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ABSTRACT
Objective To review evidence on routinely prescribed 
drugs in the UK that could upregulate or downregulate 
ACE2 and potentially affect COVID-19 disease.
Design Systematic review.
Data source MEDLINE, EMBASE, CINAHL, the Cochrane 
Library and Web of Science.
Study selection Any design with animal or human models 
examining a currently prescribed UK drug compared with a 
control, placebo or sham group, and reporting an effect on 
ACE2 level, activity or gene expression.
Data extraction and synthesis MEDLINE, EMBASE, 
CINAHL, the Cochrane Library, Web of Science and 
OpenGrey from inception to 1 April 2020. Methodological 
quality was assessed using the SYstematic Review Centre 
for Laboratory animal Experimentation (SYRCLE) risk- of- 
bias tool for animal studies and Cochrane risk- of- bias tool 
for human studies.
Results We screened 3360 titles and included 112 
studies with 21 different drug classes identified as 
influencing ACE2 activity. Ten studies were in humans 
and one hundred and two were in animal models None 
examined ACE2 in human lungs. The most frequently 
examined drugs were angiotensin receptor blockers (ARBs) 
(n=55) and ACE inhibitors (ACE- I) (n=22). More studies 
reported upregulation than downregulation with ACE- I 
(n=22), ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) 
aldosterone agonists (n=3), statins (n=5), oestrogens 
(n=5) calcium channel blockers (n=3) glucagon- like 
peptide 1 (GLP-1) agonists (n=2) and Non- steroidal anti- 
inflammatory drugs (NSAIDs) (n=2).
Conclusions There is an abundance of the academic 
literature and media reports on the potential of drugs that 
could attenuate or exacerbate COVID-19 disease. This 
is leading to trials of repurposed drugs and uncertainty 
among patients and clinicians concerning continuation or 
cessation of prescribed medications. Our review indicates 
that the impact of currently prescribed drugs on ACE2 
has been poorly studied in vivo, particularly in human 
lungs where the SARS- CoV-2 virus appears to enact its 
pathogenic effects. We found no convincing evidence to 
justify starting or stopping currently prescribed drugs to 
influence outcomes of COVID-19 disease.

INTRODUCTION
The coronavirus SARS- CoV-2 that causes the 
COVID-19 disease is a global public health 
emergency. It has been reported in 190 coun-
tries with 4 310 786 confirmed cases and 
290 455 deaths as of 12 May 2020. Walker 
et al from the World Health Organization 
Collaborating Centre for Infectious Disease 
Modelling predicted that in the absence of 
mitigation strategies, the virus would infect 
7 billion people and account for 40 million 
deaths this year alone.1 Efforts to shield the 
elderly (60% reduction in social contacts) 
and interrupt transmission (40% reduction in 
social contacts for the wider population) have 
reduced this number but further deaths are 
still expected.1 There is an urgent need for 
solutions. In the absence of a vaccination or 
effective treatment, there is growing interest 
in repurposing existing drugs for mitigation.

In particular, drugs affecting the renin–
angiotensin system (RAS) have been 
highlighted as potential candidates for 
further investigation.2 3 This is because 
the SARS- CoV-2 virus uses ACE2 receptors 
within the RAS for entry into lung alveolar 
epithelial cells.4 ACE2 has previously been 
shown to correlate with susceptibility to 
the SARS- CoV-1 virus, and the spike glyco-
protein of this new virus binds to ACE2 

Strengths and limitations of this study

 ► Human and animal models both in vivo and in vitro 
were included for a comprehensive review.

 ► At the time of submission, this was the first system-
atic review on UK prescribed drugs that could alter 
ACE2 in COVID-19 disease.

 ► Meta- analysis was not possible due to heterogeneity.
 ► Methodological quality of the studies was low 
overall.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/334410968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://bmjopen.bmj.com/
http://orcid.org/0000-0003-0175-443X
http://orcid.org/0000-0001-7805-1965
http://orcid.org/0000-0002-5610-850X
http://orcid.org/0000-0003-3982-4325
http://orcid.org/0000-0003-3664-1873
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2020-040644&domain=pdf&date_stamp=2020-09-14


2 Dambha- Miller H, et al. BMJ Open 2020;10:e040644. doi:10.1136/bmjopen-2020-040644

Open access 

with even higher affinity.5 6 Theoretically, altered ACE2 
activity could, therefore, lead to a greater susceptibility 
to SARS- CoV-2. It could also cause greater severity of the 
infection.7 Previous studies suggest that dysregulation of 
ACE2 activity in the lungs could promote early neutrophil 
infiltration and subsequent uncontrolled activation of the 
RAS.8 In mice models, acute lung injury was observed in 
response to SARS- CoV-1 spike protein, so it is plausible 
that similar responses will be observed with SARS- CoV-2.9 
This is particularly problematic in organs containing high 
ACE2 such as the lungs as it may contribute to cytokine 
release syndrome (cytokine storm) and the subsequent 
respiratory failure that has been observed in those who 
have died from the disease.7 Many prescribed drugs in 
common use are known to mediate effects through the 
RAS pathway. Over 45 million of these prescriptions were 
issued in the UK last year alone, and of these, 15 million 
were for ACE inhibitors (ACE- I) and angiotensin receptor 
blockers (ARBs). Acting through the RAS pathway, these 
drugs may impact ACE2 regulation but their role in the 
COVID-19 pandemic is not clear. Given the number of 
people that are potentially on these drugs, it has caused 
substantial public concern and clinical uncertainty 
about continuation or cessation of prescribed medica-
tions during the pandemic. Accordingly, we reviewed all 
existing evidence on routinely prescribed UK drugs that 
might alter ACE2 regulation. Understanding the drug 
effects on ACE2 given its role in COVID-19 disease could 
help reassure clinicians and the public in these uncertain 
times, or direct research on drugs that might attenuate or 
exacerbate transmission.

METHODS
Our review was conducted in accordance with Preferred 
Reporting Items for Systematic Reviews and Meta- Analyses 
(PRISMA) guidelines and our protocol was submitted for 
open- access publication before commencing our study.10

Search strategy
A systematic search in MEDLINE, EMBASE, CINAHL, 
the Cochrane Library and Web of Science was conducted 
from inception to the 1 April 2020. The full search strategy 
for all databases is shown in online supplemental mate-
rial 1. The reference lists of recent reviews and included 
studies were screened. We also spoke to topic experts and 
screened OpenGrey for additional texts. No language 
limits or study design filters were applied.

Study selection, inclusion and exclusion criteria
The COVID-19 disease is still relatively new and there is 
limited research on drug therapies specific to the virus. In 
the interest of being comprehensive about potential drugs 
acting through ACE2, we were as inclusive as possible 
within our study selection. We included both animal and 
human models (in vivo and in vitro). Studies had to meet 
the following eligibility criteria: (1) measures ACE2 levels, 
activity or gene expression, (2) includes a drug that is 

currently available on a UK prescription according to the 
British National Formulary and (3) measures the effect of 
that drug against a placebo, control or sham group in an 
experimental design. Review articles were excluded but 
their reference lists were screened. Conference abstracts 
were included if sufficient detail could be elicited. We did 
not include studies in children under 18 years, or those 
examining drug effects in utero.

Data extraction
Four members of the team reviewed titles and abstracts 
for eligibility (AA, HD- M, CRW and SH). Full- text review, 
data extraction and quality assessment were carried out 
in duplicate using a piloted sheet. Any disagreement 
between authors was resolved by discussion. Data on 
the following study characteristics were extracted: (1) 
drug class, (2) drug name, (3) duration of treatment, 
(4) effect on ACE2 level (upregulation, downregulation 
and no effect), (5) model (human/rat), (6) site of ACE2 
reception (lung, renal and cardiac), (7) study design, (8) 
study population, (9) sample size and (10) country. Given 
the urgency of our research question during the current 
pandemic, we extracted information from only what was 
available to us in the published text.

Quality assessment
Our review includes both animal and human models, 
therefore, quality assessment was carried out separately 
for these studies. Human studies were evaluated using the 
Cochrane risk- of- bias tool, which includes the following 
domains: random sequence generation, allocation 
concealment, blinding of participants and personnel, 
blinding of outcome assessment, incomplete outcome 
data, selective reporting and other sources of bias.11 
Each domain was scored as low risk, unclear risk or high 
risk of bias. We classified the overall risk of bias as low 
if all domains were at low risk of bias, as high if at least 
one domain was at high risk of bias or as unclear if at 
least one domain was at unclear and no domain was at 
high risk of bias. Although this tool is specific to trials, 
all included studies were experimental designs and we, 
therefore, felt it appropriate to use. The methodological 
quality of animal studies was assessed using the SYstematic 
Review Centre for Laboratory animal Experimentation 
(SYRCLE) risk- of- bias tool that is based on the Cochrane 
risk- of- bias tool.12 SYRCLE’s tool includes selection bias, 
performance bias, detection bias, attrition bias, reporting 
bias and other biases.

Data analysis
Owing to the mix of study designs and models, a meta- 
analysis was not appropriate. Narrative synthesis methods 
were used. We reviewed the metadata by tabulating the 
studies according to our inclusion/exclusion criteria, 
human/animal model, drug classes and effects on ACE2. 
The consistency in the number of studies and direction 
of any effects were considered. Where inconsistencies 
were identified in the effect of a drug between studies, 
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we looked at additional data such as methods, quality and 
outcome measurement for potential explanatory factors.

Patient and public involvement (PPI)
It was not possible to involve patients or the public in the 
design or conduct of our work due to the rapid timelines, 
but we have invited PPI representatives to help us with 
drafting a lay summary and in the dissemination of our 
findings.

RESULTS
We retrieved 6827 studies and screened 3360 after 
removing duplicates. Following title and abstract 
screening, 233 studies were screened by full text. We 
included 112 studies in the final review. The flow of studies 
is shown in a PRISMA diagram in figure 1 including the 
reasons for study exclusion at each stage. A baseline table 
of included studies is included in the online supple-
mental material 2.

Study characteristics
Table 1 shows the characteristics of the included studies. 
These originated from 17 different countries with the 
most common being China (n=36), the USA (n=22) and 
Japan (n=18). There were 10 studies in humans (7 in vitro 
and 3 in vivo) and 102 in animal models (13 in vitro and 89 
in vivo). Animal models included rats (n=94), mice (n=7) 
and canines (n=1). The sample sizes for in vivo animal 
models ranged from 6 to 117. For in vivo human studies 
(table 2), sample sizes ranged from 8 to 375 but were not 
always reported. Participants were predominantly male 
and white with hypertension or diabetes, although the 
condition was not always stated. Most models examined 
ACE2 receptors in the heart or kidneys, only 5 of the 112 

included studies reporting ACE2 levels in the lungs; these 
were all in animal models.

Effects of drugs
There were 21 different drug classes examined in the 
included studies. Table 2 tabulates only those that have 
been examined in human models. The mean drug expo-
sure period ranged from 30 min for in vitro studies to 15 
weeks for in vivo studies. The most common drug classes 
were ARBs (n=55) and ACE- I (n=22). Of the 55 studies 
that examined ARBs, 43 reported upregulation of ACE2 
levels. Most of these studies were in rat models (n=34) 
and examined cardiac ACE2 levels (n=27). For ACE- I, 17 
out of 22 studies reported upregulation of ACE2. These 
were also mainly in rat models (n=16) and measured 
cardiac ACE2 levels (n=14). Of the five studies that 
assessed statins, these were all within rat models; three 
reported upregulation of ACE2, one reported downreg-
ulation and one reported no effect. Similarly, oestrogens 
were examined in five studies; three reported upregu-
lation, one reported downregulation and one reported 
no effects. For calcium channel blockers; two out of the 
three studies reported upregulation of ACE2 levels and 
these were both in vivo rodent models. The third study 
was an in vitro human model that showed downregula-
tion of ACE2 with a calcium channel blocker. There were 
three studies on aldosterone antagonists; all reporting 
increases in renal ACE2 levels within rat models.

Several diabetes drugs were evaluated and found 
to increase ACE2. For insulin, six out of eight studies 
reported upregulation of ACE2 (in mice and rat models). 
For thiazolidinediones, five out of seven studies reported 
upregulation (six mice/rate models and one of cerebral 
human cells in vitro). For glucagon- like peptide 1 (GLP-1) 
agonists, both included studies reported increases in 
ACE2. Similarly, for the one study examining DPP4 (Glip-
tans) inhibitors, it also reported an increase in ACE2. The 
only study measuring the effect of SGLT2 (Gliflozins) 
inhibitors reported a decrease in ACE2.

Quality assessment
The risk of bias across the studies has been shown in 
online supplemental material 3 using the SYRCLE’s risk- 
of- bias tool. In general, studies lacked blind allocation 
and outcome assessor blinding. They also frequently 
omitted information needed to make a thorough judge-
ment on the risk of bias.

DISCUSSION
To our knowledge, this is the most comprehensive 
review of drugs prescribed in the UK that could act on 
ACE2 receptors and thus potentially affect COVID-19 
disease. The ACE2 receptor is reported to be an essential 
contributor to SARS- CoV-2 entry into the nasopharynx 
and lungs and the subsequent inflammation that leads 
to severe acute respiratory distress syndrome.13 14 Our 
review examined drugs across human and animal 

Figure 1 Preferred Reporting Items for Systematic Reviews 
and Meta- Analyses flow chart explaining the study inclusion 
process.
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Table 1 Characteristics and key findings of included studies

Drug class

Sample 
size, 
median 
(range)

Exposure to 
treatment, 
mean (SD)

Effect on ACE2 
expression, 
levels or 
activity 
(number of 
studies)*

Model 
tested 
(number 
of 
studies)*

Site of ACE2 
receptor 
measurement 
(number of 
studies)*

Condition of subjects 
(number of studies)*

ACE inhibitors27–36 32 (7–375) 4 weeks (3) Increase (n=17)
Decrease (n=1)
No effect (n=4)

Rats, in 
vivo (n=16)
Humans, in 
vivo (n=2)
Other (n=4)

Cardiac (n=14)
Hepatic (n=2)
Renal (n=2)
Not stated (n=2)
Other (n=3)

Heart disease/heart failure 
(n=7)
Hypertension (n=3)
Diabetes (n=3)
Healthy (n=2)
Other (n=1)
Not stated (n=6)

Aldosterone 
antagonists37–39

63 (28–75) 4 weeks (4) Increase (n=3)
Decrease (n=0)
No effect (n=0)

Rats, in 
vivo (n=3)

Renal (n=3) Diabetes (n=1)
Renal disease (n=1)
Hepatic dysfunction (n=1)

Angiotensin receptor 
blockers28 30 35 36 40–89

36 (6–180) 6 weeks (6) Increase (n=43)
Decrease (n=7)
No effect (n=3)
Unclear/mixed 
findings (n=2)

Rats, in 
vivo (n=34)
Mice, in 
vivo (n=11)
Humans, in 
vivo (n=4)
Other (n=6)

Cardiac (n=27)
Hepatic (n=2)
Renal (n=12)
Lung (n=2)
Not stated (n=1)
Other (n=7)

Hypertension (n=13)
Heart disease/heart failure 
(n=10)
Diabetes (n=5)
Healthy (n=6)
Not stated (n=13)
Other (n=5)

Beta blockers63 90 52 (44–62) 4 weeks (2) Increase (n=0)
Decrease (n=0)
No effect (n=2)

Rats, in 
vivo (n=1)
Rats, in 
vitro (n=1)

Cardiac (n=2) Hypertension (n=2)

Calcium channel 
blockers51 91 92

117 (N/A) 3 weeks (1) Increase (n=2)
Decrease (n=1)
No effect (n=0)

Rats, in 
vivo (n=2)
Human, in 
vitro (n=1

Hepatic (n=1)
Cardiac (n=1)
Cerebral (n=1)

Healthy (n=2)
Hypertension (n=1)

Centrally acting 
vasodilators86

6 (N/A) 8 weeks 
(N/A)

Increase (n=0)
Decrease (n=0)
No effect (n=1)

Mice, in 
vitro (n=1)

Cardiac (n=1) Other (n=1)

DPP4 inhibitor93 24 (N/A) 4 weeks 
(N/A)

Increase (n=1)
Decrease (n=0)
No effect (n=0)

Rats, in 
vivo (n=1)

Cardiac (n=1) Healthy (n=1)

GABA analogues94 8 (N/A) 3 weeks 
(N/A)

Increase (n=0)
Decrease (n=1)
No effect (n=0)

Rats, in 
vivo (n=1)

Cerebral (n=1) Heathy (n=1)

GLP-1 agonists93 95 38 (24–54) 3 weeks (1) Increase (n=2)
Decrease (n=0)
No effect (n=0)

Rats, in 
vivo (n=2)

Cardiac (n=1)
Lung (n=1)

Diabetic (n=1)
Healthy (n=1)

Insulin96–103 57 (8–84) 6 weeks (6) Increase (n=6)
Decrease (n=1)
No effect (n=1)

Mice, in 
vivo (n=4)
Mice, in 
vitro (n=1)
Rats, in 
vivo (n=2)
Rats, in 
vitro (n=1)

Renal (n=5)
Cardiac (n=2)

Diabetes (n=7)
Healthy (n=1)

Ivabradine104 24 (N/A) 12 weeks 
(N/A)

Increase (n=1)
Decrease (n=0)
No effect (n=0)

Canine, in 
vivo (n=1)

Cardiac (n=1) Heart failure (n=1)

NSAIDs105 106 18 (N/A) 8 weeks (0) Increase (n=2)
Decrease (n=0)
No effect (n=0)

Rats, in 
vivo (n=2)

Cardiac (n=2) Diabetic (n=2)

Continued
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models, and we found a number of studies reporting 
upregulation of ACE2 levels in response to ACE- I 
(n=22), ARBs (n=55), insulin (n=8), thiazolidinedione 
(n=7) aldosterone agonists (n=3), statins (n=5), oestro-
gens (n=5) calcium channel blockers (n=3) GLP-1 
agonists (n=2) and NSAIDs (n=2). However, these drugs 
were poorly studied in vivo within the lungs or naso-
pharynx of humans, where they are likely to matter most 

in influencing the severity of outcomes of COVID-19 
disease.

We observed that the most frequent drugs to upreg-
ulate ACE2 are also those prescribed in people with 
diabetes or cardiovascular disease. Mortality rates from 
COVID-19 have been high in this group.13 15–17 Notably, 
these are also conditions with a high prevalence among 
Black, Asian and Minority Ethnic groups who have had 

Drug class

Sample 
size, 
median 
(range)

Exposure to 
treatment, 
mean (SD)

Effect on ACE2 
expression, 
levels or 
activity 
(number of 
studies)*

Model 
tested 
(number 
of 
studies)*

Site of ACE2 
receptor 
measurement 
(number of 
studies)*

Condition of subjects 
(number of studies)*

Oestrogens45 107–111 27 (17–75) 3 weeks (3) Increase (n=3)
Decrease (n=1)
No effect (n=1)

Human, in 
vitro (n=2)
Human, in 
vivo (n=1)
Rats, in 
vivo (n=2)
Mice, in 
vivo (n=1)

Cardiac (n=2)
Ovarian (n=1)
Cerebral (n=1)
Not stated (n=2)

Heart disease (n=1)
Hypertension (n=1)
Hypertension+ovariectomy 
(n=1)
Healthy (n=1)
Not stated (n=1)
Alzheimers (n=1)

PDE-5 inhibitors112 32 30 min (N/A) Increase (n=0)
Decrease (n=0)
No effect (n=1)

Rats, in 
vitro (n=1)

Cardiac (n=1) Healthy (n=1)

SGLT2 inhibitors113 Not stated 15 weeks 
(N/A)

Increase (n=0)
Decrease (n=0)
No effect (n=1)

Mice, in 
vitro (n=1)

Renal (n=1) Diabetic (n=1)

Statins92 103 114–116 62 (36–87) 5 weeks (3) Increase (n=3)
Decrease (n=1)
No effect (n=1)

Rats, in 
vivo (n=4)
Rats, in 
vitro (n=1)

Cardiac (n=4)
Renal (n=1)

Diabetes (n=2)
Hypertension (n=1)
Unclear (n=1)
Unclear (n=1)

Thiazide and 
thiazide- like 
diuretics117

48 (N/A) 1 week (N/A) Increase (n=1)
Decrease (n=1)
No effect (n=0)

Rats, in 
vivo (n=1)

Cardiac (n=1) Hypertension (n=1)
Healthy (n=1)

Thiazolidinedione105 

118–123
21 (8–60) 6 weeks (8) Increase (n=5)

Decrease (n=1)
No effect (n=1)

Rats, in 
vivo (n=4)
Rats, in 
vitro (n=1)
Human, in 
vitro (n=1)
Mice, in 
vivo (n=1)

Renal (n=3)
Cardiac (n=2)
Hepatic (n=1)
Cerebral (n=1)

Hypertension (n=1)
Heart disease/heart failure 
(n=1)
Diabetes (n=1)
Healthy (n=1)
Renal disease (n=1)
Not stated (n=2)

Vitamin D123–125 47 (33–60) 6 weeks (6) Increase (n=2)
Decrease (n=0)
No effect (n=1)

Rats, in 
vivo (n=3)

Cardiac (n=1)
Renal (n=1)
Not stated (n=0)

Hypertension (n=1)
Renal disease (n=1)
Not stated (n=1)

Vitamin D 
analogues126 127

28 (25–30) 8 weeks (11) Increase (n=1)
Decrease (n=0)
No effect (n=1)

Rats, in 
vivo (n=1)
Rats, in 
vitro (n=1)

Renal (n=1)
Lung (n=1)

Diabetes (n=5)
Lung injury (n=1)

Zinc(128) Not stated Not stated Increase (n=0)
Decrease (n=1)
No effect (n=0)

Rats, in 
vitro (n=1)

Renal (n=1)
Lung (n=1)

Not stated (n=1)

*Studies reporting on multiple sites or in multiple models have been listed separately and appear more than once in the table.
GABA, gamma- Aminobutyric acid; GLP-1, glucagon- like peptide 1; PDE-5 inhibitor, phosphodiesterase type 5 inhibitor.

Table 1 Continued
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disproportionally high mortality rates from COVID-19 
disease.18 To date, much of this evidence has been limited 
to clinical commentaries or case reports. Larger cohorts 
are emerging but have not yet adequately considered a 
range of potential confounders including comorbidi-
ties, age, sex, deprivation or household numbers which 
might be more important than prescribed medication in 
the spread, susceptibility and severity of the disease. For 
example, in a cohort of 191 people who were infected 
with the virus in Wuhan, 87% (approximately 155) of 
those who died had coronary heart disease and 47% 
(approximately 90) had diabetes.19 These conditions 
are associated with an increased risk of death but were 
not considered as covariates in the analysis. Irrespective 
of ACE2, people with diabetes are more susceptible to 
worse infection as the low- grade chronic inflammation 
and hyperglycaemia associated with the condition results 
in impaired immune responses with lower interleukin 1 
(IL-1), IL-6, tumor necrosis factor (TNF)-α and delayed 
mobilisation of immune cells in response to pathogens.20 
This comorbidity, like many other confounders, is highly 
relevant when examining the risk of death with COVID-19 
disease.

This lack of adequate adjustment for existing condi-
tions is highlighted by Sommerstein et al in their editorial 

on ACE- I and ARBs in COVID-19.16 They also propose 
that existing comorbidities such as heart failure may be 
independently linked to SARS- CoV-2 transmission and 
severity, and the subsequent poor pulmonary outcomes 
that are observed in these patients. Indeed, in mice 
models, arterial hypertension, atrial fibrillation and type 
2 diabetes have been shown to upregulate ACE2 levels 
irrespective of medications.21 22 Moreover, ACE2 levels 
are higher in men and with increasing age.23 Most of the 
published data on deaths in COVID-19 disease report that 
men of increasing age are particularly susceptible to poor 
outcomes.13 24

Our review has also highlighted the variable ACE2 
levels in different parts of the body with most of the 
existing literature focussing on renal and cardiac levels. 
Responses to drugs may vary depending on cell type and 
location. Although the lung ACE2 is important to COVID-
19, it is unclear if overall COVID-19 mortality might be 
attenuated by cardiovascular ACE-2 activity levels. We 
also observed variations in ACE2 levels with drug expo-
sure duration which was relatively short among included 
studies in our review. It is uncertain how dysregulation 
might continue after starting or stopping these medica-
tions. It is also unclear how the observed effects among 
included studies would translate in vivo in humans and 

Table 2 Summary of studies characteristics with human models

Drug class
Sample size, 
median (range)

Exposure to 
treatment, 
mean (SD)

Effect 
on ACE2 
expression, 
levels or 
activity 
(number of 
studies)

Model 
tested

Site of ACE2 
receptors Condition of subject

Angiotensin receptor 
blockers

46.5 (8–80) 15 weeks (6) Increase (n=2)
Decrease (n=1)
No effect (n=1)

In vivo 
(n=3) 
In vitro 
(n=1)

Urinary (n=1)
Serum (n=1)
Renal (n=1)
Not stated 
(n=1)

Diabetes (n=1)
Hypertension (n=1)
Hypertension+diabetes 
(n=1)
Diabetic+chronic kidney 
disease (n=1)

ACE inhibitors 228 (80–375) 12 weeks 
(N/A)

Increase (n=1)
Decrease (n=1)

In vitro 
(n=2)

Renal (n=1)
Unclear 
(n=1)

Diabetic+chronic kidney 
disease (n=1)
Unclear (n=1)

Calcium channel 
blockers

N/A Unclear Increase 
ACE2 in the 
membrane 
surface 
(decreased in 
the cytosol) 
(n=1)

In vitro 
(n=1)

Cardiac Healthy cells

Oestrogen 36 (N/A) 1 day (N/A) Increase (n=2)
No effect (n=1)

In vitro 
(n=3)

Cardiac 
(n=1)
Umbilical 
(n=1)
Not stated 
(n=1)

Heart problems (n=1)
Healthy (n=1)
Not stated (n=1)

Thiazolidinedione Not stated 1 day Increase (n=1) In vitro 
(n=1)

Cerebral 
(n=1)

Not stated



7Dambha- Miller H, et al. BMJ Open 2020;10:e040644. doi:10.1136/bmjopen-2020-040644

Open access

what the net effect on receptor access to the COVID-19 
virus is; access to the receptor by the virus may be compet-
itively inhibited by the presence of drugs which also attach 
to the receptor, so whether upregulation is the key factor 
in practice is unclear. This is particularly challenging to 
understand as we found a paucity of data demonstrating 
the effect of prescribed drugs on ACE2 in the lungs or 
nasopharynx, where the SARS- CoV-2 virus appears to 
enact its pathogenic effects. Our results, therefore, do not 
provide convincing evidence on the role of any currently 
prescribed UK drugs acting through ACE2 regulation 
that could affect COVID-19 disease. Finally, we found a 
disproportionate number of studies reporting upregula-
tion or ‘positive effects’ of drugs on ACE2, compared with 
studies reporting no effect or downregulation. This may 
reflect a publication bias that is well established in the 
literature, especially among animal models.25 26

Strengths and limitations
We carried out a comprehensive and systematic search of 
the literature. To our knowledge, at the time of submis-
sion (April 2020), this is the first review on the subject. 
We did not include language restrictions but non- English 
language studies in the international literature might 
not have been indexed in the databases we searched. 
Given the rate of new publications on COVID-19, it is also 
possible that our search and results may not be up to date. 
Owing to the limited research on this novel virus, it was 
necessary to be as inclusive as possible and we, therefore, 
considered both animal and human models to look for 
any drugs acting through ACE2 with potential to affect 
COVID-19 outcomes. While this inclusive approach may 
offer insights, the heterogeneity across models makes it 
hard to interpret findings or translate them directly to 
patients. We did not formally assess heterogeneity but this 
is likely as we had multiple different models including 
animal, human, in vitro, in vivo as well as different 
body sites (heart, lung and kidney) Future studies are 
needed that can quantify effects through meta- analysis, 
and examine dose responses. Although we were robust 
in our methodological approach to this review, we were 
also aware of the urgency to report our findings in the 
current pandemic. We, therefore, did not contact authors 
for more information about their studies beyond what 
was published. We observed frequent omission of infor-
mation that would have allowed us to carry out a more 
detailed quality assessment. Had we pursued this informa-
tion; the quality assessment of included papers may well 
have been higher. At present, all studies were high risk of 
bias, which is a limitation of this review.

CONCLUSION
We reviewed the evidence on routinely prescribed drugs 
in the UK that could upregulate or downregulate ACE2, 
and thus potentially affect COVID-19 disease. Our review 
indicates that currently prescribed drugs have been 
poorly studied in vivo within the lungs of humans. Until 

there is better evidence, we cannot recommend starting 
or stopping prescribed medications during the COVID-19 
pandemic.
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