e., at most255

2 reactant molecules of the same or di↵erent species);

• the stoichiometric matrix B is created using at most 2 product molecules

for each reaction.

We exploited a log-uniform distribution (i.e., a uniform distribution in the log-

arithmic space) since the concentrations and kinetic constants of biochemical260

systems generally span over multiple orders of magnitude [44, 45].

1
The fitness function used in this work represents a variant of the Mean Absolute Percent

Error (MAPE) [43]. The fitness landscape shaped by MAPE is identical to Eq. (2), although

it is scaled due to the multiplicative constant used by MAPE to calculate the average of the

contributions.
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Deterministic simulations of RBMs and the fitness function evaluations were

executed in parallel by o✏oading the calculations onto Graphics Processing

Units (GPUs) by means of cupSODA [46, 47]. cupSODA is a simulation tool

designed for biochemical systems based on mass-action kinetics [48, 42], which265

automatically converts the RBM provided by the user into the corresponding

systems of coupled ODEs (and the associated Jacobian matrix). cupSODA can

simultaneously perform multiple simulations, which are automatically executed

by separate threads in the GPU. At the end of the simulations, cupSODA can

also calculate in parallel the fitness function defined in Eq. (2), allowing for270

strongly reducing the running time of the PE.

3. Results

In this section we show the results of our study on the performance of the in-

vestigated meta-heuristics, and the semantic logarithmic transformation of the

kinetic parameters to solve the PE problem. In all tests we used the implementa-275

tion of ABC provided by the SwarmPackagePy library (v. 1.0.0a5). CMA-ES,

DE, EDA, and GA were implemented by using the Distributed Evolutionary

Algorithms in Python (DEAP) framework (v. 1.2.0) [49]. We opted for this

specific library because it simplifies the integration of cupSODA (v. 1.1.0) for

the fitness evaluation. We implemented PSO by using the Python programming280

language (v. 2.7.13) and the NumPy library (v. 1.13.3). Finally, FST-PSO (v.

1.4.8) was downloaded from the PyPI repository.

3.1. Comparison of the meta-heuristics performance

We present here the comparison of the performance of the meta-heuristics

described in Section 2.1, exploited for the PE of 12 randomly generated RBMs285

(Section 2.3), and for the optimization of the selected benchmark functions from

the CEC‘17 suite [40] (Section 2.2).

Table 1 summarizes the functioning settings of all the meta-heuristics used

in this work. In the case of the algorithms implemented by using DEAP and
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Table 1: Functioning settings of the exploited optimization algorithms.

Algorithm Settings

ABC no = b0.5 · nc, ne = b0.4 · nc, ns = n � no � ne

CMA-ES �ES
0 =

�
�max
m + �min

m

�
/2,�ES

0 = 1.0

DE CR = 0.25, F = 1.0, mutation strategy: DE/rand/1/bin

EDA �EDA
0 =

�
�max
m + �min

m

�
/2,�EDA

0 = 1.0,� = n, µ = 32

GA pmu = 0.2, pcr = 0.99, tournament selection ( = 3), two

point crossover, Gaussian mutation with �GA = 1.0

PSO ccog = csoc = 1.496, w = 0.729, vminm = 0, vmaxm = 0.2 ·

 m, where  m = �max
m � �min

m

FST-PSO —

SwarmPackagePy, we tested o↵-the-shelf optimization by using the default set-290

tings. For PSO, which was implemented from scratch for this work, we used the

most widespread settings relying on the analyses conducted in [50, 51, 52]. The

search space for the PE problem was set to [10�10, 100]M , while for the bench-

mark functions was set to [�100, 100]M . The population size n was calculated

by exploiting the following heuristic: n = 32⇥
lp

M
2

m
, which takes into account295

both the number of dimensions M and the CUDA warp size. The latter is criti-

cal to fully leverage the power of modern GPUs to simulate the dynamics of the

RBMs by means of cupSODA [46]. A population size n = 96 and n = 128 for

M = 25 and M = 50, respectively, is obtained by applying the aforementioned

heuristic.300

In order to collect statistically sound results, we performed 15 repetitions

for each meta-heuristic keeping track of the best fitness value found during each

iteration, and then calculating the average best fitness (ABF). In the following

figures, each meta-heuristic is identified by a specific color: ABC is grey, CMA-

ES is yellow, DE is pink, EDA is light blue, GA is blue, PSO is green and305

FST-PSO is orange. We also tested an alternative version of FST-PSO whose

minimum velocity throttling is disabled; we refer to this version as FST-PSO
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(no vmin) and we depict it with the magenta color in the figures.

In Figs. 1 and 2 we show the results concerning the convergence speed

in terms of ABF obtained by the meta-heuristics on the benchmark functions310

with M = 25 dimensions and on the RBMs with M = 25 kinetic constants to

be estimated. The results reveal that in the case of the benchmark functions,

CMA-ES is characterized by the best performance, except for the case of the f9

and f20 functions, where the classic PSO achieves the best result. Interestingly,

although CMA-ES largely outperformed the other algorithms in the case of the315

rotated/shifted Rosenbrock’s function, it ranked last in the case of the hybrid

Scha↵er’s F7 f20. We also observe that the performance of DE are good with

functions f9 and f20, while they are limited with the other benchmark functions.

EDA was outperformed by the other algorithms on functions f4, f13 and f19,

having an ABF orders of magnitude higher than the competitor methods. FST-320

PSO is characterized by mixed performance, yielding some high quality solution

(e.g., f4, f15, f20) but never outperforming the other algorithms in any of the

tested benchmark functions. Finally, both ABC and GA show average perfor-

mances, always remaining in the middle of the ranking. Interestingly, ABC is

characterized by a high variability in the results, as shown by the boxplots of325

the best solutions found across all runs (see Supplementary file, Figs. 1 and

3): the algorithm seems to yield either poor or very good solutions, probably

according to the distribution of the bees at the beginning of the optimization

phase. GA, however, seems to be characterized by a slower convergence (see,

e.g., functions f4, f13, f15, and f19) than the other meta-heuristics.330

When we consider the PE problem, the results turn out to be totally dif-

ferent, since the version of FST-PSO (no vmin) consistently achieves the best

results compared to the other meta-heuristics. CMA-ES obtains performance

comparable to the other methods only in the case of Model 2 (where DE has the

worst performance), and a worse performance (comparable to EDA) in all other335

cases. Interestingly, ABC tied FST-PSO’s performance in the case of Models 2

and 6 and, di↵erently from the case of benchmark functions, it was not char-

acterized by a high variance in the optimal solutions found (see Supplementary
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file, Figs. 2 and 4), confirming that the algorithm has a di↵erent behavior in

the case of PE.340

We executed further tests to analyze how the performance of the meta-

heuristics scale with the number of dimensions of the benchmark functions and

the number of parameters to be estimated in the case of the PE problem. In

Figs. 3 and 4 we show the results obtained on the benchmark functions with

M = 50 dimensions and on the RBMs with M = 50 kinetic constants to be345

estimated. Di↵erently from the case of M = 25 dimensions, we observe that

CMA-ES outperforms the other techniques only in the case of f4. In the case

of f19, the final ABF of CMA-ES after 500 iterations is tied with PSO and

FST-PSO, even though the convergence speed is far lower in the case of CMA-

ES. Interestingly, the algorithm characterized by the best performance is the350

classic PSO except in the case of function f9, contradicting what was observed

in the case of M = 25. Moreover, taking into account benchmark functions

with M = 50, EDA is no longer able to identify optimal solutions and seems to

be extremely prone to premature convergence, while ABC has a considerably

slower convergence speed with respect to the other meta-heuristics.355

Again, when considering the PE problem, FST-PSO (no vmin) consistently

achieves the best results, outperforming the other methods and showing a higher

convergence speed in the case of Model 7. CMA-ES consistently holds the worst

performance, besides Models 9 and 12. GA seems to scale better, maintaining

good or average performance over all 6 models.360

An alternative representation of the results presented above is given in Figs.

5, 6 and 7, 8 (for 25 and 50 dimensions of the benchmark functions and param-

eters to be estimated in the RBMs, respectively), in which we show the Kiviat

diagrams (also known as radar or spider charts) [53, 54] obtained by plotting

the ABF value achieved by the di↵erent meta-heuristics during the last iteration365

of the optimization processes. Note that the lower the area described by the

plot, the better the performance of the meta-heuristic. Since the final fitness

values are generally di↵erent among the benchmark functions as well as among

the PE of di↵erent RBMs, we normalized these values in the range [0, 1]. We
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Table 2: Statistical comparison of the tested algorithms in solving the benchmark functions

and the PE problem considering M = 25 and M = 50, calculated using the ABF values

at the last iteration. The second row shows the p-values of the Friedman’s test. Since the

p-values allow us to reject the null hypothesis, we performed the Bonferroni-Dunn’s post hoc

test obtaining critical di↵erences equal to 0.895 and 0.982 considering 90% and 95% confidence

levels, respectively. For each column, the results are expressed as: ranking – group (obtained

with 95% confidence level and denoted with Roman numerals). Note that an algorithm can

belong to more than one group.

M = 25 M = 50

Benchmarks PE Benchmarks PE

p-value=0.0014 p-value=0.00025 p-value=0.00020 p-value=0.00014

ABC 6.000 – III 3.167 – II 5.833 – IV 3.500 – II

CMA-ES 3.000 – I, II 6.333 – IV 4.000 – III 6.500 – IV, V

DE 5.833 – III 5.333 – III 5.667 – IV 3.667 – II

EDA 7.833 – IV 7.500 – V 8.000 – V 7.167 – V

GA 3.833 – II 3.833 – II 4.500 – III 2.000 – I

PSO 2.833 – I 3.833 – II 1.667 – I 5.833 – III, IV

FST-PSO 3.667 – I, II 5.000 – III 3.667 – III 5.500 – III

FST-PSO (no vmin) 3.000 – I, II 1.000 – I 2.667 – II 1.833 – I

observe how the performance of CMA-ES drastically decreases when applied to370

the PE problem, compared with the performance on the benchmark functions.

The opposite holds for DE and GA, since these algorithms show better conver-

gence properties in the case of PE with respect to benchmark functions. The

performance of FST-PSO is also striking, especially when the fuzzy rules for

minimum velocity are disabled. Note that this strategy leads to slightly worse375

results with the benchmark functions, but extremely good performance in the

case of the PE, notably without the need for any functioning setting.

In order to investigate the existence of any statistical di↵erences among the

performances of the tested algorithms, we executed the Friedman’s test [55]

and the Bonferroni-Dunn’s post hoc test [56]. Table 2 lists the ranks calculated380

using the ABF values achieved during the last iteration of all tests executed

on the benchmark functions and the RBMs considered in this work. Since the

p-values of the Friedman’s test (reported in the table) allowed us to reject the

null hypothesis (i.e., the di↵erence in the performance of the algorithms is not

statistically significant), we proceeded with the Bonferroni-Dunn’s post hoc test385

to determine which algorithms are significantly better than the others. We thus
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calculated the critical di↵erences (CDs) with 90% and 95% confidence levels,

obtaining CDs equal to 0.895 and 0.982, respectively. Taking into account 95%

confidence level, we formed groups of algorithms whose performances are not

significantly di↵erent (denoted by Roman numerals in Table 2). ABC ranks in390

the third and fourth groups of algorithms in solving the benchmark functions

with M = 25 and M = 50, respectively, while in the case of the PE problems it

is capable of catching up with the second group of algorithms. PSO is charac-

terized by an almost opposite trend; indeed, it ranks among the best algorithms

(always in the first group) when solving benchmark functions (resulting the best395

choice in the case of M = 50), whereas it belongs to the second group regard-

ing the PE problem when M = 25, and in the third and fourth groups when

M = 50, showing how its performance decreases while the number of dimensions

increases. The results obtained by FST-PSO are strictly comparable with those

achieved by PSO, even if it generally performs better (worse) in the PE problem400

(benchmark functions). Moreover, FST-PSO generally outperforms DE in all

cases except for the PE with M = 50. Disabling the fuzzy rules for the minimum

velocity throttling, the results are quite di↵erent. As a matter of fact, FST-PSO

(no vmin) ranks always among the best algorithms, taking into account both

benchmark functions and the PE problem. GA obtains the best results when405

the number of dimensions increases, becoming highly competitive in solving the

PE problem, ranking first together with FST-PSO (no vmin) when M = 50. It

is also competitive in solving benchmark functions, placing in the second and

third groups. In this case, the performance of GA decreases as the number of

dimensions increases. CMA-ES shows quite good performance with benchmark410

functions, being always in the first three groups of algorithms, while it is not

competitive in the case of the PE problem. Finally, the achieved results high-

light that EDA obtains the worst performance considering both the benchmark

functions and the PE problem, attaining the last group in all tests.

To summarize, the analysis conducted on the benchmark functions high-415

lighted that the best algorithms are PSO, FST-PSO, FST-PSO (no vmin) and

CMA-ES. Among them, PSO might be employed due to its simplicity; however,
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its performance is strongly related to the values of its settings. FST-PSO and

its variant FST-PSO (no vmin) can overcome this limitation, thus resulting the

most suitable algorithms to deal with benchmark functions. Regarding the PE420

problem, FST-PSO (no vmin) is generally capable of outperforming the other

tested algorithms, being the best meta-heuristic when M = 25 and ranking first

together with GA when M = 50.

3.2. Semantic logarithmic transformation of kinetic parameters425

Since both CMA-ES and EDA exploit normal distributions to generate new

individuals, their performances could be a↵ected by the peculiar log-uniform

distribution of kinetic parameters [52]. In order to investigate this conjecture,

we modified CMA-ES, EDA, and FST-PSO to change the semantics of the

parameters to a logarithmic scale. Specifically, the putative parameters were

bounded in the interval (0, 1) and each value km was converted to the actual

kinetic parameter k0
m—used for the fitness evaluation—by means of the following

transformation:

�m = log10(�
max
m ) +

�
log10(�

min
m ) � log10(�

max
m )

�
km,

k0
m = 10�m . (3)

Note that the boundaries are mapped into the interval (0, 1) during the initial-

ization phase (for each run) of the algorithm under investigation, whilst Eq. (3)

is applied at each iteration. We denote by CMA-ES-log, EDA-log, and FST-

PSO-log the three modified algorithms. We show in Fig. 9 a comparison of the

performances of the three modified algorithms (solid lines) with respect to the430

original methods (dashed lines). The test was carried out on Model 10, in which

both CMA-ES and EDA showed, by far, the worst performances.

According to our results, the performance of CMA-ES-log is radically di↵er-

ent from classic CMA-ES, with a final ABF very close to zero and an extremely

quick convergence. The performance of EDA-log (whose �EDA
0 was set to 0.1435
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because of the modified search space) strongly improved with respect to classic

EDA; however, it was repeatedly unable to converge to an optimal solution,

keeping the final ABF above 50. Even though CMA-ES-log was able to rapidly

converge, the result achieved by FST-PSO-log is even better and highlights how

the logarithmic semantics can help all algorithms for the PE problem. This cir-440

cumstance further reveals that benchmark functions cannot capture the intrinsic

complexity of biochemical PE.

In order to corroborate our findings, we performed the PE of an extended

version of the model of the human intracellular core metabolic pathways in red

blood cells, presented in [57]. In particular, we explicitly consider three main445

isoforms of the hexokinase enzyme, obtaining a RBM characterized by 78 new

reactions whose kinetic constants are unknown (see [58] for additional details).

The results shown in Fig. 10 confirm that the standard CMA-ES version

(yellow solid line) is not capable of achieving good optimization results in terms

of ABF. On the contrary, thanks to the transformation in Eq. (3), CMA-ES450

(yellow dashed line) is able to achieve results similar to FST-PSO (magenta

lines), in accordance with the general patterns observed with the tested synthetic

models. In addition, it is worth noting that CMA-ES-log, on average, begins the

optimization with a better initial distribution with respect to FST-PSO: indeed,

the ABF in the case of CMA-ES-log at iteration 0 is approximately 25, while455

in the case of FST-PSO is approximately 32. This result highlights a further

advantage of our alternative representation of parameters.

4. Conclusions

In this paper we presented an analysis of the performance of some state-of-

the-art meta-heuristics (i.e., ABC, CMA-ES, DE, EDA, GA, PSO, and FST-460

PSO) applied to a set of well-known benchmark functions and a real-world

problem related to the estimation of kinetic parameters of biochemical systems.

Concerning the PE problem, we exploited a set of in silico generated models of

increasing size (i.e., 25 and 50 molecular species/reactions), and for each size

we considered 6 di↵erent models, for a total of 12 test cases.465
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Overall, the results achieved in this work point out that the performance

of the meta-heuristics can drastically change according to the context of ap-

plication, showing that the fitness landscapes identified by classic benchmark

functions are completely di↵erent from those characterizing the PE problem. We

argue that a novel set of benchmark functions, designed to mimic the character-470

istics of real-world problems, is necessary to achieve a better understanding and

a thorough evaluation of the performance of the meta-heuristics. These bench-

mark functions should be defined attempting to resemble the fitness landscapes

of a variety of real-world problems. Although some preliminary e↵orts were

devoted to create functions similar to the PE problem [45], we are still far from475

a complete and reliable reproduction of its intrinsic characteristics. In principle,

real-world problems should be applied for benchmarking, since they provide a

valuable contribution to experimental research practice [33]. Di↵erently from

benchmark functions, the structural features underlying real-world optimiza-

tion problems are often not well characterized [59]; thus, additional research480

must be performed to understand how novel benchmark functions could be de-

signed to replicate their peculiarities. As a matter of fact, defining benchmark

functions inspired by real-world problems is not trivial, since it requires the

preliminary design and development of novel ad hoc methods to analyze and

classify optimization problems, as well as automatic methods (by using, e.g.,485

Genetic Programming [60] or hierarchical fitness assignment methods based on

statistical tests [15, 61]) to devise arbitrary functions characterized by analogous

fitness-space features.

The results of our tests highlighted that CMA-ES is one of the best choices

for the optimization of benchmark functions, but its performance turned out490

to be worse than most of the other meta-heuristics when applied to the PE of

biochemical systems in 10 out of 12 RBMs. Since both CMA-ES and EDA ex-

ploit normal distributions to generate new individuals, their performances are

probably a↵ected by the peculiar log-uniform distribution of kinetic parameters

[52]. We empirically proved this conjecture by repeating the PE tasks using a495

logarithmic semantics for the putative parameters, showing that all algorithms
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benefit from this solution and, in particular, CMA-ES was now able to e�-

ciently converge to high quality solutions. This conjecture was corroborated by

the results obtained from the PE of a large-scale model of metabolic pathways

in red blood cells. Since the performance of the tested meta-heuristics is af-500

fected by the semantic logarithmic transformation applied to the original space,

novel hybrid functions, based on basic functions whose global optima span dif-

ferent orders of magnitude, should be proposed. These novel functions should

allow for better resembling the fitness landscape of real-world problems, such

as the biochemical PE. We will further investigate the logarithmic exploration505

of the parameter space, a topic that we previously tackled by considering also

the population initialization [45] and particles’ reboot [52] in PSO. We argue

that the performance of some algorithms in specific real-world problems can be

strongly improved by transforming, or adapting, the representation of the solu-

tions. Although it was possible for us to define an e↵ective transformation in the510

case of PE, this task is generally not straightforward to perform. In particular,

we speculate that the automatic design of the optimal transformation for any

problem might be as di�cult as solving the optimization problem itself. Due

to its relevance in the context of optimization problems, we plan to investigate

this topic in the near future.515

Finally, we observed that the version of FST-PSO where fuzzy rules for the

minimum velocity throttling are disabled (i.e., not leveraging turbulence [29])

appears to be the best choice for PE, although its convergence speed in the case

of the benchmark functions is worse than classic PSO. Anyway, PSO requires

the selection of multiple functioning settings, which is not necessary in the case520

of FST-PSO. As a further extension of this work, we will define improved alter-

native fuzzy rules (or approaches) to automatically set the minimum velocity,

in order to define a completely multi-purpose methodology e↵ective both in the

case of benchmark functions and real-world problems.
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J. Lozano, P. Larrañaga, I. Inza, E. Bengoetxea (Eds.), Towards a new

Evolutionary Computation, Springer, 2006, pp. 75–102. doi:10.1007/

3-540-32494-1_4.

[4] D. Karaboga, B. Basturk, A powerful and e�cient algorithm for numeri-540

cal function optimization: artificial bee colony (ABC) algorithm, J. Glob.

Optim. 39 (3) (2007) 459–471. doi:10.1007/s10898-007-9149-x.

[5] J. Kennedy, R. Eberhart, Particle swarm optimization, Vol. 4 of Proc.

International Conference Neural Networks (ICNN), IEEE, 1995, pp. 1942–

1948. doi:10.1109/ICNN.1995.488968.545

[6] M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global

optimization problems, Int. J. Math. Model. Num. Opt. 4 (2) (2013) 150–

194. doi:10.1504/IJMMNO.2013.055204.

[7] J. M. Dieterich, B. Hartke, Empirical review of standard benchmark func-

tions using evolutionary global optimization, Appl. Math. 3 (2012) 1552–550

1564. doi:10.4236/am.2012.330215.

22

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/3-540-32494-1_4
http://dx.doi.org/10.1007/3-540-32494-1_4
http://dx.doi.org/10.1007/3-540-32494-1_4
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1504/IJMMNO.2013.055204
http://dx.doi.org/10.4236/am.2012.330215
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Figure 1: Comparison of the performances in terms of ABF achieved by the meta-heuristics

on the benchmark functions with M = 25.
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Figure 2: Comparison of the performances in terms of ABF achieved by the meta-heuristics

for the PE of synthetic models characterized by 25 reactions and 25 molecular species.
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Figure 3: Comparison of the performances in terms of ABF achieved by the meta-heuristics

on the benchmark functions with M = 50.
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Figure 4: Comparison of the performances in terms of ABF achieved by the meta-heuristics

for the PE of synthetic models characterized by 50 reactions and 50 molecular species.
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Figure 5: Kiviat diagram showing the final ABF value obtained by the meta-heuristics on the

benchmark functions with M = 25.
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Figure 6: Kiviat diagram showing the final ABF value obtained by the meta-heuristics in the

PE of synthetic models characterized by 25 reactions and 25 molecular species.
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Figure 7: Kiviat diagram showing the final ABF value obtained by the meta-heuristics on the

benchmark functions with M = 50.
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Figure 8: Kiviat diagram showing the final ABF value obtained by the meta-heuristics in the

PE of synthetic models characterized by 50 reactions and 50 molecular species.
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Figure 9: Comparison of the performances of CMA-ES, EDA and FST-PSO (no vmin) with

normal and logarithmic semantics of parameters, for the parameter estimation of Model 10.
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Figure 10: Comparison of the performances of CMA-ES and FST-PSO (no vmin) with normal

and logarithmic semantics of parameters, for the estimation of the 78 kinetic parameters of

the human intracellular core metabolic pathways model.
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