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Abstract. Let G be a finite group, and let cs(G) be the set of conjugacy class sizes of G. Recalling
that an element g of G is called a vanishing element if there exists an irreducible character of G

taking the value 0 on g, we consider one particular subset of cs(G), namely, the set vcs(G) whose

elements are the conjugacy class sizes of the vanishing elements of G. Motivated by the results
in [2], we describe the class of the finite groups G such that vcs(G) consists of a single element

under the assumption that G is supersolvable or G has a normal Sylow 2-subgroup (in particular,
groups of odd order are covered). As a particular case, we also get a characterization of finite

groups having a single vanishing conjugacy class size which is either a prime power or square-free.

1. Introduction

Given a finite group G, let cs(G) denote the set consisting of the sizes of the conjugacy classes
of G. A well-established research field in the theory of finite groups investigates the interplay
between some features of this set of positive integers and the structure of the group itself (see [4]
for an overview of this subject); in particular, several authors investigated the so-called conjugate
rank of a group G, defined as the number of elements in cs(G) \ {1}, and its influence on the group
structure. We mention, for instance, the work by N. Itô ([15]) and by K. Ishikawa ([14]) showing
that a finite group with conjugate rank 1 is, up to abelian direct factors, a group of prime-power
order of nilpotency class at most 3; also, the class of finite groups of conjugate rank 2 was studied
by S. Dolfi and E. Jabara in [6].

Recently, this research area has been intertwined with character theory via the concept of van-
ishing elements, introduced by I.M. Isaacs, G. Navarro and T.R. Wolf in [13]: an element g of a
finite group G is called a vanishing element of G if there exists an irreducible character of G taking
the value 0 on g, and the conjugacy class of such an element is called a vanishing conjugacy class
of G. Now, one can focus on a subset of cs(G) “filtered” by means of the irreducible characters
of G, considering the set vcs(G) of vanishing conjugacy class sizes of G (see also [8] for a survey
on results concerning vanishing elements and vanishing conjugacy classes). In view of the previous
paragraph, a natural issue in this context can be to investigate the structure of finite groups having
a unique (non-central) vanishing conjugacy class size. This question was considered in [2], where a
characterization is obtained under the assumption that the unique vanishing conjugacy class size is
a prime number p, namely: vcs(G) = {p} if and only if either G is (up to abelian direct factors) a
p-group with cs(G) = {1, p}, or G/Z(G) is a Frobenius group whose Frobenius kernel has order p.

One of the main results of this paper is a generalization of the aforementioned Theorem 1 of [2].
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Theorem A. Let G be a finite group, let s be an integer that is either a prime power or square-free.
Then, denoting by π the set of prime divisors of s, we have vcs(G) = {s} if and only if G = NH,
where N is a normal Hall π-subgroup and H an abelian π-complement of G, and one of the following
occurs.

(a) The integer s is a prime power, G = N ×H, and cs(N) = {1, s}.
(b) G/Z(G) is a Frobenius group whose Frobenius kernel NZ(G)/Z(G) has order s, a Frobenius

complement is HZ(G)/Z(G), and N contains no vanishing elements of G.

We note that (a) occurs if and only if π equals the set π(G/Z(G)) of prime divisors of |G/Z(G)|,
whereas (b) occurs if and only if π is strictly contained in that set.

As we see from the above result, the finite groups G such that vcs(G) consists of a single element s
which is either a prime power or square-free turn out to have a nilpotent Hall π-subgroup (where π is
the set of prime divisors of s). In fact, a crucial step in our proof of Theorem A is to characterize the
class of finite groups G satisfying the condition vcs(G) = {s} and having a nilpotent Hall subgroup
for the set of prime divisors of s; this is achieved in Theorem 3.3.

We also remark that there exist groupsG as in conclusion (b) of Theorem A for whichNZ(G)/Z(G)
is nonabelian, and also groups such that G/Z(G) is a Frobenius group whose kernel NZ(G)/Z(G)
has prime-power order but N does contain vanishing elements of G; we will present some examples
after the proof of Theorem 3.3.

As another remark, the groups as in Theorem A turn out to be nilpotent-by-abelian (a necessary
condition for a group in order to be supersolvable) and, in the square-free case, they are in fact
supersolvable. One may wonder if the supersolvable groups having a single vanishing class size are
necessarily as in (a) and (b) of Theorem A.

Actually, if the supersolvable group G is such that vcs(G) = {s}, and the set of prime divisors
of s is strictly smaller than π(G/Z(G)), then G is as in conclusion (b) of Theorem A, and the same
holds also replacing the supersolvability assumption with G having a normal Sylow 2-subgroup (see
Theorem 4.7). On the other hand, if π = π(G/Z(G)), then the situation is different, as shown by
the following result.

Theorem B. Let G be a finite supersolvable group, and assume that vcs(G) = {s}. If, denoting
by π the set of prime divisors of s, we have π = π(G/Z(G)), then, up to an abelian direct factor of
π′-order, one of the following occurs.

(a) The integer s is power of a suitable prime p, G is a p-group and cs(G) = {1, s}.
(b) For a suitable prime p we have G = NP , where N is a nontrivial, abelian, normal p-

complement of G, and P is a Sylow p-subgroup of G such that |cs(P )| = 2, Z(P ) = CP (N),
and P/Z(P ) is an elementary abelian p-group. Also, |N : CN (x)| has the same value for
every element x ∈ P \ Z(P ), CN (P ) = N ∩ Z(G), and N contains no vanishing elements
of G.

When we prove Theorem B in Section 5, we will obtain some additional technical conditions
in (b) that will enable us to have in fact an “if and only if” theorem (see Theorem 5.2). As we
shall then discuss in Section 6, the class of groups as in (b) of Theorem B is non-empty. Also,
similar conclusions can be obtained replacing the assumption of supersolvability of G with the
assumption that G has a normal Sylow 2-subgroup (see Theorem 5.1); in that case a third class of
(non-supersolvable) groups arises in principle, but at the time of this writing we are not aware of
any example of a group as in that class.

Another question that we leave as an open problem is whether a finite group having a single
vanishing conjugacy class size is necessarily solvable. As a first step, we prove in Lemma 6.1 that
such a group does not have any nonabelian minimal normal subgroup, thus, in particular, it is not an
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almost-simple group. At any rate, our conjecture is that the finite groups having a unique vanishing
conjugacy class size are only those described in this paper; we refer the reader to Section 6 for some
more details.

To close with, we mention that a key tool in our proofs of Theorem A and Theorem B is a
result by I.M. Isaacs (see [12]), where the author describes finite groups having a normal subgroup
such that all elements outside this subgroup lie in conjugacy classes of the same size; in fact, in
Theorem 2.4, we provide a neat characterization of one particular situation of this kind, when the
relevant group has a normal Hall subgroup.

Throughout the following discussion, every group is assumed to be a finite group.

2. Preliminary results and notation

If n is a positive integer, we denote by π(n) the set of prime divisors of n and, for a group G, we
write π(G) for π(|G|). Also, given a set π of prime numbers, nπ and nπ′ will denote the π- and the
π′-part of n, respectively.

As mentioned in the Introduction, vcs(G) is defined as the set of vanishing conjugacy class sizes of
the group G. We will freely use some elementary properties of conjugacy class sizes and of vanishing
elements, as, for instance, the fact that if N is a normal subgroup of G and gN is a vanishing element
of G/N , then every element in the coset gN is a vanishing element of G.

We start with some general lemmas.

Lemma 2.1. Let G be a group, and let π be a set of primes. If every element of vcs(G) is divisible
only by primes in π, then the following conclusions hold.

(a) G = NH, where N is a normal Hall π-subgroup of G and H is an abelian π-complement.
(b) If x ∈ N is a vanishing element of G, then x lies in CN (H)y for a suitable y ∈ N .

Proof. By Theorem A of [9], under our assumptions, G has a normal q-complement and abelian
Sylow q-subgroups for every prime q lying in π(G) \ π. Therefore G has a normal Hall π-subgroup
N , and a Hall π′-subgroup H of G is nilpotent because it has a normal q-complement for every
prime q dividing its order; but H is in fact abelian as all its Sylow subgroups are abelian, and (a)
is proved.

As for (b), assume that x ∈ N is a vanishing element of G: by our hypothesis, we know that
|G : CG(x)| is divisible only by primes in π, and therefore CG(x) contains a conjugate Hg of the
π-complement H. Since Hg can be clearly written as Hy for a suitable element y of N , we conclude
that x lies in CN (H)y, as claimed. �

Lemma 2.2. Let G be a group, let π be a set of primes, and assume that G has a normal Hall
π-subgroup N . Then, denoting by H a π-complement of G, the following conclusions hold.

(a) We have CN (H) ∩ Z(N) = Z(G) ∩ N . Furthermore, if CN (H) is abelian, then also the
normal core of CN (H) in N is Z(G) ∩N .

(b) If H is abelian, then CH(N) = Z(G) ∩ H. Furthermore, for g ∈ G, the conjugacy class
size of gCH(N) in G/CH(N) is the same as the conjugacy class size of g in G and, in
particular, vcs(G/CH(N)) ⊆ vcs(G).

(c) If ν ∈ Irr(N) vanishes on an element x ∈ CN (H), then x is a vanishing element of G.

Proof. We start by proving (a). Clearly we have Z(G) ∩N ≤ CN (H) ∩ Z(N). On the other hand,
N centralizes Z(N) and H centralizes CN (H), so G = HN centralizes CN (H) ∩ Z(N). Since
CN (H) ∩ Z(N) is contained in N , we obtain CN (H) ∩ Z(N) ≤ Z(G) ∩ N , as desired. Observe
also that, as Z(G) ∩ N is a normal subgroup of N contained in CN (H), we get Z(G) ∩ N ≤
CoreN (CN (H)).
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Now, by coprimality we have N = [N,H]CN (H), whence G = H[N,H]CN (H). Taking into
account that every conjugate of H in G is in fact a conjugate of H by an element of N , it follows that
the normal closure HG of H in G is 〈Hy | y ∈ N〉 = [H,N ]H. Thus, G = HN = H[H,N ]CN (H) =
HGCN (H). Since CoreN (CN (H)) =

⋂
y∈N CN (Hy), we see that Hy centralizes CoreN (CN (H)) for

each y ∈ N , and therefore HG centralizes CoreN (CN (H)). Assuming now that CN (H) is abelian, we
clearly get that the whole G = HGCN (H) centralizes CoreN (CN (H)), which is therefore contained
in Z(G) ∩N .

We move next to part (b), so we assume that H is abelian. It is obvious that Z(G)∩H ≤ CH(N).
On the other hand, N centralizes CH(N) and, since H is abelian, H centralizes CH(N) as well.
Thus CH(N) is central in HN = G and we have CH(N) = Z(G) ∩H.

As for the remaining claims of (b), since CH(N) lies in Z(G), for g ∈ G we have CH(N) ≤ CG(g).
Set U/CH(N) to be the centralizer in G/CH(N) of gCH(N). It is obvious that CG(g) ≤ U . On
the other hand we have that [U, g] lies in CH(N) ∩ G′, but G′ lies in N , so [U, g] is in fact in
CH(N) ∩ N = 1. This implies U ≤ CG(g), and so, U = CG(g). As a consequence, we get
|G/CH(N) : CG/CH(N)(gCH(N))| = |G : CG(g)|, and the proof of (b) can be easily concluded by
observing that if gCH(N) is a vanishing element of G/CH(N), then g is a vanishing element of G.

Finally, we prove (c). Our assumption is ν(x) = 0, where ν ∈ Irr(N) and x ∈ CN (H). For g in

G, we can write g−1 = hn for suitable elements h ∈ H and n ∈ N , so we get xg
−1

= xhn = xn,

because x ∈ CN (H). Now, νg(x) = ν(xg
−1

) = ν(xn) and, since ν is a class function of N , we have
νg(x) = 0. As this holds for every element g ∈ G, it follows by Clifford Theory that any irreducible
constituent of νG vanishes on x. �

As we will see, a situation that turns out to be very relevant in our analysis is when a group G
has a normal subgroup N such that all elements of G \N lie in conjugacy classes of the same size.
This situation was studied in [12].

Theorem 2.3. [12] Let G be a nonabelian group with a proper normal subgroup N such that all of
the conjugacy class of G which lie outside of N have equal sizes. Then either G/N is cyclic, or else
every nonidentity element of G/N has prime order. In the first situation, G has an abelian Hall
π-subgroup and a normal π-complement, where π is the set of primes dividing the index |G : N |.

When we are in the situation of Lemma 2.2, we can characterize the groups that satisfy the
hypotheses of Theorem 2.3. Let π be a set of primes. Following the literature, a group G is π-
separable if G has a composition series where the composition factors are all π-groups or π′-groups.
It is known that π-separable groups have Hall π-subgroups and that every π-subgroup is contained
in some Hall π-subgroup.

Theorem 2.4. Let G be a group, let π be a set of primes, and assume that G has a normal Hall π-
subgroup N . Also, denote by H a π-complement of G. Then every element of G outside of NCH(N)
lies in conjugacy classes of the same size s if and only if the following hold.

(a) |H : CH(h)| has the same value for all h ∈ H \CH(N).
(b) |N : CN (h)| has the same value for all h ∈ H \CH(N).
(c) CN (CH(h)) = CN (h) for every element h ∈ H \CH(N).
(d) CN (h) is abelian for every element h ∈ H \CH(N).

In this situation, |H : CH(h)| is sπ′ and |N : CN (h)| is sπ for all h ∈ H \CH(N).

Proof. We first assume that every element of G outside of NCH(N) lies in conjugacy classes of
the same size. Fix an element h ∈ H \ CH(N). We always have CN (CH(h)) ≤ CN (h). Suppose
1 6= n ∈ CN (h). Then hn is not an element of NCH(N). Since h is also not an element of NCH(N),
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we have |G : CG(h)| = |G : CG(hn)|. Since n and h commute and have coprime orders, we know that
CG(hn) = CG(h) ∩CG(n), and we obtain CG(hn) ≤ CG(h). We have shown that these subgroups
have the same indices in G, so CG(hn) = CG(h). We now have CH(h) ≤ CG(h) = CG(hn) ≤
CG(n), and in particular, n ∈ CN (CH(h)). This yields CN (CH(h)) = CN (h), proving (c). It
follows that CN (h) ≤ CG(n) for every element n ∈ CN (h). We observe that CN (h) centralizes all
of its elements, and hence, CN (h) is abelian. This proves (d).

We know that |G : CG(h)| is the class size for elements outside of NCH(N). Since N is a normal
Hall π-subgroup of G, it follows that CN (h) = CG(h) ∩N is the Hall π-subgroup of CG(h). This
yields |N : CN (h)| = |G : CG(h)|π, and thus, we have that |N : CN (h)| will be the same for all
elements h ∈ H \ CH(N). This proves (b). Notice that G is π-separable, so there is an element
g ∈ G so that Hg ∩CG(h) is a π-complement of CG(h) containing h. Since G = HN , we see that

Hg = Hm for some element m ∈ N . We now have h ∈ H ∩ Hm, and so, hm
−1 ∈ H. We obtain

[h,m−1] = h−1hm
−1 ∈ H. Since m−1 ∈ N , we have [h,m−1] ∈ N , and using the fact that N∩H = 1,

we deduce that [h,m−1] = 1. Thus, h and m commute, and so, m ∈ CN (h) = CN (CH(h)). It
follows that CHm(h) = CH(h). Observe that |G : CG(h)|π′ = |Hm : CHm(h)| = |H : CH(h)|, and
therefore, this value is the same for all h ∈ H \CH(N) which proves (a).

Conversely, we assume (a)–(d). First, consider h ∈ H \ CH(N). Observe that CN (h) is the
Hall π-subgroup of CG(h). There exists a π-complement H1 of G so that H1 ∩ CG(h) is a π-
complement of CG(h) and h ∈ H1. Since H and H1 are conjugate and elements in H \ CH(N)
have the same conjugacy class size in H, we have that |H1 : CH1(h)| = |H : CH(h)|, and so,
CH(h) is a π-complement of CG(h). This implies that CG(h) = CN (h)CH(h). Furthermore,
|G : CG(h)| = |H : CH(h)||N : CN (h)|, and by hypothesis, this is the same value for all elements
h ∈ H \CH(N).

Suppose g ∈ G\NCH(N). We know that there exist unique elements g1, g2 ∈ G so that g = g1g2,
g1 has π-order, g2 has π′-order, and g1 and g2 commute. We know g1 ∈ N and g2 is conjugate to an
element of H \CH(N). Conjugating, we may assume that g1 = n ∈ N and g2 = h ∈ H \CH(N).
Since n and h commute and have coprime orders, we have CG(g) = CG(h) ∩ CG(n) and n ∈
CN (h). This implies that CG(g) ≤ CG(h). Observe that n ∈ CN (h) = CN (CH(h)), and so,
CH(h) ≤ CG(n). Since CN (h) is abelian, and n ∈ CN (h), we have CN (h) ≤ CG(n). It follows
that CG(h) = CH(h)CN (h) ≤ CG(n), hence CG(h) = CG(h) ∩ CG(n) = CG(g). In light of the
previous paragraph, we have that |G : CG(g)| is the same for all elements g ∈ G \NCH(N). �

To close this preliminary section, under the additional assumptions of H being abelian and not
centralizing N we simplify the above theorem further and derive some more conclusions.

Corollary 2.5. Let G be a group, let π be a set of primes, and assume that G has a normal
Hall π-subgroup N . Also, denoting by H a π-complement of G, assume that H is abelian and that
CH(N) < H. Then the following conclusions hold.

(a) All elements of G \ NCH(N) have the same conjugacy class size if and only if CN (h) =
CN (H) for all h ∈ H \CH(N) and CN (H) is abelian.

(b) If the (equivalent) conditions of (a) hold and CN (H) is normal in N , then G/Z(G) is a
Frobenius group with Frobenius kernel NZ(G)/Z(G).

Proof. Since H is abelian, in particular we have that CH(h) = H for all elements h ∈ H \CH(N).
Notice that (a) of Theorem 2.4 is trivially met, and 2.4(c) becomes CN (h) = CN (H), and so, 2.4(b)
becomes an immediate consequence of 2.4(c). Hence, in this case, all of the elements in G\NCN (H)
have the same class size if and only if CN (h) = CN (H) for every element h ∈ H \ CH(N) and
CN (H) is abelian, thus our first claim is proved.
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As for the second claim, assume now that we are in the above situation, and that CN (H) is normal
in N . In light of Lemma 2.2(a), we have CN (H) = Z(G) ∩ N . Observe that if h ∈ H \ CH(N),
then by (a) we have CN/CN (H)(hCH(N)) = CN/CN (H)(H/CH(N)) = 1. Hence H/CH(N) acts
fixed-point freely on N/CN (H), and the conclusion follows. �

3. When the unique vanishing class size is a prime power

Let G be a group such that vcs(G) = {s}, where s is a positive integer whose set of prime divisors
we denote by π. By Lemma 2.1(a) we know that G = NH, where N is a normal Hall π-subgroup
of G and H is an abelian π-complement. The main result of this section, which is Theorem 3.3,
yields a characterization of a group G of this kind under the assumption that N is nilpotent; as an
immediate consequence, in Corollary 3.4 we will prove the part of Theorem A regarding the case
when s is a prime power.

The following lemma will be a useful tool in our analysis.

Lemma 3.1. Let G be a group, let π be a set of primes, and assume that G has a nilpotent normal
Hall π-subgroup N . Denoting by H a π-complement of G, assume also CH(N) < H. If θ ∈ Irr(N)
is nonlinear, then θ vanishes on some element of N that is not conjugate to any element in CN (H).

Proof. As we are assuming CH(N) < H, we clearly have also CN (H) < N . It follows that the nor-
mal closure CN (H)N is strictly contained in N , since N is nilpotent. Also, again by the nilpotency
of N , we can find a proper subgroup X of N and a linear character λ ∈ Irr(X) such that λG = θ.
Since X < N , we have XN < N . We know that θ vanishes on every element of N that does not lie
in any conjugate of X. In particular, θ vanishes on every element of N \XN . If we suppose that θ
does not vanish on any element of N that is not conjugate to CN (H), then every element in N \XN

will be conjugate to CN (H) and will lie in CN (H)N . This implies that N = XN ∪CN (H)N . Since
XN and CN (H)N are both proper subgroups of N , this is a contradiction. Thus, θ must vanish on
some element not conjugate to CN (H). �

As already mentioned, I.M. Isaacs, G. Navarro, and T.R. Wolf introduced the study of vanishing
elements in [13]. In that paper, they prove the following theorem. As is customary, we denote by
F(G) the Fitting subgroup of the group G.

Theorem 3.2. [13, Theorem B] If G is a supersolvable group, then the nonvanishing elements of G
all lie in Z(F(G)). In particular, if G is nilpotent, then the nonvanishing elements of G are central.

We are now in a position to prove the main theorem in this section.

Theorem 3.3. Let G be a group, let s be an integer, and let π be the set of primes that divide s.
Then vcs(G) = {s} and G has a nilpotent Hall π-subgroup if and only if G = NH, where N is a
normal Hall π-subgroup and H is an abelian π-complement, and one of the following occurs.

(a) The integer s is a prime power, G = N ×H, and cs(N) = {1, s}.
(b) G/Z(G) is a Frobenius group whose Frobenius kernel NZ(G)/Z(G) has order s, a Frobenius

complement is HZ(G)/Z(G), and N contains no vanishing elements of G.

Proof. We first suppose that vcs(G) = {s}, and that G has a nilpotent Hall π-subgroup. As
already observed, by Lemma 2.1(a) we know that G = NH, where N is a normal Hall π-subgroup
and H is an abelian π-complement of G. If H = CH(N), then G = H × N and, since N is
nilpotent, Theorem 3.2 yields that every element in N \ Z(N) is vanishing in G. It follows that
cs(N) = {1} ∪ vcs(G) = {1, s}. We now apply the main result of [15], getting that s is a prime
power and obtaining conclusion (a).
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Assume then CH(N) < H. Lemma 2.6 of [10] yields that every element of G \ NCH(N) is
vanishing in G, therefore, by our assumptions, these elements all lie in conjugacy classes of size s.
By Corollary 2.5(a) we see that CN (H) is abelian, and we can also apply Lemma 2.1(b) to get that
every vanishing element of G contained in N lies in some conjugate of CN (H).

Suppose that N has a nonlinear H-invariant irreducible character ν. By Lemma 3.1, there is an
element x ∈ N such that ν(x) = 0 and x is not conjugate in N to any element of CN (H). Consider
χ ∈ Irr(G) whose restriction to N has ν as a constituent: it follows that χN = aν for some positive
integer a, and so χ(x) = aν(x) = 0. Hence, χ vanishes on x and we have a contradiction. Our
conclusion so far is that N has no nonlinear H-invariant irreducible characters, and therefore the
number ofH-invariant irreducible characters ofN is given by |CN/N ′(H)| = |CN (H)N ′/N ′| (here we
are using some well-known properties of coprime actions). The Glauberman-Isaacs correspondence,
namely, Theorem (13.1) of [11], yields now |CN (H)N ′/N ′| = |CN (H)|, which forces CN (H) ∩ N ′
to be trivial.

Our aim is now to prove that N does not contain any vanishing element of G and, for a proof
by contradiction, we suppose that x ∈ N is a vanishing element of G: we claim first that Z(N) ≤
CN (H). In fact, by Lemma 2.1(b), x lies in a conjugate of CN (H) (by an element of N) and,
replacing x by a suitable conjugate in N , we may assume x ∈ CN (H). Recalling that CN (H)
is abelian, we thus have CN (H) ≤ CN (x). Let h ∈ H \ CH(N); by Corollary 2.5(a) we have
that CG(h) = CN (h)H = CN (H)H ≤ CN (x)H = CG(x), but, since h and x are both vanishing
elements of G, the indices of their centralizers in G are both equal to s. As a consequence we get
CN (H) = CN (x) and, since Z(N) ≤ CN (x), we conclude that Z(N) ≤ CN (H), as claimed. Now,
as CN (H) < N , this implies that N is not abelian, whence N ′ > 1. With N being nilpotent, we
get Z(N) ∩ N ′ > 1, and we deduce that CN (H) ∩ N ′ > 1, a contradiction. This proves the claim
that N does not contain any vanishing element of G.

Note that, if CN (H) is normal in G, then, by Lemma 2.2(a), CN (H) = Z(G) ∩ N . Also,
Corollary 2.5(b) yields that G/Z(G) is a Frobenius group whose Frobenius kernel is NZ(G)/Z(G).
Since HZ(G)/Z(G) is a Frobenius complement of G/Z(G), for h ∈ H \CH(N) we have hgZ(G) =
hZ(G) if and only if g ∈ HZ(G) ≤ CG(H), hence s = |hG| = |(hZ(G))G/Z(G)| = |NZ(G)/Z(G)|.

To prove conclusion (b) now, it suffices to show that CN (H) is normal in N . In fact, we show
that CN (H) is central in N . Suppose that we can find an element x in CN (H) \ Z(N). We know
that every element of N outside of Z(N) is a vanishing element of N . Thus, there is a character
ν ∈ Irr(N) so that ν(x) = 0. By Lemma 2.2(c), x is a vanishing element of G and this contradicts
the fact that N does not contain any vanishing element of G, concluding our proof.

Conversely, if G is as in (a) or (b), then clearly the normal Hall π-subgroup N of G is nilpotent.
Moreover, if we are in case (a), then we have cs(G) = {1, s} and vcs(G) = {s} (because N is
nonabelian, and so is G). On the other hand, suppose we are in case (b), so, in particular, N
contains no vanishing elements of G. By Lemma 2.2(b) we know that CH(N) = Z(G) ∩ H, and
(using Clifford Theory) it can be checked that NZ(G) = N×CH(N) contains no vanishing elements
of G. Therefore, the vanishing elements of G are (precisely the) elements of G \ NZ(G), and it is
not difficult to see that, for an element g of this kind, the class size of gCH(N) in G/CH(N) is s.
Using Lemma 2.2(b) again, we conclude that vcs(G) = {s}, as desired. �

As mentioned in the Introduction, there exist groups G as in conclusion (b) of the above theorem
(and of Theorem A) for which NZ(G)/Z(G) is nonabelian. Such a group is, for instance, the
normalizer of a Sylow 2-subgroup in the Suzuki group Suz(8), which is a Frobenius group of order
26 · 7 whose vanishing classes have all size 26. Moreover, considering now G = SL(2, 3), we have
G = NH where N is a normal Sylow 2-subgroup and H a 2-complement, and G/Z(G) is a Frobenius
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group whose Frobenius kernel N/Z(G) has order 4; but the set of vanishing class sizes of G contains
two numbers, 4 and 6, as in fact N does contain vanishing elements of G.

We can now handle the case where s is a prime power, which is one part of Theorem A.

Corollary 3.4. Let G be a group, let p be a prime, and let α be a positive integer. Then vcs(G) =
{pα} if and only if G = PH, where P is a normal Sylow p-subgroup and H is an abelian p-
complement, and one of the following occurs.

(a) G = P ×H, and cs(P ) = {1, pα}.
(b) G/Z(G) is a Frobenius group whose Frobenius kernel PZ(G)/Z(G) has order pα, a Frobenius

complement is HZ(G)/Z(G), and P contains no vanishing elements of G.

Proof. As a Sylow p-subgroup of G is nilpotent, this is an application of Theorem 3.3. �

To close this section, we take time to point out an alternate description of groups as in case (b)
of Theorem 3.3. Basically, we see that the Hall π-subgroup of the center of these groups is a direct
factor.

Proposition 3.5. Let G be a group as in case (b) of Theorem 3.3. Then G = CN (H)×M , where
CN (H) lies in Z(G), M = [N,H]H is the normal closure of H in G, and M/CH(N) is a Frobenius
group whose Frobenius kernel [N,H]CH(N)/CH(N) contains no vanishing element of M/CH(N).
Furthermore, the unique vanishing class size of G is |[N,H]|.
Proof. We know that G/Z(G) is a Frobenius group whose kernel is NZ(G)/Z(G) and HZ(G)/Z(G)
is a Frobenius complement. It follows that CN (H) ≤ Z(G), and so, CN (H) = Z(G)∩N is abelian.
Arguing as in the proof of Theorem 3.3, we have CN (H)∩N ′ = 1. By coprimality, and taking into
account thatN/[N,H] ' CN (H)/C[N,H](H) is abelian, we haveN/N ′ = CN (H)N ′/N ′×[N,H]/N ′.
It follows that CN (H) ∩ [N,H] ≤ N ′, and so, CN (H) ∩ [N,H] = CN (H) ∩ N ′ ∩ [N,H] = 1.
This implies that N = CN (H) × [N,H]. Since CN (H) centralizes H, we have G = CN (H) ×
[N,H]H = CN (H)×M . Now, M/CH(N) ' G/Z(G) is a Frobenius group whose Frobenius kernel
[N,H]CH(N)/CH(N) ' [N,H] has order equal to the unique vanishing class size of G. Finally,
note that any vanishing element of M/CH(N) lying in [N,H]CH(N)/CH(N) would give rise to a
vanishing element of G lying in N , which does not exist by our hypothesis. �

4. When the unique vanishing class size is square-free

In this section we will complete the proof of Theorem A, focusing on the situation where G is a
group such that vcs(G) consists of a single element s which is a square-free number. Groups where
all of the vanishing class sizes are square-free were considered by J. Brough in [3]. In that paper,
the following theorem is proved.

Theorem 4.1. [3, Theorem B] Let G be a group and suppose that every vanishing conjugacy class
size of G is square-free. Then G is a supersolvable group.

In light of Theorem 4.1, the groups we study in this section are supersolvable.
After two preliminary lemmas and a result from the literature, in Theorem 4.5 we will start our

analysis considering the case when π(s) is the whole π(G).

Lemma 4.2. Suppose the group G is a semidirect product of K�G and L ≤ G. If x is a vanishing
element of L, then x is a vanishing element of G as well. In particular, if L is nilpotent and x lies
in L \ Z(L), then x is vanishing in G.

Proof. Set G = G/K ' L, and adopt the bar convention. Then x is vanishing in G, and therefore
x is vanishing in G. By Theorem 3.2, when L is nilpotent all of the elements outside the center of
L are vanishing in L, and hence they are vanishing in G. �
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Lemma 4.3. Suppose that G is a group such that vcs(G) consists of a unique element s, let p be
a prime divisor of s and let P be a Sylow p-subgroup of G. Also, let X be a normal subgroup of G
with Z(F(G)) ≤ X ≤ F(G), such that every element in G \ X is vanishing in G. Then we have
Z(P ) ≤ Z(F(G)), thus G/X is a p′-group if P is abelian. Furthermore, G/X is cyclic of order
coprime with s or all elements of G/X have prime order.

Proof. Let x be an element of Z(P ): since p does not divide |G : CG(x)|, the conjugacy class of x in
G has a size different from s, and therefore x is not a vanishing element of G. By our assumptions,
x is then forced to lie in X, thus in F(G). Clearly x is centralized by the Hall p′-subgroup of F(G)
but, as x ∈ Z(P ), it is centralized by the Sylow p-subgroup of F(G) as well. In other words, x lies
in Z(F(G)) and our first claim follows.

Now, our hypotheses imply that every conjugacy class of G lying in G \X has size s, therefore
we are in a position to apply Theorem 2.3: if G/X is cyclic, not of prime order, and r is a prime
divisor of |G/X|, then the Sylow r-subgroups of G are abelian. In particular, by what proved in the
paragraph above, r doesn’t lie in π(s), and we conclude that the order of G/X is coprime with s. In
view of Theorem 2.3, the only other possibility is that every element of G/X has prime order. �

As we see in Lemma 4.3, groups where all the elements have prime order play a role in our work.
The following theorem classifies these groups.

Theorem 4.4. [5] Let G be a group having all (nontrivial) elements of prime order. Then the
following conclusions hold.

(a) G is nilpotent if and only if G is a p-group of exponent p.
(b) G is solvable and non-nilpotent if and only if G is a Frobenius group with kernel P ∈ Sylp(G),

with P a p-group of exponent p and complement Q ∈ Sylq(G), with |Q| = q.
(c) G is nonsolvable if and only if G is isomorphic to the alternating group A5.

We now are ready to handle the case when s is square-free and π(s) = π(G).

Theorem 4.5. Let G be a group, and let s be a square-free number such that π(s) = π(G). If
vcs(G) = {s}, then s is a prime, G is an s-group, and cs(G) = {1, s}.
Proof. Let us set F = F(G). As already observed, G is supersolvable by Theorem 4.1, and Theo-
rem 3.2 yields that every element of G \ Z(F ) is vanishing in G. Since π(G) consists of the prime
divisors of s, clearly |G/Z(F )| (which cannot be 1) is not coprime with s, whence, in view of
Lemma 4.3, every element of G/Z(F ) has prime order; moreover, if p is a prime divisor of |G/Z(F )|
and P is a Sylow p-subgroup of G, then we have Z(P ) ≤ Z(F ) (in fact, Z(P ) lies in the Sylow
p-subgroup of Z(F ), that we denote by Z(F )p) and P is nonabelian. Now, taking into account
Theorem 4.4 and the fact that, G being supersolvable, G/Z(F ) is obviously not isomorphic to A5,
we have to deal with two possible situations: either G/Z(F ) is a p-group of exponent p, or it is a
Frobenius group whose order is divisible by exactly two primes.

Let us assume first that G/Z(F ) is a p-group. If G itself is a p-group, then the result follows
at once just recalling that cs(G) = {1} ∪ vcs(G) by Theorem 3.2; therefore, we can assume that
there exists a nonempty set {q1, . . . , qk} of primes different from p such that π(G) = {p, q1, . . . , qk}.
Observe that, if Qi is a Sylow qi-subgroup of G, then we have Z(F ) = Q1 × · · · × Qk × Z(F )p,
and G is a semidirect product (Q1 × · · · × Qk) o P . By Lemma 4.2, every element in P \ Z(P ) is
vanishing in G; since the elements in Z(F )p lie in conjugacy classes whose sizes are powers of p,
they are nonvanishing in G, and therefore we get Z(F )p ≤ Z(P ) (so equality holds, by what was
observed in the previous paragraph).

Now, consider the conjugation action of P on Q1. Observe that no element x of P \ Z(P )
centralizes Q1, as otherwise the conjugacy class of x in G would have a size not divisible by q1,
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contradicting the fact that x is a vanishing element of G; as a consequence, P = P/Z(P ) acts
faithfully on Q1. Furthermore, for every nontrivial x ∈ P , we see that |Q1 : CQ1

(x)| is a divisor
(different from 1) of |G : CG(x)|, therefore it is q1. Since Q1 = CQ1

(x) × [Q1, 〈x〉] by coprimality,
we get |[Q1, 〈x〉]| = q1. We can now appeal to Lemma 2.4 of [1] to conclude that P/Z(P ) is cyclic,
which is a contradiction because it would imply that P is abelian.

Finally, suppose G/Z(F ) is a Frobenius group whose order is divisible by exactly two primes p
and r, and whose Frobenius kernel K/Z(F ) has index r in G/Z(F ) (observe that F ≤ K). Let R
be a Sylow r-subgroup of G. Now, RZ(F )/Z(F ) is an abelian Frobenius complement, and thus,
RZ(F )/Z(F ) is cyclic. If we can show that Z(R) = Z(F ) ∩R, then we have that R/Z(R) is cyclic
which implies that R is abelian, and hence, R = Z(R) which is a contradiction.

Thus, it suffices to show Z(R) = Z(F ) ∩ R. In the first paragraph of the proof, we saw that
Z(R) ≤ Z(F ), so Z(R) ≤ Z(F ) ∩R. We now work to show Z(F ) ∩R ≤ Z(R). Labeling the primes
in π\{p, r} as q1, . . . , qk, we can write F = Q1×· · ·×Qk×Fr×Fp as the direct product of its Sylow
subgroups. Let P be a Sylow p-subgroup of G, and observe that K = (Q1 × · · · × Qk × Fr) o P .
Since K/Z(F ) is a p-group, we have Fr ≤ Z(F ) and, in particular, Fr centralizes Fp. Let x ∈ P \Fp.
Using the fact that G/Z(F ) is a Frobenius group, we have CG/Z(F )(xZ(F )) ≤ K/Z(F ), and so,
CG(x) ≤ K. On the other hand, as s is square-free, we have |G : CG(x)|r = r. Because |G : K| = r,
this implies Fr ≤ CG(x). Since x was arbitrary in P \ Fp and Fr centralizes Fp, this implies that
Fr centralizes P . Hence, as clearly Fr also centralizes the Qi, we get K = Fr × ((Q1× . . . Qk)oP ).
Notice that L = (Q1 × . . . Qk) o P will now be normal in G, and so we may apply Lemma 4.2
to see that every noncentral element of an r-Sylow R of G is a vanishing element of G. Since the
elements of Fr are nonvanishing in G (as their conjugacy class sizes are coprime to p), this implies
Fr ≤ Z(R). Since Z(F ) ∩R ≤ Fr, this yields the result. �

Next, we consider the case where π(s) is properly contained in π(G/Z(G)). In this case, we make
use of the following theorem.

Theorem 4.6. [13, Theorem D] If G is a solvable group and x ∈ G is nonvanishing, then xF(G)
has 2-power order in G/F(G). In particular, if x has odd order, then x ∈ F(G).

As we will see, in this situation we do not need to assume that s is square-free to obtain the
desired conclusion; we only need to assume that G is supersolvable. Also, the argument when G
has odd order is very similar in this case, so we have included it.

Theorem 4.7. Let G be a group, let s be an integer, and let π be the set of primes that divide s.
Assume that π is strictly contained in π(G/Z(G)), and that G is supersolvable or G/F(G) has odd
order. If vcs(G) = {s}, then G has a nilpotent Hall π-subgroup.

Proof. By Lemma 2.1(a) we know that G = NH, where N is a normal Hall π-subgroup of G
and H is an abelian π-complement of G. Also, by Lemma 2.2(b), we have CH(N) = Z(G) ∩ H.
The fact that π is strictly contained in π(G/Z(G)) implies that HZ(G)/Z(G) is nontrivial, so
CH(N) = Z(G)∩H < H. Now, the factor group G/CH(N) (whose center is Z(G)/CH(N)) satisfies
the hypotheses of our statement by Lemma 2.2(b), and, if we prove the claim for G/CH(N), then
we clearly get the desired conclusion for G as well. As a consequence, there is no loss of generality
in assuming CH(N) = 1, thus the Fitting subgroup F of G lies in N . Note that, when G is
supersolvable, all elements in G \Z(F ) are vanishing in G by Theorem 3.2; but by Theorem 4.6, all
elements in G \ F are vanishing in G if G/F has odd order. Therefore, under our assumptions, in
any case we have that all of the elements of G lying outside F are vanishing in G.

We now appeal to Lemma 4.3: if G/F is cyclic and not of prime order, then |G/F | is not divisible
by any prime in π. This implies F = N , and the conclusion follows. Thus, again by Lemma 4.3, we
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may assume that all nonidentity elements of G/F are of prime order and we can use the classification
given in Theorem 4.4, taking into account that G/F is obviously not isomorphic to A5.

Suppose G/F is a p-group of exponent p for some prime p. Since G/N and N/F have coprime
orders, we must have either G = N or N = F . But if G = N , then we have a contradiction to the
fact that π is strictly contained in π(G/Z(G)). Thus, we must have F = N , and again we are done.

Finally, we consider the case in Theorem 4.4 when G/F is a Frobenius group whose Frobenius
kernel is a p-group with exponent p for some prime p and has index r for a different prime r. We
know that every normal subgroup of G/F either contains or is contained in the Frobenius kernel of
G/F . Since the Frobenius kernel has index r, and N is proper in G, we see that N/F is contained
in the Frobenius kernel. Now, if N/F were proper in the Frobenius kernel, then H ' G/N would be
nonabelian, which is not the case. Thus N/F is in fact the Frobenius kernel of G/F , and it follows
that r is not in π. If, arguing by contradiction, we have F < N , then we can choose n ∈ N \ F .
Observe that CG(n)F/F ≤ CG/F (nF ) ≤ N/F . This implies that r divides |G : CG(n)|. Since
n ∈ N \F , we see that n is a vanishing element of G, and so, s = |G : CG(n)|. This contradicts the
fact that, as observed above, r does not divide s, and the proof is complete. �

The following corollary will complete the proof of Theorem A.

Corollary 4.8. Let G be a group, and let s be an integer that is square-free. Then, denoting by π
the set of prime divisors of s, we have vcs(G) = {s} if and only if G = NH, where N is a normal
Hall π-subgroup and H an abelian π-complement of G, and one of the following occurs.

(a) The integer s is a prime, G = N ×H, and cs(N) = {1, s}.
(b) G/Z(G) is a Frobenius group whose Frobenius kernel NZ(G)/Z(G) has order s, a Frobenius

complement is HZ(G)/H, and N contains no vanishing elements of G.

Proof. Assuming vcs(G) = {s}, we have that G is supersolvable by Theorem 4.1. By Lemma 2.1(a),
we know that G = NH where N is the normal Hall π-subgroup of G and H is an abelian π-
complement. If CH(N) = H, then G = N × H, and vcs(G) = vcs(N), so we get conclusion (a)
by Theorem 4.5. On the other hand, if CN (H) < H, then we use Lemma 2.2(b) to see that
CH(N) = Z(G)∩H and conclude that π is properly contained in π(G/Z(G)). Now, by Theorem 4.7
we have that N is nilpotent, and conclusion (b) follows by Theorem 3.3. As for the converse
statement, this is the “if part” of Theorem 3.3. �

5. Theorem B

The aim of this section is to prove Theorem B, and also to conclude our description (started
in Theorem 4.7) of groups having a unique vanishing conjugacy class size and a normal Sylow
2-subgroup.

Theorem 5.1. Let G be a group and s a positive integer such that π(s) = π(G). Assume that G is
supersolvable or |G : F(G)| is odd. If vcs(G) = {s}, then one of the following occurs.

(a) The integer s is a power of a suitable prime p, G is a p-group and cs(G) = {1, s}.
(b) For a suitable prime p we have G = NP , where N is a nontrivial, nilpotent, normal p-

complement of G, and P is a Sylow p-subgroup of G such that cs(P ) = {1, sp}, Z(P ) =
CP (N) = Z(G) ∩ P and P/Z(P ) has exponent p. Also, |N : CN (x)| = sp′ and CN (x) =
CN (CP (x)) is abelian, for every element x ∈ P \Z(P ). Finally, CN (P ) = N ∩Z(G), every
element in Z(N) is nonvanishing in G and, if G is supersolvable, then N is abelian and
P/Z(P ) is an elementary abelian p-group.

(c) For suitable distinct primes p and q we have G = NH, where N is a nilpotent normal
{p, q}-complement of G, and H is a non-supersolvable Hall {p, q}-subgroup of G such that:
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vcs(H) consists only of s{p,q}, which is divisible by q2, and H/F(H) is a Frobenius group
whose Frobenius kernel is a p-group of exponent p having index q. In addition, if P and Q
are a Sylow p- and a Sylow q-subgroup of H respectively, then F(H) = F(G) ∩H contains
Z(P ) and Z(Q). Also, |N : CN (x)| = s{p,q}′ and CN (x) = CN (CH(x)) is abelian, for
every element x ∈ H \F(H). Finally, CN (H) = N ∩Z(G), and every element in NOp(G)
is nonvanishing in G.

Furthermore, if G satisfies (a), then vcs(G) = {s}. If G satisfies (b) and N contains no vanishing
elements of G, then vcs(G) = {s}. Finally, if G satisfies (c) with |G/F(G)| odd and F(G) containing
no vanishing elements of G, then vcs(G) = {s}.

Proof. Set F = F(G): in view of Theorem 3.2 and of Theorem 4.6, our assumptions imply that
every element of G \ F is a vanishing element of G. If |G/F | is coprime with π(s) = π(G), then
|G/F | = 1; in other words, G is nilpotent and we easily get conclusion (a). On the other hand, if
this does not happen, then Lemma 4.3 yields that every element of G/F has prime order, and again
we are in a position to use the classification provided by Theorem 4.4 (of course with no need to
consider the case G/F ' A5).

So, let us assume first that G/F is a p-group of exponent p, where p is a suitable prime. Our aim
is to show that, under this hypothesis, conclusion (b) holds.

In this case clearly G has a nontrivial, nilpotent, normal p-complement N and, if P is a Sylow
p-subgroup of G, then we have G = NP . Observe that, by Lemma 4.3, Z(P ) lies in Z(F ), thus it
lies in the maximal normal p-subgroup Op(G) of G, which in turn lies in CP (N). However, every
element x in CP (N) has a conjugacy class whose size is coprime with each of the prime factors of
|N |, thus x cannot be vanishing in G (note that, for the same reason, every element of Z(N) is
also nonvanishing in G): as a consequence, taking into account that every element of P \ Z(P ) is
vanishing in G by Lemma 4.2, we see that the inclusion CP (N) ≤ Z(P ) holds as well. Now we
have Z(P ) = Op(G) = CP (N), which immediately implies CP (N) = Z(G) ∩ P . We also see that
F = N×Z(P ) and P/Z(P ) ' G/F has exponent p. Finally, note that NCP (N) = F , and therefore
we can appeal to Theorem 2.4 obtaining the following properties: for every x ∈ P \ Z(P ), we have
|P : CP (x)| = sp (i.e., cs(P ) = {1, sp}), |N : CN (x)| = sp′ , and CN (x) = CN (CP (x)) is abelian.

Next, observe that the elements of CN (P ) are nonvanishing in G, because their conjugacy class
sizes are not divisible by p; an application of Lemma 2.2(c) yields now that those elements are
nonvanishing also in the nilpotent group N , so they lie in Z(N). We conclude that CN (P ) ≤ Z(N),
whence CN (P ) = N ∩ Z(G).

To conclude our analysis that leads to conclusion (b), it remains to prove that N is abelian if
G is supersolvable. Under this additional assumption, we know (Theorem 3.2) that every element
of G \ Z(F ) is vanishing in G, thus, as in the first paragraph of this proof, we apply Theorem 4.4:
either G/Z(F ) is a p-group or it is a Frobenius group whose kernel has prime index in G/Z(F ). In
the former case N is forced to coincide with Z(N), as N/Z(N) ' F/Z(F ) has order coprime to p,
and we get the desired conclusion. In the latter case it is easily seen that the (nilpotent) Frobenius
kernel of G/Z(F ) must coincide with F/Z(F ); but then, P/Z(P ) ' G/F would have prime order
and so P would be abelian, which is a contradiction.

Note also that, when G is supersolvable, we have G′ ≤ F . So P/Z(P ) (being isomorphic to G/F )
is abelian and, since it has exponent p, it is an elementary abelian p-group.

The other possibility given by Theorem 4.4 is that G/F is a Frobenius group whose kernel K/F
is a p-group of exponent p and of index q in G/F , where p and q are suitable primes. In this case
we will reach conclusion (c). To begin with, G has obviously a nilpotent normal {p, q}-complement
N , so that G = NH where H is a Hall {p, q}-subgroup of G. Denoting by P and Q a Sylow p- and
a Sylow q- subgroup of H respectively, we get H = PQ.
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Observe that, if N is nontrivial, then every element in CH(N) is nonvanishing in G because its
conjugacy class size is coprime with any prime divisor of |N |. As a consequence, we have CH(N) ≤ F
in this case, whence CH(N) = H ∩ F and NCH(N) = F . Now Theorem 2.4 yields the following
properties: CN (x) = CN (CH(x)) is abelian, |N : CN (x)| = s{p,q}′ , and |H : CH(x)| = s{p,q} for
all elements x ∈ H \ (H ∩ F ). Recall also that, if x is a vanishing element of H, then Lemma 4.2
yields that x is also a vanishing element of G, and therefore it lies in H \ (H ∩F ); we conclude that
vcs(H) = {s{p,q}}. On the other hand, if N = 1, then H = G, s = s{p,q}, and we trivially have the
same properties.

Notice that if g ∈ P \Op(G) then, since G/F is a Frobenius group with kernel K/F and gF is a
nontrivial element of K/F , we have CG(g)F/F ≤ CG/F (gF ) ≤ K/F . It follows that CG(g) ≤ K,

so CK(g) = CG(g). We claim now that s is divisible by q2 and, arguing by contradiction, we
assume sq = q. As our element g doesn’t lie in F , we have |G : CG(g)|q = sq = q; since q = |G : K|
divides |G : CG(g)|, it follows that CG(g) must contain Oq(G), which is the Sylow q-subgroup of
K. We have shown that Oq(G) ≤ CG(g) for every element g ∈ P \Op(G), but then clearly Oq(G)
centralizes in fact P , and therefore every element of Oq(G) is nonvanishing in G. Also, NP is
now a normal q-complement of K, hence NP is normal in G and, by Lemma 4.2, every element in
Q \Z(Q) is vanishing in G. The conclusion so far is Oq(G) ≤ Z(Q), but then |Q/Z(Q)| is a divisor
of |Q/Oq(G)| = q, which is a contradiction because it implies that Q is abelian. Our claim that s
is divisible by q2 is then established.

The property proved in the paragraph above implies that a vanishing element of G cannot cen-
tralize Oq(G) (note that, by this reason, every element in NOp(G) is nonvanishing in G) and so,
in particular, every element in P \Op(G) doesn’t lie in Op(H). It follows that Op(H) = Op(G).
Note that we also have Oq(H) = Oq(G), because otherwise (recalling that |Q : Oq(G)| = q)
we would have Oq(H) = Q, and so Q would be normalized by P ; this clearly cannot happen,
as G/F = PF/F o QF/F is a Frobenius group. Now, we get F ∩ H = Op(G) × Oq(G) =
Op(H) × Oq(H) = F(H), and the desired conclusion about the factor group H/F(H) being a
Frobenius group follows. Observe that, H/F(H) being nonabelian, we have that H is not super-
solvable. Note also that no element of Z(P ) can be vanishing in G, because its conjugacy class size
is not divisible by p, so Z(P ) lies in F ∩H, and a similar argument shows that Z(Q) ≤ F ∩H as
well.

Finally, observe that every element of N \Z(N) is a vanishing element of N , and if CN (H)\Z(N)
is nonempty, then every element of that set is in fact vanishing in G by Lemma 2.2(c). But we have
seen that no element of N can be vanishing in G, so CN (H) \Z(G) is actually empty, and also the
remaining claim that CN (H) = N ∩ Z(G) easily follows.

We move now to the converse statement. It is immediate to see that, if G satisfies conclusion (a),
then vcs(G) = {s}.

Also, if G satisfies conclusion (b), then it satisfies the hypotheses of Theorem 2.4 (“if part”) and
so every element in G \ NCP (N) = G \ F will lie in conjugacy classes of the same size (namely,
of size |N : CN (x)| · |P : CP (x)|, for any x ∈ P \ Z(P )). If every element of N is nonvanishing in
G, which certainly happens if N is abelian, then by Clifford Theory (and taking into account that
Z(P ) ≤ Z(G)) it is not difficult to see that in fact every element in F = N × Z(P ) is nonvanishing
in G. As a consequence, vcs(G) will consist of a single element.

To close with, suppose that G satisfies conclusion (c) and G/F has odd order. Then also
H/F(H) ' G/F has odd order and, since H is solvable, every element of H \ F(H) is vanish-
ing in H by Theorem 4.6. Therefore, by our assumptions, we have |H : CH(x)| = s{p,q} for all
x ∈ H \ F(H). Observe that, F(H) being contained in F(G), we have F(H) ≤ CH(N); but if the
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inclusion is proper, then we can take x ∈ CH(N) \F(H), getting that |N : CN (x)| = 1 for this par-
ticular x, hence, by assumption, for every x in H \F(H). As this is clearly impossible, we conclude
that CH(N) = F(H), and so NCH(N) = F . Now we are in a position to apply the “if part” of
Theorem 2.4, getting that all the elements of G\F lie in conjugacy classes of size s{p,q} · s{p,q}′ = s.
The assumption that F contains no vanishing elements of G yields the desired conclusion. �

We can now prove a slightly extended form of Theorem B which is an “if and only if” theorem.

Theorem 5.2. Let G be a group, s a positive integer, and set π = π(s). If G is supersolvable,
vcs(G) = {s} and π = π(G/Z(G)), then, up to an abelian direct factor of π′-order, one of the
following occurs.

(a) The integer s is power of a suitable prime p, G is a p-group and cs(G) = {1, s}.
(b) For a suitable prime p we have G = NP , where N is a nontrivial, abelian, normal p-

complement of G, and P is a Sylow p-subgroup of G such that: cs(P ) = {1, sp}, Z(P ) =
CP (N) = Z(G)∩P and P/Z(P ) is an elementary abelian p-group. Also, |N : CN (x)| = sp′

and CN (x) = CN (CP (x)) for every element x ∈ P \ Z(P ). Finally, CN (P ) = N ∩ Z(G)
and N contains no vanishing elements of G.

Conversely, if G is as in (a) or (b), then vcs(G) = {s} and π = π(G/Z(G)).

Proof. Let vcs(G) = {s}. By Lemma 2.1(a) we know that G = G0H, where G0 is a normal Hall
π-subgroup of G and H is an abelian π-complement of G; note that the prime divisors of H do not
belong to π(G/Z(G)), which easily yields H ≤ Z(G) and thus G = G0 ×H. As π(G0) = π, the “if
part” of the result follows by Theorem 5.1.

The converse statement is just an application of Theorem 5.1, and the proof is complete. �

Note in the case of (b) in the converse of Theorem 5.2 that the group G is not necessarily
supersolvable.

6. Some open problems, examples and concluding remarks

Let us consider the general question of describing all the groups having a single vanishing con-
jugacy class size. As a first step, one may ask whether a group of this kind should be necessarily
solvable; we leave this as an open problem, but we can present one small contribution in this
direction.

Proposition 6.1. Let G be a group. If vcs(G) = {s}, then all minimal normal subgroups of G are
abelian.

Proof. Setting π = π(s), we apply Lemma 2.1(a) to decompose G as NH, where N is a normal Hall
π-subgroup and H an abelian π-complement of G. Suppose, for a proof by contradiction, that M
is a nonabelian minimal normal subgroup of G. Hence, there exists a prime p 6∈ {2, 3} that divides
|M |. Since G/N is abelian we get M ≤ N , and this implies p ∈ π (i.e., p divides s).

Let P be a Sylow p-subgroup of G. We know that P ∩M is a nontrivial normal subgroup of P ,
thus Z(P ) ∩M = Z(P ) ∩ (P ∩M) > 1.

Suppose x ∈ Z(P ). As P ≤ CG(x), we see that p does not divide |G : CG(x)|, hence the
conjugacy class of x in G has a size different from s and x is a nonvanishing element of G. Since p is
relatively prime to 6, by Theorem A in [7] we get x ∈ F(G). Now, we have shown that Z(P ) ≤ F(G)
and M∩Z(P ) > 1. This implies M ≤ F(G), against the fact that M is a nonabelian minimal normal
subgoup of G. �

As a consequence of the above proposition, if the group G has only one vanishing class size then
G is not an almost-simple group.
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Remark 6.2. As regards the classification of the solvable groups G such that |vcs(G)| = 1, giving a
closer look at Theorem 4.7 and Theorem 5.1, we see that the assumption of G being supersolvable or
having a normal Sylow 2-subgroup is really used only to guarantee that every element of G \F(G)
is vanishing in G. A long-standing open problem, going back to the paper [13], is to determine
whether the above property holds in general if G is solvable. If the answer to this conjecture would
turn out to be positive, then our results in this paper would actually provide a characterization of
solvable groups having a single vanishing conjugacy class size.

To sum up, we strongly believe that the groups having a unique vanishing conjugacy class size
are only those that are described in the conclusions of Theorem 3.3 and of Theorem 4.7 (although,
as explained after the following examples, we are not sure that all of them actually occur). We leave
this conjecture for future research.

Next, we discuss some examples showing that groups as in conclusion (b) of Theorem 5.2 do
exist.

Example 6.3. For our first example, take P to be an extra-special group of order 8. (I.e., P can
be either dihedral or quaternion.) We take N to be an elementary abelian group of order r3 for
r = 3, 5, 7, 11, so, we write N as C1×C2×C3, where each Ci is cyclic of order r. We then define the
action of P on N by letting M1, M2, and M3 be the three distinct maximal subgroups of P , and we
have P act on Ci by taking Mi in the kernel of the action. It is easy to see that the resulting semi-
direct products G are supersolvable groups. In Magma or GAP, when r = 3 this yields the groups
SmallGroup(216,132) and SmallGroup(216,133), and computing the character tables of these groups
in Magma, we see that they have vcs(G) = {18}. When r = 5, this yields SmallGroup(1000,142)
and SmallGroup(1000,143), and computing the character tables of these groups in Magma, we see
that they have vcs(G) = {50}. When r = 7 or 11, the resulting groups are not in the SmallGroup
database in Magma or GAP, but we can have Magma compute the character tables, and we see
that vcs(G) = {98} when r = 7 and vcs(G) = {242} when r = 11. We were also able to compute
the group where each of the Ci are cyclic of order 9 and G/Mi acts fixed-point freely on Ci. For
this G, we have vcs(G) = {162}.

We also present an example of odd order. Take P to be an extraspecial group of order 33 and N
to be an elementary abelian 7-group of order 74. Thus, we can write N = C1×C2×C3×C4, where
each Ci is cyclic of order 7. Let M1,M2,M3, and M4 be the distinct maximal subgroups of P . We
can define an action of P on N by having P act on Ci with Mi in its kernel for each i = 1, 2, 3, 4.
Using Magma, we determine that the resulting semi-direct product G has vcs(G) = {1029}.

Modifying the last example, we can obtain an example where G is not supersolvable. Again,
take P to be an extraspecial group of order 33. Take N = K1 × K2 × K3 × K4 where each Ki

is a non-cyclic group of order 4. Let M1, M2, M3, M4 be the four distinct maximal subgroups of
P . There is an action of P on N by having P act on Ki so that Mi is the kernel of the action for
i = 1, 2, 3, 4. Then take G to be the resulting semi-direct product of P acting on N . Using Magma,
we determine that vcs(G) = {192}.

On the other hand, we do not have any example of a group as in (b) of Theorem 5.1 where N
is nonabelian. We believe it is likely that such a group does exist, but the ones we can construct
are too large for Magma to determine the vanishing classes, and at this time, we do not see another
method to determine the vanishing classes of these groups. We also don’t know of any example of
a group as in (c) of Theorem 5.1.
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Università degli Studi di Milano by the second and third authors. The second and third authors
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