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Abstract

Perception relies on cortical processes in response to sensory stimuli. Visual input entering the
eyes ascends a cascade of processing steps from the retina to high-level regions of the cortex.
Vision science investigates these transformations that give rise to high-level processing of
visual objects, such as object recognition. In this thesis I investigate computational models
of the human visual cortex with regard to their ability to predict cortical responses to visual
objects. In particular, I describe two factors playing an important role in using deep neural
networks (DNNs) to better understand cortical functioning: the initial weight state and
ecologically more valid input statistics.

In Chapter 1 of this thesis I will introduce relevant literature pertaining to deep neural
networks as a modeling framework for the visual cortex. Next, I will lay out the motivation
for the research questions investigated in this thesis and described in detail in Chapters 2, 3,
and 4.

Chapter 2 focuses on the impact of the initial weight state of a model on its ability
to predict cortical representations. I describe work in which we demonstrate that two
DNN instances identical in every aspect but their initial weights, yield very dissimilar
representations. Relying on single network instances to predict cortical activation patterns
in response to sensory stimuli poses a problem for computational neuroscience: depending
on the initial set of weights the ability to mirror the cortical representations of these stimuli
might vary. Thus, results based on single (“off-the-shelf”) model instances - as commonly
used in computational neuroscience - may not generalize. In contrast, using multiple DNN
instances might alleviate this problem as they allow insights in the variability of a given
model architecture to predict cortical representations. These individual differences between
model instances suggest that to allow results to generalize more easily the model instances
should be treated similar to human experimental participants.

In Chapter 3 I focus on ecologically more valid input statistics (in the form of training
images) aiming to improve a model’s ability to predict cortical representations. The most
successful models of the human visual cortex to date are DNNs trained on object recognition
tasks designed with machine learning goals in mind. However, the image sets used for training
these DNNs are often not ecologically realistic. For example, training on the most-widely
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used image set in computational neuroscience (ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012) requires the fine-grained distinction of 120 dog breeds, but does
not contain visual object categories encountered frequently in everyday human life (e.g.
woman, man, or child). This suggests that taking into account the human visual experience
when training models of the human visual cortex on a categorization task might help to
predict cortical representations. In this Chapter I describe the creation of a set of images
aimed at mimicking the human visual diet: ecoset. Ecoset contains more than 1.5 million
images from 565 basic level categories and is the largest image set specifically designed for
computational neuroscience to date. Ecoset is freely available to allow the community to test
their own hypotheses of models trained with input statistics matched to the human visual
environment.

In Chapter 4 we build on the results from the previous two Chapters. Using multiple
DNN instances I investigate whether a brain-inspired model architecture (vNet) trained on
ecologically more valid input statistics (ecoset) might improve its ability to predict cortical
representations. I first demonstrate that ecoset might improve an architecture’s ability to
mirror cortical representations. Furthermore, ecoset-trained vNet also outperforms state-of-
the-art computer vision and computational neuroscience models in terms of mirroring cortical
representations in the human brain. Thus, incorporating biological and ecological aspects,
such as brain-inspired architectural features and ecologically more valid input statistics, into
computational models may yield better predictions of response patterns in the human visual
cortex.

Treating DNN instances similar to human experimental participants and considering
ecological and biological factors for building these DNNs may be an important step towards
better models of the human visual cortex. Such models might allow a better understanding of
the cortical processes underlying high-level vision in the human brain.



Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Initial weights and input statistics determine network internal representations 4
1.2 A short history of neural networks used as models of the human visual cortex 5
1.3 Deep neural network terminology . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Individual differences between deep neural network instances . . . . . . . . 11
1.5 Manipulating network internal representations . . . . . . . . . . . . . . . . 13
1.6 Ecologically more valid input statistics . . . . . . . . . . . . . . . . . . . . 15
1.7 An ecologically more valid visual diet for deep learning yields better models

of human high-level visual cortex . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Individual differences between deep neural network instances 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Deep neural network training . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Comparing layer-internal representations across network instances . 23
2.2.3 Investigating causes for decreasing representational consistency . . 27

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Stronger category clustering and individual differences in later net-

work layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Representational consistency decreases with increasing network depth 31
2.3.3 Causes of decreasing representational consistency . . . . . . . . . . 32
2.3.4 Network regularization (Bernoulli dropout) affects representational

consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



x Table of contents

2.3.5 Representational consistency across training trajectories . . . . . . 40
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Ecologically more valid input statistics for deep neural networks 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Selection of ecoset categories and category images . . . . . . . . . 49
3.2.2 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Data Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Technical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Limitations of ecoset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 A brain-inspired DNN (vNet) and an ecologically more valid visual diet for deep
learning (ecoset) yields better models of human high-level visual cortex 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Image sets for training DNNs . . . . . . . . . . . . . . . . . . . . 62
4.2.2 DNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 DNN training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 fMRI data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.5 Predicting representations of visual objects in human IT . . . . . . 68

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 vNet task performance across epochs . . . . . . . . . . . . . . . . 70
4.3.2 Full ecoset vs. full ILSVRC 2012 trained vNet . . . . . . . . . . . 71
4.3.3 Trimmed ecoset vs. trimmed ILSVRC 2012 trained vNet . . . . . . 72
4.3.4 Full ecoset trained vNet vs. state-of-the-art computer vision and

computational neuroscience models . . . . . . . . . . . . . . . . . 74
4.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 General discussion 79
5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Individual differences between deep neural network instances . . . 79
5.1.2 Ecologically more valid input statistics for deep neural networks . . 80
5.1.3 A brain-inspired DNN (vNet) and an ecologically more valid visual

diet for deep learning (ecoset) yields better models of human high-
level visual cortex . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Table of contents xi

5.2 Future models in vision science: more biological plausibility? . . . . . . . 82
5.2.1 Biological inspiration for computer vision models . . . . . . . . . . 82
5.2.2 Ecological and biological inspiration for computational neuroscience

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 A way ahead in computational visual neuroscience . . . . . . . . . . . . . 85

References 87

Appendix A | Rotation sensitivity of correlation distance and representational con-
sistency within vs. across layers 99

Appendix B | List of ecoset categories 103

Appendix C | Relating representational consistency and IT prediction 121





List of figures

1.1 Constraints of recording techniques and of models used in visual neuroscience. 3
1.2 Receptive fields in biological vision systems are similar to those found in

deep neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Characterizing network internal representations via representational similar-
ity analysis and representational consistency. . . . . . . . . . . . . . . . . . 25

2.2 Visualization of the CIFAR-10 training sets used. . . . . . . . . . . . . . . 27
2.3 2D visualization of representational geometries in different depths of two

network instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Network individual differences emerge with increasing network depth. . . . 30
2.5 Representational consistency declines with increasing network depth. . . . 31
2.6 Representational consistency declines with increasing network depth when

trained on separate image sets. . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Representational consistency declines with increasing network depth irre-

spective of distance measure used to compute RDMs. . . . . . . . . . . . . 33
2.8 Representational consistency and category clustering are negatively correlated. 34
2.9 Category centroids are highly consistent across network instances. . . . . . 35
2.10 Rotation of ReLU activation space affects correlation- and cosine-distances. 36
2.11 Cocktail blank normalization slightly increases consistency for correlation

and cosine distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12 Effects of dropout regularization on task performance and representational

consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.13 Penultimate-layer representational consistency across training consistency

for RDMs based on individual images and on class centroids. . . . . . . . . 39

3.1 Selection process of ecoset categories and images. . . . . . . . . . . . . . . 46
3.2 Example images from 10 ecoset categories. . . . . . . . . . . . . . . . . . 48
3.3 Ecoset image set statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 52



xiv List of figures

3.4 Distribution of ecoset image parameters. . . . . . . . . . . . . . . . . . . . 53
3.5 Membership of ecoset categories in super-ordinate categories. . . . . . . . 53

4.1 Ecoset image set statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 vNet architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Receptive field sizes of vNet adjusted to mimic primate visual cortex. . . . 64
4.4 Predict representations of visual objects in human IT. . . . . . . . . . . . . 69
4.5 vNet performance on full ecoset and full ILSVRC 2012. . . . . . . . . . . . 71
4.6 vNet performance on trimmed ecoset and trimmed ILSVRC 2012. . . . . . 72
4.7 vNet trained on full ecoset and full ILSVRC 2012 explains human IT. . . . 73
4.8 vNet trained on trimmed ecoset and trimmed ILSVRC 2012 explains human IT. 74
4.9 IT predictability: best layer of ecoset-trained vNet in comparison to best

layers of state-of-the-art computer vision and computational neuroscience
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10 Comparison of investigated models on the level of representational dissimi-
larity matrices (RDMs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1 Appendix A: Rotation sensitivity of correlation distance . . . . . . . . . . . 99
2 Appendix A: Consistency index across vs. within layers. . . . . . . . . . . 100
3 Appendix A: Relating test accuracy and representational consistency. . . . . 100
4 Appendix A: VGG-753 task performance across noise levels. . . . . . . . . 101

5 Appendix C: Representational consistency and IT prediction . . . . . . . . 122



List of tables

4.1 Main characteristics and recording parameters of the two fMRI data sets
analyzed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1 Appendix B | List of ecoset categories . . . . . . . . . . . . . . . . . . . . 103





Chapter 1

Introduction

Vision plays an integral role in our lives. It enables us to perceive our proximal surroundings
and to recognize objects that might be several kilometers away. On the basis of visual infor-
mation our ancestors were able to identify predators or enemies allowing for preparation of
conflict or escape. Further, we heavily rely on vision for identification of and communication
with our fellow (human) beings on a daily basis. As such, vision is at the core of our everyday
social interactions and is thus indispensable for a definition of what we are as a species.

But how exactly is vision implemented in the human brain? When light reflects off objects
it enters the eye and the visual information travels along the visual processing hierarchy
from the retina, through sub-cortical regions in the thalamus to the visual cortex. At each
step the visual information undergoes transformations allowing the biological organism to
extract information for high-level decision making and, finally, actions. The amount of
cortex thought to underlie visual perception is - compared to the other senses - relatively
large and may indicate the importance of vision to our system: the visual cortex (including
visual-association areas) comprises more than 50% of the neo-cortex in humans and more
than 60% in macaques (Felleman & Van Essen, 1991; Maunsell, 1987). Note, however, that
the areas of the cortex typically dedicated to visual processing can also be involved in the
processing of non-visual information. For example, in cases of disabled input to the visual
system in the congenitally blind, “visual" cortex might respond to auditory and tactile stimuli
(Lane et al., 2015). This demonstrates that the visual system specifically and the human brain
in general are plastic and ever-changing systems whose exact workings we are only about to
decipher.

To better understand how vision is implemented in the brain, vision science asks how
sensory input to the eyes is transformed to give rise to high-level visual abilities and phe-
nomena, such as object recognition, different forms of visual attention, or optical illusions
(Baldauf & Desimone, 2014; Carbon, 2014; Posner, 1980; K. Tanaka, 1997). To investigate
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these abilities and phenomena systematically, experiments are conducted at different stages
of the visual processing hierarchy, as well as at different levels of explanation. Evidence may
be gathered from the retina, sub-cortical or cortical regions. Different techniques allow to
directly record (patch-clamp, single-cell recordings, multi-site arrray recordings; Gross et al.,
1977; Hamill et al., 1981; Heuschkel et al., 2002; Neher and Sakmann, 1976; Sakmann and
Neher, 1984, 1995; Thomas et al., 1972) or indirectly infer (ECoG, EEG, MEG, fMRI, PET;
Engel et al., 1994; Haxby et al., 1994; Herrmann, 2001; J. Liu et al., 2002; Winawer et al.,
2013) neural activation patterns in response to sensory stimuli. These recording techniques
vary as to whether they are invasive and concerning their temporal and spatial resolution (for
an overview see Fig 1.1 A).

To explain data from brain recordings, vision science has a long standing history of
using models to better understand the workings of the human visual system. Every model
depends on choices regarding the level of abstraction at which neural functioning should
be reflected. For example, the groundbreaking model by Hodgkin and Huxley (1952) uses
differential equations to describe the cellular mechanisms giving rise to an action potential
in a single cell, but is not able to explain data on a systems or behavioral level (Hodgkin &
Huxley, 1952). In contrast, state-of-the-art deep neural network (DNN) models may abstract
away from basic neural features such as spikes, but are able to explain behavioral choices or
higher-level cortical representations in humans and monkeys (Kietzmann, McClure, et al.,
2019). For an overview of the constraints of some of the most important computational
models in vision science, see Fig 1.1 B. As demonstrated in this sketch, modern DNNs show
a relatively low level of biological detail. The constraints of the recording techniques on the
one hand and of the models in visual neuroscience on the other hand (Fig 1.1) determine
from which population data can be collected and in which way a research question can be
investigated.

What constitutes a good model, is an open question and depends on the given research
question and what follows are important criteria often used to determine the quality of a
model. For example, parsimony is central to both scientific explanations in general and
to (computational) models in neuroscience more specifically. A parsimonious model is as
simple as possible and ideally provides an intuitive understanding of the complex system
of interest and thus allows for effective communication of its explanatory merit. Another
important criterion used to evaluate a given model is its ability to predict data not used for
training. Trained on one part of the data the goodness of fit to left-out data demonstrates how
well the model allows to generalize. For some models such a goodness-of-fit criterion can be
easily combined with the aforementioned parsimony to create a single index reflecting the
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Fig. 1.1 Constraints of recording techniques and of models used in visual neuroscience.
A) Approximate limits of spatial and temporal sensitivity of measurement techniques cap-
turing cortical activations. fMRI: functional magnetic resonance imaging; PET: positron
emission tomography; MEG: magneto-encephalography; EEG: electro-encephalography;
Optical: e.g. functional near-infrared spectroscopy. Figure adapted from (Medaglia, 2017),
originally distributed under CC-BY-4.0 license. B) Overview of constraints of computational
models in vision science. Each model is a choice regarding the level of biological (x-axis)
and behavioral (y-axis) detail. Two additional dimensions that concern these models are the
model complexity, often estimated by the number of free parameters, and the explanatory
merit. The latter relates to the insights into the workings of the brain rather than to its
accuracy of biological detail. Figure reprinted with permission from (Kietzmann, McClure,
et al., 2019).

complex relationship between these two factors in order to allow model selection (e.g. AIC,
BIC; Kuha, 2004).

However, commonly used measures of parsimony, such as the number of free parameters,
are challenged when dealing with the model class of deep neural networks (DNNs, see figure
1.1). First, the hierarchical structure of DNNs implies that parameters are not independent as
units located in a given layer of an (exclusively feed-forward) network architecture depend on
the activity in the previous layer. The exact degree of cross-unit dependence depends on many
architectural features and its estimation is non-trivial. Thus the number of free parameters
is at best a coarse estimate of a given DNN’s complexity or its parsimony (Hodas & Stinis,
2018). In addition, whereas a classical notion of model complexity typically favor models
with fewer trainable parameters for best generalization performance, over-parameterized
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neural networks can reach higher testing performancs than more parsimonious ones (Novak
et al., 2018; Sun & Nielsen, 2020).

Beyond model parsimony and goodness-of-fit, one factor important for models in compu-
tational neuroscience is its biological validity. Loosely inspired by the structures initially
found in cat and monkey visual cortex (Hubel & Wiesel, 1959, 1962), deep neural networks
bear some similarities with biological vision systems. However, the first DNNs excelling e.g.
at the complex object recognition task ILSVRC 2012 (Deng et al., 2009; Russakovsky et al.,
2015) lack important features of the human visual cortex, such as spikes or top-down and
recurrent connections (Chatfield et al., 2014; He et al., 2014; A. Krizhevsky et al., 2012). It
remains to be insvestigated which aspects of biological vision systems help to e.g. increase
its ability to predict neural data.

Beyond explaining data recorded in humans and other animals, a desirable feature of a
model is it’s ability to generate novel predictions. For example, it has been shown that a
DNN-based image synthesis method can be used to produce stimuli that can trigger spiking
activity in specific neural sites at higher levels than occurring naturally (Bashivan et al., 2019).
The ability to drive activity levels beyond natural levels implies that this model captures
an important aspect of the system under investigation and thus reveals previously unknown
functionality.

1.1 Initial weights and input statistics determine network
internal representations

The initial wiring of the brain plays a pivotal role in how its embedding organism develops
over its life span (Hagmann et al., 2010; Seckfort et al., 2008). In analogy to the brain,
the structure and the initial set of weights of a given DNN, reflecting the strength of the
connections across layers, determine the internal representations formed via task training.
Using single instances of DNNs as models of the human visual cortex poses a problem for
computational neuroscience as the initial set of weights of a given network instance might
determine its fit to a set of neural data after completion of training. The second Chapter of
this thesis is thus dedicated to investigating the strength of the impact of the initial set of
weights on network internal representations.

In addition to the initial wiring of the brain, each organism is highly influenced by its
experiences. Just as the input to the human visual system strongly influences its current state
(Charest et al., 2014; Gauthier et al., 2000; Palmeri et al., 2004), DNN internal representations
are shaped by the stimuli and the tasks they are trained on. In the third Chapter of this thesis
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I will describe the creation of ecoset, an image set designed to approximate the human visual
experience offering ecologically more valid DNN training on a complex object recognition
task.

In the fourth Chapter I build on the results from Chapters 2 and 3. Here, multiple DNN
instances per architecture (identical DNNs, only differing in the weight configuration at the
beginning of training) are used to investigate whether a brain-inspired DNN architecture
may better explain representations in the human visual cortex than i) the same architecture
but trained on a computer vision image set instead, and ii) state-of-the-art computer vision
models. Finally, in Chapter 5 I summarize the results of our investigations and discuss the
implications following from the presented evidence.

Progress in (vision) science crucially depends on a converging operations approach.
Bringing together findings from multiple levels of analysis and multiple recording techniques
using various types of DNNs can provide a fuller understanding of the underlying perceptual
and cognitive system. In general, in this thesis I investigate whether taking inspiration from
ecology and biology helps to build better models of the human visual cortex. In other words,
I investigate whether increasing the ecological and biological detail of modern DNNs may
help to increase the level of behavioral detail.

1.2 A short history of neural networks used as models of
the human visual cortex

The goal of vision science is to understand how input to the eyes is transformed along
the visual stream to allow high-level visual perception to emerge. How, for example, is it
possible that the activation patterns in the cortex allow humans to identify another person’s
face? To better understand the cortical processes underlying visual perception we require
simplified versions of the system under investigation that abstract away from some building
blocks, while keeping other functionalities of interest largely intact. To this end we need
brain-computational models mimicking the cortical processes underlying a given task at a
given level of abstraction (Kriegeskorte & Douglas, 2018). For vision science such models
need to be able to process information from stable or moving visual stimuli and perform a
task that is thought to rely on the processes in the visual stream.

“What I cannot create, I do not understand." is the powerful statement that Richard
Feynman left us with shortly before his death. Applied to the field of computational visual
neuroscience, this means that to understand the transformation from a pixel-like representa-
tion to a semantic one, eventually allowing complex decision making and motor responses,
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we need to build a machine capable of performing each step along this way at a given level
of abstraction.

It has been a long standing goal of artificial intelligence (AI) to build a machine capable
of complex object recognition. AI and visual neuroscience have a long and intertwined
history. The first computing machines were heavily influenced by structural and functional
properties of the brain (Hassabis et al., 2017; Kriegeskorte, 2015). One of the most notable
cases in which neuroscience findings had a strong and far-reaching influence on a subfield of
AI, namely computer vision, is Hubel and Wiesel’s discovery of single cell response profiles
in the cat visual cortex in 1959 (Hubel & Wiesel, 1959, 1962). The authors differentiated
between simple and complex cells responding to stimuli with varying degrees of complexity.
Whereas simple cells can be excited using a bar stimulus presented at a specific orientation
and location in the receptive field, complex cells offer some position invariance, and might be
direction sensitive. This arrangement of cells in a hierarchy of increasingly complex response
profiles in a biological vision system inspired an artificial neural network model that marked
an important step in computer vision: the neocognitron (Fukushima, 1980). Trained in an
unsupervised fashion, it exhibited some location invariance and thus allowed for a better
recognition of single hand-written digits.

In addition to the position in the visual field, other factors, such as lighting, or viewpoint
change the appearance of a given object, while its percept remains stable. How this perceptual
constancy (contrasting with the variability of the input to the visual system) is implemented
in the brain is one of the most fascinating questions in vision science (Biederman, 1987;
Duhamel et al., 1997; Marr & Nishihara, 1978). For computer vision models to demonstrate
various types of invariance and thus allowing object recognition on or even above the human
performance level, more complex, deeper models than the neocognitron appeared promising.
However, training neural networks with many hidden layers was a difficult task computer
vision struggled with for a long time.

Combining architectural features from the neocognitron with computational advances
in the form of “learning internal representation by error propagation" (“backpropagation",
or short “backprop"; Rumelhart et al., 1986), LeCun (1989) was able to train a 4-layer
network performing handwritten zip code recognition (LeCun et al., 1989). Despite this great
achievement using a neural network with multiple hidden layers trained on a complex object
recognition task using backprop, the machine learning community soon shifted its focus
from neural networks to other techniques, such as support vector machines (SVMs). This
re-orientation was motivated by better task performances on various classification tasks and
because SVMs were easier to train than DNNs. However, a small number of research groups
in machine learning and in visual neuroscience continued their efforts in investigating neural
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networks as promising tools for complex classification problems and as models of the visual
cortex (Kriegeskorte, 2015). From 1989 it took about two decades until DNNs trained with
backpropagation were put back center stage of interest in the machine learning community.

Inspired by the neocognitron, Riesenhuber and Poggio (1999) set a milestone for visual
computational neuroscience creating a network combining computer vision capabilities
(position and scale invariant object recognition) with requirements from neuroscience (to
mirror single cell activations in response to specific objects) in an architecture known as
“HMAX" (Riesenhuber & Poggio, 1999; Serre, 2015). After adding important biological
and ecological aspects (receptive field sizes matching those in macaques, and ecologically
relevant input statistics in the form of a training set composed of natural images; Serre,
Wolf, et al., 2007), HMAX was able to achieve very good performance levels on a group
of object recognition tasks (Serre, Oliva, et al., 2007). Note that the two biological aspects
that differentiate HMAX in its latest form from the original one - receptive field sizes
and input statistics - play a central role in this thesis in the context of DNNs and will be
discussed in-depth in Chapter 4. Notwithstanding its merits in both computer vision and
visual neuroscience, HMAX was not able to solve more complex object recognition problems,
e.g. the classification of millions of images from hundreds of categories. But only a few years
later computer vision models capable of such feats of intelligence emerged and radically
changed both computer vision and computational neuroscience.

Several parallel developments in computer vision culminated in 2012 in a DNN architec-
ture which outperformed all other models on a complex object recognition task by a large
margin: AlexNet (A. Krizhevsky et al., 2012; LeCun et al., 2015). In contrast to HMAX,
backprop was used to train network internal features in the 7 layer architecture of AlexNet.
In general, three main factors contributed to this revolution in computer vision, and with a
short delay also in computational visual neuroscience.

First, large datasets offered a strong enough constraint to train millions of parameters in
deep computer vision models with the goal to perform complex visual object recognition
tasks. More specifically, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
offering its challenge in 2010 for the first time, provided not only millions of images to train
on, but also a stimulating competitive atmosphere motivating labs around the globe to submit
their models to this benchmarking challenge (Deng et al., 2009; Russakovsky et al., 2015). I
will return to the importance of image sets for training DNNs later in this introduction and
investigate this topic at length in Chapters 3 and 4 of this thesis.

Second, the combination of several computational features enabled AlexNet to make
a leap in performance of this complex object recognition task: using rectified-linear-units
(ReLU) as activation function, regularizing the network through dropout, and weight-sharing
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through convolutions, all of which are explained next. Shown to increase categorization per-
formance in neural networks trained in an unsupervised fashion, AlexNet replaced commonly
used sigmoidal activation functions with ReLU (Schmidhuber, 2015). Next, to avoid reliance
of units on all input weights, generalization performance was increased through “dropout".
For the dropout implementation used in AlexNet each unit was silenced - or “dropped out"
- with a probability of 0.5 at each network update. In this way the network was forced to
develop features able to deal with incomplete input (Srivastava et al., 2014). Last, while
touching upon weight-sharing as already implemented in other forms in the neocognitron
and the network presented by LeCun to recognize handwritten digits (LeCun et al., 1989),
weight-sharing could unfold its full potential when applied to the DNN framework in the
form of convolutional layers. In a feedforward convolutional DNN, such as AlexNet, the
units of a given convolutional map of a layer share the set of connections to its preceding
layer with all other units of the same map, thereby allowing detection of an object with a high
degree of translation invariance. Conveniently, as the receptive fields of a given convolutional
map share the same weights, convolutions also reduce the number of trainable parameters
and thus the computational demands to train a model when compared to fully-connected
layers.

The third main factor, contributing to the 2012 revolution in computer vision, was ded-
icated computer hardware for deep learning. Even with a reduced number of trainable
parameters through weight sharing in convolutional layers the use of specialized processing
units normally used for graphics applications (graphical processing units, GPUs) was neces-
sary to allow a boost in task performance opening new horizons for both computer vision and
computational neuroscience. It is an interesting and ironic twist to the story of computational
neuroscience that the very same tools used to build the inverse of visual perception (graphics)
allowed a quantum leap in the ability to perform complex object recognition tasks and to
constitute the best to date models of the human visual cortex.

In sum, deep feedforward convolutional DNNs trained in an supervised manner using
backprop - with AlexNet as its most prominent example - have revolutionized object recogni-
tion and other domains of machine learning, such as biological image segmentation, and face
detection (LeCun et al., 2015). In 2012 AlexNet stunned the computer vision community by
almost halving the error rate of the object recognition challenge of ILSVRC in comparison
to the previous year. As human-level performance on a complex object recognition task
had come within reach of the performance of an artificial neural network, the vision science
community soon started testing whether a system yielding such high task performance levels
might also be able to predict cortical responses recorded in humans and other primates. In
2013 and 2014 multiple labs showed independently that AlexNet and other DNN architec-
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tures outperformed many other (much shallower) computer vision models with respect to
their ability to mirror cortical representations in response to visual objects in the human and
macaque ventral stream (Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins
et al., 2013; Yamins et al., 2014). Note, however, that more recent work using even deeper
architectures was unable to demonstrate an improved ability to predict cortical representa-
tions (Abbasi-Asl et al., 2018; Kalfas et al., 2017; Serre, 2019; Storrs & Kriegeskorte, 2019;
Storrs et al., 2017).

One possible explanation for the relationship between successful object recognition in
DNNs and their ability to predict cortical representations is that task learning yields (task-
specific) features similar to those found in vision systems of humans and other primates
(Kietzmann et al., 2009, 2008). Such features - similar to those found in biological vision
systems, and thus able to span a similar representational space - can easily be visualized
for lower stages of the ventral stream and shallow layers of DNNs. Recent visualization
techniques for neural networks allow insights in the response properties of units in shallow
and deep layers of DNNs (Fig 1.2).

Fig. 1.2 Receptive fields in biological vision systems are similar to those found in deep
neural networks. A) Cartoon of simple receptive field in the cat visual cortex. Figure
adapted from Hubel and Wiesel, 1962 by Martinez and Alonso, 2003, reprinted here with
permission from John Wiley and Sons (license nr. 4721300155889). B) Characterization
of 4 stimuli (rows) strongly activating units from 5 layers (columns) in a DNN architecture
from Chatfield et al., 2014. The stimuli in layer 1 resemble the receptive fields in the cat
visual cortex shown in A. The stimuli were produced by Güçlü and van Gerven, 2015 using a
visualization technique from Zeiler and Fergus, 2014. Figure adapted with permission from
Güçlü and van Gerven, 2015.
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Other studies compared the similarity of representations at specific depths of DNN
models to those found at specific stages of the ventral stream, most of them using encoding
or decoding techniques (Agrawal et al., 2014; Cichy et al., 2016; Devereux et al., 2018;
Eickenberg et al., 2017; Güçlü & van Gerven, 2015, 2017; Hong et al., 2016; Horikawa
& Kamitani, 2017a, 2017b). Not only do DNNs estimate cortical representations of visual
information successfully, they are also the current best models of behavioral response patterns,
and of similarity judgments in humans (Cichy & Kaiser, 2019; Kietzmann, McClure, et al.,
2019; Kriegeskorte, 2015; Kriegeskorte & Douglas, 2018, 2019; Serre, 2019; Storrs &
Kriegeskorte, 2019; Yamins & DiCarlo, 2016b). This evidence validates the status of DNNs
as the best current models of (visual) cortical processes and the resulting phenomena and
actions.

To conclude, deep feedforward convolutional networks have been very successfully used
as models for the human visual stream and are thought to reflect well the cortical processes
underlying core object recognition (DiCarlo et al., 2012). AlexNet marked the beginning
of a new era of computational visual neuroscience in which end-to-end trainable machines
outperform humans in challenging visual tasks, and are - at the same time - able to explain
cortical representations at all stages of the visual cortex.

1.3 Deep neural network terminology

We have seen that deep feedforward convolutional networks have been very successfully
used as models for the human visual stream. I will now explain some of the terminology to
describe the architecture of these networks and how they can be trained to perform complex
tasks at or even above human-level performance. First, the term "neural network" was
originally used to describe a network of biological neurons, but is now used as the short form
of artificial neural network Kriegeskorte, 2015. A deep neural network is conventionally
referred to as "deep" when there is more than 1 hidden layer between the input and the output
layer. Layers of a convolutional network are composed of maps, which all have the same
number units. Units from the same map share the set of weights connecting them to units of
maps in earlier layers. But units from different maps of the same layer might differ in the set
of weights determinging their selectivity. Overall, the way in which network units (and thus
maps and layers) are connected determines the network architecture.

To train a network, it needs to be identified how a change in a weight connecting two
units affects the objective function to be optimized. To find solutions to this fundamental
problem of credit assignment in deep neural networks the backpropagation is commonly
used Rumelhart et al., 1986. Backpropagation is effective in that it allows to determine
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the effect of a change in weight independent of its location in the network. It is efficient
in that the effects from weight changes on the given objective function can be determined
for multiple units and multiple input data points at the same time. Using the entire training
set (standard gradient descent) or batches of input data (stochastic gradient descent) the
weights are iteratively updated to find the (ideally global) minimum in the high-dimensional
error-surface of the given objective function.

1.4 Individual differences between deep neural network in-
stances

What unites the DNNs used as models for the visual stream is the reliance on a single
DNN instance (Agrawal et al., 2014; Cichy et al., 2016; Devereux et al., 2018; Eickenberg
et al., 2017; Güçlü & van Gerven, 2015, 2017; Hong et al., 2016; Horikawa & Kamitani,
2017a, 2017b; Kietzmann, McClure, et al., 2019; Storrs & Kriegeskorte, 2019; Yamins &
DiCarlo, 2016b). With the exception of some of the recurrent models presented last, all
aforementioned DNNs were created with the goal of excelling at a computer vision task, but
were not constrained to match neural data or to directly mimic properties of the visual cortex.
In other words, most of the models used by computational visual neuroscientists are single
DNN instances pre-trained by and directly imported from the computer vision community.
This might constitute a problem for computational neuroscience as the representations of
a given architecture might vary depending on the initial set of weights of a given instance,
whereby a single DNN instance does not suffice to capture this variability.

In machine learning many resources related to DNNs are dedicated to improving the
accuracy on a given task. As task performance is indistinguishable across DNN instances
(Li et al., 2016), the machine learning community is not usually concerned with training
more than a single DNN instance per architecture (Chatfield et al., 2014; He et al., 2014;
A. Krizhevsky et al., 2012). However, although the representations across DNN instances
converge to the same similarity matrix in linear networks (Saxe et al., 2019, 2013), they may
vary extensively in non-linear networks (Kornblith et al., 2019; Li et al., 2016; Lu et al.,
2018; Morcos et al., 2018). Despite the machine learning focus of these studies, the results
might have important implications for using DNNs as models for the visual cortex: the fit
of a DNN instance to a given neural dataset might depend on the initial set of weights. To
conclude, it remains to be investigated how strong such an effect might be and how multiple
network instances of the same architecture may be able to describe a fuller picture of the
ability of the given architecture to explain cortical representations.
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The idea of multiple instances of a system performing a given task in an almost identical
way, while relying on very different representations is closely related with the concept of
“degeneracy". Degeneracy has its roots in molecular biology where it was first defined as
“the ability of elements that are structurally different to perform the same function or yield
the same output" (p. 13763, Edelman and Gally, 2001). In cognitive neuroscience, the term
“degenerate" is used to describe the same or a very similar behavioral outcome while - at
the same time - relying on different structures (e.g. due to a stroke) or on different task
strategies (e.g. in response to top-down signals capturing task instructions; Noppeney et al.,
2004; Noppeney et al., 2006; Price and Friston, 2002). It is in this sense that degeneracy
applies to instances of the same DNN architecture: although performing a given task at
an indistinguishable performance level, the network internal processes might rely on very
different network internal representations. Individual differences play an important role when
dealing with human subjects (Price & Friston, 2002). Similarly, individual differences might
be an important feature when dealing with DNNs identical in every way, but differing in their
initial set of weights: a possibly degenerate nature of DNNs would suggest that for results
based on a specific DNN architecture to generalize, they might need to be based on multiple
instances to allow for an estimation of the representational variability within this architecture.
This raises the question how we can investigate the similarity of representations across
differently initialized DNNs from the same architecture. Our attempt to answer this question
is the content of Chapter 2 dealing with individual differences between DNN instances.

Although the question of the best weight initialization has been explored extensively in
machine learning (Agrawal et al., 2014; Doersch et al., 2015; Glorot & Bengio, 2010; He
et al., 2014; Mishkin & Matas, 2015; Saxe et al., 2013; Sutskever et al., 2013; D. Xie et al.,
2017), these investigations have been conducted with task performance goals in mind, instead
of relating to the usage of DNNs as models of the visual cortex. Similarly, the aforementioned
studies investigating representational similarities across DNN instances (Kornblith et al.,
2019; Li et al., 2016; Lu et al., 2018; Morcos et al., 2018) are not directed towards DNNs
as models of biological vision systems. Accordingly, the techniques used in these studies
to compare representational similarities do not include representational similarity analysis
(RSA), one of the most widely-used tools in systems neuroscience to compare representations
across species, individuals or between computational models and the brain (Kriegeskorte &
Kievit, 2013; Kriegeskorte et al., 2008).

To address these issues, we use representational similarity analysis (RSA; Kriegeskorte
and Kievit, 2013; Kriegeskorte et al., 2008; Nili et al., 2014) to compare the representational
similarities across DNN instances. RSA is a multivariate analysis framework from systems
neuroscience whose building block is the representational dissimilarity matrix (RDMs). Each
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cell of an RDM describes the distance in activation space (e.g. cortical as estimated using
fMRI or in-silico neurophysiology using deep neural networks), whereby large distances
describe dissimilar representations and small distances describe similar representations. The
complete RDM reflects the representational geometry of a given set of stimuli expressed in
pairwise distances. When RSA is used to compare representations across network instances,
the resulting representational consistency reflects the representational similarity. In Chapter
2 two different network architectures (VGG-753 - similar to VGG-S, (Chatfield et al., 2014)
and All-CNN-C (Springenberg et al., 2015)) are used to demonstrate how representational
consistency behaves as a function of network depth and how it depends on the distance
measure used to compute representational distances within each DNN instance. In addition,
to shed light on the differences, if any, we explore how the separability of classes in high-
dimensional network activation space relates to the distribution of class instances around
the class centroid. Further, to explore how representational similarity across DNNs can be
recovered, we investigate the effect of a regularization technique applied to the network
during training and testing.

1.5 Manipulating network internal representations

So far, I have described our plans to investigate individual differences between DNN instances
and have outlined how our results might yield important implications for the usage of DNNs
as models of the visual cortex of humans and other primates. Using groups of DNNs instead
of single DNN instances to predict cortical representations might allow for a better generality
of insights gained. As a next step, in Chapters 3 and 4 I turn to the impact of the input
statistics (and the architecture) of a DNN on its internal representations and thus its ability to
mirror representations in the cortex. Before I do, let me shortly describe which factors can -
in general - be directly manipulated to alter network internal representations.

DNN internal representations of visual objects depend on the structure of the given
architecture and the input information, e.g. in the form of training images. In addition, what
determines how network internal representations are shaped depends on the the task itself
and on how learning (realized through the change in weights) is implemented. In other
words, there are four main factors influencing the internal representations of a neural network:
functional objective, learning algorithm, network structure, and input statistics (Kietzmann,
McClure, et al., 2019). I now explain how each of these factors impacts network internal
representations.

Most of the DNNs used in computational neuroscience to predict cortical data are
feedforward convolutional DNNs trained to minimize a classification error in a visual object
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recognition task (Kietzmann, McClure, et al., 2019; Kriegeskorte, 2015; Richards et al.,
2019; Serre, 2019). The large-scale supervised training of these models has been enabled
by the emergence of large sets of labeled images freely available to the community (Deng
et al., 2009; Russakovsky et al., 2015). This approach has shown to be very successful in
computational neuroscience, but lacks ecological and biological realism insofar as other
objectives and learning algorithms are thought to play a vital role in the brain, and go
beyond the classification of visual objects. For example, it has been suggested that not
one, but multiple objectives are being optimized by a given brain region at a single point
in time (Marblestone et al., 2016). This notion relies on evidence suggesting that cortical
representations may rely on overlapping maps (collectively forming distinct functional
modules; Op de Beeck et al., 2008), implying that neural responses may encode different
types of information at the same time (DiCarlo & Cox, 2007; Kietzmann, McClure, et al.,
2019).

Instead of end-to-end and global training as performed in feedforward DNNs trained
using backprop, much of the changes to neural connections in biological vision systems are
thought to rely on unsupervised, local learning rules, such as Hebbian learning (Hebb, 1949;
Song et al., 2000). This is in line with data suggesting that learning in the ventral stream
appears independent of reward signals (N. Li & DiCarlo, 2012; Logothetis et al., 1995; Serre,
2019). However, where tested, supervised models outperform unsupervised counterparts with
regard to predicting cortical representations, which renders them the preferred computational
models of the human visual cortex (Khaligh-Razavi & Kriegeskorte, 2014).

Functional objectives and learning algorithms are only two of four main elements through
which network internal representations can be directly manipulated. Let us thus now turn
to the third element: network structure. A field within machine learning investigating archi-
tectural properties of DNNs is automated neural architecture search (NAS). This approach
allows task performance optimization by systematic searches through hyper-parameter space
(Elsken et al., 2019; Pham et al., 2018; S. Xie et al., 2019). By including architectural
parameters in the search algorithm based on gradient descent, one can find high-performance
convolutional architectures for large-scale image recognition tasks and recurrent architectures
for language modeling (H. Liu et al., 2019). Until recently, this approach has only been used
to optimize architectures for task performance. However, first evidence from computational
neuroscience suggests that additionally including the fit to multiple sets of cortical data
in the neural architecture search algorithm may help to find better models of the visual
stream in both humans and other primates (Kietzmann, Spoerer, et al., 2019; Kubilius et al.,
2018; Nayebi et al., 2018). To conclude, NAS can be used to algorithmically optimize a
DNN’s architecture with regard to its ability to predict cortical representations. In contrast,
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knowledge about the structure of the human visual cortex can be directly implemented in
structural elements of DNNs. We here take the latter approach by matching the receptive
field sizes of a DNN architecture to the progressive increase in foveal receptive field sizes
along multiple areas of the human ventral stream (for a more detailed account, see Chapter
4).

The fourth and last main element directly influencing the internal representations of
a feedforward DNN are the input statistics, here in the form of images used for object
recognition training. One of the two main changes from the first (1999) to the latest (2007)
version of HMAX is the adjustment of the training set to natural scene statistics, to obtain
a universal feature set enabling human-level performances on a range of complex object
recognition tasks (Serre, Oliva, et al., 2007; Serre, Wolf, et al., 2007). Similarly, the input
statistics are the main subject of Chapter 3 of this thesis, where I describe the creation of an
image set designed with the goal to approximate the human visual experience.

1.6 Ecologically more valid input statistics

One question that applies to all four factors shaping network internal representations (func-
tional objective, learning algorithm, network structure, and input statistics) is the one of
ecological and biological plausibility. Although there are clear examples of highly effective
engineering solutions showing little biological realism (planes, trains, cars), the success of
deep neural networks in machine learning suggests that biological inspiration may help to
create powerful engineering tools (Kriegeskorte, 2015). Furthermore, the unparalleled ability
of DNNs to predict cortical representations, confirms the intuition that inspiration from the
brain may help to build better models of the primate visual cortex. However, as discussed
above (Fig 1.1), each model is the result of a choice regarding the level of ecological and
biological on the one hand, and behavioral detail on the other one: some models may be
able to explain neural activations on a cellular level, but fail to explain behavioral patterns of
the host organism (Hodgkin & Huxley, 1952; Markram et al., 2011); other models, namely
DNNs, are able to predict behavior, similarity judgments and high-level cortical represen-
tations (Kietzmann, McClure, et al., 2019), but operate via rate-coding and thus abstract
away arguably important characteristics of neural processing, such as spiking. This raises the
question whether DNNs with their relatively little ecological and biological detail may profit
from additional ecological (visual input) and biological (architectural features) inspiration
from the system to be modeled.

So far, most studies investigating DNNs as models for predicting cortical representations
have been trained on the same image set: ILSVRC 2012 (Agrawal et al., 2014; Bankson
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et al., 2018; Cadieu et al., 2014; Cichy et al., 2016; Devereux et al., 2018; Eickenberg et al.,
2017; Güçlü & van Gerven, 2015, 2017; Hernández-García et al., 2019; Hong et al., 2016;
Horikawa & Kamitani, 2017a, 2017b; Khaligh-Razavi & Kriegeskorte, 2014). This might
pose problems for computational visual neuroscience. ILSVRC 2012 was designed for the
machine learning community and thus exhibits only little ecological and biological realism.
For example, in ILSVRC 2012, 120 of a total of 1,000 categories are different breeds of
dogs, whereas it lacks categories important to humans, such as woman, man, or child. To
more closely mimic the human visual experience we need an image set reflecting the objects
we encounter in our daily lives. However, no publicly available dataset contains millions of
images from multiple hundred categories necessary for training a modern DNN on an object
recognition task. Hence, we created a novel set of images to help build better models of the
human visual cortex: ecoset.

Deciding on a selection of categories for large image sets is complicated, which explains
why for some image sets categories are selected in a subjective and non-principled way,
e.g. by selecting categories "the authors deemed important" (p. 3, Kuznetsova et al., 2018).
What renders this endeavor even more complex is that there is no general agreement on
what constitutes a basic level category (Markman & Wisniewski, 1997; J. Tanaka & Taylor,
1991). In order to be comprehensive while not being redundant, the categories of an image
set reflecting the human visual experience need to be mutually exclusive, and collectively
exhaustive. In order to find such a set of categories, we asked what are the most important
categories in the visual diet of humans?

Our attempt to answer this question and how we created ecoset is the content of Chapter
3. I describe how a list of objects covering the most important human visual input was
used to download adequate images from multiple online sources. Further, I explain, which
inclusion and exclusion criteria we used to obtain a set of 1.5 million images from 565 basic
level categories - the largest to date image set designed for computational neuroscience. As
ecoset will soon be freely available to the community, it allows researchers to test their own
hypotheses with regard to the ecological plausibility of DNN input statistics.

1.7 An ecologically more valid visual diet for deep learning
yields better models of human high-level visual cortex

After introducing the two main themes of this thesis, individual differences between DNNs
(Chapter 2), and ecologically more valid input statistics (Chapter 3), in Chapter 4 I build
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on the two previous Chapters and investigate whether ecological and biological inspiration
helps build better models of the human visual cortex.

First, to create the DNN model used throughout Chapter 4, the receptive field sizes of a
DNN architecture are matched to the progressive increase in foveal receptive field sizes along
multiple areas of the human ventral stream: vNet. We then train multiple network instances
of vNet on an ecologically more valid image set (ecoset) and compare their ability to predict
cortical presentations with the same networks trained on a computer vision challenge instead.
Brief, using multiple DNN instances we investigate whether the image set used to train a
given DNN and its architecture matter with regard to its suitability as a model for the human
visual cortex.

Initial findings suggested that models performing better at a given classification task
are also better models of the human visual cortex (Kietzmann, McClure, et al., 2019;
Kriegeskorte, 2015). Shallow vision models, performing worse than a DNN on multiple
visual recognition tasks, were also outperformed with regard to their ability to predict cortical
representations in human IT (Khaligh-Razavi & Kriegeskorte, 2014). In addition, randomly
initialized DNNs (Yamins et al., 2014) confirmed this alleged relationship: the better its task
performance, the higher the similarity of its internal representations to those found in primate
IT. However, recent evidence suggests that engineering solutions might have diverged from
biological vision systems as deeper and better performing models might not always be better
able to predict cortical representations in human IT (Abbasi-Asl et al., 2018; Kalfas et al.,
2017; Storrs & Kriegeskorte, 2019; Storrs et al., 2017). We thus also probe whether our
brain-inspired architecture vNet trained on the ecologically more valid image set ecoset
yields better prediction of cortical representations in human IT than state-of-art computer
vision models, outperforming vNet at complex recognition tasks.

To conclude, in Chapter 4 I will first ask whether a DNN trained on ecologically relevant
input statistics may better explain human visual cortex representations than when trained
on a visual recognition task designed for machine learning. In a second step I will then test
whether this brain-inspired DNN architecture may better explain cortical representations than
state-of-the art models from computer vision and computational neuroscience.

1.8 Thesis overview

The following three Chapters will provide a thorough description of our investigations. In
Chapter 2 I describe which impact the initial set of weights has on the representations of
a given DNN. I also discuss the implications on the usage of single off-the-shelf network
instances as models of the human visual cortex. Chapter 3 gives a detailed account of the
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creation of an ecologically more valid image set designed for computational neuroscience.
In Chapter 4 the themes of the two previous Chapters come together: here we investigate
multiple instances per DNN architecture to elucidate whether further ecological and biological
inspiration may yield better models of the human visual cortex. Finally, Chapter 5 concludes
the thesis by summarizing the findings of each Chapter, relating it to ongoing investigations
and giving an outlook to future experiments.



Chapter 2

Individual differences between deep
neural network instances





Abstract

Deep neural networks (DNNs) excel at visual recognition tasks and are increasingly used
as a modeling framework for neural computations in the visual system of the primate brain.
In both engineering and computational neuroscience, analyses of DNNs usually rely on
single network instances. However, each DNN instance, just like an individual brain, has
a unique connectivity and unique representations. Here, we investigate DNN individual
differences by training multiple network instances of the same architecture with the same
training procedure, varying only the random initialization of the network weights. Using
representational similarity analysis, a technique from systems neuroscience that characterizes
representations in high-dimensional spaces, we demonstrate that this minimal change in
initial conditions prior to training leads to substantial representational differences despite
indistinguishable classification performance. These individual differences increase with
network depth for a large range of distance measures, indicating shared lower-level, but
diverging intermediate and higher-level representations across networks. As a possible
explanation for these effects, we argue that the category objective used to train the networks,
while optimizing for class separability, does not sufficiently constrain the arrangement of
category clusters and instances in high-dimensional activation space. In line with this,
category separability increases across layers while representational consistency decreases.
We show that this decrease is due to differences in the alignment of category exemplars, rather
than a misalignment of category centroids. Network regularization, in the form of Bernoulli
sampling during training and test, increases the consistency of learned representations. Yet,
considerable differences remain, suggesting that computational neuroscientists working with
DNNs should base their inference on multiple network instances rather than single off-the-
shelf networks. Characterizing individual differences can help machine learning researchers
obtain a better understanding of successes and failures of DNN training and of the internal
representations of DNN models.
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2.1 Introduction

Deep neural networks have recently moved into the focus of the computational neuroscience
community. Having revolutionized computer vision with unprecedented task performance,
the corresponding networks were soon tested for their ability to explain information process-
ing in the brain. To date, task-optimized deep neural networks constitute the best model class
for predicting activity across multiple regions of the primate visual cortex (Cadieu et al.,
2014; Güçlü & van Gerven, 2015; Khaligh-Razavi et al., 2014; Schrimpf et al., 2018; Yamins
et al., 2014). Yet, the advent of computer vision models in computational neuroscience raises
the question in how far network internal representations generalize, or whether network
instances, just like experimental participants, exhibit individual differences. This would
imply that the common practice of analyzing a single network instance is misguided and that
groups of networks need to be analyzed to ensure the validity of insights gained.

Here we investigate individual differences among deep neural networks that arise from a
minimal experimental intervention: changing the random seed of the network weights prior
to training while keeping all other aspects identical. Our analyses of the network internal
representations learned during training build on representational similarity analysis (RSA;
Kriegeskorte et al., 2008), a multivariate analysis technique from systems neuroscience. RSA
is based on the concept of a representational dissimilarity matrix (RDM), which characterizes
a system’s inner stimulus representations in terms of pairwise response differences. Together,
the set of all possible pairwise comparisons provides an estimate of the geometric arrangement
of the stimuli in high-dimensional activation space. The representations of two DNNs are
considered similar if they emphasize the same distinctions among the stimuli, i.e. to the
degree that their RDMs agree. Comparisons on the level of RDMs, which can be computed
in source spaces of different dimensionality, thereby side-step the problem of defining a
correspondence mapping between the units of the networks. To quantify RDM agreement
across network instances, we define representational consistency as the shared variance
between network RDMs (squared Pearson correlation of the upper triangle of the RDMs;
Fig 2.1).

Based on this analysis approach, we visualize the internal network representations and test
them for consistency. We then compare the size of the effects observed to differences between
networks trained with different input statistics and test the reliability of the observations
across multiple activity distance measures. Subsequently, we explore possible causes for
these individual differences and investigate their interaction with network regularization.
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2.2 Materials and methods

2.2.1 Deep neural network training

The main architecture used throughout all experiments presented here is All-CNN-C (Sprin-
genberg et al., 2015), a 9 layer fully convolutional network that exhibits state of the art
performance on the CIFAR-10 dataset (Krizhevsky, 2009). To optimize architectural simplic-
ity, the network uses only convolutional layers with a stride of 2 at layer 3 and 6 to replace
max- or mean-pooling. We used the same number of feature maps [96, 96, 96, 192, 192, 192,
192, 192, 10] and kernel-sizes [3, 3, 3, 3, 3, 3, 3, 1, 1] as in the original paper (Fig 2.1 A).

To show that our results generalize beyond a single DNN architecture we trained an
additional architecture reminiscent of VGG-S (Chatfield et al., 2014). In contrast to the
original VGG-S architecture, we replaced the two deepest, fully-connected layers with
convolutional layers to reduce the number of trainable parameters and thus the training
duration by ∼80%. The number of feature maps used per layer was [96, 128, 256, 512, 512,
1024, 1024], and the kernel sizes were [7, 5, 3, 3, 3, 3, 3]. We used ReLU as the activation
function at every layer. Mirroring the kernel sizes across layers, we refer to this architecture
as “VGG-753”.

All-CNN-C network instances were trained for 350 epochs using a Momentum term of
0.9 and a batch size of 128. All networks of the VGG-753 architecture were trained for
250 epochs using ADAM with an epsilon term of 0.1 and a batch size of 512. For both
architectures, we used an initial learning rate of 0.01, the L2 coefficient was set to 10−5,
and we performed norm-clipping of the gradients at 500. Training of the main DNNs was
performed on the full CIFAR-10 image set. CIFAR-10 consists of 10 categories of objects,
each of which is represented by 5,000 training and 1,000 test images. Ten network instances
were trained for the main analyses, all without dropout.

Network training was identical across all instances (same architecture, same dataset, same
sequence of data points), with the exception of the random seed for the weight initialization.
As a result, the networks only differ in the initial random weights, which are, however,
sampled from the same distribution (He et al., 2014).

2.2.2 Comparing layer-internal representations across network instances

Representational similarity analysis and representational consistency

We characterize the internal representations of the trained networks based on representational
similarity analysis (RSA; Kriegeskorte et al., 2008), a method used widely across systems
neuroscience to gain insight into representations in high-dimensional spaces.
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RSA builds upon the concept of a representational dissimilarity matrix (RDM), which
stores all pairwise distances between the stimulus-driven pattern activations in response to a
large set of input stimuli (Fig 2.1 A). Here we use 1,000 test stimuli, 100 from each of the
10 CIFAR-10 categories, such that the resulting RDMs have a size of 1000x1000 (Fig 2.1
B). The RDMs are symmetric around the diagonal and therefore contain 499,500 unique
distance estimates. In the current set of experiments, pairwise distances (using correlation-,
cosine-, and (unit length pattern-based) Euclidean-distance) are measured in the activation
space of individual layers, where each unit corresponds to its own input dimension. The
resulting matrix thereby characterizes the representational space spanned by the network
units, as it depicts the geometric relations of all different input stimuli with respect to each
other. This focus on relative distances renders RSA largely invariant to rotations of the input
space (including random shuffling of input dimensions, but see Appendix A). It is therefore
well suited for comparisons across deep neural network instances.

Because RDMs are distance matrices, they can be used as a basis for multidimensional
scaling (MDS) to project the high-dimensional network activation patterns into 2D. While not
a lossless operation, as high-dimensional distances can usually not be perfectly reproduced
in 2D, MDS does nevertheless enable us to gain first insights into the internal organization by
visualizing how network layers cluster the 1000 test images from the 10 different categories.

In addition to enabling 2D visualizations of network internal representations (or, put dif-
ferently, the organization of test-images in high-dimensional layer activation space, Fig 2.3),
RDMs themselves can be used as observations (each RDM is a point in the high-dimensional
space of all possible RDMs) and thereby form the basis for computing "second-level" dis-
tance matrices. The resulting distance matrices can be used to compare representations
across multiple network layers and network instances (rather than test-images as in first-level
RDMs). Here, we compute a second level distance matrix based on the RDMs for all network
layers and instances. Again, we use MDS to visualize the data points in 2D (Fig 2.4).

For a more quantitative comparison of network internal representations, characterized
here in terms of RDMs, we define representational consistency as the shared variance
across representational distances observed in high-dimensional network activation space.
Representational consistency is computed as squared Pearson correlation between RDMs
(Fig 2.1 C). If two network instances separate the test stimuli with similar geometry, the
representational consistency will be high (max 1), whereas uncorrelated RDMs exhibit low
representational consistency (min 0).
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Fig. 2.1 Characterizing network internal representations via representational similar-
ity analysis and representational consistency. (A) Our comparisons of network internal
representations were based on their multivariate activation patterns, extracted from each
layer of each network instance as it responded to each of 1000 test images. (B) These
high-dimensional activation vectors were then used to perform a representational similarity
analysis (RSA). The fundamental building blocks of RSA are representational dissimilarity
matrices (RDMs), which store all pairwise distances between the network’s responses to
the set of test stimuli. Each test image elicits a multivariate population response in each
of the network’s layers, which corresponds to a point in the respective high-dimensional
activation space. The geometry of these points, captured in the RDM, provides insight into
the nature of the representation, as it indicates which stimuli are grouped together, and which
are separated. (C) To compare pairs of network instances, we compute their representational
consistency, defined as the shared variance between network RDMs.

Comparing the effect of weight initialization to differences in the input statistics

The main experimental manipulation in this work consists of using different random weights
at the point of network initialization. To better understand the size of the effects on network
internal representations, we compared the effects observed to differences that emerge from
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using different images from the same categories (within-category split), or different categories
altogether (across-category split).

To perform this control analysis, two subsets of CIFAR-10 were created. For the across-
category division, we split the training and test sets on the level of categories. This resulted
in two datasets with 5 categories each while preserving the number of images per category
(5,000 training, 1,000 test images). For the within-category division, the dataset was split
based on images rather than categories. This preserves the number of categories (10) but
halves the number of training images per category. For an illustration of the splitting
procedure that resulted in the within-category, and the across-category splits of CIFAR-10,
see Fig 2.2.

In summary, the consistency of network instances resulting from different random weight
initializations (different seeds, same categories, same images), was compared with (a)
different images (same seed, same categories), and (b) different categories (same seed,
different images; Fig 2.6). Five networks were trained for each half of the dataset for both
splits (a, and b, resulting in 5∗2 = 10 network instances each). Representational consistency
was computed using pairs of network instances with the same random seed (5 pairs for each
split). Note that representational consistency was computed based on 1,000 test images from
all 10 CIFAR-10 categories, independent of the image set used to train the networks.

Category clustering and its relation to representational consistency

To measure how well the layers of a network separate instances from different categories,
we computed a category clustering index (CCI), which contrasts the distances of stimuli
within the same category with the distances for stimuli originating from different categories.
Based on the RDM computed for the 1000 test stimuli (100 stimuli per each of 10 categories),
CCI contrasts distances of category exemplars within the category with distances across
exemplars from different categories. It is defined as

CCI =
(across−within)
(across+within)

and was computed for each layer of each network instance trained. CCI has a maximum
of 1 (all categories cluster perfectly and are perfectly separable), and a minimum of 0 (no
separability, same distances across and within categories).

In addition, we investigated the relationship between CCI and representational consistency.
For each layer we computed the mean representational consistency across all 45 pairwise
comparisons between 10 network instances and used Pearson correlation to demonstrate its
relation to the mean class clustering indices (CCIs) across all 10 training seeds (Fig 2.8).
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Fig. 2.2 Visualization of the CIFAR-10 training sets used. Different categories are shown
as distinct colors. Left panel: The full CIFAR-10 training set consists of 10 categories with
5,000 images each, 50,000 images in total. Center panel: the within-category split dataset
contains 10 categories with 2,500 images each, 25,000 images in total for each subset. Right
panel: the across-category split dataset contains 5 categories with 5,000 images each, again
25,000 images in total for each subset. When splitting across categories, the number of
animal- and vehicle-categories of the full CIFAR-10 set was equally distributed across the
two subsets.

2.2.3 Investigating causes for decreasing representational consistency

To better understand the origins of changes in representational consistency, we compare
(i) exemplar-based consistency, (ii) centroid-based consistency, (iii) consistency of within-
category distances, and (iv) the effects of cocktail-blank normalization.

To understand whether a misalignment in the arrangement of individual category instances
or the arrangement of entire classes is leading to decreased consistency, we computed
the 10 class centroids and used their position in activation space to arrive at centroid-
based representational consistency. This was compared with consistency based on all 1,000
stimuli (exemplar-based representational consistency), and consistency computed when
only distances between instances of the same categories were considered (within-category
consistency; Fig 2.9 A).

To rule out effects of changed RDM size in case of centroid-based RDMs (centroid
RDMs contain 45 pairwise distances whereas the exemplar-based RDMs are composed of
499,500 entries), we computed a null distribution of RDM consistency based on centroids
computed from randomly sampled classes (Fig 2.9 B).
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Finally, to test in how far the distance measure used, rather than the representational
geometries themselves, could be the source of individual differences (see Appendix A),
we performed a cocktail blank normalization by subtracting the mean activation pattern
across all images from each network unit, before computing the RDMs and representational
consistency (Fig 2.11).

Experiments with regularization (Bernoulli dropout)

In an additional set of experiments, we explored how network regularization (here in the form
of Bernoulli dropout) can affect network internal representations. Using the full CIFAR-10
set, we trained a set of 10 networks for each of 9 dropout levels (dropout probability ranging
from 0 to 0.8, each of the resulting 90 DNNs was trained for 350 epochs). After training, we
extracted network activations for a set of test images either by using no dropout at test time
or by using multiple dropout samples for each test image. We obtained up to 10 samples
extracted for each image while keeping the dropout mask identical across network instances
and the dropout rate identical to training. We created one RDM per sample and then averaged
up to 10 RDMs to obtain a single RDM representing the expected representational geometry
upon dropout sampling (Fig 2.12).

2.3 Results

We here investigate the extent to which deep neural networks exhibit individual differences.
We approach this question by training multiple instances of the All-CNN-C network ar-
chitecture (Springenberg et al., 2015) and a custom architecture (VGG-753) on an object
classification task (CIFAR-10), followed by an in-depth analysis of resulting network internal
representations. Network instances varied only in the initial random assignment of weights,
while all other aspects of network training were kept identical. All networks performed
similarly in terms of classification accuracy (ranging between 84.4 - 85.9% and 77.6 - 79.0%
top-1 accuracy for All-CNN-C, and VGG-753, respectively).

To study and compare network internal representations, we extracted network activation
patterns for 1000 test images (100 for each of the CIFAR-10 categories, Fig 2.1 A) and
characterized the underlying representations in terms of pairwise distances in the high-
dimensional activation space (Fig 2.1 B). The reasoning of this approach is that if two images
are processed similarly in a given layer, then the distance between their activation vectors
will be low, whereas images that elicit distinct patterns will have a large activation distance.
The matrix of all pairwise distances (size 1000x1000) thereby describes the representational
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Fig. 2.3 2D visualization of representational geometries in different depths of two net-
work instances. The internal representations of two network instances were characterized
based on their representational geometries. We computed the pairwise distances (correlation
distance) between activity patterns in response to 1000 test stimuli from 10 visual categories
and visualized them in 2D via multidimensional scaling (MDS; metric stress criterion). With
increasing depth, networks exhibit increased category clustering and emerging differences.

geometry of the test images, i.e. how instances of various object categories are grouped and
separated by the units of a given layer (Kriegeskorte & Kievit, 2013).

2.3.1 Stronger category clustering and individual differences in later
network layers

To visualize the representational geometries of different network instances and layers, we
projected the data into 2D using multidimensional scaling (MDS, metric stress). As can
be seen in Fig 2.3 for two exemplary cases of All-CNN-C, subsequent network layers
increasingly separate out the different image categories, in line with the training objective.

Moving closer to the question of individual differences in network representations, we
next investigated similarities on the level of RDMs. We again computed pairwise distances,
but this time not based on activation patterns, but rather based on the network RDMs.
Comparing patterns of representational distances has multiple benefits. For one, they offer a
characterization of network internal representations that is largely invariant to rotations of
the underlying high-dimensional space, including a random shuffle of network units ((see
Appendix A for more details). Secondly, representational spaces of varying dimensionality
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Fig. 2.4 Network individual differences emerge with increasing network depth. (A) We
compare the representational geometries across all network instances (10) and layers (9
convolutional) for All-CNN-C by computing all pairwise distances between the correspond-
ing RDMs. The dark blue stripes in the diagonal parallel and directly adjacent to the main
diagonal indicate a higher similarity across adjacent layers within a given network instance
compared to the similarities across instances within a given network layer (see figure Fig2,
Appendix A). (B) We projected the data points in (A) (one for each layer and instance) into
2D via MDS. Layers of individual network instances are connected via grey lines. While
early representational geometries are highly similar, individual differences emerge gradually
with increasing network depth.

can be directly compared, as the dimensionality of the RDM is fixed by the number of test
images used.

To compare representations across network layers and instances, we computed a second-
level distance matrix (nnr. of network instances * nnr. of layers as rows and columns). Visualizing
the respective distances in 2D (MDS, metric stress), we observe that representations diverge
substantially with increasing network depth (Fig 2.4). While different network instances are
highly similar in layer 1, indicating agreement in the underlying representations, subsequent
layers diverge gradually with increasing network depth. Note that the blue stripes parallel to
the main diagonal in Fig 2.4 A indicate higher similarity across layers within a given network
instance compared to the similarities across instances and within a network layers.
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Fig. 2.5 Representational consistency declines with increasing network depth. Shown
is the average representational consistency for each layer computed across all pairwise
comparisons of network instances (45 comparisons for 10 instances, computed separately for
two network architectures using correlation distance to compute RDMs). Error bars indicate
95% confidence intervals (bootstrapped).

2.3.2 Representational consistency decreases with increasing network
depth

Following this initial qualitative assessment, we performed quantitative analyses for each
network layer by testing how well the distribution of representational distances generalizes
across network instances. This was accomplished by computing representational consistency,
defined as the shared variance between the upper triangle of the respective RDMs (Fig 2.1
C, each triangle contains 499,500 distance estimates, results are obtained from 45 pairwise
network comparisons for each respective layer and network architecture as 10 network
instances are trained for each architecture). This measure of consistency is based on all
pairwise distances between category exemplars (100 exemplars for 10 categories each). We
therefore refer to this as exemplar-based consistency.

Two network architectures were tested (All-CNN-C, and VGG-753, see methods for
details). Correlation distance was chosen as dissimilarity measure in computing RDMs,
as it is currently the most frequently used distance measure in systems and computational
neuroscience. As shown in Fig 2.5, representational consistency drops substantially with
increasing network depth for both network architectures. To get better insights into the size
of this effect, additional networks were trained (a) based on different images originating
from the same categories, and (b) based on different categories (see methods for details).
The observed drops in consistency for different weight initializations (to about 43% and 71%
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for All-CNN-C and VGG-753, respectively), are comparable to training the networks with
the same distribution of categories but completely separate image datasets (Fig 2.6, blue vs.
orange).
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Fig. 2.6 Representational consistency declines with increasing network depth when
trained on separate image sets. To better understand the size of the effect in Figure
4, we trained a separate set of networks based on (A) All-CNN-C, (B) VGG-753) while
using different images from the same categories but the same seeds (orange), and different
categories, different images, and same seeds (green). The minimal intervention of using a
different seed for the random weight initialization (shown in blue, data equivalent to Fig 2.5)
affects the internal representations about as much as using a completely different set of
training images (10 categories per training set; orange). Please note that part of the larger
drop in representational consistency for training with different categories (5 categories per
training set; green) can be attributed to training only five categories while computing the
RDMs with images from all 10 categories.

To ensure that the effects observed are not specific to correlation distance used in comput-
ing the RDMs further analyses were performed based on the following distance measures as
well: cosine, (unit length pattern-based) Euclidean distance and norm difference (measuring
the absolute difference in the norm activation vectors; Fig 2.7). In all cases, representational
consistency was observed to drop considerably with increasing network depth. These results
demonstrate that while different network instances reach very similar classification perfor-
mance, they do so via distinct internal representations in the intermediate and higher network
layers.

2.3.3 Causes of decreasing representational consistency

We have shown above that different network instances can exhibit substantial individual
differences in their internal representations, comparable to networks trained with completely
separate image sets. This finding has important implications for computational neuroscience,
where single off-the-shelf (engineering) networks are often used as models of information
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Fig. 2.7 Representational consistency declines with increasing network depth irrespec-
tive of distance measure used to compute RDMs. Representational consistency decreases
with increasing layer depth for both tested DNN architectures, and across multiple different
ways to measure distances in multivariate population responses (cosine (A), Euclidean dis-
tance and unit length pattern-based Euclidean distance (B), and differences in vector norm
(C)). We show the average representational consistency for each layer, computed across all
pairwise comparisons of network instances (45 comparisons for 10 instances), together with
a 95% bootstrapped confidence interval.

processing in the brain. Next, we investigated why our network instances exhibit individual
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differences despite reaching very similar classification accuracy and as a result of a minimal
intervention.
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Fig. 2.8 Representational consistency and category clustering are negatively correlated.
Optimized for categorization performance, deep neural networks aim to separate images from
different categories in the network activation space. Here we show for all 10 network instances
of All-CNN-C that increasing category separability across network layers (estimated here
by a category clustering index) exhibits a negative relationship with mean representational
consistency across trained network instances. Individual differences emerge while category
clustering increases (95% bootstrapped CIs shown as grey area).

Our first analyses are based on the observation that the training goal of maximal category
separability does not put a strong constraint on the relative positions of categories and
category exemplars in high-dimensional activation space. To investigate this possibility, for
the 10 network instances of All-CNN-C used in the previous section we first computed a
category clustering index (CCI) for each network layer using the network responses to the set
of 1000 test images (drawn from 10 categories). CCI is defined as the normalized difference
in average distances for stimulus pairs from different categories (across) and stimulus pairs
from the same category (within):

CCI =
(across−within)
(across+within)
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CCI approaches zero with no categorical organization and is positive if stimuli from the
same category cluster together (maximum possible CCI = 1). We find a negative relationship
between CCI and representational consistency (Pearson r = -0.92, p = 0.001; Pernet et al.,
2013), indicating that network layers that separate categories better do exhibit stronger
individual differences (Fig 2.8). (As shown in Fig 3 in Appendix A, we also investigated
a possible association between representational consistency and accuracy, but found no
evidence for such a relationship.)
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Fig. 2.9 Category centroids are highly consistent across network instances. Centroid-
based representational consistency (green) remains comparably high throughout, whereas
the consistency of within-category distances decreases significantly with increasing network
depth. This indicates that differences in the arrangement of individual object instances,
rather than large scale differences between class centroids are the main contributor to the
observed individual differences. To allow for a comparison between centroid-based, full-
RDM, and within-class consistency, we here computed consistency in spaces with the same
dimensionality (for details, see main text).

This correlation between consistency and category clustering is consistent with two
possible scenarios: networks can exhibit a different arrangement of the overall category
clusters, or different arrangements of individual exemplars within the category clusters, as
both are not constrained by the training objective to categorize. To investigate the variability
in general cluster placement, we computed representational consistency based on the ten
category centroids (RDMs computed from the pairwise distances of average response patterns
for each category) and compared it with exemplar-based consistency.Note that centroid-
based consistency relies on the 45 pairwise comparison between the 10 class centroids,
whereas exemplar-based consistency relies on the 499,500 pairwise comparisons between
the 1,000 exemplars. To allow for a comparison within the same dimensionality, for each
pair of network instances we sampled 45 pairwise comparisons from the full RDM without
replacement and averaged consistency across all 11,100 samples. The reliable arrangement
of category centroids suggests that the main source of the observed individual differences



36 Individual differences between deep neural network instances

A

unit 1

un
it 

2

unit 1
un

it 
2

unit 1

un
it 

2

B

Fig. 2.10 Rotation of ReLU activation space affects correlation- and cosine-distances.
(A) Three exemplary classes (blue, green, red) are rotated in the all-positive (post-ReLU)
activation space, here shown as a 2D example. (B) When comparing the activation space
before (left panel) and after the rotation, the angle between pairs of images can differ
markedly, thereby leading to lower representational consistency despite an overall stable data
arrangement. (see Appendix A for simulations using correlation distance).

lies in the arrangement of category exemplars within the category clusters. This view was
corroborated by computing consistency on the within-category dissimilarities using the same
sampling approach as for the low-dimensional full-RDM consistency. Here we observe a
drop in consistency that is largely comparable to the decrease observed for low-dimensional
(sampled) full-RDM consistency (Fig 2.9, blue) and to the decrease originally observed for
full-RDM consistency without sampling (Fig 2.5).

In addition to an individual placement of category centroids and category instances, some
properties of the underlying dissimilarity measures can be a source for lower representational
consistency, especially in cases of a rotated representational space. Many commonly used
DNNs use rectified linear units (ReLUs) as a nonlinear operation, resulting in unit activations
≥ 0. While overall rotations of this all-positive space will not affect classification perfor-
mance, they can affect correlation and cosine distances (see Fig 2.10, and Appendix A (Fig 1)
showing in addition that rotations around the origin affect correlation distances but not cosine
distances).

To test the magnitude of this effect, we subtracted the mean activation pattern across
all test images from the units of a given layer (cocktail blank normalization). As shown in
Fig 2.11, this normalization leads to increases in representational consistency for RDMs
computed using correlation or cosine distance. While the size of the effect is comparably
small, these results indicate that a cocktail blank normalization can be of potential benefit
when comparing correlation- or cosine-based RDMs of multiple DNNs or DNNs and brain
data.
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2.3.4 Network regularization (Bernoulli dropout) affects representa-
tional consistency

An explanation of individual differences via missing constraints imposed by the training
objective raises the possibility that explicit regularization during network training can provide
the missing representational constraints (McClure & Kriegeskorte, 2016b; Srivastava et al.,
2014). We investigated this possibility experimentally by training networks at various levels
of dropout regularization. We trained 10 network instances of All-CNN-C for each of 9
dropout levels (Bernoulli dropout probability ranging from 0 to 0.8; a total of 90 network
instances trained) and subsequently tested the resulting representations for their ability to
classify input, and for their representational consistency. To test for differences in task
performance, we computed the top-1 categorization accuracy for the training- and test data.
For the test data, we contrast network inference with and without dropout. In line with
the literature (Srivastava et al., 2014), we find reduced training accuracy, but enhanced test
accuracy at moderate dropout levels (Fig 2.12 A).

The effects of dropout training on representational consistency were again investigated
using layer 9 of All-CNN-C, which exhibited the lowest consistency levels in our original
analyses. These analyses revealed that dropout regularization yields increased representa-
tional consistency across network instances. When using no dropout at test time, a dropout
probability of 0.6 during training provides the highest consistency level, reaching an average
of 64.7% shared variance (rightmost column in Fig 2.12 B).

In analogy to our analyses of test accuracy when applying dropout at the time of inference,
we investigated in how far this may affect representational consistency estimates. For each
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Fig. 2.11 Cocktail blank normalization slightly increases consistency for correlation
and cosine distance. Centering the data via cocktail blank normalization increases represen-
tational consistency for correlation (A) and cosine distance (B). Euclidean distance measures
are not affected, as the resulting representational geometries are rotationally invariant.
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Fig. 2.12 Effects of dropout regularization on task performance and representational
consistency. (A) Average task performance across all network instances (shown with 95%
CI) for the training set (blue), test set (orange), and when using dropout sampling at inference
time for the test set (red, 1 sample). For task performances of VGG-753, please see figure
Fig 4, Appendix A. (B) Representational consistency in the final convolutional layer of
All-CNN-C as a function of dropout probability during training and test (dropout probability
at test time equal to training dropout). When using dropout at test time, multiple samples
can be drawn for each stimulus in the test set (creating multiple RDMs). Consistency for
network pairs was computed for the respective average RDM for each instance. Consistency
was observed to be highest when 10 samples were obtained from a DNN trained and tested
at a dropout rate of 60%. (C) For the penultimate layer of All-CNN-C the clustering index
(for all layers also see Figure 7) increases with increasing Bernoulli dropout probability.

network instance, we computed 10 RDM samples while keeping the dropout mask identical
across network instances and the rate identical to training. The average of a varying number
of up to 10 RDM samples was subsequently used to compute representational consistency
across network instances. We find that increasing the number of RDM samples led to
increased representational consistency for all dropout levels. Maximum representational
consistency was observed for 10 RDM samples at a dropout probability of 0.6, reaching
an average of 67.8% shared variance across network instances. This suggests that dropout
applied during training and test can increase the consistency of the representational distances
across network instances.
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Fig. 2.13 Penultimate-layer representational consistency across training consistency for
RDMs based on individual images and on class centroids. (A) Exemplar-based represen-
tational consistency across epochs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (left) and across epochs [1,
50, 100, 150, 200, 250, 300, 350] (right). (B) Same as (A), but RDMs are based on class
centroids instead of individual images. After the first epoch the representations across net-
work instances show both image- and centroid-based consistency (left panel in both (A) and
(B), respectively). But consistency decreases drastically when representations are compared
with subsequent epochs, indicating that task training increases individual representational
differences. From very few epochs onwards exemplar-based consistency within network
instances and across epochs (traversing the RDM vertically or horizontally in steps of 10
cells) is remarkably stable and even saturates starting around epoch 150. The overall level of
consistency across network instances is much higher for centroid- than for exemplar-based
consistency ((A), vs. (B)).
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As a possible explanation for how dropout could have affected representational con-
sistency, we computed the category clustering index (CCI) for the penultimate layer of
All-CNN-C and for different dropout levels. This is based on the idea that stronger clustering
around the category centroids in the latest network layer will at the same time yield higher
consistency, as the arrangement of category centroids is highly consistent. As shown in
Fig 2.12 C, we observe a positive relationship between dropout probability and category
clustering. However, while clustering is further enhanced for dropout levels >0.6, representa-
tional consistency starts decreasing. To further explore this effect, we re-computed centroid
consistency for highest dropout level (0.8) and observed that centroid consistency is signifi-
cantly decreased (µdropout0.8 = 0.7422, (95% bootstrapped CI = [0.6881, 0.7854]) compared
to µdropout0.0 = 0.8801 (95% bootstrapped CI = [0.8700, 0.8905]) in the no dropout case).
Thus, while denser clustering around centroids increases consistency in cases where the
centroids themselves are consistent, high levels of dropout lead to less consistent centroids
and therefore to an overall decrease in consistency.

2.3.5 Representational consistency across training trajectories

We have observed above that representational consistency across network instances is remark-
ably stable for category centroids. This raises the question as to whether this alignment is the
result of task training, or whether category centroids are already well-aligned early during
training. To investigate this, we computed representational consistency (exemplar-based
and centroid based) across different network instances and training epochs. We extracted
activation patterns from each network instance at different stages of training and subsequently
computed pairwise representational consistency for the penultimate layer of All-CNN-C.
Networks exhibit high consistency (computed across instances) after the first epoch, which
decreases drastically from thereon, indicating that task training enhances individual differ-
ences. Yet, from very few epochs onwards networks exhibit remarkably stable representations
with each network remaining on its own learning trajectory (Fig 2.13 A, multiple diagonal
lines indicate stable representations across training compared to other network instances).
Consistency seems to saturate from epoch 150 onwards, indicating minute changes in the
network internal representations. Consistent with our earlier results, centroid-based consis-
tency is overall higher across network instances even for the earliest epochs (Fig 2.13 B).
Together, these results indicate that task training leads to decreased consistency, whereas
learning trajectories of individual networks across time remain surprisingly robust.
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2.4 Discussion

In a series of experiments, we here investigated how the minimal intervention of changing
the initial set of weights in deep neural networks affects their internal representations.
Operationalized as representational consistency, we demonstrated that significant individual
differences emerge with increasing layer depth. This finding held true for various distance
measures used to compute the RDMs (correlation distance, cosine distance, variants of
Euclidean distance, and norm differences). RDMs computed from Euclidean distances
showed the least differences. In part, this can be attributed to the fact that this distance
measure is sensitive to differences in overall network activation magnitudes, which may
overshadow more nuanced pattern dissimilarities, in line with the lower consistency observed
for norm-standardizing Euclidean distances (unit length pattern-based Euclidean-distance).

We then explored multiple non-exclusive explanations for these network individual
differences. Based on the hypothesis that the network training objective of optimizing for
categorization performance may not sufficiently constrain the arrangement of categories and
individual category instances, we analyzed category clustering, centroid arrangement, and
within-category dissimilarities. All of these analyses point to a high consistency of category
centroids, rendering differences between individual category instances the main contributor
of the differences observed. As an additional source of variation, we identified an interaction
between properties of the distance measures used and the ReLU nonlinearity in the DNNs.
We showed that cocktail blank normalization in the DNN activation patterns can increase
consistency for measures that are not robust to rotations that are not centered around zero
(cosine distance) or general rotations (correlation distance). In addition to this, we showed
that network regularization via dropout during training and test can enhance representational
consistency estimates. As a partial explanation for this increase, we demonstrated that
category centroids are highly consistent and that dropout enhances category clustering.

Our finding of considerable individual differences has important implications for compu-
tational neuroscience where single pre-trained computer vision networks are often used as
models of information processing in the brain. Neglecting the potentially large variability in
network representations will likely limit the generality of claims that can be derived from
comparisons between DNNs and neural representations. While we here present multiple
approaches that can increase consistency (cocktail-blank, dropout, and the choice of distance
measure), significant differences remained. For computational neuroscience to take full
advantage of the deep learning framework (Cichy & Kaiser, 2019; Kietzmann, McClure,
et al., 2019; Kriegeskorte & Douglas, 2019; Richards et al., 2019), we therefore suggest
that DNNs should be treated similarly to experimental participants, as analyses should be
based on groups of network instances. Representational consistency as defined here will give
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researchers a way to estimate the expected network variability for a given training scenario,
and thereby enable them to better estimate how many networks are required to ensure that
the insights drawn from them will generalize. In addition to the impact on computational
neuroscience, we expect the concept of representational consistency, which can be applied
across different network layers, architectures, or training epochs, to also benefit machine
learning researchers in understanding differences among networks operating at different
levels of task performance.
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Ecologically more valid input statistics
for deep neural networks





Abstract

Deep learning, the key ingredient to today’s high-performance computer vision, has recently
found its way back into neuroscience where deep neural networks (DNNs) function as
modeling framework for neural computations. The most commonly used DNNs are pre-
trained on datasets originating from engineering challenges. They are therefore tuned to
distributions of object categories that do not mirror the nature of the human visual experience.
To alleviate this problem, we here introduce ecoset, the largest to date dataset designed
specifically for computational neuroscience. Ecoset consists of >1.5 million unique images
from 565 basic level categories that represent the most common, most concrete nouns of
the English language. Most common to focus on important categories, and most concrete
to include only concepts that can be visualized. Ecoset thereby closely matches the set of
objects that humans frequently encounter and promises better computational models of the
primate visual system. To allow for direct usability, ecoset will be freely available to the
community for research and educational purposes.

3.1 Introduction

Deep neural networks (DNNs) have recently revolutionized computer vision and now domi-
nate several areas of artificial intelligence. In computational neuroscience, too, DNNs are
used increasingly as a powerful framework to instantiate and constrain neuroscience theories.
Despite abundant differences in terms of missing biological details, DNNs provide the best
currently available models for the computations along the primate visual system (Kietzmann
et al., 2017; Kriegeskorte, 2015; Kriegeskorte & Golan, 2019; Marblestone et al., 2016;
Richards et al., 2019; Serre, 2019; Storrs & Kriegeskorte, 2019).
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Fig. 3.1 Selection process of ecoset categories and images. Steps taken to create ecoset
are shown schematically from top to bottom. For details, please see methods section.
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Despite these promising early results, the most common approach in DNN-based compu-
tational neuroscience is to test networks that are pre-trained to excel at engineering challenges,
such as the image classification task of the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC 2012; A. Krizhevsky et al., 2012; Russakovsky et al., 2015). This computer
vision dataset consists of 1,000 object categories differing in their origin and level of categor-
ical specificity. For instance, next to basic level categories, the ILSVRC 2012 contains 120
different breeds of dogs while it lacks categories related to humans. This distribution of object
categories is sensible from an engineering point of view, as it allows computer vision systems
to demonstrate their versatile computational abilities. The human visual system, however, is
known to be highly selective for its input statistics and important object categories, such as
faces, bodies, tools, etc.. Successful models of the human visual system therefore need to be
tuned to an appropriate set of object categories. In the past, such large-scale object datasets
for deep learning in visual computational neuroscience were not available.

Here, we aim to alleviate this problem by introducing a new large scale image dataset
suitable for deep learning in computational neuroscience: ecoset. Ecoset was created
specifically to more closely approximate the human visual experience, and thereby to allow
the field to train more accurate models of primate vision. Starting from a list of English
nouns, the selection of object categories was based on linguistic frequency in the English
language (British National Corpus, 2014; Leech et al., 2014), as well as concreteness ratings
from human observers (M. Brysbaert et al., 2014). Linguistic frequency was used as a
proxy for concept importance, whereas high concreteness ratings imply that the concept
can be well approximated from images. The two parameters were subsequently joined
to form a frequency-concreteness-index (FCI). Starting from the highest FCI, nouns were
selected for inclusion if they described a basic level category. Category images were collected
from ImageNet (93.5%), in addition to images obtained via Bing (5.1%, CC BY NC SA
2.0), and the image-hosting site Flickr (1.4%, CC BY NC SA 2.0). After multiple data
quality assurance steps, ecoset now contains >1.5 million images originating from 565 non-
overlapping basic level categories. Each category contains between 700 and 5,000 images.
For an overview of the category and image selection process, see Fig 3.1 and the methods
sections on "Dataset Statistics" and "Technical Validation". Examples of the ten categories
with highest FCI are shown in Fig 3.2. As shown there, object categories for which strong
neural selectivity is commonly found (e.g. faces, bodies, or tools) are included in ecoset.
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Fig. 3.2 Example images from 10 ecoset categories. Each row depicts images from one of
the 10 (out of a total of 565) ecoset categories with the highest frequency-concreteness-index
(FCI, 3.1) in descending order from top to bottom.



3.2 Methods 49

The following provides the specifics of how ecoset was created, and common challenges
in the creation of large-scale training sets. Importantly, ecoset will be freely available for
research and educational purposes at the online platform CodeOcean. Users are asked to
refer to the provided license file for usage terms and conditions.

3.2 Methods

3.2.1 Selection of ecoset categories and category images

Each large-scale vision dataset is designed to focuses on specific aspects of vision, and the
selection of categories to be included is ultimately guided by these computational goals. As
mentioned above, many currently available vision datasets are constructed as engineering
challenges and the respective design goals are therefore different from the aims of modeling
in computational neuroscience (but see Hebart et al., 2019). In addition, the category selection
process is oftentimes highly subjective. For instance, the Open Images Dataset v4 includes
600 object categories (out of a set of 19,794 candidates) that the authors "deemed important
[and that showed] a clearly defined spatial extent" (p. 3, Kuznetsova et al., 2018). MS COCO
included category candidates from a pre-existing dataset (PASCAL VOC; Everingham et al.,
2010), plus a list of visually identifiable objects, and objects that are nameable by 4-8 year
old children (Lin et al., 2014). The resulting list of 272 categories was subsequently reduced
to 91 based on the authors’ own commonness- and usefulness-ratings.

While a small level of subjectivity is inevitable, the selection process of categories for
ecoset was specifically designed to follow an objective set of criteria. Central to this is the
ranking of all nouns in the English language based on a frequency-concreteness-index (FCI).

Frequency-concreteness-index (FCI)

The aim of ecoset is to mirror basic level visual categories that are of high importance to
human observers. This was accomplished by combining two parameters: the frequency with
which a noun is used in the English language, and human ratings of the noun’s concreteness.
Linguistic frequency is used as a proxy for concept importance, whereas a focus on concrete
nouns implies that they can be readily visualized. For instance, while the noun ’bird’ has a
concreteness rating of 5/5, the noun ’democracy’ has a rating of 1.78/5. Inclusion in ecoset
was dependent on a concreteness rating of ≥ 4.0. Joining these two parameters, we define
a frequency-concreteness-index (FCI, formula 3.1), which allowed us to focus on the most
common, most concrete nouns of the English language during the selection process.

https://codeocean.com/
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Our frequency estimates are based on SUBTLEX US, a corpus of 51 million words
appearing in American English film and TV subtitles (Brysbaert & New, 2009). The
concreteness judgments are based on publicly available data from an online experiment
in which 4,000 subjects rated 40,000 words with regard to their concreteness on a 5-level
Likert-scale via the online platform Amazon Mechanical Turk (M. Brysbaert et al., 2014).
Frequency estimates and concreteness ratings were each standardized, so the FCI has a
meaningful range: “0” indicates minimum, and “1” maximum FCI (formula 3.1). We
computed the FCI for all words intersecting the BNC (BNC, 2014; Leech2014) SUBTLEX
US (Brysbaert & New, 2009) and the concreteness ratings mentioned above (M. Brysbaert
et al., 2014) and further processed the 3,500 words with the highest FCI rating.

FCI =
1
2
(

word f requency
max(word f requency)

)+
1
2
(
concreteness rating

5
) (3.1)

Inclusion and exclusion criteria for ecoset categories

All categories present in ecoset were classified as basic-level by our team. It should be noted
that the definition of basic level categories is a matter of an ongoing scientific debate, and
basic-level judgments can vary across individuals (Markman & Wisniewski, 1997; J. Tanaka
& Taylor, 1991). Because of its inherently subjective nature, the classification of nouns that
constitute basic-level categories was performed repeatedly to ensure consistency across the
whole set. A list of all 565 ecoset categories is provided together with their BNC SUBTLEX
US frequency, concreteness rating, FCI, and number of images (table 1, Appendix B).

Category selection was performed using the following criteria: First, nouns describing
subordinate and superordinate categories were excluded (examples include "Terrier", or
"vehicle"). Moreover, only single-word concepts were included as candidates, excluding
separated compound nouns (e.g. "sail boat", "fire truck", etc.) as their own entities, because
they are typically part of a basic level category (in the previous example "boat", and "truck",
respectively). Third, we excluded nouns describing object parts (e.g. ’hand’, ’roof’, ’wheel’),
as they co-occur in basic-level categories, rendering the image categories ambiguous. Fourth,
synonyms were combined into a single category (e.g. "automobile" and "car" are summarized
into a single "car" category). The resulting set of nouns describes basic level categories
for which the resulting images can be ascribed to a single category (as required for many
1-hot encoded deep learning applications). Subsequent to the selection of candidate basic
level categories, we used the corresponding nouns and their equivalents in other languages
to download images from three different image-search or -hosting sites (ImageNet, Bing,
Flickr).

http://www.image-net.org/
https://azure.microsoft.com/en-gb/services/cognitive-services/bing-image-search-api/
https://www.flickr.com/services/api/flickr.photos.search.html
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Images from ImageNet

Most of the images of the final version of ecoset (∼94%) were downloaded from the ImageNet
database containing about 14 million natural images (also including the 1.4 million images
of ILSVRC 2012; Russakovsky et al., 2015). The category structure of ImageNet is based on
the lexical WordNet hierarchy in which sets of words form a distinct semantic concept called
a "synset" (Fellbaum, 2012; Miller, 1995). For each candidate ecoset category we used the
ImageNet web interface to search for appropriate synsets to be included in ecoset.

The semantic relation between synsets containing a specific search term and ecoset
candidate categories is not straight-forward. This is why assigning ImageNet synsets to
candidate ecoset categories required category-specific choices by our team. For example,
searching for "dog" revealed 59 synsets of which only 38 were included in the associated
ecoset candidate category as they directly portraited canines. The other synsets found in
response to "dog" were not included in this category as they described types of flowers (e.g.
"American dog violet", or "dog fennel"), other types of animals (e.g. "dog flea", or "blacktail
prairie dog", which is a rodent), and other non-canine categories including tools and types of
mushrooms.

After downloading ImageNet images from adequate synsets for each ecoset candidate
category, misclassified images were removed manually to ensure an expected error rate of
less than 4%. Details are provided in the section about "Technical Validation". In addition to
ImageNet, images were sourced via the search engine Bing and the image-hosting site Flickr.

Images from Bing and Flickr

To maximize the number of images per final ecoset category, we used multiple search terms
per candidate category for both Bing and Flickr. Search terms included the original noun
associated with the candidate category, as well as synonyms in English, and translations in 4
additional languages (French, Spanish, Italian, and German). For example, in order to search
for images in the category “lightbulb”, we used the following list: “lightbulb” (original search
term), “bulb” (synonym), “ampoule” (French), “bombilla” (Spanish), “lampadina” (Italian),
“gluehbirne” (German). After downloading Bing and Flickr images, misclassified images
were manually removed (see "Technical Validation" for details). Image search via Bing and
Flickr was constrained to images under CC BY NC SA 2.0 license. For the Flickr API, we
chose option 1 (NonCommercial shareAlike License), and for the Bing API we chose the
option “share”, both referring to CC BY NC SA 2.0.

https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/services/api/flickr.photos.licenses.getInfo.html
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-images-api-v7-reference
https://creativecommons.org/licenses/by-nc-sa/2.0/
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Fig. 3.3 Ecoset image set statistics. Ecoset (red) consists of 565 categories each containing
between 600 and 4900 images, amounting to a total of 1,444,919 images in the training
set. For comparison, there are 1,000 categories in the training set of ILSVRC 2012 object
recognition task (blue), each containing between 732 and 1,300 images, amounting to a total
of 1,281,167 images.

3.2.2 Dataset statistics

To maximize the number of images per category, we did not exclude small images (shorter
side < 128 pixels) from ecoset. However, the number of such images in the final ecoset is
small: in the training, validation, and test sets combined only 7.7% of all images have a
shorter side smaller than 128 pixels. For an overview of the sizes of the images in ecoset, see
Fig 3.4.

The final 565 ecoset categories can be associated with the following 5 super-ordinate
binary category distinctions (Fig 3.5): natural (221 ∼ 40%) vs. artificial (334 ∼ 60%),
animate (106 ∼ 19%) vs. inanimate (459 ∼ 81%), edibles (133 ∼ 24%) vs. non-edibles
(432 ∼ 76%), tools (174 ∼ 31%) vs. non-tools (391 ∼ 69%), scenes (10 ∼ 2%) vs. non-
scenes (555 ∼ 98%). For a list of all ecoset categories, please see table 1 (Appendix B).
Some of the images of ecoset used to train the models described below might contain
nudity. For the final version of ecoset to be freely available to the community, we identified
and removed explicit content from ecoset using a NSFW-detection software from Yahoo
(https://github.com/mdietrichstein/tensorflow-open_nsfw). Note that only 118 of a total of
>1.5 million images had to be removed to yield a nudity-free version of ecoset.

https://github.com/mdietrichstein/tensorflow-open_nsfw
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Fig. 3.5 Membership of ecoset categories in super-ordinate categories. The 565 basic
level ecoset categories can be associated with 5 binary super-ordinate categories: natural
(221 ∼ 40%) vs. artificial (334 ∼ 60%), animate (106 ∼ 19%) vs. inanimate (459 ∼ 81%),
edibles (133 ∼ 24%) vs. non-edibles (432 ∼ 76%), tools (174 ∼ 31%) vs. non-tools (391 ∼
69%), scenes (10 ∼ 2%) vs. non-scenes (555 ∼ 98%).

3.3 Data Records

All our data will be accessible as a CodeOcean capsule. The data repository contains three
main directories in which the complete ecoset image set resides. The ecoset directory contains
separate subdirectories for training, validation, and testing that are in turn comprised of one
subdirectory per category. All images that constitute ecoset are available in jpg-format, and
the entire ecoset is available in a single zip file from which single categories can be easily
extracted without extracting the entire image set.

https://codeocean.com/
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3.4 Technical Validation

One problem of obtaining images from multiple sources (here ImageNet, Bing, and Flickr) is
that in addition to some images being plain duplicates, an image might re-occur in the set of
a candidate category with a slightly different aspect-ratio, in a different resolution, or it might
include a frame, etc. In short, the very same image might have been manipulated in some
minor ways and duplicates might have thus found their way into a given ecoset candidate
category. To eliminate all duplicates in ecoset, we applied the following PCA-based duplicate
removal technique. As a result, the >1.5 million images in ecoset are unique.

Note that we used this PCA-based duplicate removal technique at two different stages of
the image selection process (Fig 3.1): first, for all images downloaded from Bing and Flickr
to reduce the number of images to be manually inspected with regard to misclassifications.
The PCA-based cleaning step had to be used a second time after images from ImageNet, Bing,
and Flickr were merged, as we could not exclude that the same image had been retrieved
from multiple sources. The following steps were performed for each category separately.

First, we cropped the center square of each image, resized it to 128x128 pixels, and
performed a PCA preserving 90% of the variance across all images of that category. To
estimate image similarity we computed the pairwise correlation between images projected
into PC space. On the basis of 10 exemplary categories, we established a cut-off value above
which a pair of images was labeled as duplicates (Pearson r > 0.975). If multiple duplicates
per category instance existed, we only included the one with the largest resolution in the
ecoset candidate category and discarded all others.

A visual inspection of image samples taken from groups of ImageNet synsets belonging
to the same ecoset candidate category revealed that misclassification rates for some categories
were higher than 10%. This can severely limit the generalization performance of deep neural
networks, as random labels increase the chances that the networks memorize rather than
generalize (Morcos et al., 2018). We therefore performed a manual sampling and cleaning
step to ensure that the expected error in the category label across all categories is < 4%.
For the images from ImageNet (93.5% of all images) we visually inspected 100 randomly
sampled images from each candidate ecoset category. If more than 4 of those 100 images
were found to be misclassifications, the whole category was cleaned manually. Otherwise,
all images were included in the associated ecoset category. All images downloaded via Bing
and Flickr (5.1% or 76,819 images, and 1.4% or 20,560 images, respectively) were visually
inspected and misclassified exemplars were removed.

http://www.image-net.org/
https://azure.microsoft.com/en-gb/services/cognitive-services/bing-image-search-api/
https://www.flickr.com/services/api/flickr.photos.search.html


3.5 Limitations of ecoset 55

3.5 Limitations of ecoset

Ecoset was created with the goal in mind to reflect human visual experiences. As a proxy for
visual importance we used word frequency in the English language (estimated using American
television and film subtitles, SUBTLEX US Brysbaert and New, 2009) and combined it with
concreteness ratings from human observers to guide the category selection process. This
approach resulted in a set of 565 categories which can be easily visualized and which appear
often in spoken English.

However, the selection process of ecoset categories and images could be honed, e.g. by
estimating visual importance in another way. For example, to use a very similar approach
to ours, frequency estimates from additional spoken or written text corpora from different
languages could be combined with more comprehensive concreteness ratings. To go beyond
relying on text corpora, video footage obtained from cameras mounted on young human
participants might provide a better estimate of what is visually important to humans. Labeling
the objects occurring in single video frames might reflect more directly what input the human
visual system relies on during phases of visual object category learning.

3.6 Usage Notes

We created ecoset to provide a large-scale image set specifically designed for computational
neuroscience. To facilitate the usage of this ecologically more valid image set, ecoset will be
made freely available for research and educational purposes at CodeOcean. Users are asked
to refer to the provided license file for usage terms and conditions.

Ecoset comes pre-split into training, validation and testing data. Each one of the three
subsets contains one folder per ecoset category. This setup is the most common format for
various deep learning frameworks and therefore allows for a quick integration into existing
pipelines. Details on the characteristics of ecoset categories and images are provided in the
dataset statistics section.

After the introduction of ecoset in this Chapter, in the next Chapter I will investigate
whether training DNNs on ecoset instead of ILSVRC 2012 may help to better explain cortical
representations in human IT.

https://codeocean.com/
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A brain-inspired DNN (vNet) and an
ecologically more valid visual diet for
deep learning (ecoset) yields better
models of human high-level visual cortex





Abstract

Deep neural networks have revolutionized computer vision applications and represent the
current best models of visual information processing in the primate brain. For the latter,
computational neuroscientists commonly rely on pre-trained networks whose architectures
were engineered for high performance on computer vision datasets. Moving beyond this
common practice, we here report progress in modeling human higher level visual cortex
by using biologically inspired network architectures and ecologically more realistic input
statistics. As a major stepping stone, we use ecoset, a database of >1.5 million images from
565 image categories specifically selected to better capture the distribution of ecologically
relevant object categories. Our experiments are based on a deep neural network architecture,
vNet, which closely mimics the progressive increase in receptive field sizes along the human
ventral stream, as estimated by human population receptive field mapping. We show that
training vNet on ecoset leads to significant improvements in predicting representations in
human inferotemporal cortex (IT). The trained networks improve upon the previous state
of the art (Alexnet, VGG-19, and Densenet-169) while being considerably less complex.
This is shown for two separate fMRI datasets covering a large variety of 1292 visual stimuli.
Together, these results indicate that computational visual neuroscience will benefit from
moving beyond computer vision models. Importantly, ecoset and vNet are both freely
available for usage and further developments within the community.

4.1 Introduction

Recently, deep neural networks (DNNs) have revolutionized computer vision and are currently
the best models of the visual cortex (Kietzmann, McClure, et al., 2019; Kriegeskorte,
2015; Richards et al., 2019; Serre, 2019; Yamins & DiCarlo, 2016a). To allow DNNs to
closely mirror cortical representations, their features need to be shaped through training on
a complex object recognition task. However, training DNNs on such a task is non-trivial
and requires large computational costs. Hence, most studies using DNNs as models for
the primate visual cortex have relied on single, off-the-shelf instances of the same DNN
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architecture (mostly AlexNet; A. Krizhevsky et al., 2012) trained on one specific task, namely
the object recognition task of the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) 2012 (Abbasi-Asl et al., 2018; Agrawal et al., 2014; Cadieu et al., 2014; Cichy
et al., 2016; Devereux et al., 2018; Eickenberg et al., 2017; Güçlü & van Gerven, 2015;
Hong et al., 2016; Horikawa & Kamitani, 2017a, 2017b; Kalfas et al., 2017; Khaligh-
Razavi & Kriegeskorte, 2014; Russakovsky et al., 2015). This poses two main problems in
computational neuroscience both suggesting a possible lack of generality of insights gained:
1. Relying on single network instances, and 2. training on an object recognition task designed
for machine learning applications.

First, the ability of a single DNN instance to predict cortical representations might depend
on its initial set of weights (Chapter 2). Thus, using a single DNN instance might not be
able to reveal the full picture portraying a given architecture’s ability to predict cortical
representations. Instead, multiple instances of this DNN architecture might be necessary to
reveal the variability of its fit to a given set of data. This is why we base our results presented
here on groups of networks of the same architecture.

Second, most of these DNN models are trained on the very same image set, namely
ILSVRC 2012, designed for machine learning purposes. Training a DNN on a task dissimilar
to the human visual experience, such as the recognition of 120 dog breeds among a total
of 1,000 categories, yields networks capable to mimic representations in the human cortex
surprisingly closely. In this light, however, it appears plausible that training a DNN to perform
a task more closely related to the human visual experience, such as recognizing objects most
frequently encountered in daily human life, might yield network internal representations
even better able to predict cortical representations. Hence, we tested whether training DNNs
on ecoset, the first large-scale image set created with computational neuroscience goals in
mind, yields network internal representations better able to predict cortical representations.

In general, the internal representations of DNNs can be altered through network structure,
input statistics, functional objective, and learning algorithm (Kietzmann, McClure, et al.,
2019). We here target the the first two factors to directly manipulate network internal
representations. We consider the network architecture by creating a brain-inspired 10-layer
DNN architecture, vNet, mimicking the progressive increase in foveal receptive field sizes
along multiple areas of the human ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and
mFUS), as estimated via population receptive field mapping (Grill-Spector et al., 2017;
Wandell and Winawer, 2016; Fig 4.3). Further, considering the second factor, input statistics,
we train vNet on an ecologically relevant set of images, ecoset, containing >1.5 million
images from 565 basic level categories and thus constituting the first set of images specifically
designed for computational neuroscience. The selection of categories and images of ecoset
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was aimed at approximating the human visual experience by including only those categories
that i) appeared often in the English language, ii) were perceived as concrete by human
observers (M. Brysbaert et al., 2014), and iii) reached a minimum number of images per
category of 700 (for details, see Chapter 3).

To probe the ability of a given network to mirror cortical representations we use two
independent fMRI experiments containing varying numbers of stimuli (92 vs. 1,200) and
varying numbers of participants (15 vs. 5; Cichy et al., 2014; Horikawa and Kamitani,
2017a). To compare representations of visual objects between DNNs and humans, we use
representational similarity analysis (RSA; Kriegeskorte et al., 2008). In DNNs we record the
activation patterns elicited by the same set of stimuli used in the fMRI experiments. In both
DNNs and human subjects we use pairwise comparisons of stimuli to create representational
distance matrices (RDMs) reflecting the representational geometry of a given set of stimuli.
As RDMs abstract away from the input modality they allow for a comparison of a given set
of stimuli between patterns from DNN units and from fMRI voxels.

In short, we investigate how a brain-inspired neural network architecture (vNet) and
ecologically plausible input statistics (ecoset) may help to better explain representations in
the human visual cortex. We first ask whether training vNet on the ecologically relevant
ecoset improves its ability to predict cortical representations. For this we compare ecoset-
trained vNet instances with the same models trained on ILSVRC 2012 instead. Next, we
compare ecoset-trained vNet to other DNN architectures representing state-of-the-art in
computer vision, and in computational neuroscience: Alexnet, VGG-19, and Densenet-169
(Huang et al., 2016; A. Krizhevsky et al., 2012; Simonyan & Zisserman, 2015).

4.2 Methods

We here investigate how i) the input statistics of a DNN and ii) the network structure
contribute to its ability to mirror cortical representations. We hypothesize that drawing
inspiration from ecological and biological aspects of vision systems in primates might help
to build better models of the human visual cortex. In this section I first present the image sets
used to train the networks presented in this study: ecoset and ILSVRC 2012. Next, I describe
the creation of the brain-inspired network vNet. In the remainder of this section I lay out
how RSA is used to assess representational similarity between models and cortical data.
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Fig. 4.1 Ecoset image set statistics. ecoset (red) consists of 565 categories each containing
between 600 and 4900 images, amounting to a total of 1,444,919 images in the training
set. For comparison, there are 1,000 categories in the training set of ILSVRC 2012 object
recognition task (blue), each containing between 732 and 1,300 images, amounting to a total
of 1,281,167 images. For a fair comparison between ecoset and ILSVRC 2012 we created
trimmed versions of both image sets (purple) that are identical in the number of categories
(565) and are matched regarding category sizes (600 - 1,300).

4.2.1 Image sets for training DNNs

Full ecoset vs. full ILSVRC 2012

ILSVRC 2012 was created to allow machine learning researchers to test and compare which
DNN architecture best categorizes objects from a set of fine-grained classes. The image
set contains a total of 1.3 million images from 1,000 categories, and category size of the
training set range from 732-1,300 images (see "ILSVRC 2012" in Fig 4.1). Most DNNs
currently used as models for the primate visual cortex have been trained on ILSVRC 2012,
highlighting its importance for computational neuroscience. The categories and images of
ILSVRC 2012 were selected with machine learning goals in mind, which explains why
120 of the total 1,000 categories are dog breeds. As such, ILSVRC 2012 differs drastically
from the human visual experience, which raises the question of whether training on more
ecologically relevant stimuli might yield better models of the human visual cortex.

In contrast to ILSVRC 2012, ecoset is an image set created specifically for computational
neuroscience as the selection of categories and images has been performed with the goal
to closely approximate the human visual experience. As described in detail in Chapter 3
categories and images of ecoset were selected with the help of a frequency-concreteness-
index. Word frequency in the English language was used as a proxy for importance in the
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(visual) human experience, whereas concreteness ratings by human observers secured that
objects can be easily visualized. Ecoset consists of >1.5 million images from 565 basic level
categories, and category sizes of the training set ranges from 600-4,900 images.

Trimmed ecoset vs. trimmed ILSVRC 2012

ILSVRC 2012 and ecoset differ in the number of categories and the category sizes. In a
comparison of networks trained on the full versions of these image sets, the varying number
of categories and of category sizes might confound their ability to predict neural data. For a
better comparison, we thus created trimmed versions of ILSVRC 2012 and ecoset that are
equal with regard to both number of categories (565) and the category sizes (see trimmed
image sets in purple in Fig4.1). For this, we selected all 565 categories from ecoset and a set
of 565 randomly chosen categories from ILSVRC 2012. Next, to hold the number of images
per category equal across trimmed image sets, we selected images in the following way. The
565 categories of trimmed ecoset and of trimmed ILSVRC 2012 were ordered according to
category size and were paired across images sets. For each category from either ecoset or
ILSVRC 2012 that contained more images than its counterpart from the other image set, we
randomly selected a number of images equal to the number of images in the smaller category.
In this way both trimmed ecoset and trimmed ILSVRC contain 565 categories and follow
the same distribution of category sizes with minimally 600 to maximally 1,300 images per
category (see purple area in Fig4.1).

4.2.2 DNN architecture

Throughout the current study we used a ten-layer architecture, "vNet", created with the
goal to match the foveal receptive field sizes as found in areas of the human ventral stream,
as estimated via population receptive field mapping (Grill-Spector et al., 2017; Wandell &
Winawer, 2016). The first 8 Layers of vNet are matched with the following cortical regions:
L1 - V1, L2 - V2, L3 - V3, L4 - hV4, L5 - LO, L6 - TO, L7 - pFUS, and L8 - mFUS; for
layer 9 and 10 the receptive field sizes were linearly extrapolated from the previous layers.
The number of feature maps used per layer are [128, 128, 256, 256, 512, 512, 1024, 1024,
2048, 2048], the kernel sizes are [7, 7, 5, 5, 3, 3, 3, 3, 1, 1], and the width and height
dimensions of layers are [128, 128, 64, 32, 32, 32, 16, 8, 4, 2] (Fig 4.2). The following
transformations were applied to each layer in the network: 2x2 max-pooling (optional),
convolution, dropout (with a dropout probability of 0.2), ReLU and group normalization (Wu
& He, 2018). These operations were consistently applied to all layers, with the exception of
max-pooling. Max-pooling was applied before all convolutions with the exception of layers
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[1, 2, 5, 6]. After the penultimate layer we applied global average pooling followed by a
fully-connected linear readout.
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Fig. 4.2 vNet architecture. vNet is a 10-layer architecture created with the goal in mind
to match the foveal receptive field sizes as found in areas of the human ventral stream (for
details see Fig 4.3). All 10 layer contain the following building blocks: 2x2 max-pooling,
convolution, dropout (with a dropout probability of 0.2), ReLU (with the exception of the
input and layers [1, 2, 5, 6], where no max-pooling was applied).
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Fig. 4.3 Receptive field sizes of vNet adjusted to mimic primate visual cortex. vNet is
created with the goal to mimic the progressive increase in receptive field sizes along the
human ventral stream, as estimated by human population receptive field mapping. The first 8
layers of vNet were matched with the available biological receptive field sizes (L1 - V1, L2 -
V2, L3 - V3, L4 - hV4, L5 - LO, L6 - TO, L7 - pFUS, and L8 - mFUS; Grill-Spector et al.,
2017; Wandell and Winawer, 2016), whereas for layer 9-10 the target receptive field sizes
were determined by linear extrapolation based on the previous layers.
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4.2.3 DNN training

We trained groups of vNet instances only differing in their initial set of weights for both ecoset
and ILSVRC 2012. First, we trained 10 instances of vNet on full ecoset and, additionally,
10 instances on full ILSVRC 2012 that were initialized with the same 10 sets of weights.
In other words, we obtained 10 pairs of DNN instances whose members each start training
using the exact same initial set of weights, but were trained on different image sets (full
ecoset vs. full ILSVRC 2012). Second, we initialized another 20 DNN instances in the same
way, but trained 10 on trimmed ecoset and their 10 identically initialized counterparts on
trimmed ILSVRC 2012.

Image preprocessing

When DNN architectures used as models for the visual cortex are trained on ILSVRC 2012
an input image size of around 224x224 pixels is commonly used (Agrawal et al., 2014;
Cadieu et al., 2014; Cichy et al., 2016; Devereux et al., 2018; Eickenberg et al., 2017;
Güçlü & van Gerven, 2015, 2017; Hong et al., 2016; Horikawa & Kamitani, 2017a, 2017b;
Khaligh-Razavi & Kriegeskorte, 2014). However, our preliminary investigations suggested
that reducing the input image size to e.g. 128x128 neither significantly decreases task
performance, nor does it impair the DNNs’ ability to predict neural data. Thus during
preprocessing we cropped the squared center area and down- or upsampled images to a size
of 128x128 pixels. Utilizing this relatively small image size means that the overall scale of
the DNNs and the time required to train them is decreased.

Training parameters

For each network (10 instances for each of the 4 training sets: (full / trimmed) ecoset, (full
/ trimmed) ILSVRC2012) we initialized the weights using the MSRA scheme (He et al.,
2014), and set additional parameters as follows: initial learning rate: 0.02 (using Adam to
update the learning rate throughout training; Kingma and Ba, 2014), weight decay: 10−5,
dropout probabality: 0.2 (Srivastava et al., 2014). Each of the models was trained with a
batch size of 256 and for 80 epochs. Image preprocessing, and training and validation of the
models was implemented in TensorFlow 1.10.0 (Abadi et al., 2016).

Accounting for a skewed distribution of category sizes

An imbalanced training set, i.e. varying numbers of images per category, can be problematic
with regard to DNN training. More specifically, when the number of images vary across
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categories (ILSVRC 2012: [732, 1300], ecoset: [600, 4900], trimmed ecoset or trimmed
ILSVRC 2012: [600, 1300]), the size of a category might determine its impact on the
formation of DNN features. To account for the varying category sizes in (trimmed) ecoset
and ILSVRC 2012 we considered two main strategies. First, when oversampling images until
each category contains the same number of images as the largest category, all but the largest
category contain duplicates. Performing DNN training using this oversampling approach to
account for unequal category sizes, only yielded very low validation accuracies.

We thus used another way of compensating for the effect of the varying category size: a
weighted loss function. Here a category-size-specific factor is applied to each image when
the overall loss of a mini-batch is computed. Specifically, we multiplied the loss of an image
with the inverse of the number of images of the category of said image. In order to obviate
the need to adjust learning rate schemes across models training with and without a weighted
loss function, we normalized the weights to have a mean of 1. We applied the weighted loss
function described above to compute the error of each mini-batch during training.

Ecoset, vNet, and code to extract network activations are freely available

To allow researchers to test their own hypotheses about ecologically more valid input statis-
tics, in addition to the ecoset dataset we will soon also provide the DNNs presented here
(implemented in TensorFlow 1.10.0; Abadi et al., 2016) at the online platform CodeOcean.
For a rapid adoption by the community, we further provide code that can readily be run online
at CodeOcean to obtain DNN activation patterns from all layers in response to arbitrary input
images without knowledge of deep learning and without the need to install software on a
local machine.

4.2.4 fMRI data sets

We investigated the effect of the image set used for training DNNs (ecoset vs. ILSVRC
2012) on their ability to predict object representations in the human visual cortex in two
independent fMRI data sets (Cichy et al., 2014; Horikawa & Kamitani, 2017a).

fMRI data set 1 - 92 stimuli, 15 subjects, (Cichy et al., 2014). The first fMRI data set
used in our experiment is from a combined fMRI-MEG study (3T, TR 2 sec., voxel size of
functional data 2 mm isotropic) investigating object recognition in 15 healthy subjects (10
female, age: mean ± std = 25.87 ± 5.38; Cichy et al., 2014). We did not use the MEG data,
but only the fMRI data for our analyses.

In the fMRI experiment each subject performed 10-14 runs, each lasting 384 seconds,
during which the 92 stimuli were presented once in random order at 2.9◦ visual angle. Stimuli

https://codeocean.com/
https://codeocean.com/
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fMRI data set Cichy et al. 2014 Horikawa et al. 2018
Number of subjects 15 5
Number of stimuli 92 1,200
Number of presentations per stimulus 10-14 1
Stimulus presentation size (◦ visual angle) 2.9 12
Magnetic field strength (Tesla) 3 3
Voxel size of functional data (mm isotropic) 2 3
TR (sec.) 2 3

Table 4.1 Main characteristics and recording parameters of the two fMRI data sets analyzed.

were randomly interspersed with 30 baseline trials during which subjects had to indicate with
a button press a change in color of the fixation cross to maintain the subjects’ attention.

The region of interest IT in dataset 1 was delineated using masks based on "WFU
Pickatlas", and "IBASPM116 Atlas" to include bilateral fusiform and inferior temporal
cortex. For a more detailed account of the MRI acquisition parameters and the experimental
set up, please see Cichy et al., 2014.

fMRI data set 2 - 1,200 stimuli, 5 subjects, (Horikawa & Kamitani, 2017a). The
second fMRI data set used for the current experiment stems from an fMRI study (3T, TR
3 sec., voxel size of functional data 3 mm isotropic) investigating perception and imagery
of everyday objects in 5 healthy subjects (1 female, age range 23-38 years) in two separate
(perception/imagery) experiments (Horikawa & Kamitani, 2017a). We did not investigate any
data from the imagery experiment. Instead, we exclusively used the data from the perception
experiment which consisted of a training and a testing session, whereby we only used data
from the training session. The experimental stimuli were taken from ImageNet 2011 (fall
release) of which the authors selected 200 object categories.

During the training sessions each of 1,200 stimuli from 150 object categories (8 images
per category) was presented once. Each image block lasted for 9 seconds during which the
stimulus was presented at a rate of 2Hz and at 12◦ visual angle. To maintain attention subjects
performed a one-back repetition task, whereby repetitions occurred pseudo-randomly and
during every 11th stimulus block on average. For a more detailed description of the fMRI
acquisition parameters and the experimental setup, please see Horikawa and Kamitani, 2017a.

What we refer to as the cortical region "IT" in the current study, is referred to as higher
visual cortex or "HVC" in the original paper (Horikawa & Kamitani, 2017a). HVC (and
thus our IT) is defined as a region manually delineated on the flattened surface comprising
LOC, FFA, and PPA, after each of these regions had been identified using separate localizer
experiments. For a more detailed account of the ROI definition please see Horikawa and
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Kamitani, 2017a and for a comparison of the most important parameters of the two datasets,
please see table 4.1.

4.2.5 Predicting representations of visual objects in human IT

To compare object representations between DNNs and human IT, we are using representa-
tional similarity analysis (RSA). At the core of the RSA framework stands the representational
dissimilarity matrix (RDM) which reflects the representational geometry of a set of objects,
i.e. how instances of various object categories are grouped and separated by the units of a
given layer (Kriegeskorte & Kievit, 2013). Each cell of an RDM describes the similarity
between the activation patterns elicited in response to a pair of stimuli. In this way RSA
avoids the correspondency problem and thus allows for comparisons between individuals or
species, between DNNs, and between DNNs and individuals (Kriegeskorte et al., 2008).

First, for both fMRI studies described above (Cichy et al., 2014: 92 stimuli, 15 subjects;
Horikawa and Kamitani, 2017a: 1,200 stimuli, 5 subjects), we created RDMs based on the
cortical activation patterns in inferior temporal cortex (IT) to form a single RDM for each
subject for the ROI "IT". To allow a comparison between representations in DNNs and the
human visual cortex, we extracted network activation patterns to the same set of images
used as stimuli in the fMRI experiments. To obtain an RDM reflecting the representational
geometry of the set of stimuli in the DNN, pairwise dissimilarities were estimated using
correlation distance. We performed these steps for each DNN-instance and -layer separately
(see Fig 4.4, left panel). Note that no additional fitting procedure was applied to map the
network RDMs to human RDMs (e.g. reweighting and remixing as performed in Khaligh-
Razavi and Kriegeskorte, 2014 or in Storrs et al., 2020). This is done to probe the unaltered
alignment between DNNs and human IT: the best model of IT will not only capture the mere
presence of certain features but will instead mirror the full distribution of feature selectivity
as found in the brain.

To compare the representational geometry between DNNs and human IT, we first corre-
lated each subject-specific fMRI-RDM with DNN-RDMs for each DNN-instance and layer
separately using Spearman’s ρ and then averaged across subjects. In this way, we obtain a
distinct similarity estimate per layer of each DNN-instance trained on ecoset or ILSVRC
2012 while including subject-specific information in our analysis. For an illustration of the
main steps of the analysis, please see Fig 4.4. For each layer, we thus obtain 10 similarity
estimates from ecoset-trained vNet instances, and 10 from their ILSVRC 2012-trained coun-
terparts. After training we analyze the 10 pairwise differences between networks trained with
ecoset and ILSVRC 2012 (one pair per random seed determining the initial weights). These
pairwise differences indicate whether training a DNN-architecture with an identical initial
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Fig. 4.4 Predict representations of visual objects in human IT. Right panel: fMRI
activation patterns were recorded in response to a set of stimuli from one region of interest,
inferior temporal cortex (IT, dark green), in two different fMRI studies (Cichy et al., 2014,
or Horikawa and Kamitani, 2017a). For the ROI (IT, dark green) we computed pairwise
correlation distances between activation patterns in response to single images to form a
fMRI-based representational dissimilarity distance matrix (RDM) and averaged the RDMs
across subjects. Left panel: Similarly, for each of 10 DNN instances trained on an image
set (ecoset, ILSVRC 2012) we extracted activations to the same sets of stimuli used in the
fMRI experiments (Cichy et al., 2014; Horikawa & Kamitani, 2017a). As for the fMRI data,
we used correlation distance to compute the pairwise distances between activation pattern in
response to single stimuli to create a DNN-based RDM and performed this procedure for
each layer separately. Finally, we correlated the fMRI-RDM of a single subject (central RDM
above the light blue, grey and green boxes) with the RDM of a DNN-instance and -layer
(left panel) to obtain a distribution of correlation values for each layer and subject. Next we
averaged across subject to obtain a distribution of correlation values for each layer across
DNN instances. To test for the difference in the ability to explain cortical representations
between training vNet on ecoset vs. ILSVRC 2012, we independently performed the sequence
of steps shown on the left for groups of 10 instances trained on the respective image set.

set of weights on ecoset better explains object representations in human IT than when the
same architecture and initialization is trained on ILSVRC 2012.

Next, we test whether the distribution of differences of these similarity estimates between
pairs of DNN instances is significantly different from zero, using Wilcoxon signed-rank test.
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In order to correct for multiple comparison introduced by testing for differences in each of the
10 layers of vNet separately, we take a conservative approach using Bonferroni correction.

Last, to compare ecoset-trained vNet with state-of-the-art models from computer vision
and computational neuroscience (AlexNet, VGG19, and DenseNet169), we extracted RDMs
from these models based on the stimuli used in both fMRI experiments using correlation
distance to compute pairwise comparisons. From each of these networks, and for each fMRI
datset separately, we used the layer with the best prediction for IT representations to compare
the fit to the one achieved by the best layer of the 10 instances of ecoset-trained vNet.

4.3 Results

4.3.1 vNet task performance across epochs

All vNet instances were trained (on both full ecoset and full ILSVRC 2012) for 80 epochs.
Final mean performances on full ecoset are at 80.7 % during training and 64.7 % during
validation, and on full ILSVRC 2012 at 84.3 % during training and 59.3 % during validation
(Fig 4.5). The variance of validation and also of training performances across training
seeds lies within a few percent points (e.g. at epoch 80: σ2

ecosetTrain = 0.029;σ2
ecosetTest =

0.059;σ2
ILSV RC2012Train = 0.023;σ2

ILSV RC2012Test = 0.056) indicating that the initial set of
weights affects final task performance only minimally. In addition we trained vNet on
trimmed versions of ecoset and ILSVRC 2012. Final mean performances on trimmed ecoset
are at 78.0 % during training and 61.8 % during validation, and on trimmed ILSVRC 2012 at
82.5 % during training and 67.9 % during validation (Fig 4.6).

When task performances are compared across DNNs, this is only sensible when the same
test is used for all networks. For example, the comparison of test (or validation) performances
of two instances of vNet is valid when the same images from the same categories are used for
testing (or validation). As the number of categories and the number of images per category
are unequal between full ecoset and full ILSVRC 2012, differences in test (or validation)
performance can obviously not be interpreted with regard to the ability of the networks to
predict cortical representations. For the trimmed image sets the case is less clear as both sets
have the same number of categories and are even identical in the distribution of category
sizes, rendering them equal with regard to a coarse measure of classification difficulty not
considering the identity of classes or images. However, as class and image identities of the
test (or validation) set need to be identical to allow for a valid comparison of classification
performances, differences in testing (or validation) performance between trimmed ecoset and
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trimmed ILSVRC 2012 can also not be interpreted with regard to their potentially different
ability to predict cortical representations.
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Fig. 4.5 vNet performance on full ecoset and full ILSVRC 2012. Training (ecoset: dark
blue, ILSVRC 2012: dark orange) and validation performance (ecoset: light blue, ILSVRC
2012: light orange) across all 80 epochs. Final mean performances on full ecoset are at 80.7
% during training and 64.7 % during validation, and on full ILSVRC 2012 at 84.3 % during
training and 59.3 % during validation. The shaded areas indicate µ ±1.96∗σ across training
seeds.

4.3.2 Full ecoset vs. full ILSVRC 2012 trained vNet

We first tested for a difference in the ability of vNet instances trained on full ecoset in
comparison to vNet instances with identical initializations, but trained on full ILSVRC 2012
instead. When aiming at explaining representations of 92 stimuli in IT of 15 subjects (fMRI
data set 1), we found the 10 DNN-instances trained on ecoset to be significantly better
than their 10 counterparts trained on ILSVRC 2012 in the penultimate layer (Wilcoxon,
player:10 = 0.04, Bonferroni corrected for all 10 layers; Fig 4.7 A).

Second, we repeated the same test with the same 2 groups of 10 networks, this time aiming
at explaining representations of the 1,200 stimuli in IT from an independent fMRI dataset of 5
subjects (fMRI data set 2; Horikawa and Kamitani, 2017a). Here we found that the 10 DNN-
instances trained on ecoset were significantly better at explaining IT representations in all 3
of the deepest layers (Wilcoxon, player:{8,9,10} = {0.003,0.001,0.001}, Bonferroni corrected
for all 10 layers, Fig 4.7 B). To summarize our results regarding late stages of the visual
stream, training vNet on ecoset might increase its ability to predict cortical representations in
human IT.
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Fig. 4.6 vNet performance on trimmed ecoset and trimmed ILSVRC 2012. Training
(ecoset: dark blue, ILSVRC 2012: dark orange) and validation performance (ecoset: light
blue, ILSVRC 2012: light orange) across all 80 epochs. Final mean performances on trimmed
ecoset are at 78.0 % during training and 61.8 % during validation, and on trimmed ILSVRC
2012 at 82.5 % during training and 67.9 % during validation. The shaded areas indicate
µ ±1.96∗σ across training seeds.

4.3.3 Trimmed ecoset vs. trimmed ILSVRC 2012 trained vNet

The results presented so far are all based on a slightly unequal comparison, because ecoset
and ILSVRC 2012 vary in the number of categories and the category sizes. The ability
of the associated groups of DNN-instances (ecoset vs. ILSVRC 2012) to explain cortical
representations could hence be attributed to these factors rather than to the fact that one image
set is targeted towards task-performance benchmarking in machine learning, and the other
one towards computational modeling in neuroscience. This is why we repeated the analysis
described above for DNN-instances not trained on the full versions of ecoset and ILSVRC
2012, but on the trimmed variants of these image sets that are identical in the number of
categories and the distribution of category size.

In order to exclude the number of categories or the category sizes as confounding factors
explaining the difference in the ability of a DNN to predict cortical representations, we
trained a group of 10 DNNs on trimmed ecoset and on trimmed ILSVRC 2012 that are
identical with regard to these factors. For training vNet instances on the trimmed image sets
we used the same hyperparameters as previously described for training on the full image sets.

We first tested for a difference in the two groups of DNN-instances in their ability to pre-
dict cortical representations of 92 visual objects in 15 subjects (fMRI dataset 1). For this fMRI
dataset, we found that ecoset trained DNN-instances are significantly better at explaining IT
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Fig. 4.7 vNet trained on full ecoset and full ILSVRC 2012 explains human IT. (A ) Cichy
et al., 2014: IT representations of 92 visual objects in 15 subjects compared to a group of 10
instances of the vNet-architecture trained on full ecoset (blue) or on full ILSVRC 2012 (grey).
Stars indicate significant differences (α = 0.5) in the ability of a group of DNN instances
to predict cortical representations after Bonferroni correction for multiple testing for all
layers has been applied. In the penultimate layer (10) DNN instances trained on full ecoset
are significantly better able to explain human IT representations than when the 10 DNN
instances with the same sets of initial weights are trained on full ILSVRC 2012. (B ) Same as
A, but DNNs explain a different fMRI data set, namely Horikawa and Kamitani, 2017a: IT
representations of 1,200 visual objects in 5 subjects. In the 3 deepest layers DNN instances
trained on full ecoset are significantly better able to explain human IT representations than
when the 10 DNN instances with the same sets of initial weights are trained on full ILSVRC
2012.

representations in layers 7 and 10. (Wilcoxon, player:{7,8,9,10} = {0.001,0.001,0.001,0.001},
Bonferroni corrected for all 10 layers; Fig 4.8 A).

Next, we investigated the same question, this time explaining representations of 1,200
visual object in 5 subjects (fMRI dataset 2). In layers 8, 9, and 10 we found that ecoset-
trained vNet instances showed a significantly better ability to predict cortical representations
in human IT than their ILSVRC 2012-trained counterparts (Wilcoxon, player:{7,8,9,10} =

{0.003,0.001,0.002,0.001}, Bonferroni corrected for all 10 layers; Fig 4.8 B).
After excluding the confounding factors "number of categories" and "category size",

ecoset-trained vNet still yields significantly better predictions of representations in human
IT than their ILSVRC 2012-trained counterparts. This confirms our previous results based
on full image sets and suggests that ecoset, created with the goal to mimic the human visual
experience, might be better suited for training DNNs to predict cortical representations
than relying on the computer vision image set ILSVRC 2012. Relating representational
consistency (as discussed in 2 for networks trained on CIFAR10 instead of ILSVRC 2012 or
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Fig. 4.8 vNet trained on trimmed ecoset and trimmed ILSVRC 2012 explains human IT.
(A ) Cichy et al., 2014: IT representations of 92 visual objects in 15 subjects compared
to a group of 10 instances of the vNet-architecture trained on trimmed ecoset (blue) or on
trimmed ILSVRC 2012 (grey). Stars indicate significant differences (α = 0.5) in the ability
of a group of DNN instances to predict cortical representations after Bonferroni correction
for multiple testing for all layers has been applied. In layer 7 and in the penultimate layer
(10) DNN instances trained on trimmed ecoset are significantly better able to explain human
IT representations than when the 10 DNN instances with the same sets of initial weights are
trained on trimmed ILSVRC 2012. (B ) Same as A, but DNNs explain a different fMRI data
set, namely Horikawa and Kamitani, 2017a: IT representations of 1,200 visual objects in 5
subjects. In the 3 deepest layers DNN instances trained on trimmed ecoset are significantly
better able to explain human IT representations than when the 10 DNN instances with the
same sets of initial weights are trained on trimmed ILSVRC 2012.

ecoset) to the ability of a network instance to predict cortical representations, we found no
strong evidence for such a relationship (for details, see Fig 5 in Appendix C).

4.3.4 Full ecoset trained vNet vs. state-of-the-art computer vision and
computational neuroscience models

Our findings so far suggested ecoset to be a better suited image set for training DNNs used
as models in computational neuroscience. However, the results are insofar restricted as we
have not investigated the ability to predict cortical representations of ecoset-trained vNet in
comparison with other architectures. To elucidate whether ecoset-trained vNet might also
be able to better predict cortical function than state-of-the-art models in computer vision
and computational neuroscience, we tested it against AlexNet, VGG-19, and DenseNet-169
(Huang et al., 2016; A. Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). For this, we
took the same approach as in the previous section and extracted activations from these three
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models in response to the experimental stimuli of fMRI dataset 1 and 2 to compute RDMs
for each layer, reflecting their representational geometry at different depths of the network.
When only the layers best predicting the IT representations were compared across DNN
architectures, we found that that ecoset-trained vNet may be better able to predict cortical
representations than any of the other tested models (not included in bootstrapped confidence
interval, p < 0.05; Fig 4.9). To obtain an impression of the similarity of RDMs between
models and the fMRI data, please see (Fig 4.10). These findings are especially interesting as
vNet has fewer parameter than AlexNet and VGG-19, and performs worse on ILSVRC 2012
than VGG-19 and DenseNet-169. In other words, neither the number of trainable parameters,
nor the testing (or validation) performance on a commonly used complex object recognition
task can reliably indicate whether a DNN architecture might be a good model of cortical
representations.
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Fig. 4.9 IT predictability: best layer of ecoset-trained vNet in comparison to best layers
of state-of-the-art computer vision and computational neuroscience models. Across
data from two independent fMRI experiments (Cichy et al., 2014; Horikawa & Kamitani,
2017a), ecoset-trained vNet (blue) explains human IT representations significantly better than
the best performing layer of VGG-19 (purple), AlexNet (green), or DenseNet-169 (orange).
Blue bars represent the 95% CI for vNet, bootstrapped from 10 vNet instances. Stars indicate
a significant difference at α = 0.05.

4.4 Discussion and conclusion

We investigated whether using a brain-inspired DNN architecture (vNet) trained on ecologi-
cally valid input statistics (ecoset) may increase its ability to explain cortical representations.
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Fig. 4.10 Comparison of investigated models on the level of representational dissimilar-
ity matrices (RDMs). Representational dissimilarity matrices (RDMs) for the layers of
several deep neural network architectures (column 1-4) that best predict human IT, together
with the target RDM computed from fMRI data (column 5).

For this, we trained groups of identical DNNs on the full version of ecoset and ILSVRC
2012, and - to exclude explanations based on differences in the number of categories or
distribution of category sizes - also on trimmed versions of these image sets. To quantify the
representational alignment between DNNs and the brain, we used RSA (Kriegeskorte et al.,
2008). Importantly, we did not perform any reweighting (Khaligh-Razavi & Kriegeskorte,
2014) or linear readout of the DNN activation profiles (Schrimpf et al., 2018) in order to
probe the unaltered alignment between the two systems: the best model of IT will not only
capture the mere presence of certain features but will instead mirror the full distribution of
feature selectivity as found in the brain.

Our first results from both full and trimmed training sets suggest that training on a more
realistic set of images might help to better explain cortical representations in two independent
sets of fMRI data (Fig 4.7, Fig 4.8). Second, using the same fMRI data sets, we showed that
ecoset-trained vNets may also better explain IT cortical representations than DNNs that are
state-of-the-art in computer vision or computational neuroscience and far exceed vNet in the
number of layers, number of trainable parameters or their testing (or validation) performance
on a complex object recognition task (Fig 4.9).
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We have suggested earlier to acknowledge idiosyncrasies of DNNs differing in their
initial sets of weights and to treat them similar to experimental subjects (Chapter 2). Any
analysis relying on a single DNN instance might yield different results depending on the
specific set of weights before training. We thus base our results on multiple instances of vNet
to allow for an estimation of the variability of the architecture’s ability to predict cortical
representations across instances. This is in contrast with most studies using DNNs as models
of the human visual cortex, where results are based on a single DNN instance (Agrawal et al.,
2014; Cadieu et al., 2014; Cichy et al., 2016; Devereux et al., 2018; Eickenberg et al., 2017;
Güçlü & van Gerven, 2015, 2017; Hong et al., 2016; Horikawa & Kamitani, 2017a, 2017b;
Khaligh-Razavi & Kriegeskorte, 2014). Here we could demonstrate that by using a group of
identical DNNs, only differing in the initial set of weights allows more reliable results with
regard to the ability of a specific DNN architecture to predict cortical representations.

Moving beyond this proof of concept, future work will investigate which ecological and
biological details are required to further improve DNN predictive performance as all models
investigated here including vNet are feedforward models, the most widely used class of
models in cognitive computational neuroscience (Kietzmann, McClure, et al., 2019). Among
others, these biological details include recurrent (Kar et al., 2019; Spoerer et al., 2019)
and skip connections (Huang et al., 2016; Miikkulainen et al., 2017), drawing inspiration
from magno-, and parvo-cellular pathways (Mahdisoltani et al., 2018; Mei & Singh, 2018),
foveation (Wu & He, 2018; Zhang et al., 2018), other training objectives beyond catego-
rization (McClure & Kriegeskorte, 2016a), and more biologically realistic learning rules
(Kriegeskorte & Douglas, 2018; Serre, 2019).





Chapter 5

General discussion

The previous three Chapters describe multiple experiments and the creation of a large-scale
image set conducted and created with the goal to investigate the representations of visual
objects in the human brain. After exploring representational differences between deep neural
network (DNN) instances, and creating an image set enabling DNN training on ecologically
more valid input statistics, I have built on these results by investigating how additional
ecological and biological inspiration might help to better explain cortical representations of
visual objects in the human brain. In the remainder of this thesis I will first summarize the
findings of each Chapter separately before discussing what can be learned from the overall
results in order to build better models of the human visual cortex.

5.1 Summary of results

5.1.1 Individual differences between deep neural network instances

In a series of experiments we demonstrated how the internal representations across deep
neural network instances are affected by the minimal intervention of changing the initial set
of weights. To compare representations across DNNs we used representational similarity
analysis (RSA), a widely used technique from neuroscience, to compare representations of
visual objects across species and between a given computational model and the brain. We
defined representational consistency as the shared variance between two representational
dissimilarity matrices (RDMs), each reflecting the representational geometry of a set of
objects in a given artificial neural network or a biological vision system.

The training on a classification task requires linearly separable classes in high-dimensional
activation space at least in the penultimate layer of a given network. In line with this, we
found that category-clustering increases across layers. Importantly, this increasing category-
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clustering is accompanied by a decreasing representational consistency across layers - a
result that generalizes across network architectures and distance measures used to compute
the underlying RDMs.

One explanation for why representational consistency decreases while category-clustering
increases across DNN layers is that the classification objective does not sufficiently constrain
the configuration of category instances in high-dimensional activation space. While classes
are largely linearly separable, the configuration of single class exemplars might differ across
DNN instances. Confirming this line of thought, our analyses revealed a high consistency
of category centroids, suggesting that differences between individual category instances
may be the main contributor of the differences observed. Additionally, we could show
that an interaction between the non-linearity used at each layer of a given DNN (ReLU)
and the distance measure used to compute RDMs might be a reason for the decreasing
representational consistency across layers. A simple standardization of the activations
before computing pairwise distances for the overall representational geometry may increase
consistency across DNNs when cosine and correlation distance are used to compute the
underlying RDM. Finally, we demonstrated that regularization through dropout used during
training and testing might allow to partially recover consistency across networks.

The individual differences observed across network instances are of importance, because
it is common practice in computational neuroscience to use single instances of off-the-shelf
DNNs to predict cortical representations in the human visual cortex. As task-performance is
indistinguishable across instances and DNN training requires considerable computational
costs, multiple instances per DNN architecture are generally not available. However, in
the light of our results, we suggest to use multiple instances per DNN architecture to allow
for improved generality of the conclusions drawn from comparisons between cortical and
DNN representations. The number of networks required for such analyses can be judged by
computing consistency across network instances.

5.1.2 Ecologically more valid input statistics for deep neural networks

With the goal to design an ecologically more valid image set for training DNNs used as
models of the human visual cortex, we created ecoset, a set of >1.5 million images from 565
basic level categories approximating the human visual experience. As a proxy for visual
importance we first created an index using the frequency of nouns in the English language
and concreteness ratings by human observers and created a list of candidate categories. After
downloading images from various online sources for each category, we applied rigorous
cleaning procedures aiming to obtain non-overlapping categories covering those objects that
are most frequent in the human visual diet.
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The most commonly used image set for training DNNs used as models of the human visual
stream is ILSVRC 2012. This image set is designed with machine goals in mind, namely to
allow for models to excel at fine-grained categorical divisions, such as the recognition of 120
different dog breeds. We believe that computational models trained to predict representations
in the human visual stream should be trained on input statistics similar to the human visual
diet. To allow the community to test their own hypotheses about ecologically more valid
input statistics ecoset will be freely available to the community for research and educational
purposes.

5.1.3 A brain-inspired DNN (vNet) and an ecologically more valid vi-
sual diet for deep learning (ecoset) yields better models of human
high-level visual cortex

Combining the results from Chapter 2 and 3, in Chapter 4 we investigated whether brain-
inspired DNNs (vNet) trained on ecologically relevant input statistics (ecoset) are able to
better predict cortical representations in human IT than i) the same brain-inspired DNN
architecture, but trained on ILSVRC 2012 instead, and ii) state of the art computer vision
models. We could show that training vNet instances on ecoset improves its ability to predict
cortical representations when compared to the same networks trained on ILSVRC 2012
instead. Additionally, our analyses further revealed that ecoset-trained vNet may better
predict cortical representations than stat-of-the-art computer vision models that have more
layers or more free parameters and that reach a higher classification performance on ILSVRC
2012 than vNet.

What unites all the investigations presented in this thesis and what thus constitutes an
overarching theme is that additional ecological and biological inspiration might help to build
better DNN models of the human visual cortex. First, acknowledging the representational dif-
ference between networks with identical architecture and indistinguishable task performance
suggests that DNNs should be treated similar to human experimental subjects. Second, using
ecologically relevant input statistics for training DNNs might improve their ability to predict
representations found in biological vision systems. And last, using a brain-inspired DNN
trained on this ecologically plausible set of images, highlights the importance of questions
regarding input statistics and architecture for building models of the human visual cortex.
In the remainder of this thesis I will discuss how drawing further inspiration from ecology
and biology may help build better models of the human visual cortex in the future. Further, I
will explore how computational visual neuroscience can profit from a free and open science
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infrastructure that encourages transparency and a culture of sharing tests, tasks, models, and
data.

5.2 Future models in vision science: more biological plau-
sibility?

Evolution has yielded biological systems that successfully survived and reproduced through-
out millennia. The structures and functions underlying these systems have always fascinated
humankind in general and scientists more specifically (Bar-Cohen, 2005; Dickinson, 1999).
For example, the skin of dolphins allowing them to move at high speeds under water, echolo-
cation by ultrasound in bats, or strong and flexible spider web fibers have all attracted much
attention by different scientific disciplines and allowed influential bio-inspired technological
achievements (Popescu, 1999).

Learning from biological systems is referred to as bionics (Steele, 1960) or biomimet-
ics (Schmitt, 1969). Sometimes used synonymously (Vincent, 2001), today the two terms
are mostly described as opposites. Whereas bionics is mostly associated with technol-
ogy used to rehabilitate or even enhance human capabilities (prosthetics, etc.; Dickinson,
1999), biomimetics describes the art of incorporating ideas from biological systems into
technological inventions (Bhushan, 2009; Vincent et al., 2006).

The first neural networks were inspired by the structure of the primate visual cortex and
thus demonstrate how biological inspiration can help building powerful computer vision
applications (Fukushima, 1980; LeCun et al., 1989; Riesenhuber & Poggio, 1999). On the
other hand DNNs demonstrate that core object recognition can be performed by abstracting
away from biological detail so far that they can work without arguably important features,
such as "spikes, ion channels, dendritic nonlinearities, complex microcircuits, neuromodu-
lation, or a host of other physiological phenomena" (p. 115, Tripp, 2018). It thus remains
elusive whether additional ecological and biological inspiration from some of the features
and function of the human cortex may improve the performance of i) DNNs in computer
vision, and ii) DNNs used as models of the human visual cortex.

5.2.1 Biological inspiration for computer vision models

One of the most important features of the brain is its recurrence. In computer vision
specifically and in machine learning more generally, the introduction of recurrence in the
form of long-short-term-memory (LSTM) or gated recurrent units (GRU) allowed great
achievements especially in tasks requiring sequence modeling, such as language translation,
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or speech synthesis (Cho et al., 2014; Chung et al., 2014; Donahue et al., 2015; Hochreiter
& Schmidhuber, 1997). However, the exact implementation of recurrence in this form only
bears little biological plausibility as networks using LSTMs and GRUs do not commonly
include lateral and top-down connections that are ubiquitous in biological vision systems.
However, first studies combining networks composed of LSTM units and additional top-down
connections may, for example, help to improve action recognition (Shi et al., 2017).

In addition, attention is known to play an important role in the human visual system.
Although the exact mechanisms may remain far behind the richness and diversity of the
processes used in biological vision systems (Serre, 2019), the implementation of attentional
features in DNNs yield important results. Using inspiration from our knowledge about
attention in the human brain, it has been shown that DNNs are able to perform sensible image
captioning (Xu et al., 2015), object localization (Biparva & Tsotsos, 2018), or challenging
object detection tasks using feature-based attention (Lindsay & Miller, 2018). Combining
attentional features with recurrent connections to improve a network’s localization perfor-
mance (Ba et al., 2014) or gave rise to a distinction between "what"- and "where"-information
(Mott et al., 2019), reminiscent of the "what"- and "where"-pathways of the primate visual
system (Ungerleider & Haxby, 1994). These examples demonstrate how additional biological
inspiration has helped to make progress in computer vision.

To conclude, DNNs used in machine learning and computer vision may profit from
biological inspiration. But does drawing additional biological inspiration also help to build
better models of the human brain? I will now discuss which factors shaping network
internal representations (functional objective, learning algorithm, network structure, and input
statistics; Kietzmann, McClure, et al., 2019) may help to mimick cortical representations
more closely.

5.2.2 Ecological and biological inspiration for computational neuro-
science models

One of the first intuitions about DNNs used in computational modeling of the visual cortex
was that the model that better performs a given classification task may also be better able to
predict cortical representations (Kriegeskorte, 2015). As deeper feedforward models have
been shown to reach higher object recognition performances, this suggested that deeper
models might also be better models of the human visual cortex. However, it has been
suggested that current state-of-the-art computer vision models with hundreds of layers may
exceed the number of stages of the human visual system (Serre, 2019). In line with this,
recent results suggest that deeper architectures than AlexNet (e.g. VGG; Simonyan and
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Zisserman, 2015) are unable to better predict cortical representations than when e.g. AlexNet
with its 7 layers is used (Abbasi-Asl et al., 2018; Kalfas et al., 2017; Storrs & Kriegeskorte,
2019; Storrs et al., 2017). In line with these results, our results from Chapter 4 suggest that
models that are deeper or perform better at ILSVRC 2012 than vNet, did not outperform
ecoset-trained vNet with regard to their ability to predict cortical representations.

Beyond architecture depth, connectivity matters. More specifically, a biologically more
plausible implementation of recurrence than LSTMs or GRUs uses bottom-up, lateral and
top-down connections allowing performance increases under difficult conditions (Spoerer
et al., 2017), and on two complex object recognition tasks when compared to feedforward
models with the same number of trainable parameters (Spoerer et al., 2019). It is this
biologically more plausible implementation of recurrence that allowed to explain cortical
dynamics during high-level object recognition across multiple regions of the ventral stream
(Kietzmann, Spoerer, et al., 2019). In line with this, allowing bottom-up and top-down
long-range connections, rDNNs have been shown to outperform feedforward nets with regard
to matching the dynamics of the primate visual system (Nayebi et al., 2018). Another study
allowing long-range skipping and recurrent connections yielded the best score combining
the fit to multiple sets of neural data (Kubilius et al., 2018). And last, a study investigating
recurrent DNNs set to identify challenging images revealed that late IT responses were
best explained by very deep DNNs or shallow recurrent DNNs, suggesting a functional
equivalence between recurrence and additional non-linear transformations as performed in
deeper networks (Kar et al., 2019). In sum, these studies demonstrate the importance of
recurrence for DNNs used as models for the human visual stream.

Another structural feature important in both biological and artificial vision systems is the
receptive field size (Hubel & Wiesel, 1962; Serre, Wolf, et al., 2007). The receptive field
size does not only determine which cells or units in one visual region or layer feed into the
next one, but also defines the overlap with adjacent cells or units and thus plays a pivotal
role in how information is passed through the respective vision system. We explored how
adapting receptive field sizes in a DNN to those found in primate visual system influences
network internal representations. Our results in Chapter 4 revealed that this inspiration from
a biological vision system might improve the ability of a given network to explain cortical
representations as our brain-inspired architectures outperformed state-of-the-art computer
vision models that either have a larger number of trainable parameters, more layers, and/or
reached a higher classification performance on an important computer vision benchmark
(ILSVRC 2012).

In addition to this structural inspiration from a biological vision system, we asked how
the input statistics influence a network’s internal representations and its ability to predict
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cortical representations. Our results revealed that mimicking the visual experience of humans
might help to build better models of the human visual cortex. This finding is also related to
our results from Chapter 2 where we suggest to treat DNNs similar to human experimental
subjects: using multiple DNN instances allows for a better generality of results based on a
given DNN architecture.

5.3 A way ahead in computational visual neuroscience

We have started to explore which network structures and input statistics may help to explain
cortical representations, but it might be equally important to test which objective functions
and learning algorithms might help to build better models of the human visual cortex. For
this to be a fruitful endeavor, we need to strengthen collaborations across labs, but also across
disciplinary boundaries.

ILSVRC offered not only free access to millions of images for DNN training, but also
provided the stimulating atmosphere motivating labs around the globe to compete against
each other in an object recognition task. This lead to the creation of AlexNet and other
architectures that now constitute the most widely used models to predict cortical responses in
human IT. To make use of the full potential of the deep learning framework for computational
modeling of the human visual cortex, we need to continue our efforts to share tasks, models,
data and tests (Kriegeskorte & Douglas, 2018). Just as ILSVRC is freely available to the
community, we have created an ecologically more valid image set for DNN training also
freely available to the community. In addition, all instances of our brain-inspired architecture
vNet trained on ecoset or ILSVRC 2012 will be shared online, so that scientists interested in
testing their own hypothesis pertaining to ecoset or vNet, can directly use this image set and
our DNNs. Importantly, the availability of multiple instances per architecture, offering to
assess the representational variability between networks, allows for a better generalization of
the results. As not only training DNNs, but also extracting activations can be non-trivial, we
provide code ready to be executed at an online platform (CodeOcean) to extract activations
in response from all vNet instances to an arbitrary set of images. In this way we hope to
facilitate access to both our task (ecoset) and our models (vNet) for rapid adoption by the
community.

What is missing to allow the computational neuroscience community to collaborate faster
and more easily is the accessibility of data and tests. To assess the fit of a given model,
behavioral or cortical data should be openly available. However, there are many ways in
which the fit can be assessed or inference about a given architecture can be drawn. The
discussion about the way in which computational models of the humans visual cortex should

https://codeocean.com/
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be assessed is at the core of cognitive computational modeling and subject to an important
current debate (Lage-castellanos et al., 2019).

However, it also appears as a fruitful endeavor to agree on a specific way of assessment
allowing to compare many different architectures on the exact same test. First steps have
been taken in this direction by BrainScore (Schrimpf et al., 2018) and the Algonaut’s project
(Cichy et al., 2019). In both projects the competitor is challenged to predict cortical response
patterns from multiple datasets from humans and other primates. Both projects demonstrate
how sharing data and tests may offer an infrastructure and atmosphere inviting labs around
the globe to compete against each other in bechnmarking their models not with regard to task
performance, but to their ability to explain cortical function.

By making tests, tasks, models, and data freely available and thus stimulating collabora-
tions across labs und disciplinary boundaries, the field of computational visual neuroscience
will be able to develop better models of the human visual cortex. The findings discussed in
this thesis - treating DNNs similar to human participants to allow for greater generalbility of
the results, and using brain-inspired architectures and ecologically relevant input statistics -
may be a step toward a better understanding of the cortical processes underlying vision.
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Fig. 1 Appendix A: Rotation sensitivity of correlation distance. We computed the distance
between two random vectors before and after both vectors were randomly rotated around
the origin using the same rotation matrix. This procedure was performed for 100 vector
pairs in the above simulation. Rotating both vector pairs does not have an effect when
Euclidean or cosine distance is used to compute the vector pair distances (A, B). However,
when correlation distance is used, rotations around the origin lead to decreased overall
distances, and an imperfect correlation (C). Computing a distance involves a projection of
two vectors a plane cutting through the origin that is orthogonal to the all-1 vector. This
projection differs if the original vectors are rotated. Accordingly, when RDMs are based on
correlation distance (here based on 10 example responses), rotations around the origin lead
to decreased representational consistency, despite the fact that the relative arrangement of
datapoints remained identical after the rotation (D).
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Fig. 2 Appendix A: Consistency index across vs. within layers. We computed consistency
across instances (and within layers, e.g. off-diagonal elements in Fig2.4 A, celllayer4,layer4)
and subtracted its mean from consistency computed within instances (and across layers, e.g.
diagonal elements in Fig2.4 A in celllayer4,layer5), standardized by the overall mean. This
indicates that starting at layer 4 network instances are more consistent across adjacent layers
than instances within layers.
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Fig. 3 Appendix A: Relating test accuracy representational consistency. We here inves-
tigated whether test accuracy is related to representational consistency. For example, high
test accuracy of two network instances might allow for less variability in the network internal
representations than when two instances with relatively low test accuracy are compared. Note
that test accuracy is associated with a single network instance, whereas consistency reflects
the representational similarity of a pair of instances. To address this issue, we computed the
mean test accuracy of adjacent pairs of networks after sorting them according to their test
accuracy. In this way we obtained 9 mean test accuracy values from 10 network instances.
We then computed consistency for the same 9 pairs of networks (at the penultimate layer)
and used Pearson correlation to relate mean test accuracy and consistency. For both archi-
tectures, All-CNN-C (A) and VGG-753 (B), we find correlations between test accuracy and
representational consistency not to be significant (p = 0.439 and p = 0.178, respectively).
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Fig. 4 Appendix A: VGG-753 task performance across noise levels. Average task perfor-
mance across all network instances (shown with 95% CI) for the training set (blue), test set
(orange), and when using dropout sampling at inference time for the test set (red, 1 sample).





B | List of ecoset categories

Table 1 List of ecoset categories. A list of all 565 ecoset categories sorted according to
the frequency-concreteness-index (FCI) used during category selection (for details on the
FCI, see formula 3.1). As described in the section on in- and exclusion criteria for ecoset
categories "category name" describes single word concepts. "SUBTLEX US frequency"
describes the number of times the word appears in the corpus SUBTLEX US (Brysbaert &
New, 2009). "concreteness" refers to concreteness ratings based on an online experiment
based on 4,000 subjects M. Brysbaert et al., 2014, and "# of images" refers to the total
number of images per category.

category index category name SUBTLEX US freq. concreteness FCI # of images
001 man 94133 4.79 0.979000 4620
002 house 26214 5.00 0.639239 4905
003 car 24636 4.89 0.619857 4988
004 woman 22166 4.46 0.563738 4898
005 phone 13756 4.86 0.559067 4732
006 bed 9543 5.00 0.550689 4821
007 gun 10873 4.83 0.540753 4862
008 book 9026 4.90 0.537943 4928
009 dog 9835 4.85 0.537240 4904
010 ball 5353 5.00 0.528433 3640
011 fire 10990 4.68 0.526375 4957
012 horse 4737 5.00 0.525161 4997
013 city 8624 4.79 0.524808 1416
014 fish 4258 5.00 0.522617 1392
015 child 8040 4.78 0.520706 4391
016 boat 4885 4.93 0.518947 1464
017 table 5387 4.90 0.518614 4983
018 tree 3315 5.00 0.517608 2471
019 clock 2990 5.00 0.515882 4942
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

020 bag 4796 4.90 0.515475 4981
021 camera 2907 5.00 0.515441 4948
022 cup 2634 5.00 0.513991 4781
023 ship 5043 4.87 0.513787 4955
024 kitchen 2974 4.97 0.512797 1954
025 key 4430 4.89 0.512531 3713
026 bird 2318 5.00 0.512312 3325
027 pig 1996 5.00 0.510602 4304
028 bus 3783 4.90 0.510094 4053
029 bridge 2331 4.97 0.509381 4836
030 pizza 1709 5.00 0.509078 4870
031 computer 3011 4.93 0.508993 4591
032 church 3553 4.90 0.508872 4921
033 doll 1263 5.00 0.506709 3880
034 bell 2006 4.96 0.506655 4868
035 stairs 1212 5.00 0.506438 2081
036 apple 1207 5.00 0.506411 3542
037 flower 1161 5.00 0.506167 4550
038 ring 4730 4.81 0.506124 1792
039 snake 1140 5.00 0.506055 4906
040 mountain 1805 4.96 0.505587 4996
041 road 5709 4.75 0.505324 1597
042 wall 3605 4.86 0.505148 4837
043 tiger 945 5.00 0.505019 4887
044 toilet 1474 4.97 0.504829 3733
045 train 4848 4.79 0.504751 4768
046 bottle 2588 4.91 0.504747 4510
047 turtle 869 5.00 0.504616 4933
048 cookie 852 5.00 0.504526 950
049 egg 1328 4.97 0.504054 3781
050 river 2829 4.89 0.504027 2532
051 cat 3383 4.86 0.503969 4985
052 truck 3716 4.84 0.503738 4976
053 basket 672 5.00 0.503569 3490
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

054 bear 2928 4.88 0.503552 3670
055 moon 2548 4.90 0.503534 853
056 milk 2169 4.92 0.503521 2586
057 blanket 662 5.00 0.503516 1806
058 lemon 613 5.00 0.503256 2656
059 frog 603 5.00 0.503203 3597
060 pillow 581 5.00 0.503086 1988
061 elephant 580 5.00 0.503081 4869
062 cow 1301 4.96 0.502910 4834
063 banana 547 5.00 0.502905 3656
064 goat 537 5.00 0.502852 4782
065 knife 2387 4.90 0.502679 4737
066 ladder 472 5.00 0.502507 865
067 popcorn 465 5.00 0.502470 2136
068 refrigerator 427 5.00 0.502268 3476
069 jar 424 5.00 0.502252 3026
070 jail 3602 4.83 0.502133 2199
071 hamburger 397 5.00 0.502109 3693
072 toast 1707 4.93 0.502067 1907
073 umbrella 382 5.00 0.502029 1955
074 bean 349 5.00 0.501854 4741
075 castle 1099 4.96 0.501837 1379
076 flashlight 302 5.00 0.501604 3807
077 tomato 301 5.00 0.501599 4800
078 strawberry 282 5.00 0.501498 2405
079 leopard 276 5.00 0.501466 4290
080 donkey 273 5.00 0.501450 3350
081 axe 249 5.00 0.501323 4381
082 mailbox 212 5.00 0.501126 2892
083 grape 204 5.00 0.501084 4845
084 vase 196 5.00 0.501041 2799
085 carrot 195 5.00 0.501036 2316
086 tractor 190 5.00 0.501009 2452
087 cupcake 167 5.00 0.500887 1070
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

088 fern 163 5.00 0.500866 4941
089 bagel 156 5.00 0.500829 1832
090 telescope 150 5.00 0.500797 4516
091 cactus 148 5.00 0.500786 4571
092 tent 892 4.96 0.500738 4858
093 microscope 129 5.00 0.500685 4390
094 kite 117 5.00 0.500621 1272
095 lantern 103 5.00 0.500547 2010
096 octopus 99 5.00 0.500526 1054
097 lamp 657 4.97 0.500490 3300
098 blender 85 5.00 0.500451 1295
099 burrito 84 5.00 0.500446 2256
100 mango 84 5.00 0.500446 1874
101 binoculars 80 5.00 0.500425 1704
102 steak 828 4.96 0.500398 2257
103 gravel 73 5.00 0.500388 1456
104 escalator 66 5.00 0.500351 746
105 walrus 57 5.00 0.500303 1179
106 horseshoe 52 5.00 0.500276 1355
107 antelope 50 5.00 0.500266 4428
108 tongs 40 5.00 0.500212 2123
109 porcupine 33 5.00 0.500175 1646
110 camcorder 32 5.00 0.500170 1312
111 mousetrap 30 5.00 0.500159 843
112 lion 783 4.96 0.500159 4644
113 cauliflower 28 5.00 0.500149 2395
114 shower 2097 4.89 0.500138 1877
115 hotdog 20 5.00 0.500106 3407
116 warthog 16 5.00 0.500085 1622
117 thimble 14 5.00 0.500074 1052
118 guardrail 14 5.00 0.500074 1012
119 dustpan 13 5.00 0.500069 1293
120 crawfish 13 5.00 0.500069 1881
121 eyedropper 7 5.00 0.500037 932
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

122 nectarine 3 5.00 0.500016 1574
123 flyswatter 2 5.00 0.500011 979
124 lollypop 2 5.00 0.500011 919
125 lightbulb 0 5.00 0.500000 2071
126 corn 725 4.96 0.499851 4212
127 cave 713 4.96 0.499787 4537
128 pie 1466 4.92 0.499787 900
129 spider 515 4.97 0.499735 4934
130 bread 1445 4.92 0.499675 4802
131 motorcycle 455 4.97 0.499417 3890
132 monkey 1709 4.90 0.499078 4664
133 whale 574 4.96 0.499049 4895
134 airplane 557 4.96 0.498959 4965
135 shovel 349 4.97 0.498854 3087
136 bucket 511 4.96 0.498714 2308
137 rabbit 1068 4.93 0.498673 2958
138 necklace 497 4.96 0.498640 2386
139 moose 282 4.97 0.498498 1688
140 glass 3096 4.82 0.498445 4841
141 drum 432 4.96 0.498295 4921
142 mop 211 4.97 0.498121 2698
143 bracelet 398 4.96 0.498114 3404
144 spoon 388 4.96 0.498061 3095
145 stove 387 4.96 0.498056 4722
146 lettuce 173 4.97 0.497919 4551
147 ashtray 166 4.97 0.497882 1367
148 lake 1836 4.88 0.497752 1435
149 noodles 309 4.96 0.497641 3890
150 walnut 100 4.97 0.497531 1512
151 pastry 98 4.97 0.497521 2348
152 ferret 83 4.97 0.497441 1929
153 fig 62 4.97 0.497329 1991
154 eggplant 56 4.97 0.497297 1971
155 violin 242 4.96 0.497285 4690
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

156 chipmunk 42 4.97 0.497223 2813
157 milkshake 42 4.97 0.497223 901
158 blackberry 38 4.97 0.497202 1397
159 sushi 222 4.96 0.497179 1744
160 apricot 32 4.97 0.497170 1666
161 drawers 218 4.96 0.497158 4411
162 doughnut 215 4.96 0.497142 1658
163 lawnmower 24 4.97 0.497127 4465
164 snowplow 20 4.97 0.497106 1092
165 chalkboard 12 4.97 0.497064 1931
166 backpack 186 4.96 0.496988 2622
167 alligator 178 4.96 0.496945 3190
168 cockroach 174 4.96 0.496924 3172
169 lime 168 4.96 0.496892 1681
170 lighthouse 157 4.96 0.496834 2693
171 dolphin 141 4.96 0.496749 4853
172 piano 1268 4.90 0.496735 4825
173 earring 138 4.96 0.496733 2561
174 chicken 3148 4.80 0.496721 4825
175 blueberry 131 4.96 0.496696 3318
176 grapefruit 126 4.96 0.496669 1544
177 thermometer 112 4.96 0.496595 3814
178 cranberry 99 4.96 0.496526 2724
179 iceberg 92 4.96 0.496489 1165
180 wasp 73 4.96 0.496388 3671
181 tweezers 52 4.96 0.496276 1339
182 asparagus 50 4.96 0.496266 2430
183 croissant 45 4.96 0.496239 1602
184 teapot 44 4.96 0.496234 2164
185 needle 608 4.93 0.496229 1854
186 acorn 37 4.96 0.496197 1258
187 bumblebee 33 4.96 0.496175 1727
188 anvil 32 4.96 0.496170 971
189 seashell 16 4.96 0.496085 4887
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

190 birdhouse 13 4.96 0.496069 1691
191 thyme 10 4.96 0.496053 4256
192 thumbtack 9 4.96 0.496048 1107
193 saltshaker 6 4.96 0.496032 1466
194 paperclip 2 4.96 0.496011 1209
195 matchstick 1 4.96 0.496005 897
196 envelope 513 4.93 0.495725 3787
197 pineapple 130 4.94 0.494691 2079
198 wheelchair 316 4.93 0.494678 2417
199 butterfly 281 4.93 0.494493 4978
200 camel 256 4.93 0.494360 4588
201 balloon 442 4.92 0.494348 3606
202 beach 2888 4.79 0.494340 2583
203 guitar 795 4.90 0.494223 4853
204 crate 209 4.93 0.494110 1187
205 wrench 202 4.93 0.494073 3080
206 eggroll 1 4.94 0.494005 1318
207 taco 158 4.93 0.493839 1183
208 rat 1663 4.85 0.493833 3956
209 meatball 132 4.93 0.493701 2795
210 emerald 131 4.93 0.493696 1386
211 omelet 121 4.93 0.493643 2878
212 sheep 685 4.90 0.493638 4807
213 jukebox 116 4.93 0.493616 1289
214 desert 1427 4.86 0.493580 720
215 raspberry 96 4.93 0.493510 3568
216 snail 90 4.93 0.493478 4763
217 pistachio 77 4.93 0.493409 1443
218 groundhog 76 4.93 0.493404 3521
219 videotape 264 4.92 0.493402 868
220 jellyfish 74 4.93 0.493393 2674
221 carousel 73 4.93 0.493388 2049
222 hippo 72 4.93 0.493382 2001
223 pear 68 4.93 0.493361 3832
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Continuation of Table 1
category index category name SUBTLEX US freq. concreteness FCI # of images

224 bullet 1950 4.83 0.493358 1654
225 pliers 59 4.93 0.493313 2990
226 toothpick 52 4.93 0.493276 1142
227 stagecoach 51 4.93 0.493271 1180
228 hourglass 49 4.93 0.493260 1612
229 coliseum 44 4.93 0.493234 2104
230 blowtorch 43 4.93 0.493228 1288
231 treadmill 42 4.93 0.493223 2506
232 cake 2298 4.81 0.493206 3865
233 bobcat 20 4.93 0.493106 1571
234 cumin 16 4.93 0.493085 1162
235 hedgehog 15 4.93 0.493080 1730
236 opossum 4 4.93 0.493021 2426
237 pumpkin 553 4.90 0.492937 3535
238 bowl 1094 4.87 0.492811 4230
239 worm 516 4.90 0.492741 4550
240 candy 1825 4.83 0.492694 4245
241 clarinet 80 4.92 0.492425 2326
242 peanut 630 4.89 0.492346 1656
243 gondola 37 4.92 0.492197 1418
244 padlock 35 4.92 0.492186 2539
245 television 1729 4.83 0.492184 4796
246 barnacle 32 4.92 0.492170 2376
247 leek 15 4.92 0.492080 964
248 cashew 11 4.92 0.492058 2063
249 streetlamp 2 4.92 0.492011 1830
250 razor 351 4.90 0.491864 3552
251 peach 324 4.90 0.491721 2081
252 pudding 314 4.90 0.491668 3726
253 coin 497 4.89 0.491640 1377
254 grasshopper 47 4.91 0.491250 4815
255 pea 199 4.90 0.491057 4033
256 toaster 198 4.90 0.491052 1566
257 chalk 183 4.90 0.490972 858
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258 bee 528 4.88 0.490805 4848
259 bicycle 337 4.89 0.490790 4945
260 screwdriver 128 4.90 0.490680 1803
261 pencil 503 4.88 0.490672 3492
262 jaguar 121 4.90 0.490643 1545
263 garlic 306 4.89 0.490625 1767
264 rhino 106 4.90 0.490563 4615
265 wheat 293 4.89 0.490556 1462
266 waterfall 95 4.90 0.490505 1012
267 squirrel 279 4.89 0.490482 4939
268 bulldozer 66 4.90 0.490351 1996
269 closet 1381 4.83 0.490335 2283
270 broom 243 4.89 0.490291 3561
271 starfish 38 4.90 0.490202 2019
272 ladle 38 4.90 0.490202 2481
273 scoreboard 31 4.90 0.490165 1652
274 rice 769 4.86 0.490085 2906
275 crouton 13 4.90 0.490069 971
276 lasagna 183 4.89 0.489972 2352
277 flea 169 4.89 0.489898 893
278 towel 722 4.86 0.489835 4729
279 bench 493 4.87 0.489619 4923
280 hammock 71 4.89 0.489377 757
281 windmill 65 4.89 0.489345 3637
282 pan 627 4.86 0.489330 2966
283 avocado 62 4.89 0.489329 2121
284 guacamole 56 4.89 0.489297 1726
285 cane 425 4.87 0.489257 2022
286 sprinkler 47 4.89 0.489250 2132
287 microphone 232 4.88 0.489232 4475
288 outhouse 38 4.89 0.489202 1494
289 anthill 29 4.89 0.489154 1030
290 tortilla 16 4.89 0.489085 1493
291 eggbeater 12 4.89 0.489064 1378
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category index category name SUBTLEX US freq. concreteness FCI # of images

292 hare 195 4.88 0.489036 3177
293 breadbox 6 4.89 0.489032 1043
294 nest 566 4.86 0.489006 701
295 rifle 743 4.85 0.488947 4842
296 skunk 166 4.88 0.488882 1810
297 barrel 542 4.86 0.488879 4761
298 typewriter 161 4.88 0.488855 4482
299 bun 147 4.88 0.488781 3991
300 hay 325 4.87 0.488726 2687
301 mosquito 93 4.88 0.488494 3694
302 coffin 461 4.86 0.488449 2078
303 newspaper 1208 4.82 0.488416 4797
304 condom 263 4.87 0.488397 702
305 deer 444 4.86 0.488358 4911
306 mouse 975 4.83 0.488179 4515
307 candle 409 4.86 0.488172 3296
308 kumquat 24 4.88 0.488127 2201
309 cymbals 24 4.88 0.488127 995
310 mall 964 4.83 0.488120 1478
311 potato 576 4.85 0.488060 1211
312 candelabra 6 4.88 0.488032 3342
313 knot 188 4.87 0.487999 3799
314 lobster 374 4.86 0.487987 3966
315 crib 316 4.86 0.487678 2503
316 broccoli 116 4.87 0.487616 2416
317 fireworks 287 4.86 0.487524 1507
318 ant 273 4.86 0.487450 4857
319 crowbar 66 4.87 0.487351 703
320 thermostat 58 4.87 0.487308 934
321 caterpillar 57 4.87 0.487303 4617
322 papaya 56 4.87 0.487297 1075
323 ceiling 426 4.85 0.487263 2274
324 zucchini 49 4.87 0.48726 1453
325 pecan 48 4.87 0.487255 1000
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326 wallet 1163 4.81 0.487177 2164
327 radish 31 4.87 0.487165 2947
328 onion 216 4.86 0.487147 3939
329 crayon 21 4.87 0.487112 1572
330 pancake 202 4.86 0.487073 1165
331 canoe 182 4.86 0.486967 3873
332 casket 162 4.86 0.486860 1820
333 tunnel 912 4.82 0.486844 872
334 scissors 341 4.85 0.486811 4815
335 cork 146 4.86 0.486775 1936
336 tofu 137 4.86 0.486728 1276
337 zebra 128 4.86 0.486680 4449
338 kangaroo 118 4.86 0.486627 4034
339 hamster 109 4.86 0.486579 3071
340 missile 670 4.83 0.486559 2593
341 dishwasher 103 4.86 0.486547 1025
342 bamboo 80 4.86 0.486425 2549
343 altar 259 4.85 0.486376 3340
344 otter 69 4.86 0.486367 4661
345 nacho 67 4.86 0.486356 1267
346 calculator 66 4.86 0.486351 4195
347 fence 819 4.82 0.486350 4975
348 rhubarb 55 4.86 0.486292 1974
349 stethoscope 48 4.86 0.486255 1516
350 library 1170 4.80 0.486215 3303
351 tadpole 30 4.86 0.486159 1432
352 dollhouse 22 4.86 0.486117 1894
353 trashcan 19 4.86 0.486101 1607
354 guava 13 4.86 0.486069 2038
355 pomegranate 13 4.86 0.486069 2657
356 tamale 12 4.86 0.486064 1389
357 anteater 11 4.86 0.486058 3981
358 plum 174 4.85 0.485924 1486
359 oyster 156 4.85 0.485829 2797
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360 cinnamon 152 4.85 0.485807 2086
361 bandage 146 4.85 0.485775 3133
362 elevator 1245 4.79 0.485613 1066
363 mistletoe 98 4.85 0.485521 2274
364 marshmallow 77 4.85 0.485409 1056
365 custard 64 4.85 0.485340 3760
366 wristwatch 59 4.85 0.485313 1660
367 corkscrew 57 4.85 0.485303 1512
368 kazoo 31 4.85 0.485165 904
369 kebab 31 4.85 0.485165 1758
370 granola 30 4.85 0.485159 948
371 gargoyle 27 4.85 0.485143 1911
372 scone 25 4.85 0.485133 1867
373 mantis 23 4.85 0.485122 2641
374 parsnip 4 4.85 0.485021 856
375 curtain 525 4.82 0.484789 2418
376 scorpion 136 4.84 0.484722 1300
377 crown 698 4.81 0.484708 2206
378 lemonade 281 4.83 0.484493 1505
379 wolf 1034 4.79 0.484492 3966
380 bugle 88 4.84 0.484467 4817
381 graveyard 272 4.83 0.484445 2622
382 tumbleweed 22 4.84 0.484117 1302
383 plate 1308 4.77 0.483948 2173
384 dragonfly 145 4.83 0.483770 2111
385 flag 892 4.79 0.483738 1598
386 crocodile 115 4.83 0.483611 3261
387 mushroom 109 4.83 0.483579 4923
388 beetle 105 4.83 0.483558 4961
389 cucumber 101 4.83 0.483536 1741
390 sloth 74 4.83 0.483393 2738
391 dough 810 4.79 0.483302 2307
392 sphinx 52 4.83 0.483276 1864
393 canyon 418 4.81 0.483220 2102
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394 iguana 40 4.83 0.483212 3018
395 chalice 32 4.83 0.483170 1524
396 doormat 28 4.83 0.483149 1110
397 hairpin 18 4.83 0.483096 2134
398 aloe 15 4.83 0.483080 4531
399 scaffolding 12 4.83 0.483064 1726
400 platypus 3 4.83 0.483016 1022
401 brownie 180 4.82 0.482956 825
402 casino 1039 4.77 0.482519 1527
403 shrimp 444 4.80 0.482358 3364
404 grate 52 4.82 0.482276 2412
405 loudspeaker 47 4.82 0.482250 4906
406 tower 1165 4.76 0.482188 4899
407 submarine 362 4.80 0.481923 2891
408 rug 531 4.79 0.481820 4677
409 ape 493 4.79 0.481619 2516
410 banner 302 4.80 0.481604 1273
411 syringe 99 4.81 0.481526 2228
412 hanger 69 4.81 0.481367 2212
413 cannon 444 4.79 0.481358 3642
414 kale 28 4.81 0.481149 2205
415 pothole 25 4.81 0.481133 964
416 chili 382 4.79 0.481029 2160
417 waterspout 5 4.81 0.481027 890
418 stadium 312 4.79 0.480657 3653
419 spacecraft 115 4.80 0.480611 1597
420 boar 111 4.80 0.480590 2068
421 cheese 1991 4.70 0.480575 4826
422 celery 95 4.80 0.480505 1215
423 hammer 636 4.77 0.480378 3694
424 matchbook 51 4.80 0.480271 1234
425 coconut 234 4.79 0.480243 2438
426 beet 14 4.80 0.480074 3154
427 stegosaurus 5 4.80 0.480027 1010
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category index category name SUBTLEX US freq. concreteness FCI # of images

428 chocolate 1499 4.72 0.479962 3949
429 muffin 297 4.78 0.479578 3628
430 turnip 88 4.79 0.479467 2058
431 wire 1403 4.72 0.479452 3476
432 chandelier 72 4.79 0.479382 1968
433 forklift 49 4.79 0.479260 1789
434 fondue 47 4.79 0.479250 3425
435 gazebo 46 4.79 0.479244 1864
436 wheelbarrow 31 4.79 0.479165 1645
437 melon 218 4.78 0.479158 4512
438 earpiece 27 4.79 0.479143 2420
439 paintbrush 27 4.79 0.479143 1300
440 bib 25 4.79 0.479133 2013
441 strongbox 16 4.79 0.479085 3333
442 steamroller 12 4.79 0.479064 1310
443 breadfruit 6 4.79 0.479032 1542
444 dishrag 5 4.79 0.479027 1649
445 anchor 378 4.77 0.479008 1945
446 fountain 352 4.77 0.478870 2613
447 parachute 162 4.78 0.478860 3052
448 sink 863 4.74 0.478584 3101
449 radiator 103 4.78 0.478547 2782
450 burner 93 4.78 0.478494 2292
451 llama 72 4.78 0.478382 4258
452 playground 260 4.77 0.478381 3848
453 okra 26 4.78 0.478138 2786
454 gramophone 16 4.78 0.478085 2846
455 burlap 11 4.78 0.478058 2451
456 earwig 5 4.78 0.478027 2037
457 calipers 1 4.78 0.478005 2896
458 spinach 130 4.77 0.477691 1672
459 couch 1197 4.71 0.477358 4592
460 parsley 43 4.77 0.477228 2701
461 koala 31 4.77 0.477165 2457
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462 bobsleigh 12 4.77 0.477064 1768
463 highlighter 6 4.77 0.477032 1822
464 silverfish 4 4.77 0.477021 1138
465 greenhouse 112 4.76 0.476595 2400
466 blimp 53 4.76 0.476282 2092
467 tray 410 4.74 0.476178 1915
468 mandolin 24 4.76 0.476127 2779
469 spareribs 22 4.76 0.476117 2035
470 gecko 19 4.76 0.476101 2238
471 volcano 170 4.75 0.475903 1600
472 cabbage 148 4.75 0.475786 4473
473 kettle 143 4.75 0.475760 2249
474 antenna 122 4.75 0.475648 4809
475 panda 108 4.75 0.475574 2015
476 microchip 74 4.75 0.475393 3011
477 toolbox 64 4.75 0.475340 1194
478 weasel 250 4.74 0.475328 1465
479 hairbrush 37 4.75 0.475197 1788
480 squeegee 14 4.75 0.475074 866
481 flashbulb 3 4.75 0.475016 1337
482 pretzel 102 4.74 0.474542 2161
483 sawmill 21 4.74 0.474112 1354
484 joystick 15 4.74 0.474080 2388
485 persimmon 4 4.74 0.474021 3484
486 wand 157 4.73 0.473834 1373
487 graffiti 103 4.73 0.473547 2019
488 giraffe 76 4.73 0.473404 838
489 chinchilla 27 4.72 0.472143 2365
490 sundial 23 4.72 0.472122 1947
491 beaker 22 4.72 0.472117 1500
492 honeycomb 20 4.72 0.472106 1583
493 fishnet 11 4.72 0.472058 938
494 odometer 11 4.72 0.472058 1932
495 scallion 8 4.72 0.472042 1441
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category index category name SUBTLEX US freq. concreteness FCI # of images

496 chess 380 4.70 0.472018 4018
497 photocopier 2 4.72 0.472011 3268
498 chair 2511 4.58 0.471338 4901
499 locker 815 4.67 0.471329 1150
500 newsstand 53 4.71 0.471282 1204
501 reef 204 4.70 0.471084 3453
502 cheetah 117 4.70 0.470621 2047
503 salsa 109 4.70 0.470579 1103
504 auditorium 80 4.70 0.470425 2610
505 extinguisher 78 4.70 0.470414 1364
506 battery 633 4.67 0.470362 3227
507 dildo 68 4.70 0.470361 723
508 chestnut 65 4.70 0.470345 3170
509 manhole 38 4.70 0.470202 2923
510 gooseberry 14 4.70 0.470074 1267
511 salamander 8 4.70 0.470042 4195
512 spearmint 6 4.70 0.470032 1409
513 hotplate 5 4.70 0.470027 864
514 moth 116 4.69 0.469616 4920
515 lizard 247 4.68 0.469312 4936
516 beaver 246 4.68 0.469307 2367
517 nutmeg 36 4.69 0.469191 1360
518 cannabis 23 4.69 0.469122 1181
519 cogwheel 2 4.69 0.469011 1219
520 bolt 351 4.67 0.468864 2443
521 hut 674 4.65 0.468580 4732
522 robot 621 4.65 0.468299 3519
523 shield 418 4.66 0.468220 1933
524 chameleon 37 4.68 0.468197 3301
525 defibrillator 24 4.68 0.468127 845
526 bison 17 4.68 0.46809 3621
527 geyser 11 4.68 0.468058 2147
528 raccoon 73 4.67 0.467388 3115
529 coleslaw 63 4.67 0.467335 1847
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530 thermos 57 4.67 0.467303 1477
531 macadamia 31 4.67 0.467165 812
532 compass 207 4.66 0.467100 2848
533 ruler 162 4.66 0.466860 1740
534 helicopter 806 4.62 0.466281 3081
535 manatee 10 4.66 0.466053 1645
536 pinwheel 7 4.66 0.466037 1820
537 cherry 693 4.62 0.465681 4362
538 pickle 235 4.64 0.465248 1357
539 projector 62 4.64 0.464329 4628
540 guillotine 42 4.64 0.464223 920
541 tapioca 31 4.64 0.464165 1167
542 birdcage 24 4.64 0.464127 1320
543 coffeepot 21 4.64 0.464112 3052
544 sharpener 17 4.64 0.464090 1589
545 baguette 14 4.64 0.464074 1440
546 gearshift 11 4.64 0.464058 1702
547 pier 334 4.62 0.463774 1576
548 drain 440 4.61 0.463337 1258
549 artichoke 28 4.63 0.463149 2371
550 oscilloscope 4 4.63 0.463021 1908
551 cube 152 4.62 0.462807 2400
552 stapler 44 4.62 0.462234 1737
553 bubble 408 4.60 0.462167 3882
554 ukulele 29 4.62 0.462154 1811
555 tyrannosaurus 20 4.62 0.462106 1255
556 winterberry 1 4.62 0.462005 805
557 cauldron 24 4.61 0.461127 1028
558 cassette 93 4.60 0.460494 2583
559 meteorite 41 4.60 0.460218 990
560 urinal 39 4.60 0.460207 770
561 hazelnut 9 4.60 0.460048 907
562 rainbow 407 4.57 0.459162 2085
563 sieve 27 4.59 0.459143 1916
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564 shredder 17 4.59 0.459090 1007
565 hovercraft 26 4.58 0.458138 1590
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Fig. 5 Appendix C: Representational consistency and IT prediction. We here investi-
gated the relationship between representational consistency (see chapter 2) and the ability of
models to predict IT representations. We ask whether a DNN’s representational consistency
with other instances may be able to predict its ability to match cortical representations in hu-
man IT. For each DNN instance we computed 1.) the consistency to all other other instances
using the squared Pearson correlation as in (link to chapter 2 where consistency is defined)
and averaged across all 9 pairwise comparisons, and 2.) the IT-prediction between this
instance and all subjects using Spearman’s and averaged across all 15 (data set 1, Horikawa
et al. 2018) or 5 (data set 2, Cichy et al. 2014) subjects. Next, we correlated the mean
consistency and mean IT-prediction values using Pearson correlation (95% bootstrapped
confidence interval in grey). We performed this analysis on both fMRI data sets (data set 1 -
upper row, data set 2 - lower row) and for DNNs trained on either ecoset or ILSVRC 2012
(left and right column, respectively). We found a significant correlation only for data set 1
when DNNs were trained on ecoset (A). In the three other cases (B, C, D) no significant
correlation was found. To conclude, we did not find strong evidence for a relationship
between representational consistency and a DNN’s ability to predict cortical representations.
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