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Abstract

Light-weight fabric membranes have gained increasing popularity over the past years due

to their tailorable structural and material performances. These tailorable properties in-

clude stretch forming and deep drawing formability that exhibits excellent stretchability

and drapeability properties of textiles and textile composites. Since the inception of

computerised numerical control for three-dimensional textile-manufacturing machines,

technical textiles paved their way to numerous applications, certainly not limited to;

aerospace, biomedical, civil engineering, defence, marine and medical industries. Digital

interlooping and digital interlacing technology in additive manufacturing greatly ad-

vanced the manufacturing processes of textiles. In this work, we consider two branches

of technical fabrics, namely plain-woven and weft-knitted.

Multiscale modelling is the tool of choice for homogenising periodic structures and has

been used extensively to model and analyse the mechanical behaviour of woven and

knitted fabrics. But there is a plethora of literature discussing the demerits of such

conventional multiscale modelling. These demerits include higher computational costs,

rigid numerical models, inefficient algorithmic computations and inability to incorpo-

rate geometric nonlinearities. We propose a data-driven nonlinear multiscale modelling

technique to analyse the complex mechanical behaviour of plain-woven and weft-knitted

fabrics with a neat extension to fabric material designing. We show how the integration

of statistical learning techniques mitigates the weaknesses of conventional multiscale
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modelling. Moreover, we discuss the avenues that will open in many potential fields

with regard to material modelling, structural engineering and textile industries.

In the proposed data-driven nonlinear computational homogenisation technique, we ef-

ficiently integrate the microscale and macroscale using Gaussian Process Regression

(GPR) statistical learning technique. In the microscale, representative volume elements

(RVEs) are modelled using finite deformable isogeometric spatial rods and deforma-

tion is homogenised using periodic boundary conditions. This finite deformable rod is

proficient in handling large deformations, rod-to-rod contacts, arbitrary cross-section

definitions and follower loads. Respecting the principle of separation of scales, we con-

struct response databases by applying different homogenised strain states to the RVEs

and recording the respective incremental volume-averaged energy values. We use GPR

to learn a model using a 5-fold cross-validation technique by optimising the log marginal

likelihood. In the macroscale, textiles are modelled as nonlinear orthotropic membranes

for which the stresses and material constitutive relations are predicted by the trained

GPR model. This coupling between GPR and membrane models is achieved through a

systematic and seamless finite element integration using C++ and Python environments.

A neat extension to material designing is also discussed with potentials to extend the

work into other related fields.
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1 Introduction

In the appreciation of this research, Chapter 1 begins with the motivations behind the

work by highlighting the research gaps and potential applications. Next, the latest de-

velopments in textile design, manufacturing technology and data analytics are discussed

to provide a background to this research work. Contributions made to different research

communities will be discussed in Section 1.3, emphasising on the reduction of the identi-

fied research gaps. The chapter concludes by presenting a concise layout of the successive

chapters of this thesis.

1.1 Motivation

There is a substantial need for having models that integrate the analysis and design

of technical textiles. With recent advances in manufacturing, such as additive manu-

facturing, high-throughput computing (HTC) and high-performance computing (HPC),

the demand for integrated analysis and design of fabrics has never been greater [1–3].

Various applications in aerospace, bio-medical, civil engineering, defence, marine and

medical industries largely attract technical textiles for their tailorable structural, me-

chanical and material performances [4–8]. Hence, from a technical point of view, textiles

have advanced far beyond the traditional use of clothing. Therefore, the main objective

of this research is to develop a unified framework for the computational homogenisation

and design of knitted and woven textile membranes. This unified framework is expected

to upgrade the existing analysis and design tools to cater to the booming additive man-

ufacturing technologies.

Formally, a textile is defined as a flexible material consisting of a network of yarns ar-

ranged systematically using yarn interlacing or interlooping. Figure 1.1 illustrates a few

among many applications of technical textiles. Starting from parachutes [9], top row in

1



Figure 1.1 depicts other uses of textiles such as, fabric formworks [10], smart clothing [11]

implantable medical devices [12]. Bottom row in Figure 1.1 continues to illustrate textile

applications in cardiac supports [13], dry suits that remains watertight up to 170 diving

hours [14], covert body armors [15] and interior architecture designs [16]. Evolution

of the use of fabrics from clothing to advanced applications demands simultaneous ad-

vancement in mechanical analysis and design tools. Prevailing textile analysis methods,

such as yarn-level modelling [2,17], multiscale modelling [1,18–20] and material param-

eter estimations [21], fail to provide a unified approach to the mechanical analysis and

design of textiles. Here, a discussion is supplemented to elaborate on the weaknesses of

the existing textile simulators.

Yarn-level modelling is popular in the computer graphics community, where kinemati-

cally simplified models are used to perform simulations on textile membranes. Also, yarn-

level modelling involves degrees of freedoms in the orders of millions (or even more) and

thus inherits a significant computational cost [2]. In reality, however, there is no strict

rule to model each and every yarn in the textile, unless one needs to simulate localised

deformations such as, snagging, yarn pull-outs, yarn unravelling and yarn fraying. Fur-

thermore, conventional multiscale methods and material parametrisation methods are

found to be less computationally expensive compared to yarn-level modelling. However,

in conventional multiscale methods, the computational cost increases rapidly when the

problem domain is large [39]. This inefficiency is inflated when the macroscale boundary

value problem involves material and geometric nonlinearities. A common weakness of

the existing modelling techniques is their insensitivity to the changes of the problem

domain, material and geometric properties. Due to the inherent computational cost of

these existing methods, it is not practically feasible to re-run simulations to investigate

for such sensitivities.

The development of unified technical tools, to analyse and design textiles, is found

slow-paced and inconsistent compared with the rapid advancements of manufacturing

technologies and data analytics. Modern-day technological boost in subtractive and ad-

ditive manufacturing revolutionises various engineering disciplines, whereas data-driven

analytics continue to dominate in a multitude of decision-making processes. Therefore,

considering the aforementioned weaknesses of the existing modelling techniques and the

recent advances in data-driven techniques, the need arises to develop efficient and uni-

fied technical tools to analyse and design technical textiles. This research gap sets the

motivation to address these issues by developing data-driven analysis and design tools

2



Figure 1.1: Diverse applications of technical textiles beyond the conventional use of
clothing. (a) Parachutes [9] (b) Fabric formworks [10] (c) Smart cloth-
ing [11] (d) Implantable medical devices [12] (e) Cardiac supports [13] (f) Dry
suits [14] (g) Covert body armours [15] (h) Interior architecture designs [16]

for knitted and woven technical textiles.

1.2 Background

After identifying the research gaps and motivations behind the forthcoming chapters of

this thesis, a brief discussion on the background of this work is presented here. First,

conventional analysis and design of textiles are discussed to familiarise the reader with

the recent past and present methods to simulate textiles materials. Secondly, a brief dis-

cussion furnishes the subtractive and additive manufacturing methods to emphasise the

importance of this work in booming technologies. Lastly, current trends in data-analytics

are discussed, as our proposed methods rely heavily on data-centric techniques.
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Conventional analysis and design of technical textiles

Mechanical analysis of textiles, like any other material, stems from various experimental

measures. For textiles, these experimental measures are application dependent and

would range from a simple laboratory tensometer to a wind-tunnel testing facility. The

complex mechanical behaviour of textiles was a bottleneck for researchers in devising

numerical methods to approximate different aspects of textile kinematics. A few of

these challenges would include yarn contact modelling, friction modelling, compressive

response, initial yarn curvatures and anisotropic material constitutive models. However,

through systematic idealisations, researchers paved their way to model the complex

textile behaviour numerically.

Noteworthy research, in the field of mechanical behaviour of woven textiles, can be

found in the early works of Behre [22], Grosberg et al. [23], Hearle et al. [24], Hearle et

al. [25], Ly [26] and Postle et al. [27]. Since then, the tensile behaviour of woven fabrics

has been investigated by many researchers using various numerical approaches. Few of

these methods include pin-jointed truss models, energy minimisation, multigrid method,

laminate theory and curve fitting [28]. Jevsnik et al. [28] provide a rigorous review on

such computer models for fabric simulations, where they separately identify geometrical,

physical and hybrid models as three main variants of fabric simulations.

The complexity of cloth simulators increased from simple geometrical models to advanced

higher-order multiscale and yarn-level models to cater to the booming nano-to-micro

scale fibre-based fabric technologies [2, 21]. Yarn-level fabric modelling techniques are

out of the scope of this thesis simply due to their extremely expensive computations.

Also, unless there is a need to simulate local deformations like snagging, there is no

strict requirement to simulate textiles at their yarn-level. Therefore, we resort to using

multiscale modelling techniques in the scope of this research work. A detailed discussion

on conventional computational homogenisation is provided later in Chapter 5.

Subtractive and additive manufacturing

The inception of subtractive manufacturing, or commonly referred to as Computer Nu-

merical Control (CNC), dates back to the mid 20th century. Collaborative work by

Parsons Corporation and Massachusetts Institute of Technology (MIT) achieved signif-

icant developments in CNC and eventually released to the industry in 1955 [29]. With
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CNC, each object to be manufactured receives a custom computer program, usually

written in an international standard language called G-code, stored in and executed by

the Machine Control Unit (MCU).

Figure 1.2: Different deformed states of three (a), (b), (c) digitally interlooped tubu-
lar forms of knitted textiles. Deformation states are (I) compression (II)
extension (III) stretching (IV) bending [30].

Additive manufacturing and 3D printing are two words used interchangeably to dis-

cuss the same manufacturing process. Additive manufacturing differs from subtractive

manufacturing (CNC) based on the manufacturing process. As the name subtract ive

implies, it takes a block of solid material and uses sharp rotating tools or cutters to

remove (subtract) all parts that are not needed to manufacture the part. On the other

hand, add itive manufacturing involves parts being created (add) layer-by-layer using

solid material extrusions from a heated nozzle (material extrusion method). Besides,

there are other variants of additive manufacturing techniques such as: Directed Energy
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Deposition (DED); Material jetting; Powder Bed Fusion (PBF); Laminated Object Man-

ufacturing (LOM) and Ultrasonic Additive Manufacturing (UAM). Rapid prototyping

capability of additive manufacturing paved its way to diverse applications in industries,

such as medical, jewellery, construction, apparels, architecture, automotive, robotics and

communication.

There are a plethora of CNC techniques in cutting and making creative compositions

of fabrics made using loom apparatus [31]. However, 3D printing of textiles is a trend-

ing topic where many researchers and creative designers work in parallel to add a new

dimension to the conventional loom-based textile manufacturing processes [32,33]. Fig-

ure 1.2 illustrates several 3D printed knitted textile specimens under different loading

conditions. These specimens are manufactured by digitally interlooping the nylon wires

made using Selective Laser Sintering (SLS) technology and expected to revolutionise the

apparels industry in the near future [30]. This expected boom is mainly due to the rapid

fabrication of textiles as well as the improved sustainability indices of the manufacturing

processes [30].

Lattice structures or lattice-based metamaterials have secured a special place among

other structural forms due to its dynamic load transferring mechanisms [34]. They are

usually comprised of repeating unit cells (UCs) designed and engineered to achieve inno-

vative and desired properties. Through the control of various design parameters, lattice

structures can produce unique mechanical, electrical, thermal and acoustic properties,

and thus have received compelling research attention over the past few years [35]. The

recent boost in lattice structures was due to the rapid progression of additive manufac-

turing, particularly Selective Laser Melting (SLM) [35]. As shown in Figure 1.3, lattice

unit cells can be arbitrarily complex with many nodes and elements in the cell domain.

These cell elements are usually modelled as spatial rods (or struts) occupying the full 3D

space during deformation. The wide range of applications of lattice structures in man-

ifold engineering fields such as civil, mechanical, robotics, bio-medical, aerospace and

acoustics, demand not only accurate and robust computational tools but also require

parametric numerical models to refine the expected performance to its optimum.
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Figure 1.3: 3D printed periodic lattice structures [36]. These lattices possess unique
representative volume elements that attract a wide range of computational
homogenisation strategies.

Data-driven analytics

Machine learning is a new trending field these days and is seen as a subset of artificial

intelligence (AI). Machine learning uses several statistical algorithms to make computers

think in a certain way without being explicitly programmed. These algorithms receive

an input value (or vector) and predict an output(s) for this through the use of statistical

methods. The strong versatility of machine learning outclassed traditional statistical

modelling techniques, which paved the way for it to be used in diverse fields such as

cyber-security, banking, finance, military, healthcare, robotics, automotive, social media

and mass transportation.

Trend identification, handling multi-dimensional and multi-variety data, automation of

algorithmic computations are few of the many merits of machine learning that attract

computational structural mechanics communities [37]. Notwithstanding, the time taken

for model training, the accuracy of predictions, compatibility within a finite element
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environment are challenges that need special attention in the process of integrating ma-

chine learning methods in a finite element solver. These challenges can be systematically

overcome by a thorough understanding of the strengths and weaknesses of various ma-

chine learning techniques: neural networks, kernel methods, sparse kernel machines,

graph models [37].

Exploiting the novelties in isogeometric analysis, data-centric engineering, additive man-

ufacturing, nonlinear spatial rod models, nonlinear computational homogenisation and

machine learning techniques, we are motivated to devise frameworks to analyse the

complicated behaviour of technical textiles. The non-existence of a unified data-driven

framework for the analysis and design of woven and knitted textiles leaves a research gap

that needs to be addressed. The same framework is directly applicable to 3D printed

periodic structures discussed earlier.

1.3 Contribution

This thesis proposes a rigorous data-centric computational homogenisation strategy for

the analysis and design of technical textiles. If we look at the big picture, the devised

method outshines the conventional computational strategies [38–40] for its efficient, ro-

bust and flexible model implementations with the aid of statistical learning [41]. Several

milestones, which can be recognised as novelties in respective research communities, have

also been attained in addition to successfully achieving the final objective.

As known from differential geometry [42], manifolds provide a rigorous framework for

describing and analysing surfaces with arbitrary topology [43]. Although there have

been several successful attempts to use smooth manifold concepts in the computational

mechanics domain [44–46], no significant contributions have been made in applying non-

smooth manifold concepts in the same domain. We introduce a novel set of univariate

basis functions for geometric modelling and simulation of non-smooth features in rod

structures. Within the framework of isogeometric analysis, we prove these basis functions

are accurate in simulating hinges in structures. Continuation of this work has been

accepted for publication in Computer Methods in Applied Mechanics and Engineering

and the preprint is available on arXiv [47].

The biggest challenge in computational homogenisation of fibrous materials is to de-

velop a rigorous and robust finite element environment for modelling and simulation.
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We present a nonlinear isogeometric spatial rod model with discussions on the novel

formulation aspects compared to existing implementations [50–52]. These would include

analytically exact expressions for initial curvatures, isogeometric analysis of hinged rods,

follower (non-conservative) loading and non-zero external stiffness matrices. A wide

range of benchmark problems, in the nonlinear regime, has been solved using the pro-

posed rod model for model verification.

Linear material anisotropy in a differential geometric approach has been implemented

and verified for orthotropic materials in the small strain regime. This is an important

finding to couple microscale with macroscale in linear computational homogenisation by

extracting the ABD stiffness matrices from microscale unit-strain analyses [57–59].

Data-driven nonlinear computational homogenisation has been considered by Le et

al. [60] and Bessa et al. [61] predominately by using neural networks at the off-line

stages of the implementations. In this thesis, GPR is taken as the machine learning tool

of choice for model training, testing and predictions. From an application point of view,

there is no work done on nonlinear computational homogenisation of technical textiles

using machine learning techniques. Thus, the proposed data-driven computational ho-

mogenisation and its neat extension to material designing are considered to be novel

contributions to the research community.

1.4 Layout

Chapter 2 introduces conventional geometric modelling techniques that are prevalent

in isogeometric analysis (IGA) communities. These include B-spline curves, B-spline

surfaces, manifold-based smooth curves and manifold-based non-smooth curves. The

chapter begins with univariate B-splines aiming to explain several fundamental concepts

which form the basis for other geometric modelling techniques. Moreover, chapter qual-

itatively discusses the merits and demerits associated with the existing modelling tech-

niques under the domain of isogeometric analysis. Chapter 2 ends with the introduction

of a set of novel basis functions to simulate hinges of rod structures and surfaces.

Chapter 3 begins with a review of beam theories to feature the evolution of modelling of

slender bodies using 1D continuum theories. The chapter categorises a variety of beam

theories based on the underlined theory, geometric considerations and kinematic assump-

tions. Also, this discussion is extended to highlight the advantages and disadvantages
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of some beam theories. Next, the chapter outlines rigorous formulations and imple-

mentation aspects of a nonlinear isogeometric spatial rod, emphasising on the novelties

introduced to mitigate some of the weaknesses in prevailing beam theories. Chapter 3

ends with solving a set of benchmark problems to test the accuracy and efficiency of the

proposed nonlinear isogeometric spatial rod model.

Chapter 4 introduces the theory of Kirchhoff-Love thin shells under the domain of differ-

ential geometry. A review of thin shell mechanics follows by explaining the formulations

and implementations of thin shell kinematics under a finite element analysis (FEA) en-

vironment. This discussion is extended to incorporate linear material anisotropy to the

thin shell theory. Implementations are verified subsequently using a linear orthotropic

material model. Chapter 4 concludes by highlighting the usefulness of the linear material

anisotropy of thin shells in linear computational homogenisation.

Chapter 5 kinematically couples the models introduced in chapters 3 and 4 by intro-

ducing nonlinear computational homogenisation. Introducing conventional multiscale

modelling techniques and highlighting their merits and demerits, the chapter unfolds

the basics of machine learning to propose a data-driven multiscale modelling framework

to mitigate the inherent weaknesses of conventional multiscale methods. The proposed

framework is further elaborated by incorporating the Gaussian Process Regression ma-

chine learning technique. Lastly, a neat extension to the data-driven multiscale mod-

elling framework is proposed. This extension will combine data-driven techniques with

nonlinear material designs of structures.

Chapter 6 applies the proposed data-driven multiscale modelling and data-driven ma-

terial designs to simulate technical fabrics in the macroscale. Two families of technical

fabrics are considered here to verify the proposed data-driven techniques: plain-woven

and weft-knitted fabrics. First, RVE simulations of plain-woven and weft-knitted fab-

rics are performed and verified. Secondly, data-driven techniques are used to build

response databases, Gaussian Process Regression model training and predictions. Next,

the trained Gaussian Process regression models are coupled at integrations points of the

thin shell finite elements introduced in Chapter 4 to complete the multiscale strategy.

Simulations are extended to material designs of plain-woven and weft-knitted fabrics to

conclude the chapter.

Chapter 7 summarises the thesis with a few concluding remarks and presents several

potential research avenues for future work.
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This chapter formally introduced the reader to the big picture of this research by high-

lighting the research gaps, motivations and contributions. Next chapter is intended to

discuss on different geometric modelling techniques mainly focussing on univariate basis

functions that are later used to model spatial curves. Chapter 2 can be identified as the

foundation of the thesis as it builds the basis for isogeometric analysis of spatial rods.
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2 Geometric representation

2.1 B-splines

B-splines are fundamental to many fields: approximation and data fitting [1]; computer

graphics; geometric modelling [62, 63]; automated manufacturing; isogeometric analy-

sis [44, 45, 54, 62, 64] and numerical simulation. Hence, B-spline theory can be broadly

grouped into: approximation methods (mathematics); modelling techniques (engineer-

ing); and geometric algorithms (computer science) [65].

2.1.1 B-spline curves

The motivation in discussing B-splines in this thesis is twofold. Firstly, B-splines form

the general basis for many geometric modelling techniques like B-spline, Bézier, Subdi-

vision, Non-Uniform Rational B-splines (NURBS), T-splines and Manifold-based mod-

elling [45, 65, 66]. Secondly, B-spline based shape functions are used in isogeometric

analysis of finite deformable spatial rods in Chapter 3.

The use of splines for creating free-form curves dates back to 1752 when it was used in

ship construction [66]. The development of B-splines in the context of computer-aided

design (CAD) predominantly took place in the 1960s with several independent efforts.

Some of the significant contributors included Coons, Ferguson, Sabin, de Casteljau and

Bézier [66]. In 1970, Gordon and Riesenfeld merged the theory of B-splines and Bézier

curves and showed that B-spline curves are a generalisation of Bézier curves [67]. B-

spline curves now lie at the core of numerous CAD systems and form the bedrock of

computerised geometric modelling techniques.
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For convenience, we first focus on univariate B-splines which are widely used in mod-

elling spatial curves. B-splines (or formally known as basis-splines) are piecewise poly-

nomial functions of degree µ, defined on a parametric domain ξ. This is in contrast

to Bézier curves which consist of a single polynomial segment. The points where the

B-spline functions meet are called the knots, ξi. A knot vector, ξ, for a B-spline

curve is a non-decreasing set of parametric coordinates [65] and has a size of µ +

number of control points + 1. A B-spline curve is a spatial parametric curve defined

as the linear combination of the univariate B-spline basis functions Bµ
i (ξ) and control

points xi,

x(ξ) =
∑
i

Bµ
i (ξ)xi . (2.1)

where Bµ
i (ξ) denotes the B-spline basis function (parameterised by ξ) of degree µ as-

sociated with each control point xi. It is highlighted here that in computer graphics

literature, it is common to refer to a B-spline by its order [68]. The order of the spline

is one higher than the degree of the B-spline i.e. order = µ+ 1.

(a) (b)

Figure 2.1: (a) Control points and the control polygon in dashed-black and the re-
sulting cubic B-spline curve in solid black. (b) Corresponding cubic B-
spline basis functions plotted in a parametric space for the knot vector,
ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}.

Figure 2.1 is used to illustrate the modelling of B-spline curves using some control points

and a predefined B-spline basis. Figure 2.1a depicts the initial control points and the

associated control polygon in dashed lines. In addition, Figure 2.1b shows the cubic
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B-spline basis functions in a parametric domain ξ ∈ [0, 1]. The resulting limit curve is

given by Equation 2.1, which is shown in Figure 2.1a. Furthermore, each control point

xi is assigned to one basis function B3
i according to Equation (2.1) and colour coded in

Figure 2.1b.

There are several ways to derive B-spline basis functions, e.g. polar form [69], convolu-

tion [68], repeated averaging [65, 66, 70] etc. In this thesis, B-spline basis functions are

defined using a repeated averaging formula given by

B0
i (ξ) =

1 if ξi ≤ ξ < ξi+1

0 otherwise

Bµ
i (ξ) =

ξ − ξi
ξi+µ − ξi

Bµ−1
i (ξ) +

ξi+µ+1 − ξ
ξi+µ+1 − ξi+1

Bµ−1
i+1 (ξ)

(2.2)

Figure 2.2: Uniform B-splines basis functions for µ ∈ {0, 1, 2, 3, 4}

Figure 2.2 plots the B-spline basis functions on a uniform knot vector for µ ∈ 0, 1, 2, 3, 4.

For µ = 0 it represents the constant spline as given by Equation (2.2). The case of µ = 1

represents linear splines which is identical to linear Lagrange basis (hat) functions [71,72]

used in classical finite elements. It can be seen that the B-spline basis functions are

supported and non-zero over the knot interval ξi ≤ ξ < ξi+µ+1. This compact support
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of the basis functions is extremely useful in FEM for maintaining the sparsity of the

stiffness and mass matrices.

However, in contrast to the uniform knot vector, if the knot spacing is not equal, the knot

vector is said to be non-uniform. The non-uniform vector gives designers more flexibility

in embedding local enrichments to geometries [66]. Figures 2.3a and 2.3b show the

uniform and non-uniform cubic B-spline basis functions respectively. It should be noted

that the continuity of the B-spline curves is dependent on both the polynomial degree, µ,

and knot vector definition ξ. In general, the basis functions are Cµ−ki continuous across

the knots. Here, ki denotes the multiplicity of the knot ξi. This is clearly demonstrated

in Figure 2.3b, where the basis functions are C3−3 = C0 at ξ1.

(a) (b)

Figure 2.3: (a) Cubic B-spline basis functions over uniform knot vector. (b) Cu-
bic B-spline basis functions over non-uniform knot vector defined as ξ =
{0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8} .

In most CAD applications, it is prevalent for the first and last knots to be repeated

µ + 1 times (see Figure 2.1). A knot vector of this kind is said to be open [73]. This

circumvents the inclusion of redundant ghost control points to generate geometry. This

concept is illustrated in Figure 2.4 which shows a cubic B-spline curve generated from

the B-spline basis functions over uniform (Figure 2.4a) and open (Figure 2.4b) knot

vectors. In the case of a uniform cubic B-spline basis, ghost control points are needed

to create a curve through the same set of control points. The number of ghost control

points increases with the degree of the basis function. For complex geometries, it is

not straightforward to derive the exact positions of these ghost nodes because of their

geometric-sensitivity.
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(a) (b)

Figure 2.4: Limit cubic B-spline curve for the control mesh (dashed lines) shown for the
(a ) uniform and (b) open knot sequences. In case of a uniform knot vector,
ghost control points (grey) are needed to generate a similar curve.

It is also important to investigate the geometric approximations of B-splines of different

degrees. Figure 2.5 illustrates the resulting curves for a given set of control points (a

fixed control polygon) when the B-spline degree is increased from 1 to 6. Open knot

vectors, as shown in Figure 2.3b, are used to circumvent the ambiguity of selecting ghost

nodes in generating the curve in Figure 2.5.

Figure 2.5: Limit curves for a fixed control mesh using different degrees of B-spline
basis and respective open knot vectors. For instance, for µ = 3, ξ =
0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1

.

It is straightforward to understand the curve generated using the degree 1 B-spline as

it linearly interpolates the control points. Linear B-splines give a maximum value of 1
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at one control point and a minimum of 0 at any other control point. Therefore, linear

B-spline curve (marked in black) in Figure 2.5 passes through every control point of

the control polygon. Following a similar rationale, one can observe that the resulting

B-spline curves move away from the control polygon when the respective degree of the

B-spline basis functions is increased. This behaviour is evident when referring back

to Equation (2.1), because the weight Bµ
i (ξ) on each control point xi is reduced for

increasing B-spline degree (see Figure 2.2). For instance, B1
i (ξ) is unity when ξ = ξi.

But B3
i (ξ) always takes a value less than one at ξ = ξi.

As discussed earlier, B-splines have become the tool of choice in CAD and finite element

analysis. There are many properties of B-splines that deserve mention. But without

going into unnecessary details, some of the key properties of B-splines in the context

of isogeometric analysis are briefly discussed. For detailed discussions on this topic,

interested readers are kindly referred to [66].

Partition of unity: One of the most important properties B-spline basis functions

possess is that it forms the partition of unity. This property partition the unity function

at any point of the parametric domain of the B-spline basis. In classical finite element

method, partition of unity is a property that the Lagrangian basis functions of any order

should satisfy. Hence, it is important that B-spline basis satisfy this requirement in the

domain of classical finite elements. This relation can be succinctly written as,∑
i

Bµ
i (ξ) = 1 . (2.3)

Intuitively, the partition of unity means that the basis functions can accurately model

rigid body motions [74].

Convexity: The B-spline basis functions, and hence, the resulting geometry, are convex.

A given domain Ω is defined to be convex if one can connect two points in Ω through a

line without leaving Ω. Mathematically, a basis function is said to be convex if,∑
i

Bµ
i (ξ) = 1, and Bµ

i (ξ) ≥ 0 . (2.4)

In addition to the partition of unity, Figure 2.2 proves the validity of the second condition

in Equation 2.4. Since the basis functions are convex, their linear combinations will also

be convex. Thus resulting geometry will also be convex.
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The convexity property of a B-spline curve is particularly useful because it ensures that

the B-spline curve will always be confined within a well-defined region, known as the

convex hull (conv Ω). It is highlighted here that the convexity property of the functions

is stricter than the traditional requirement of the functions to be affine. For an affine

function, the basis functions only need to obey the partition of unity property. Hence,

all convex functions are a special subset of affine functions [45].

Refinability: B-spline basis functions can be refined. This essentially means basis

functions at a coarse level ` can be constructed by dilating and translating basis functions

at a finer level `+1. This is commonly known as the two scale relation [75]. Refinability

property of B-spline basis functions form the basis of subdivision schemes introduced

by: Catmull and Clark [76]; and Doo and Sabin [77]. The refinability property of B-

splines lies at the heart of many algorithms based on B-splines [70]. For example, the

refinability of B-splines is used to construct a hierarchical B-splines basis [78]. Similarly,

Rüberg et al. [79] used this property to construct numerically stable approximation

spaces for pressure and velocity to solve fluid problems.

Isogeometric analysis using B-spline basis functions

Isogeometric analysis is a numerical technique that integrates finite element analysis into

conventional CAD design tools. The primary motive behind the isogeometric analysis

is to use the same basis functions used in geometric modelling in the finite element

analysis [62, 73]. This can be achieved using many variants of geometric modelling

techniques. Most widely used techniques include B-splines, subdivision, NURBS, T-

splines and manifold-based modelling. In this thesis, univariate manifold basis functions

and B-splines have been used in the isogeometric analysis of spatial rods. Manifold

basis functions used in this thesis consist of two variants, namely smooth and non-

smooth functions. Moreover, B-spline basis functions of degree 3 and degree 5 have also

been used in the modelling and analysis of spatial rods.

We first discuss the isogeometric analysis using B-spline basis functions. Section 2.2 is

reserved for discussing the manifold-based isogeometric analysis paradigm. In this thesis,

we use univariate cubic and quintic B-spline basis functions to model the rod geometries

and approximate the degrees of freedom. The main reason to use two different degrees

of B-spline basis functions comes directly from the complexity of the geometry.
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Cubic B-spline basis : Bending strain is defined as the change in curvature which is in

turn related to the second derivative of the displacement vector. Thus, the minimum

smoothness requirement of the basis functions is restricted to C2. More details on

bending strains can be found later in this thesis under Section 3.2.1. Therefore, cubic

B-spline basis functions defined on a uniform knot vector is used to model and analyse

finite deformable beams.

Figure 2.6 depicts cubic B-splines defined on a uniform knot vector where, for clarity,

functions are shown elevated from the univariate parametric domain ξ. Furthermore,

for better visualisation, each B-spline function is colour coded with its corresponding

central knot.

Figure 2.6: Cubic B-spline basis defined over a uniform knot vector. For illustration
purpose, the basis functions are assigned to a knot by colour coding and
separately shown from the knot intervals.

Due to the symmetry of cubic B-spline basis, we consider only a two-knot interval from

Figure 2.6 for illustration purpose. Therefore, taking the interval from blue to green

knots and choosing the parametric domain ξ ∈ [0, 1], we present the basis functions

(N I) and their parametric derivatives (N I
,1, N

I
,11, N

I
,111) as given in Figure 2.7. Notice the

presence of inevitable ghost node basis functions (orange and yellow) for the selected

knot interval. Therefore, in every parametric element, we have four nodes in total

composed of two ghost nodes and two element nodes. A comment is warranted for the

third parametric derivative of cubic B-splines. It is evident that cubic B-splines are only

C2 over the knots. But they behave similarly to infinitely differentiable polynomials

within two knots. However, numerical experiments show that approximations using

third parametric derivatives are prone to higher errors. These erroneous approximations

adversely affect the computation of the Frenet-Serret torsion of a space curve [80]. This
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issue motivates to use a higher-order B-spline basis, particularly for the modelling and

analysis of complex space curves.

Figure 2.7: Piecewise cubic B-spline basis functions and their parametric derivatives
defined over ξ = [0, 1]

Quintic B-spline basis : For a general smooth spatial curve, Frenet-Serret [80,81] formulas

demand the existence of a torsion constant defined everywhere on the curve. This torsion

constant is defined using the third parametric derivative of the curve (see Equation

(3.28)). Hence, requiring the basis functions to possess C3 continuity. Further details on

the Frenet-Serret formulas are provided in Section 3.2.1 and Equation (3.27). Moreover,

considering the symmetry of B-spline basis, the quintic B-spline basis was chosen in the

modelling and analysis of complex rod geometries.

Following similar steps from the cubic B-spline basis, we illustrate quintic B-spline basis

and the respective derivatives in Figure 2.9. We pick the interval from blue to green

knots and choosing the parametric domain ξ ∈ [0, 1], we present the basis functions

and their derivatives in Figure 2.9. Here, notice the presence of four ghost node basis

functions (dark blue, orange, yellow and grey) for the selected knot interval. Therefore
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in every parametric element, we have six nodes in total, composed of four ghost nodes

and two element nodes.

Figure 2.8: Quintic B-spline basis defined over a uniform knot vector. For illustration
purpose, the basis functions are assigned to a knot by colour coding and
shown separately from the knot intervals.

Figure 2.9: Piecewise quintic B-spline basis functions and their parametric derivatives
defined over ξ = [0, 1]
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2.1.2 B-spline surfaces

B-spline curves can be generalised to construct surfaces and solids using tensor product

formalism. In case of surfaces, the knot vectors can be defined in each of the two

coordinate directions in the parametric space. The tensor product B-spline surface is

constructed using control points xi,j and univariate B-spline basis functions B(ξ1), B(ξ2)

as,

x(ξ1, ξ2) =
∑
i

∑
j

Bi(ξ
1)Bj(ξ

2)xi,j . (2.5)

Figure 2.10a shows the tensor product uniform cubic B-spline basis function plotted

over a parametric domain. Also, notice the ghost nodes in one-ring neighbourhood of

the same parametric domain. Similar to the one-dimensional case, two-dimensional basis

functions can also be constructed over a non-uniform knot vector. Figure 2.10b shows

the control polygon for the torus and the underlying limit surface generated using cubic

B-splines.

(a) (b)

Figure 2.10: (a) Uniform cubic B-spline tensor product basis function. (b) Control poly-
gon and the limit surface of a torus. Image credits to Majeed [45]

We restrict further discussions on B-spline surface construction and analysis, as this the-

sis focusses more on the formulations and implementations of the isogeometric analysis

of spatial rods. Chapter 4, however, uses subdivision basis functions in the isogeometric

analysis of thin-shells. Since the isotropic material variant of the in-house thin-shell

solver is not the author’s original work, more details on two-dimensional B-spline basis
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functions are not provided here. Readers are kindly invited to refer to the doctoral

theses of Majeed [45] and Long [64] for additional information.

It can be appreciated that the B-splines offer several attractive properties for modelling

and analysis of structures. Though, it remains a popular tool amongst designers and

analysts, B-spline based modelling lacks the capability to exactly represent complex

objects, particularly conic sections, commonly used in different engineering fields [73].

2.2 Manifold-based geometric modelling

Many B-spline variants, as explained in Section 2.1.1, attract geometric modellers for

numerous reasons. Inherent weaknesses of each geometric modelling technique, includ-

ing B-spline variants, lead to another that addresses those weaknesses. The inception of

manifold-based geometric modelling addresses a few prevalent demerits of existing ge-

ometric modelling techniques. The need for additional post-processing operations with

NURBS and the lack of higher-order continuity near extraordinary vertices for sub-

division schemes are two common issues that have been addressed by manifold-based

geometric modelling technique [44, 45]. Manifold-based geometric modelling is also one

of the many variants of B-spline based geometric modelling techniques, where it fol-

lows the popular manifold paradigm [82] to generate surfaces of arbitrary topology with

the desired Ck continuity. In Section 2.2.1, the work on manifold-based smooth curves

by Majeed et al. [45] is briefly mentioned to familiarise the reader with the concept.

Later, in Section 2.2.2, a novel set of basis functions is introduced to model and analyse

manifold-based non-smooth curves.

2.2.1 Manifold-based smooth curves

The popular and most intuitive example to explain a manifold is to think of the work of

a cartographer as manifold and atlas concepts arise naturally in the context of creating

a world atlas (see figure 2.11). A cartographer usually draws parts of the world map on

rectangular sheets and combine them together to get the atlas. The world map itself is

a complicated surface, but each of the drawings is on a simpler plane. The cartographer

decides about how much of the world to draw on each page, and how to flatten that
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part (curved surface) of the world onto the page (planar sheet). Every part of the world

shows up on at least one page, and many places show up more than once.

Figure 2.11: Creating two pages (charts) of a world atlas (manifold). Image credits to
Grimm et al. [83].

Manifold-based geometric modelling of curves requires three main ingredients. They are

namely transition functions, blending functions and local polynomial functions. To this

end, we define a planar patch (Ω̂i) and its projection onto the physical domain (Ω) as

Ωi. The relationship between Ω and possibly overlapping Ωi is given by,

Ω =
⋃
i∈N

Ωi (2.6)

Three ingredients that play equally important roles in manifold-based modelling are

discussed briefly to establish the basics of manifold-based isogeometric analysis.

Transition functions: Each planar patch Ω̂i is uniquely defined by a mapping function

ϕ that maps Ω̂i onto Ωi on Ω. However, for robust geometry construction, a smooth

navigation between two planar patches is imperative. This navigation between planar

patches is facilitated by the transition functions. Navigation from Ω̂i to Ω̂j is formally

written as tji and given as a function composition by,

tji = ϕ−1
j ◦ϕi (2.7)

Blending functions: Blending functions (wi) are chosen to respect the partition of unity

and be smooth everywhere in the planar patch domain. Blending functions are defined

on planar patches and can be a set of normalised arbitrary functions wi, as given in

Equation (2.8). Previous work on manifold-based modelling, by Majeed [45], uses cubic
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B-splines as the blending functions because cubic B-splines satisfy all the aforementioned

requirements. Figure 2.12a illustrates the univariate blending functions (solid lines) on

five overlapping patches.

wi =
ŵi∑
j ŵj

. (2.8)

Local polynomial functions: Geometric features of the final curve f is predominantly

governed by the local contributions from planar patches. We define arbitrary functions

(dashed lines) over the planar patches as shown in Figure 2.12a. Restricting the arbitrary

functions to polynomials, the local contributions are formally termed local polynomial

functions. Local polynomial contributions (fi) are written as,

fi = ci · p . (2.9)

where ci = [c1, c2, c3 · · · ]Ti is a vector of co-efficients and p = [x0, x1, x2, · · · ]T is the

monomial basis. Now we write the manifold-based global approximant f , using Equa-

tions (2.8) and (2.9) as,

f =
∑
i

wifi =
∑
i

wi (ci · pi) . (2.10)

The resulting smooth curve from Equation (2.10) is shown in Figure 2.12b.

(a) (b)

Figure 2.12: Construction of a smooth curve on a domain with five overlapping patches.
(a) Blending functions wi (solid) and the local polynomials fi (dashed) are
shown. (b) The obtained smooth curve f is shown over the overlapping
patches. Image credits to [45].

Now we derive the manifold-based basis functions for one-dimensional meshes. Here, a
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patch with three control points, that we refer to as a one-ring domain with respect to the

mid point, is considered. This one-ring of a vertex is considered to be a planar patch,

and we take Lagrange basis functions (L(ξ)) [71] as the local polynomial functions.

This choice invites us to write the co-efficient vector in Equation (2.9) simply as the

coordinates of the one-ring vertices. We consider a point P(x1, x2, x3) on the smooth

curve and for simplicity, we write the following equations considering only x1. The same

formulations can be applied to the other two coordinates.

Figure 2.13: A control polygon (dashed lines) with the resulting smooth curve f (solid
lines). On each of the two shown one-rings, the blending function is a nor-
malised cubic B-spline and the local polynomial is a quadratic polynomial.
Image credits to [45].

Following from Equation (2.10), we extend the formulations for Lagrange polynomials

as,

x1(ξi) =
∑
j

wj(ξi)(x
1
j ·L(ξi)) . (2.11)

It is highlighted that L(ξi) has three entries, as is the case for quadratic Lagrange basis

functions. Now we expand the vector dot product in Equation (2.11) to arrive at the

manifold-based smooth basis functions.

x1(ξi) =
∑
j

wj(ξi)

(
3∑
I=1

x1
j,ILI(ξi)

)
=

3∑
I=1

(∑
j

wj(ξi)LI(ξi)

)
x1
j,I =

3∑
I=1

NI(ξi)x
1
j,I .

(2.12)

where NI are the three basis functions corresponding to the three vertices in the patch.
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Due to symmetry, Figure 2.14 depicts the basis functions and their derivatives in half of

a one-ring patch. Here, a special note is made regarding the smoothness of the manifold

basis functions. The overall smoothness of the manifold basis functions depends on the

individual smoothness of blending functions and local polynomial functions. Polynomials

are infinitely differentiable, and therefore the smoothness of the basis functions solely

depends on the smoothness of the blending functions. Thus, using normalised B-splines

as blending functions restrict the smoothness of the final curve to be C2. Readers are

recommended to see both Figures 2.13 and 2.14 in conjunction to get a better idea with

the colour-coded vertices and basis functions.

Figure 2.14: Manifold basis functions and their parametric derivatives in an element.
There are four non-zero basis functions with two negative ones correspond-
ing to vertices on the neighbouring elements.

2.2.2 Manifold-based non-smooth curves

In general mathematical analysis, the smoothness of a function is a property measured by

the number of derivatives it has which are continuous. A smooth function is a function
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that has derivatives of all orders everywhere in its domain. For instance, it is intuitive

that any polynomial, which takes the form f = c · p (where p is the monomial basis

and c contains the coefficients), is C∞ continuous, or in other words, f has derivatives

of all orders. Similarly the function, g = |x| is C0 continuous, as its first derivative is

not defined at x = 0.

There are many practical examples for the existence of non-smooth features of a geom-

etry. Figure 2.15 shows a few of such non-smooth features that are commonly seen in

mechanical and civil engineering applications.

Figure 2.15: Non-smooth geometric features in engineering applications. (a) Origami-
inspired structures [84] (b) Three-hinged bridges [85] (c) Architectural
forms [86].

Extended finite element method, or commonly referred to as XFEM in associated com-

munities, is useful for the approximation of solutions with pronounced non-smooth char-

acteristics in small parts of the computational domain, for example near discontinuities

and singularities. In these cases, standard numerical methods such as the finite element

method (FEM) or finite volume method (FVM) often exhibit poor accuracy [87]. A de-

tailed discussion on XFEM is not intended to be carried out here. Instead, the general

formulation of XFEM is outlined as,

u(ξ) =
∑
i∈I

Ni(ξ)ui +
∑
i∈I∗

Mi(ξ)ai (2.13)

where the first term on the right-hand side is the standard finite element approximation

and the second term serves the local enrichments to incorporate the non-smooth features.

Moreover, I∗ ⊂ I is referred to nodal subset of enrichment, ai are unknown enrichments

and Mi(ξ) are local enrichment functions at node i.

Alternatively, one can think of incorporating non-smooth features into the geometry
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using the manifold paradigm. Options would be to replace either local polynomial or

blending functions with a non-smooth function so that the resulting function would

contain non-smooth geometric features. It is not straightforward to replace the blending

functions, B-splines in this context, with a non-smooth function because only µ = 0, 1 B-

splines are non-smooth. Due to the lack of flexibility in blending functions, it is intended

to replace local polynomial with a non-smooth piecewise function. By choosing non-

smooth functions as the local polynomial functions in Equation (2.9), we expect that

the resulting basis functions will carry more information on the non-smooth features.

Local polynomial approximation

Figure 2.16 (middle) depicts the choice of non-smooth local polynomial defined on a

planar patch Ω̂2. The choice of first order Lagrangian basis functions for non-smooth

local polynomial has its own advantages. Mainly and most importantly it has the non-

smooth point at a node and satisfies partition of unity in the one-ring domain. In

addition, functions have zero second derivatives everywhere (except at the non-smooth

point), thus seem feasible to simulate a perfect hinge at the non-smooth nodal point.

Furthermore, it does not require to have ghost nodes as it is clear that each element in

the one-ring of Ω̂2 has only two associated local polynomials.

Figure 2.16: Introducing the non-smooth local polynomials onto patch Ω̂2. On each
planar patch Ω̂, a cubic B-spline (black solid lines) and a set of node colour-
coded local polynomial functions (coloured solid lines) are shown.

Construction of non-smooth manifold basis functions

Construction procedure of the non-smooth manifold basis functions follows the same

steps as explained in detail under the Section 2.2.1. Additionally, the non-smooth local
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polynomials defined on planar patch Ω̂2 in Figure 2.16 are written as,

Lj(ξ2) =


−ξ2 ξ2 ∈ [−1, 0] j = 1

1 + ξ2 ξ2 ∈ [−1, 0] j = 2

1− ξ2 ξ2 ∈ [0, 1] j = 2

ξ2 ξ2 ∈ [0, 1] j = 3

(2.14)

Figure 2.17 presents the derived non-smooth manifold basis functions and their first and

second derivatives. Note that all second derivatives are zero at the non-smooth point

(blue node).

Figure 2.17: Non-smooth manifold basis functions and their parametric derivatives in
two neighbouring elements. There are three non-zero basis functions in an
element with one negative basis function corresponding to the vertex on
the neighbouring element.

One-dimensional meshes

Smooth and non-smooth manifold basis functions are next used to generate a curve

for a given control polygon. To generate the desired geometry on a one-dimensional
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mesh, we simply use the Equation (2.12) and substitute for NI with manifold basis

functions and xI with nodal coordinates (x1, x2, x3) of each vertex I of the control

polygon. For instance, as shown in Figure 2.18, we approximate a one-dimensional

mesh using manifold-based smooth and non-smooth basis functions to distinguish the

curve approximation of the two.

Figure 2.18: Smooth curve (using smooth manifold basis functions) and non-smooth
curve (using non-smooth maifold basis functions) generated for a given
control polygon

Both smooth and non-smooth curves go through the vertices of the control polygon, as

interpolating Lagrangian basis functions were used as local polynomials in both cases.

If the local polynomials were selected differently, the shape of the curves in Figure 2.18

would differ based on the qualities of each local polynomial function.

Isogeometric analysis using manifold basis functions

Both manifold-based smooth and non-smooth basis functions can be used in isogeometric

analysis. Isogeometric analysis using smooth manifold basis functions is implemented

following a similar approach, as explained in Section 2.1. A special note is made for the

observed sub-optimal convergence rates when using smooth manifold basis functions [44,

45]. This sub-optimality is attained because the constructed smooth manifold basis

functions are rational piecewise polynomials due to normalisation. This normalisation

also demands the use of more Gaussian integration points than the standard rule for

non-rational polynomials. Implementation details of smooth manifold basis functions

are discussed extensively in Majeed [45] and hence, detailed explanations are not be
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presented in this thesis. However, we aim to discuss the important aspects of univariate

non-smooth manifold basis functions in the domain of spatial rods.

We consider the moment balance of a straight Euler-Bernoulli beam [88] given by,

M = EI
d2w

dx2
(2.15)

where M is the bending moment, EI is the bending stiffness, w is the transverse dis-

placement and x is measured along the beam centreline. We use the discretisation given

by,

w =
NBF∑
I=1

N I(x)wI (2.16)

where NBF is the number of basis functions, N I is the basis function corresponding

to the Ith node and wI are the transverse nodal displacements. Straightness of the

rod implies constant Jacobians, thus it is safe to assume the equivalence of x as the

parametric coordinate. Substituting Equation (2.16) in (2.15) we write,

M = EI

(
d2

NBF∑
J=1

NJ(x)

)
dx2

wJ

= EINJ
,11(x)wJ (2.17)

where Equation (2.17) implies a summation over J = 1, 2, · · · ,NBF.

Now we can compare Equation (2.17) in combination with Figures 2.14 and 2.17. We

clearly see in the smooth manifold basis functions (see Figure 2.14), moment transfer is

allowed among the elements. This is because, within any element, there is no strictly

zero second derivatives of the basis functions. Then, the only possibility for zero moment

condition in Equation (2.16) would be to have either all wJ = 0 (stress-free equilibrium)

or all wJ = constant (rigid body motion). These two simple solutions are easily under-

stood for any type of basis functions, because for internal strain energetic consistency,

we write,

c
NBF∑
J=1

NJ
,1 = 0 ĉ

NBF∑
J=1

NJ
,11 = 0 (2.18)

where c and ĉ are two arbitrary constants. Zero values of c and ĉ resemble a stress-free

equilibrium condition and any non-zero values denote a rigid body motion of the body.
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However, it is interesting to see Figure 2.17 in comparison with Equation (2.17). For

any non-constant arbitrary values of wJ , a zero moment condition is reached because all

the second derivatives vanish at the node where piecewise Lagrange polynomials were

introduced as the local polynomials (blue node of Ω̂2 in Figure 2.16). In the context

of structural mechanics, this phenomenon is known as a hinge. Therefore, non-smooth

manifold basis functions can be used to simulate perfect point hinges in beams with no

additional constraints. These point hinges can be easily extended to simulate line hinges

between two surfaces in 3D space. On a structured mesh, this is accomplished using a

tensor product formalism of the univariate basis functions.

This chapter was intended to facilitate the readers on several aspects. First, readers

were acknowledged of the conventional and recent developments of geometric modelling

techniques highlighting the role of the B-spline basis. Next, the isogeometric analysis

of spatial curves using B-splines basis was discussed to familiarise the readers with the

concept and to specify the types of basis functions that will be used later in this thesis.

Next, smooth and non-smooth manifold basis functions were presented as alternative

tools for isogeometric analysis. Non-smooth manifold basis functions were discussed

in detail because it carries novelty for its ability to simulate hinges in rod structures.

In Chapter 3, we aim to provide the readers with rigorous formulations and detailed

implementations of a finite deformable spatial rod model. Chapter 2 contributes directly

to Chapter 3 by providing univariate smooth and non-smooth basis functions for the

isogeometric analysis of finite deformable spatial rods.
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3 Nonlinear isogeometric spatial rods

3.1 Preliminaries

Modelling of slender bodies using 3D continuum mechanics theory has been greatly

replaced by large deformation beam theories mainly due to two reasons. First, the

reduced 1D continuum theories lead to immense computational savings not only because

of the vast reduction in degrees of freedom but also due to the simplified kinematics of

the slender body. Secondly, from a numerical standpoint, beam theories produce efficient

and well-posed numerical formulations and yield robust and high-fidelity algorithms for

computations. We identify a family of beam theories proposed and implemented by many

authors under different sets of assumptions to simplify the geometry, material models

and mechanics. Promising original work on the geometrically exact beam theories by

Simo [89] and subsequent work by Simo and Vu-Quoc [50] laid a solid foundation to

the research topic and related communities. Other significant contributions to beam

theories can be found at Simo and Vu-Quoc [90], Cardona and Geradin [91], Kondoh

et al. [92], Dvorkin et al. [93], Jelenic et al. [94]. In addition, the most recent works

of Meier et al. [51, 81, 95, 96] and Bauer et al. [52] furnish the beam theories with more

efficient algorithmic computations and rigorous formulations.

This chapter unfolds with a review of beam theories, highlighting the evolutions and

idealisations by different authors to simplify the geometry, material models and beam

kinematics. Next, our motivation to implement the nonlinear isogeometric spatial beam

model for the simulation of fibre-based RVEs under the domain of nonlinear multiscale

modelling will be discussed. Section 3.2 is reserved for the rigorous formulations of the

nonlinear spatial beam within the isogeometric analysis domain. This section brings two

novelties to the existing formulations. First, the Jacobian-based analytical derivations

for initial curvatures have been proposed to compute the internal forces and Hessian

terms accurately. Secondly, our computational model can capture the kinematics from
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external loadings with non-zero tangents (with respect to degrees of freedom). In other

words, our model facilitates the inclusion of Hessian terms that naturally arise from

external loadings. Section 3.3 elaborates on the numerical modelling of beam contacts

which is used later in the microscale analyses of textile RVEs used in Chapter 7. Section

3.4 concludes the Chapter 3 by verifying the implemented numerical models using a

set of carefully selected benchmark problems. These benchmark problems are aimed to

cover various aspects of beam kinematics, contacts, large deformations, non-conservative

loading, buckling, hinges, initial curvatures and full 3D geometries.

3.1.1 Review of beam theories

As discussed briefly in Section 3.1, there is a wide range of beam theories developed

during the past few decades. Since there is no unanimity in naming each of these beam

theories, it is not an easy task to provide a broad review of beam theories. However, in

this thesis, various beam theories are classified into three main categories.

� Underlined theory: There are two variants of the theory behind beam kinemat-

ics. First, we have the linear beam theory where the equilibrium solution is at-

tained by solving the equilibrium equations once. Thus, linear beam theory is valid

to solve for infinitesimal deformations and strains. The original Euler-Bernoulli

and Timoshenko beam theories were developed under linear theory. This is the

main reason any structural mechanics course [97] or text book [71, 88, 98] has the

standard deformation-independent stiffness matrices for truss and beam elements.

Secondly, we have the nonlinear theory where both deformations and/or rotations

can be arbitrarily large. The equilibrium solution is attained using an iterative

process such as Newton-Raphson scheme. There are several variants of nonlinear

beam theories, but usually originated from Kirchhoff-Love or Simo–Reissner beam

theories [51, 52,89,99,100].

� Geometric considerations: Many authors simplify the beam kinematics by ide-

alising the beam geometric properties. A set of beam theories rely on initially

straight beams and thus does not account for initial curvatures. This reliance is

valid in analysing portal frames, trusses, straight beams, crane arms etc., where

straight beam pieces are assembled or cast to manufacture the final component.

In contrast, the recent boost in 3D printing technology and traditional hot-rolled

metal beam bending exposed the engineers to optimise the beam structures by
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utilising the arching action arising from initially curved beams. Moreover, anal-

ysis of periodic structures like lattices, steel meshes, woven and knitted fabrics

also require to consider the effects of initial curvatures. This motivated to develop

geometrically exact beam theories by taking the initial beam curvatures into the

formulations.

Besides, another common geometric consideration is to constrain the beam cross-

sections. Some beam theories can only work with isotropic cross-sections where

both major and minor second moments of area are identical. For instance, this

type of beam theories can be used in analysing beams with circular cross-sections.

Interested readers are invited to refer to Meier et al. [101] for further implementa-

tion details on geometric considerations of beam theories.

� Kinematic assumptions: The classical Euler-Bernoulli and Kirchhoff beam the-

ories assume vanishing shear deformations in beam kinematics. On the other

hand, Timoshenko beam theory extends the Euler-Bernoulli beam theory to the

shear-flexible regime by allowing for transverse shear deformations. In addition,

torsion-free variants of Simo-Reissner and Kirchhoff-Love beam theories assume

zero torsion deformation in spatial beams [101, 102] whereas the general Simo-

Reissner beam theory [50], Bauer et al. [52] and Meier et al. [51] allow the torsional

deformations.

Also, a set of beam theories exists that can be identified as kinematically reduced

models. Reduced beam kinematics restrict the deformation space of the beam

body by removing one plane of deformations. Such beam models can only deform

in the 2D space rather than in the full 3D space. Hence torsional deformations

vanish naturally, and there will be only one mode of bending. This type of beam

models can be found at Nadler et al. [18] and Warren [103].

Another class of beam theories considers nonlinear material models in beam formu-

lations. Most of the aforementioned beam theories simplify the constitutive models

by assuming an isotropic linear elastic or small strain Saint Venant-Kirchhoff hy-

perelastic material models [50–52]. However, the research works by Orzechowski

et al. [104], Maqueda et al. [105] and Hawileh et al. [106] utilise nonlinear material

models in their beam simulations. For instance, Neo-Hookean and Mooney-Rivlin

materials are two well-established and widely used nonlinear material models in

the computational mechanics community [104].
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The categorisation based on the underlined theory, geometric considerations and kine-

matic assumptions lead to a better understanding of the scope of beam theories. How-

ever, as expected, there are overlaps between the three categories. Therefore, each beam

theory has its own strengths compared to each other. This motivates to derive rigorous

formulations for a high-fidelity nonlinear beam theory that produces efficient algorithmic

computations for analysis.

3.1.2 Motivation

The level of details and the depth of formulations of the desired beam model comes

directly from the problems at hand. In this thesis, we model RVEs of plain-woven

and weft-knitted textiles for multiscale modelling and simulations. These two problems

demand a set of requirements to be fulfilled in the spatial rod model that we aim to

implement. We detail the requirements based on the classification used in Section 3.1.1.

The motivation behind implementing a high-fidelity spatial rod model is to capture all

the necessary details to simulate the mechanical behaviour of textile RVEs accurately.

Thus, we do not intend to include warping effects or complicated material models to

strengthen the rod model as there will only be a negligible effect on the final result. Also,

such complications can be safely neglected as we have proof from many published articles

that experimentally validated real yarns do not display such complex behaviours [1, 18,

20,52,107].

Table 3.1 summarises the required settings for the rod model that will be used in RVE

simulations, later in Chapter 6. To exploit the advantages of isogeometric analysis [73],

we use the same set of basis functions used in geometric modelling to approximate the

finite element solution.
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Table 3.1: Level of details required by the rod model for multiscale modelling of woven
and knitted fabrics

Category Description
Underlined theory Nonlinear continuum mechanics with large deformations.

Iterative solution scheme: Newton-Raphson method.
Compatible with nonlinear contact modelling

Geometric considerations
Initially curved rods. Fibrous materials have arbitrarily
large initial curvatures.
Isotropic cross-sections. However, a neat extension is
proposed to include anisotropic cross-sections.

Kinematic assumptions Shear-free Kirchhoff-Love kinematics to model textile yarns.
Presence of torsional deformations that prevails in fibrous
materials.
Spatial (full 3D) rod that consists all three displacements
and one torsional degree of freedom.
Saint Venant-Kirchhoff hyperelastic material model for
small strains.

3.2 Finite deformable spatial rods

3.2.1 Kinematics of spatial rods

In the undeformed (reference) configuration, the rod body is characterised by the centre-

line S and a set of cross-sections attached to S. Under applied loads (or displacements)

the rod deforms and adopts a deformed (current) configuration. Deformed configuration

is defined by the centreline s and rotated/twisted cross-sections attached to s. Rod

centrelines are parameterised by the convective coordinate θ1 and any material point in

the rod body, in either configuration, is defined using the centreline and convective pa-

rameters θ2, θ3 which span the cross-section of the rod. In this chapter, any uppercase

vector quantity belongs to the undeformed configuration, whereas a lowercase vector

quantity applies to the deformed configuration. In addition, commonly used notations

and definitions are tabulated in Table 3.2.
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Figure 3.1: Geometric description of a spatial rod in the undeformed (left) and deformed
(right) configurations. A rectangular cross-section is considered here for
illustration purpose.

Table 3.2: Notations and definitions

Greek indices take values 2, 3
Latin indices take values 1, 2, 3

•,i comma denotes differentiation w.r.t. θi

gi = ∂r
∂θi

covariant base vectors

gi = ∂θi

∂r
contravariant base vectors

ai = ∂x
∂θi

covariant base vectors for θ2 = θ3 = 0

ai = ∂θi

∂x
contravariant base vectors for θ2 = θ3 = 0

gij = gi · gj components of covariant metric tensor
gij = gi · gj components of contravariant metric tensor

The position vectors of a material point in the undeformed and deformed configurations
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can be written as,

R(θ1, θ2, θ3) = X(θ1) + θ2A2(θ1) + θ3A3(θ1) (3.1)

r(θ1, θ2, θ3) = x(θ1) + θ2a2(θ1) + θ3a3(θ1) . (3.2)

where θ2 = [−h/2, h/2] and θ3 = [−b/2, b/2]. Here h, b indicate the height and breadth of

the rectangular cross-section of the rod shown in Figure 3.1. Moreover, X(θ1) and x(θ1)

are the centreline position vectors and Ai, ai form the orthogonal base vectors aligned

with the moving vector triads along the centrelines. To reduce the notational overload,

vector parameterisation is dropped from quantities in the subsequent formulations. For

instance, X is used instead of X(θ1).

Kinematic relation between the two configurations is given with the aid of the displace-

ment vector u as,

x = X + u . (3.3)

Using the notations and definitions in Table 3.2 we write the deformation gradient of

the rod as,

F =
∂r

∂R
=
∂r

∂θi
∂θi

∂R
= gi ⊗Gi . (3.4)

Next, we derive the Green–Lagrange strain tensor of the rod. To this end, first recall

the definition of the Green–Lagrange strain tensor of a solid as,

E =
1

2
(F TF − I) =

1

2
(gij −Gij)G

i ⊗Gj = EijG
i ⊗Gj . (3.5)

The covariant base vectors Gi and gi take the forms,

G1 =
∂R

∂θ1
= A1 + θ2A2,1 + θ3A3,1 (3.6a)

g1 =
∂r

∂θ1
= a1 + θ2a2,1 + θ3a3,1 (3.6b)

G2 = A2 (3.6c)

g2 = a2 (3.6d)

G3 = A3 (3.6e)

g3 = a3 . (3.6f)
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Now we define the moving vector triads along the centrelines as,

A1 =
dX

dθ1
(3.7)

a1 =
dx

dθ1
(3.8)

aα = ΛAα , (3.9)

where Λ denotes a mapping of the reference vectorsAα onto the corresponding deformed

vectors aα. For later use, normalised tangent vectors of the centrelines are defined as,

A1u =
A1

||A1||
a1u =

a1

||a1||
. (3.10)

For shear-free Euler-Bernoulli rods we can express the orthonormal vector triad rela-

tionships as,

A3 = A1u ×A2 a3 = a1u × a2 (3.11a)

Ai ·Aβ = δiβ ai · aβ = δiβ , (3.11b)

where δiβ is the standard Kronecker-delta operator.

Base vectors Aα and aα are chosen as unit vectors and are aligned with the principal

directions of the cross-section (i.e. the Eigen directions of the second moment of area).

Next, we consider the rotation of the convective triad from the undeformed to the de-

formed configuration. We make a Bernoulli type assumption on the shear deformations

so that the orthogonal triad ai can be mapped from the orthogonal triad Ai using a 3D

rotation Λ as given in Equation (3.9). This 3D rotation is composed by two distinct

rotations Λ1 and Λ2. This 3D rotation is illustrated in Figure 3.2.

1. Λ1 - Rotation about A1, which resembles a torsion of the cross-section of an

angle ϑ, and takes the cross-section into an intermediate configuration denoted by

the triad a′i. This angle ϑ is the only independent variable in this rotation and

therefore, it naturally becomes a degree of freedom at a given cross-section of the

rod. So we can write Λ1 = Λ1(ϑ).

2. Λ2 - Intermediate configuration is now rotated from a′1(≡ A1) to a1 to complete

the 3D rotation. Λ2 involves a rotation in the rod centreline and hence, it is
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dependent only on the deformed position of the rod centreline (x). Thus, we can

write Λ2 = Λ2(u).

Figure 3.2: Decomposition of the 3D rotation of the cross-section. The transformation
from the undeformed to deformed configurations is accomplished using an
intermediate step.

The complete 3D rotation can now be written as,

Λ(u, ϑ) = Λ2(u)Λ1(ϑ) . (3.12)

Substituting Equation (3.12) in Equation (3.9) we arrive at,

aα = Λ2(u) Λ1(ϑ)Aα︸ ︷︷ ︸
a′α

. (3.13)

Rodrigues’ rotation formula

Rodrigues’ rotation formula is of paramount importance when formulations involve a

vector rotated by a known angle around a known axis. Rodrigues’ rotation formula has

been widely used in a plethora of computational research works [50, 89, 91, 108, 109]. It

has the form,

vrot = v cosω + (k × v) sinω + k (k · v)(1− cosω) , (3.14)

where a vector v is rotated by an angle ω around the axis given by a vector k to arrive

at the rotated vector vrot. The same formula can take another form,

vrot = Λrotv , (3.15)
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where

Λrot = I + sinωK + (1− cosω)K2 , (3.16)

with K = K(k).

We use Rodrigues’ rotation formula for the rotation Λ1 where rotation axis is given by

the undeformed normalised tangent vector A1u and angle of rotation is ϑ, as illustrated

in Figure 3.2. Subsequently, we use the smallest rotation formula [51, 81, 110] for the

rotation Λ2. These rotations take forms,

Λ1(ϑ) = I + sinϑK(A1u) + (1− cosϑ)K(A1u)K(A1u) , (3.17)

Λ2(u) = I− (A1u + a1u)a
T
1u

1 + a1u ·A1u

= I− (A1u + a1u)⊗ a1u

1 + a1u ·A1u

, (3.18)

where

K(A1u) =

 0 −Az1u Ay1u

Az1u 0 −Ax1u
−Ay1u Ax1u 0

 with A1u =

A
x
1u

Ay1u

Az1u

 . (3.19)

In the case of A1u = a′1u = a1u, or in other words when the rod is in its reference

configuration, a special note is warranted for Equation (3.13). Obviously Λ1 = I in

(3.17) and Λ2 = I − a1u ⊗ a1u. Moreover, after some algebraic simplifications, we get

the expected aα = Aα using the definition of the tensor product (A1u⊗A1u)Aα = (Aα ·
A1u)A1u = 0. For later use, we differentiate the rotation formulae given in Equations

(3.17) and (3.18) and write the expressions as,

Λ1,1 = sinϑK,1 + cosϑKϑ,1 + (KK,1 + K,1K)(1− cosϑ) + sinϑKKϑ,1 (3.20)

where

K,1 = K(A1u,1) (3.21)

A1u,1 =
A1,1

||A1||
−A1

(A1 ·A1,1)

||A1||3
, (3.22)
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and

Λ2,1 =− (A1u,1 ⊗ a1u +A1u ⊗ a1u,1 + a1u ⊗ a1u,1 + a1u,1 ⊗ a1u)

1 + a1u ·A1u

+
((A1u + a1u)⊗ a1u)(a1u,1 ·A1u +A1u,1 · a1u)

(1 + a1u ·A1u)2
. (3.23)

It is important to precisely obtain the base vectors Ai of the undeformed geometry. This

information is vital when the geometry is in full 3D space and has anisotropic cross-

sections (i.e. rectangular, triangular, etc.). This is achieved, again, using the Rodrigues’

formula by moving the base vectors along the rod starting from a point where base

vectors are exactly known [52]. It can also be achieved by first using the Frenet-Serret

formulas [51,80,81,111] and then rotating the base vectors along the principal direction

of the cross-sections [51, 95]. However in literature, fabric yarns are modelled as rods

with circular cross-sections [1, 17–20, 112–115] which allows us to use the Frenet-Serret

formulas directly due to the isotropy of the yarn cross-section.

Frenet–Serret formulae in differential geometry

The orthonormal TNB frame of a differentiable space curve r is defined on the para-

metric domain θ1 as,

T =
r,1
||r,1||

(3.24)

N =
T,1

||T,1||
=
r,1 × (r,11 × r,1)

||r,1|| ||r,11 × r,1||
(3.25)

B = T×N =
r,1 × r,11

||r,1 × r,11||
. (3.26)

Here, the vector T is identified as the normalised tangent vector along r. In addition,

normal (N) and bi-normal (B) vectors complete the vector triad at any given point on

r. Note that there can be several combinations of N and B to form the vector triad

with the uniquely defined T. However, above equations yield one combination of them.

The parametric derivative of the TNB frame takes the form,T,1

N,1

B,1

 = ||r,1||

 0 κ̂ 0

−κ̂ 0 τ

0 −τ 0


T

N

B

 , (3.27)
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where

κ̂ =
||r,1 × r,11||
||r,1||3

and τ =
det[r,1, r,11, r,111]

||r,1 × r,11||2
. (3.28)

For planar curves, τ in Equation (3.28) vanishes. However, for general space curves, τ

exists and demands for the existence of r,111. For higher accuracy and better convergence,

the existence of r,111 enforces a stringent requirement for the basis functions to possess

minimum C3 continuity everywhere in the problem domain. This will be explained in

detail in Section 3.2.2.

Now we can explicitly express the strain components in the Green-Lagrange strain tensor.

To this end, we substitute the covariant base vectors in Equation (3.6) into Equation

(3.5) and using the definitions in Table 3.2 we write,

Eij =
1

2
(gij −Gij) =

1

2
(gi · gj −Gi ·Gj).

Simplifying for E11 and neglecting the higher orders of θα we get,

E11 =
1

2
(g1 · g1 −G1 ·G1)

=
1

2
((a1 + θ2a2,1 + θ3a3,1) · (a1 + θ2a2,1 + θ3a3,1)

− (A1 + θ2A2,1 + θ3A3,1) · (A1 + θ2A2,1 + θ3A3,1))

=
1

2
(a1 · a1 −A1 ·A1) + θ2(A2 ·A1,1 − a2 · a1,1) + θ3(A3 ·A1,1 − a3 · a1,1).

(3.29)

Following the same steps for other terms of Eij we arrive at,

Eij =

E11 = α + θ2β2 + θ3β3 E12 = θ3γ E13 = −θ2γ

E22 = 0 E23 = 0

symmetric E33 = 0

 (3.30)

where α(u), β2(u, ϑ), β3(u, ϑ) and γ(u, ϑ) are membrane, bending (about a2), bending

(about a3) and torsional shear strains, respectively. Notice the interaction between

u and ϑ influences the bending and shear strains, but not membrane strains. This

is easily understood because membrane strains are only governed by the rod’s axial

elongations, but not the rotations. Moreover, assumptions from the Bernoulli beam

theory set E23, E32 and E33 to zero and shear strains E12 and E21 are induced only from
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torsional moments.

α(u) =
1

2
(a1 · a1 −A1 ·A1) (3.31a)

β2(u, ϑ) = A2 ·A1,1 − a2 · a1,1 (3.31b)

β3(u, ϑ) = A3 ·A1,1 − a3 · a1,1 (3.31c)

γ(u, ϑ) =
1

2
(a2 · a3,1 −A2 ·A3,1) (3.31d)

Following orthogonality identities have been used in deriving the strain components as

given in Equation (3.31).

a1 · a2,1 = −a1,1 · a2 a3 · a2,1 = −a3,1 · a2 a1 · a3,1 = −a1,1 · a3. (3.32)

It is straightforward to derive expressions in Equation (3.32) by differentiating the or-

thogonality conditions. For instance, we know a1 · a2 = 0, and differentiation with

respect to θ1 yields a1 · a2,1 + a1,1 · a2 = 0.

3.2.2 Discretisation of the energy functional

We consider the total potential energy of a hyperelastic rod to derive the rod equilibrium

equations in the weak form as,

Π(x) = Πint(x) + Πext(x) (3.33)

=

∫
V

W (α, β2, β3, γ)dV + Πext(x) , (3.34)

where W is the strain energy density. For hyperelastic materials, strain energy density

is a function of the Green-Lagrange strain tensor. Hence, using strain quantities in

Equation (3.31), we write W = W (E) = W (α, β2, β3, γ). Moreover, we introduce the

second Piola-Kirchhoff stress tensor which is defined for a hyperelastic material [116]

as,

S =
∂W (α, β2, β3, γ)

∂E
. (3.35)

Second Piola-Kirchhoff stress tensor in Equation (3.35) together with its energy con-

jugate Green-Lagrange strain tensor defines the strain energy density of a hyperelastic

material as,

W (α, β2, β3, γ) = S : E . (3.36)
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At equilibrium, the first variation of the total potential energy is zero. This resembles

a nonlinear convex optimisation problem to be equilibrated at the minimum potential

energy [117, 118]. Equilibrium condition for the system in Equation (3.33) is derived

using the principle of virtual work as,

δΠ(x) = δΠint(x) + δΠext(x) = 0 . (3.37)

Using the relation δ(•) =
∂(•)
∂(∗)

δ(∗) +
∂(•)
∂(?)

δ(?) + ... we simplify Equation (3.37) as

δΠ(x) =

∫
V

(
∂W

∂u

)
dV︸ ︷︷ ︸

fu

·δu+

∫
V

(
∂W

∂ϑ

)
dV︸ ︷︷ ︸

fϑ

·δϑ+ δΠext(x) = 0 . (3.38)

where internal forces fu and fϑ are defined for arbitrary perturbations δu and δϑ, re-

spectively.

The next task is to derive closed form expressions to compute the integrals in Equation

(3.38). At this juncture, attention is guided towards simplifying the integral computa-

tions using parametric volume mapping.

Volume integration of a quantity (•) in the convected parametric domain θi takes the

form, ∫
V

(•) dV =

∫
b

∫
h

∫
S

(•)
√
G dθ1dθ2dθ3 , (3.39)

where
√
G is the Jacobian derived as,

√
G = det[G1 G2 G3]

= G1 · (G2 ×G3)

= (A1 + θ2A2,1 + θ3A3,1) · (A2 ×A3)

= (A1 + θ2A2,1 + θ3A3,1) · A1

||A1||

= ||A1||+ θ2A2,1 ·A1

||A1||
+ θ3A3,1 ·A1

||A1||
√
G = ||A1|| − θ2A1,1 ·A2

||A1||
− θ3A1,1 ·A3

||A1||
. (3.40)

The Euler-Bernoulli beam theory assumes thin beam cross-sections with vanishing shear

strains, whereby the beam height remains unchanged during deformation. This assump-
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tion leads to analytically tractable integrals with respect to θα. Hence, we can use the

metric
√
G to express the current infinitesimal arc-length ds as,

ds =
√
Gdθ1

=

(
||A1|| − θ2A1,1 ·A2

||A1||
− θ3A1,1 ·A3

||A1||

)
dθ1 (3.41)

=

1− θ2 A1,1 ·A2

A1 ·A1︸ ︷︷ ︸
κ2

−θ3 A1,1 ·A3

A1 ·A1︸ ︷︷ ︸
κ3


︸ ︷︷ ︸

µ

||A1||dθ1︸ ︷︷ ︸
dS

(3.42)

ds = (1− κ2θ
2 − κ3θ

3) = ηdS . (3.43)

where κ2 and κ3 are the initial curvatures of the rod in two principal directions of the

cross-section. This reveals an important computational aspect of spatial rods because

the accuracy of internal forces rely heavily on these initial curvatures [52]. It is evident

that, for initially straight rods, A1,1 remains parallel to A1 (thus orthogonal to Aα) and

therefore has vanishing initial curvatures due to the orthogonality of the vector triad

Ai. For initially curved planar rods, one of the curvatures will be zero, simply due to

one non-existent Aα,1. Readers are reminded of the orthogonality identities given in

Equation (3.32).

Rod internal forces

Using Equations (3.36) and (3.38) now we write the internal forces as,

fu =

∫
V

S :
∂E

∂u
dV , (3.44)

fϑ =

∫
V

S :
∂E

∂ϑ
dV . (3.45)

Next, the assumptions in Euler-Bernoulli beam theory and volume integral simplifica-

tions in Equations (3.40) and (3.43) are used to simplify the internal forces as,

fu =

∫
b

∫
h

∫
S

(
S11∂E11

∂u
+ 2S12∂E12

∂u
+ 2S13∂E13

∂u

)
ηdθ2dθ3dS , (3.46)

fϑ =

∫
b

∫
h

∫
S

(
S11∂E11

∂ϑ
+ 2S12∂E12

∂ϑ
+ 2S13∂E13

∂ϑ

)
ηdθ2dθ3dS . (3.47)
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We assume that the strains are small so that we can use the St. Venant–Kirchhoff

constitutive equation [119] given by,

S = C : E . (3.48)

Next, we express E, S and C defined in the convected coordinates as,

E = EijG
i ⊗Gj (3.49)

S = SijGi ⊗Gj (3.50)

C = CijklGi ⊗Gj ⊗Gk ⊗Gl . (3.51)

Now the non-zero second Piola-Kirchhoff stress components can be written as,

S11 = C1111E11 (3.52a)

S12 = C1212E12 (3.52b)

S13 = C1313E13 . (3.52c)

It is highlighted, for instance, that C1111 in Equation (3.52a) is defined in the convective

coordinates as given in Equation (3.51). Hence, a closed form for Cijkl in Equation (3.51)

is derived as,

Cijkl = (Gi ⊗Gj) : C : (Gk ⊗Gl) . (3.53)

After some algebraic simplifications using definitions in Table 3.2 we arrive at [42],

Cijkl = λGijGkl + µ(GikGjl +GilGjk) . (3.54)

where λ and µ are the Lamé parameters defined for an isotropic material. Now we

substitute for stress components in Equations (3.52) and replace them in Equations

(3.46) and (3.47). Exploiting the symmetry of the fourth-order material tensor C, we

now use shortened indices, for instance C1212 as C12.

fu =

∫
b

∫
h

∫
S

(
C11E11

∂E11

∂u
+ 2C12E12

∂E12

∂u
+ 2C13E13

∂E13

∂u

)
ηdθ2dθ3dS (3.55)

fϑ =

∫
b

∫
h

∫
S

(
C11E11

∂E11

∂ϑ
+ 2C12E12

∂E12

∂ϑ
+ 2C13E13

∂E13

∂ϑ

)
ηdθ2dθ3dS . (3.56)
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Now Green-Lagrange strains and their derivatives are computed using Equation (3.31)

and substituted in Equations (3.55) and (3.56). At this juncture, to maintain the clarity

of this chapter, detailed derivations of internal forces are included in the Appendix

A.1.1.

To this end, we write the internal forces in a compact form as,

fu =

∫
S

[(
n
∂α

∂u
+

3∑
j=2

mj
∂βj
∂u

+ q
∂γ

∂u

)
− C11

3∑
j=2

Ij

(
βj
∂α

∂u
+ α

∂βj
∂u

)
κj

]
dS (3.57)

fϑ =

∫
S

[(
3∑
j=2

mj
∂βj
∂ϑ

+ q
∂γ

∂ϑ

)
− C11

3∑
j=2

Ij

(
α
∂βj
∂ϑ

)
κj

]
dS . (3.58)

where membrane (n), bending (mω) and torsion (q) stress resultants take the forms,

n =
∂W s

∂α
= λG11G11Aα (3.59a)

mω =
∂W b

∂βω
= λG11G11Iωβω (3.59b)

q =
∂W t

∂γ
= 4µG11(I2 + I3)γ . (3.59c)

Table 3.3 summarises the geometric and material properties used in Equations (3.59a),

(3.59b) and (3.59c). Same properties will be used consistently throughout this chapter.

Table 3.3: Rod geometric and material properties

A = bh cross-section area of the rod

I2 = hb3

12
second moment area of the rod about A2

I3 = bh3

12
second moment area of the rod about A3

Ipolar = I2 + I3 polar moment area of the rod about A1

λ first Lamé parameter of the rod
µ second Lamé parameter of the rod

Next, we discretise the rod centreline and approximate the unknown displacement (u)

and torsion (ϑ) functions using shape functions N I and nodal degrees of freedom. We
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write,

X(θ1) =
NSF∑
I=1

N I(θ1)XI (3.60a)

x(θ1) =
NSF∑
I=1

N I(θ1)xI (3.60b)

u(θ1) =
NSF∑
I=1

N I(θ1)uI (3.60c)

ϑ(θ1) =
NSF∑
I=1

N I(θ1)ϑI , (3.60d)

where NSF denotes the number of shape functions. Differentiation of any quantity in

Equation (3.60), with respect to convective parameter θ1 in the discretised domain is

written as,

(•),1 =
NSF∑
I=1

N I
,1(θ1)(•)I , (•),11 =

NSF∑
I=1

N I
,11(θ1)(•)I . (3.61)

Next important task in hand is to present explicit expressions for strain gradients to

precisely conclude the formulations for internal forces in Equations (3.57) and (3.58).

This is accomplished using the discretised domain of the rod as presented in Equation

(3.60).
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Strain gradients

First we formulate strain gradients with respect to nodal displacement degrees of free-

doms uI

∂α(u)

∂uI
= a1N

I
,1 (3.62)

∂βω(u, ϑ)

∂uI
= −∂aω

∂uI
· a1,1 − aω ·

∂a1,1

∂uI
(3.63)

∂γ(u, ϑ)

∂uI
=

1

2

(
∂a2

∂uI
· a3,1 + a2 ·

∂a3,1

∂uI

)
(3.64)

where
∂a1

∂uI
= N I

,1I (3.65)

∂a1,1

∂uI
= N I

,11I (3.66)

∂aω
∂uI

=
∂Λ2

∂uI
Λ1Aω (3.67)

aω,1 = Λ2,1Λ1Aω + Λ2Λ1,1Aω + Λ2Λ1Aω,1 (3.68)

∂aω,1
∂uI

=
∂Λ2,1

∂uI
Λ1Aω +

∂Λ2

∂uI
Λ1,1Aω +

∂Λ2

∂uI
Λ1Aω,1 (3.69)

Here, the derivatives Λ1,1,Λ2,1 follow Equations (3.20) and (3.23), respectively. In ad-

dition, the gradients ∂Λ2

∂uI
and ∂Λ2,1

∂uI
are included in the Appendix A.1.1 due to their

tediousness.

Next, we derive strain gradients with respect to nodal torsional degrees of freedoms ϑI

∂βω(u, ϑ)

∂ϑI
= −∂aω

∂ϑI
· a1,1 (3.70)

∂γ(u, ϑ)

∂ϑI
=

1

2

(
∂a2

∂ϑI
· a3,1 + a2 ·

∂a3,1

∂ϑI

)
(3.71)

where

∂aω
∂ϑI

= Λ2
∂Λ1

∂ϑI
Aω (3.72)

∂aω,1
∂ϑI

= Λ2,1
∂Λ1

∂ϑI
Aω + Λ2

∂Λ1,1

∂ϑI
Aω + Λ2

∂Λ1

∂ϑI
Aω,1 . (3.73)

Furthermore, the gradient of the rotation matrix Λ1, with respect to ϑI , is simplified
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using the chain-rule of partial differentiation as,

∂Λ1

∂ϑI
=
∂Λ1

∂ϑ

∂ϑ

∂ϑI
(3.74)

∂Λ1

∂ϑ
= cosϑK + sinϑKK and

∂ϑ

∂ϑI
= N I (3.75)

∂Λ1,1

∂ϑI
= cosϑK,1N

I − sinϑKϑ,1N
I + cosϑKN I

,1

+ sinϑ(KK,1 + K,1K)N I + cosϑKKϑ,1N
I + sinϑKKϑ,1N

I
,1 .

(3.76)

This formally concludes the rod internal forces formulations. Next, we consider the

external forces acting on the rod. To avoid the notational ambiguity, external force

vector is written as fext.

Rod external forces

The external forces result from the external virtual work due to the applied tractions at

the traction boundary Γ. We write the external virtual work as,

δΠext =

∫
V

(
fext[u] · δu

)
dV +

∫
V

(
fext[ϑ] · δϑ

)
dV (3.77)

Here, readers are made aware that in this thesis, external forces fext[u] will only be

considered in the subsequent formulations and implementations. Hence, we take fext =

fext[u]. External virtual work is written as,

δΠext =

∫
V

(fext · δu) dV =

∫
V

(b · δr) dV +

∫
Γ

(t · δr) dA (3.78)

where b and t are body force density and external linear tractions, respectively.

In this context, we limit our attention only to linear tractions. Moreover, due to rigid

cross-sections, Cauchy and Piola tractions give the same expression for a linear traction

t as [64],

t = sifei − θ2s2
ma1u − θ3s3

ma1u . (3.79)

In Equation (3.79), the first term will result in forces in ei directions. The second and

third terms define follower force couples equivalent to moments around the two principal
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axes of the rod cross-section. Hence, we understand sif as a normal stress in direction

ei and sωm as a bending stress per unit width in respective direction ω. In the case of

follower loads, ei of the first term in Equation (3.79) is replaced by the direction of

the follower load so that the force will follow the nodal rotations. Substituting from

Equations (3.2) and (3.79) in (3.78) we get,∫
Γ

t · δrdA =

∫
b

∫
h

(sifei − θ2s2
ma1u − θ3s3

ma1u) · (δx+ θ2δa2 + θ3δa3)

∣∣∣∣
θ1=∂S

dθ2dθ3

= bhsif︸︷︷︸
P i

ei · δx−
bh3

12
s2

m︸ ︷︷ ︸
M2

a1u · δa2 −
b3h

12
s3

m︸ ︷︷ ︸
M3

a1u · δa3

∣∣∣∣
θ1=∂S

, (3.80)

where coupling between membrane and bending forces have been omitted in the formula-

tions. Using the orthogonality conditions, a1u·δa2 = −a2·δa1u and a1u·δa3 = −a3·δa1u,

the external virtual work simplifies to,∫
Γ

t · δrdA =
(
P · δx+M2a2 · δa1u +M3a3 · δa1u

) ∣∣∣∣
θ1=∂S

(3.81)

Now we can extract the external force vector using Equations (3.81) and (3.77) as,

fext =

(
P · ∂x

∂u
+M2a2 ·

∂a1u

∂u
+M3a3 ·

∂a1u

∂u

) ∣∣∣∣
θ1=∂S

. (3.82)

Lastly, the discretised form of the external force is written as,

f Iext =

(
P · ∂x

∂uI
+M2a2 ·

∂a1u

∂uI
+M3a3 ·

∂a1u

∂uI

) ∣∣∣∣
θ1=∂S

. (3.83)

Linearised algebraic system

It is evident that the equilibrium Equation (3.38) is nonlinear in u and ϑ, thus also in

discretised uI and ϑI . Therefore, we linearise the equilibrium equations [120] by defining

a residual force as

fres(u, ϑ) = fint(u, ϑ)− fext(u, ϑ) = 0 . (3.84)
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Now we use the first-order Taylor expansion to linearise the stationary condition in

Equation (3.38) as,

fres(uk+1, ϑk+1) ≈ fres(uk, ϑk) + ∆u
∂fres(uk, ϑk)

∂u
+ ∆ϑ

∂fres(uk, ϑk)

∂ϑ
= 0 (3.85)

∆u = uk+1 − uk (3.86)

∆ϑ = ϑk+1 − ϑk . (3.87)

Now we write the two linear systems of equations to be solved for uJ and ϑJ , realising

the Equation (3.38) is valid for any arbitrary δu and δϑ. Furthermore, to avoid the

notational overload, we use F to denote the fres and also drop the variable dependencies

(uI , ϑI) in the discretised domain. Also, we distinguish the residual forces, according

to Equations (3.57), (3.58) and follow the same subscripts in deriving the system of

equations as follows.

(F k+1
u )I = (F k

u)I + ∆uJ ·
∂(F k

u)I
∂uJ

+ ∆ϑJ
∂(F k

u)I
∂ϑJ

= 0 (3.88a)

(F k+1
ϑ )I = (F k

ϑ )I + ∆uJ ·
∂(F k

ϑ )I
∂uJ

+ ∆ϑJ
∂(F k

ϑ )I
∂ϑJ

= 0 . (3.88b)

At this juncture, attention is given to the enforcement of Dirichlet (essential) and Neu-

mann (natural) boundary conditions. In this context, we consider only linear boundary

conditions. Therefore, there is no stringent requirement to linearise the boundary condi-

tions. Among many methods to enforce boundary conditions, i.e. Lagrange multipliers,

Penalty method, Nitsche’s method, we use the Lagrange multiplier method to enforce

the boundary conditions due to its simple implementation and ability to extract the

boundary forces directly [117,118].

(Bu)IJ∆uJ − (wu)I = 0 (3.89a)

(Bϑ)IJ∆ϑJ − (wϑ)I = 0 , (3.89b)

where Bu, Bϑ refer to the matrices containing respective weights of linear constraints.

Furthermore, the vector w = {wu, wϑ} contains any prescribed displacements or axial

rotations, respectively. We rewrite the boundary enforced linearised Equations (3.88)
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using Equation (3.89) as,

(F k
u)I + ∆uJ ·

∂(F k
u)I

∂uJ
+ ∆ϑJ

∂(F k
u)I

∂ϑJ
+ (BT

u )IJ(∆λu)J = 0 (3.90a)

(F k
ϑ )I + ∆uJ ·

∂(F k
ϑ )I

∂uJ
+ ∆ϑJ

∂(F k
ϑ )I

∂ϑJ
+ (BT

ϑ )IJ(∆λϑ)J = 0 , (3.90b)

where the vector ∆λ = {∆λu,∆λϑ} contains the respective boundary enforcing La-

grange multipliers. Using Equations (3.88) and (3.89), now we complete the full linear

system of equations by writing,

∂(Fu)I
∂uJ

∂(Fu)I
∂ϑJ

(BT
u)IJ

∂(Fϑ)I
∂uJ

∂(Fϑ)I
∂ϑJ

(BT
ϑ )IJ

(Bu)IJ (Bϑ)IJ 0





∆uJ

∆ϑJ

∆λJ



=



−(Fu)I

−(Fϑ)I

wI



(3.91)

The linear system of equations in Equation (3.91) requires to determine the Hessian

terms to complete the formulations of spatial rod kinematics. Hessian matrix is sym-

metric and can be computed by differentiating the total potential energy twice or differ-

entiating residual forces once with respect to the degrees of freedom.

Hessian matrix terms

Hessian matrix, in general, includes the contributions from both internal and external

forces. Hessian component from internal forces is usually termed the stiffness matrix.

For linear problems, stiffness matrices do exist, but are independent of the kinematic

variables u and ϑ. In addition, external forces also contribute to the Hessian when they

have non-zero tangents with respect to u and ϑ. For instance, consider a follower load

that is coupled to one (or a combination) of the base vectors. This load follows the nodal

rotations and therefore possess a tangent which gives rise to a Hessian contribution. In

this thesis, we consider both internal and external Hessian contributions and illustrate

the accurate modelling through examples provided in Section 3.4. We first consider
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the Hessian terms from the internal forces. To this end, we need to formulate the

main four stiffness contributions as given in Equation (3.91). For clarity and to avoid

excessively long equations in the main body of the thesis, detailed formulations are

included in Appendix A.1.2. Stiffness contributions from initial curvatures are also

presented separately.

∂(Fu)I
∂uJ

=
∂n

∂uJ

∂α

∂uI
+ n

∂2α

∂uI∂uJ
+

3∑
j=2

(
∂mj

∂uJ

∂βj
∂uI

+mj ∂2βj
∂uI∂uJ

)
+

∂q

∂uJ

∂γ

∂uI
+ q

∂2γ

∂uI∂uJ
.

(3.92)

∂(Fu)I
∂ϑJ

=
3∑
j=2

(
∂mj

∂ϑJ

∂βj
∂uI

+mj ∂2βj
∂uI∂ϑJ

)
+

∂q

∂ϑJ

∂γ

∂uI
+ q

∂2γ

∂uI∂ϑJ
. (3.93)

Due to the symmetry of the stiffness matrix we have the following relationship,

∂(Fϑ)I
∂uJ

=

[
∂(Fu)I
∂ϑJ

]T

. (3.94)

Lastly,
∂(Fϑ)I
∂ϑJ

is simplified as,

∂(Fϑ)I
∂ϑJ

=
3∑
j=2

(
∂mj

∂ϑJ

∂βj
∂ϑI

+mj ∂2βj
∂ϑI∂ϑJ

)
+

∂q

∂ϑJ

∂γ

∂ϑI
+ q

∂2γ

∂ϑI∂ϑJ
. (3.95)

Stiffness contributions due to initial curvatures can be written as,

∂(Fu)I
∂uJ

= −C11

3∑
j=2

κjIj

(
∂βj
∂uJ

∂α

∂uI
+ βj

∂2α

∂uI∂uJ
+

∂α

∂uJ

∂βj
∂uI

+ α
∂2βj

∂uI∂uJ

)
(3.96)

∂(Fϑ)I
∂uJ

= −C11

3∑
j=2

κjIj

(
∂βj
∂ϑI

∂α

∂uJ
+ α

∂2βj
∂uJ∂ϑI

)
(3.97)

∂(Fϑ)I
∂ϑJ

= −C11

3∑
j=2

κjIj

(
α

∂2βj
∂ϑI∂ϑJ

)
. (3.98)

Note that the stiffness entries from initial curvatures will be added to respective stiffness

terms given in Equations (3.92) - (3.95).
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Next, we consider the stiffness entries due to external forces with non-zero tangents.

To this end, we identify follower loads and moments (given by follower load couples in

Equation (3.83)) give rise to non-zero tangents. Therefore, we write the external stiffness

matrix contributions as,

∂(fext)I
∂uJ

=
∂P

∂uJ
· ∂x
∂uI

+
3∑
j=2

M j

(
∂aj
∂uJ

· ∂a1u

∂uI
+ aj ·

∂2a1u

∂uI∂uJ

)
. (3.99)

Note that the first term in Equation (3.99) will be zero for fixed loads.

Section 3.2 detailed some of the key aspects of the nonlinear isogeometric rod model that

will be used to model and analyse the textile RVEs. These formulations achieved the

objectives and required features set in Table 3.1 in the context of modelling the yarns

of knitted and woven textiles.

3.3 Contact formulation for spatial rods

Beam-to-beam collision modelling is still a demanding topic in the related research

communities due to its complexity and limitations [81, 107, 111, 121–126]. Currently,

there are two different mechanical modelling techniques, namely Point-to-point and Line-

to-line, where each of these techniques has its own merits and demerits. In this thesis,

we closely follow the collision models initially suggested by Wriggers et al. [121] and

further developed by [81,107,111].
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3.3.1 Point-to-point contact model

Figure 3.3: Point-to-point collision modelling of two spatial rods.

In this approach, a discrete contact force at the closest point of the rods is formulated by

minimising the penetration depth if contact occurs. Here, we use two parameterisations

for two rods given by parametric equations x1(θI1) and x2(θJ1 ). To avoid the notational

overload, subscript ‘1’ is dropped from θ1 in subsequent derivations.

First, we find the distance between two material points of two spatial rods as,

d(θI , θJ) = ||x1(θI)− x2(θJ)|| . (3.100)

and it reaches a minimum closer to a potential collision location as shown in Figure 3.3.

This is written as,

dmin = min
θI ,θJ

d(θI , θJ) = d(θIc , θ
J
c ) . (3.101)

The unknown parametric locations at contact θIc and θJc (in Equation (3.101)) can be

found by solving the following two systems considering the orthogonality between the

material point vector difference and their tangents of the rods.

xT
1,θI (θ

I
c )(x1(θIc )− x2(θJc )) = 0 (3.102a)

xT
2,θJ (θJc )(x1(θIc )− x2(θJc )) = 0 . (3.102b)
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Solution for θIc and θJc is attained using the Newton-Raphson iterative scheme by lin-

earising the orthogonality conditions given in Equations (3.102).[
xT

2,θI (θ
J
i )(x1(θI)− x2(θJi ))

]
,θI

∆θI = −xT
2,θI (θ

J
i )(x1(θI)− x2(θJi ))[

xT
2,θJ (θJi )(x1(θI)− x2(θJi ))

]
,θJ

∆θJ = −xT
2,θJ (θJi )(x1(θI)− x2(θJi ))

θIi+1 = θIi + ∆θI

θJi+1 = θJi + ∆θJ

(3.103)

After locating possible collision points θIc and θJc , next task is to define the non-penetration

condition using a gap function g as,

g ≥ 0 with g = dmin −R1 −R2 . (3.104)

Energy contribution from collisions (if present) is added to the variational problem using

widely used Lagrange multiplier method. Here, we derive only the contribution from

collisions which needs to be added to the total potential energy given in Equation (3.33).

To this end, we write the energy contributions Πcλ as,

Πcλ = λ〈g〉 with 〈x〉 =

x x ≤ 0

0 x > 0 .
(3.105)

First variation of the energy yields its weak form contribution given by,

δΠcλ = λδg + δλ〈g〉 = λ(δx1(θIc )− δx2(θJc )) · n+ δλ〈g〉 . (3.106)

where n =
x1(θIc )− x2(θJc )

||x1(θIc )− x2(θJc )||
is the unit normal vector at the collision points, along

which the equal and opposite contact forces are applied to avoid penetration.

Additional co-efficients to the Lagrange multiplier array are given by,

∂Πcλ

∂uI
= λ

(
∂x1c

∂uI
− ∂x2c

∂uI

)
· n (3.107)

∂Πcλ

∂λ
= 〈g〉 . (3.108)

Point-to-point contact scheme performs well for large contact angles [111], where the

contact angle is defined as the angle between the two tangent vectors at the contact
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point. But sometimes it is difficult to find a unique closest point when the contact angle

is small, especially in an iterative scheme like Equation (3.103), and hence does not

perform well in the small contact angle regime [81]. It is in contrast to the expectations

of line-to-line contacts. Line-to-line contacts perform well for smaller contact angles.

From a mechanics standpoint, it is understood that line-to-line contacts are not feasible

to be formed when the contact angles are larger. In this thesis, the line-to-line contact

formulation of Meier et al. [81] is closely followed.

3.3.2 Line-to-line contact model

Figure 3.4: Line-to-line collision modelling of two spatial rods.

Here, a distinction has to be made between a master beam (x2(θJ)) and a slave beam

(x1(θI)). The closest master point θJc to a given slave point θI is determined as solution

of the following unilateral (ul) minimal distance problem,

d(θI , θJ) = ||x1(θI)− x2(θJ)|| (3.109)

dul(θ
I) = min

θJ
d(θI , θJ) = d(θI , θJc ) . (3.110)

This leads only to one orthogonality condition to be satisfied for θJc and takes the form,

xT
2,θJ (θJc )(x1(θI)− x2(θJc )) = 0 . (3.111)
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Solution for θJc is attained using Newton-Raphson iterative scheme by linearising the

orthogonality condition.

[
xT

2,θJ (θJi )(x1(θI)− x2(θJi ))
]
,θJ

∆θJ = −xT
2,θJ (θJi )(x1(θI)− x2(θJi )) (3.112)

θJi+1 = θJi + ∆θJ (3.113)

Unlike in a point-to-point contact model, the normal vector n(θI) is perpendicular to

the master beam at θJc but not to the slave beam. Therefore, it is given as a function

of θI . Next, we write the non-penetration condition for the line-to-line contact model

as,

g(θI) ≥ 0 ∀ θI with g(θI) = dul(θ
I)−R1 −R2 . (3.114)

Similar to the point-to-point contact model, the energy from collisions is included in the

variational form using the Lagrange multiplier method. Now the Lagrange multiplier

acts as a line load along the contact region δl that transfers a distributed load to the

two rod bodies.

Πcλ =

∫
δl

λ(θI)g(θI) dl (3.115)

Thus the virtual work expression takes the form,

δΠcλ =

∫
δl

(
λ(θI)δg(θI) + δλ(θI)g(θI)

)
dl

=

∫
δl

(
λ(θI)(δx1 − δx2c) · n(θI) + δλ(θI)g(θI)

)
dl (3.116)

with n(θI) =
x1(θI)− x2(θJc )

||x1(θI)− x2(θJc )||

Additional co-efficients to the Lagrange Multiplier arrays are given by,

∂Πcλ

∂uI
=

∫
δl

λ(θI)

(
∂x1(θI)

∂uI
− ∂x2(θJc )

∂uI

)
· n(θI) dl (3.117)

∂Πcλ

∂λI
=

∫
δl

∂λ

∂λI
g(θI) dl (3.118)
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Algorithm 1 outlines the key steps of the C++ algorithm developed to model and sim-

ulate the finite deformable beam models under the isogeometric analysis paradigm.

Algorithm 1 Nonlinear isogeometric 3D rod analysis

// run the analysis preprocessor

1: preprocessor : definition of the geometry, loading, material and cross section prop-
erties
// define the reference configuration of the structure

2: initialise : fext = 0, x = X, ϑ = ϑ0, fres = 0
// start step-loading the structure

3: for i ≤ load steps do
4: find ∆fext

5: set fext ← fext + ∆fext

6: set fres ← fres −∆fext

// equilibrate the structure at every load step

7: while (||fres||/||fext|| < tolerance) do
8: solve Ku(u,ϑ) = −fres

9: update x← x+ uu and ϑ← ϑ+ uϑ
10: compute vector triad (a1, a2 and a3) and their derivatives
11: compute fint and K
12: update fres ← fint − fext

13: end while
14: end for
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3.4 Model verification

In this section, several benchmark problems are solved using the spatial rod model de-

veloped in Section 3.2. Every problem follows a similar illustration framework, where at

first, the problem description (initial geometry, material properties, cross-section details)

is presented. Next, the comparisons are made with a sketch of the deformed shapes to

show the large deformations. It is noted that the units of each problem is taken from

the respective reference article and thus some problems take SI units and others are

presented with no units.

3.4.1 Membrane-bending interaction

Clamped-hinged deep circular arch subject to point load

This example has been considered by a number of authors [50–52, 127] and the exact

solution based on the Kirchhoff-Love theory is given by DaDeppo and Schmidt [128].

We use smooth manifold basis functions to uniformly discretise the arch into 40 finite

elements. The finite element mesh consist of 43 nodes including two ghost nodes, as

explained in Section 2.2.

Figure 3.5: Problem description of a deep circular arch with a fixed load applied at the
crest.
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(a) (b)

Figure 3.6: (a) Comparison of numerical results of the deep circular arch until buckling.
(b) Obtained deformed shapes of the deep circular arch at different load
levels.

3.4.2 Membrane-bending-torsion interaction

Cantilever 45-degree bend subject to a tip fixed load

This example has been considered by several authors [50,52,100,129,130] under a fixed

tip load. This example not only considers large deformations of the rod but also takes

into account the interactions between membrane, bending and torsion actions during

deformations. Moreover, it includes additional terms from initial curvature and hence

provides a good benchmark to test the accuracy of the developed spatial rod model.

We use smooth manifold basis functions to uniformly discretise the arch into 20 finite

elements. The finite element mesh consist of 23 nodes including two ghost nodes, as

explained in Section 2.2.
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Figure 3.7: Problem description of a tip loaded 45o degree cantilever.

(a) (b)

Figure 3.8: (a) Comparison of numerical results of the tip loaded 45o cantilever. (b)
Deformed shape of the cantilever at different load levels.

Helicoidal spring subject to a tip fixed load

We consider another membrane-bending-torsion interaction problem. However, the ref-

erence geometry of the helicoidal spring is now in full 3D unlike the tip loaded planar

cantilever problem. We use the geometry, material and cross-section properties used

in [52, 131] and compare the numerical results of the tip displacement by referring to
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Bauer et al. [52]. A uniform finite element mesh of 40 elements and 46 nodes (includ-

ing six ghost nodes) is used for the isogeometric analysis using quintic B-spline basis

functions. We define the initial geometry as

X(θ1) = {10 sin(2πθ1), 10 cos(2πθ1), 20θ1}, θ1 ∈ [0, 1] (3.119)

Figure 3.9: Problem description of a tip loaded spatial helicoidal spring

(a) (b)

Figure 3.10: (a) Comparison of numerical results of the tip loaded spatial helicoidal
spring. (b) Deformed shape of the spring at different load levels.
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3.4.3 Benchmark problems

A few carefully selected benchmark example problems are numerically solved and pre-

sented below following the same illustration framework introduced in Section 3.4. Each

problem has its uniqueness and addresses at least one of the key features in rod kine-

matics, formulations, geometry and implementation aspects.

Clamped-clamped shallow circular arch subject to a midspan point load

This example has been considered by a number of authors [52,100,129] hence represents

a well-established benchmark example. A shallow arch is deformed using displacement

control method and analysed for nonlinear buckling and post-buckling behaviour. Nu-

merical results show an excellent accuracy to the reference solution of Lo [100], and

the comparison is presented in Figure 3.10a. We conclude that post-buckling behaviour

can correctly be analysed with the presented spatial rod formulations. We use smooth

manifold basis functions to discretise the arch into 20 equal finite elements. The finite

element mesh consist of 23 nodes including two ghost nodes, as explained in Section

2.2.

Figure 3.11: Problem description of a shallow circular arch with prescribed vertical dis-
placement control at the crest.
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(a) (b)

Figure 3.12: (a) Comparison of numerical results of the shallow arch in the post-buckling
regime. (b) Deformed shapes of the shallow arch at different load levels.

Cantilever beam subject to a follower tip load

This problem allows us to demonstrate the inclusion of non-zero external force tangents

in the Hessian. Formulations given in Equations (3.96), (3.97) and (3.98) apply here,

where the load magnitude (||Fa3||) is attached to the deformed normal vector a3. There-

fore, during deformation, load follows the nodal rotation to maintain the 90o angle with

the cantilever tip. This problem has been analysed by many authors [50,127], and in this

thesis, our numerical solution is compared with the results of Simo et al. [50]. We use

cubic B-spline basis functions to discretise the cantilever into 20 equal finite elements.

The finite element mesh consist of 23 nodes including two ghost nodes.
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Figure 3.13: Problem description of the cantilever subject to a follower tip load.

(a) (b)

Figure 3.14: (a) Comparison of numerical results of the cantilever subject to a follower
tip load. (b) Deformed shape of the cantilever at different load magnitudes.

Hinged beam

This problem is used to elaborate on the linear isogeometric analysis using non-smooth

manifold basis functions introduced in Section 2.2.2. We introduce the non-smooth

feature, a hinge in this problem, by mapping the C0-smooth point (see Figure 2.17)

of non-smooth manifold basis functions onto the physical domain where the hinge is

71



located. We use smooth and non-smooth manifold basis functions to discretise the

hinged beam into 40 equal finite elements. Moreover, the finite element mesh consist of

43 nodes including two ghost nodes.

Figure 3.15: Problem description of a hinged beam subject to uniform loading

(a) (b)

Figure 3.16: (a) Error rate and convergence of the L2 norm of transverse displacement
errors. (b) Deformed shape of the hinged beam under uniform loading.

Figure 3.16a shows the convergence rate of using manifold basis functions in isogeometric

analysis. We obtained near optimum convergence rate of 2.82. Manifold basis functions

being rational polynomials (due to normalisation) is identified as the reason for this sub-

optimal convergence rate. Optimum convergence rate for this type of analysis would be

p+ 1(= 3), where p is the local polynomial degree [132].
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Figure 3.16b depicts the deformed shape of the hinged beam. As expected, the deformed

shape consists of a non-smooth (C0) point that corresponds to the hinge location. More-

over, vanishing moments at the hinge can be visually verified by observing linearly varied

displacements close to the hinge. We derive the following displacement functions from

the statically determinant problem in Figure 3.15, for the L2 error calculation to plot

3.16a. This L2 norm error is defined as
√∫

Ω
(w − wh)2dΩ/

∫
Ω
w2dΩ where w is the trans-

verse displacement, (•)h denotes the finite element solution and Ω denotes the physical

domain of the beam body.

w(x) =


qLx3

24EI
− qx4

24EI
+
qL(x− L)3

4EI
0 ≤ x ≤ 1.5L

qL(x− 1.5L)3

24EI
− q(x− 1.5L)4

24EI
+
qL3(x− 1.5L)

12EI
− 5qL4

128EI
1.5L < x ≤ 2L .

Rod contacts

It is vital to numerically prove the accuracy of the rod contact models discussed in

Section 3.3. Here, two examples are presented, each from point-to-point and line-to-

line contact schemes to verify the accuracy of the implemented nonlinear rod contact

models.

Point-to-point contacts

We use the large sliding problem considered in Weeger et al. [107] to verify the point-

to-point contact simulations. Two equally long perpendicular cantilevers, as shown in

Figure 3.17, are initially defined to be in contact (g = 0), and rod 2 is loaded 10 times

more in global y direction compared to the loading in global z direction. The reason

for this loading is twofold. First, heavy loading in y is to study the change in contact

locations when the rod 1 undergoes large sliding deformation. The second reason is

to check the stability of the formed contacts so that rods will neither separate nor

penetrate into each other. Rod numbering is denoted by a superscript and contact force

components are identified as cf ix,
c f iy,

c f iz, where i is the rod number. Moreover, two

cantilevers are initially in contact at the parametric coordinates θI = 0.7 and θJ = 0.5

respectively. We use cubic B-spline basis functions to discretise each beam into 20 equal

finite elements. Moreover, for each beam, the finite element mesh consist of 23 nodes

including two ghost nodes.
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Figure 3.17: Problem description of two perpendicular cantilevers undergoing a large
sliding deformation. Initial geometry is given in grey and deformed geom-
etry is shown with its displacement magnitude contours.

Figure 3.18: Comparison of numerical results of two perpendicular cantilevers undergo-
ing a large sliding deformation.
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Line-to-line contacts

Two, initially in contact, parallel rods problem in Meier et al. [81] is considered to verify

the implemented line-to-line contact model. In this problem, two cantilever rods are

twisted by angle 4π from their free ends. Here, the displacement controlled twisting

makes the centres of the free ends of cantilevers to follow a circular path but line-to-

line contacts enforce the rods to deform into a double helix. Free end rotations are

depicted in Figure 3.19 and colour contours refer to the magnitude of displacements.

This problem is provided for visual verification. Hence, details of the material and

cross-section properties are not presented. Readers are invited to read Meier et al. [81]

for further details. We use cubic B-spline basis functions to discretise each beam into

20 equal finite elements. Moreover, for each beam, the finite element mesh consist of 23

nodes including two ghost nodes.

Figure 3.19: Two initially straight and parallel rods in contact. Displacement-controlled
twisting into a double-helical shape.
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This chapter formed the bedrock of simulating spatial rods undergoing large deforma-

tions. In this thesis, this rod model furnishes the basis of simulating microscale RVEs in

Chapters 5 and 6. Next, for a twoscale homogenisation strategy, we need to implement a

macroscale simulator. Considering our applications, we aim to present a Kirchhoff-Love

thin-shell solver for the analysis of linear anisotropic thin-shells. Thus, Chapter 4 is

reserved to supplement the rod-based microscale RVEs of Chapter 3 with macroscale

thin-shells to complete the twoscale homogenisation scheme.
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4 Anisotropic Kirchhoff-Love

thin-shells

4.1 Preliminaries

Shells are common structural elements used in diverse engineering applications, including

pressure vessels, submarine hulls, wings and fuselages of aeroplanes, structures of nuclear

power plants, liquid storage tanks and many other structures. They are also found in

nature in the form of skulls, eggs and sea-shells. Manifold uses of shell structures natu-

rally posit the need for accurate shell analysis tools. These analysis tools originate from

the theory of shells which can be recognised as a generalisation of plate and membrane

theories [133]. In the analysis of shells, 3D continuum mechanics is reduced to its 2D

variant by neglecting through the thickness deformations [56, 64, 133, 134]. Hence, the

thickness of a shell is taken as a constant when integrating stress resultants along the

thickness direction. Classical Plate Theory (CPT), or widely known as Kirchhoff-Love

(KL) theory, formed the basis for many shell theories. KL theory, in contrast to shear

deformable shell theories, assumes zero transverse shear deformations and became the

tool of choice in the analysis of thin-shells. The First-order Shear Deformation Theory

(FSDT) and Third-order Shear Deformation Theory (TSDT) became popular in the

analysis of thick-shells where the former assumes a constant transverse shear and the

latter allows the variation of transverse shear through the shell thickness. FSDT, com-

monly referred to as Mindlin-Reissner plate theory, and TSDT, commonly referred to as

Reddy’s plate theory, are applicable when the ratio between the span of plate-bending

curvature and the plate thickness is approximately 20 : 1 or less.

In this thesis, we use the membrane variant of the KL theory of shells because the textile

applications considered in Chapter 6 can be classified as thin-membranes. Section 4.2

presents general formulations of a finite deformable shear-free thin-shell. There is a
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plethora of research articles and books in relation to shear-deformable shells. Interested

readers are kindly invited to refer to Long et al. [56], Reddy [133], Timoshenko [134].

4.2 Review of thin-shell mechanics

4.2.1 Kinematics of shells

Figure 4.1: Kinematics of shells in curvilinear coordinates. Ai and ai represents non-
orthogonal covariant basis vectors in reference and deformed configurations
respectively [45].

In this section, first, a summary of the kinematics and deformation of the Kirchhoff-

Love shells is presented. The finite deformation of a shell is characterised by using the

energy functional approach. The corresponding finite element weak form is derived by

employing the principle of virtual work. This section closely follows the rigorous formu-

lations presented by Cirak et al. [53] and Long et al. [56]. For in-depth discussions on

finite deformable shell formulations using differential geometry, readers are encouraged

to refer to Ciarlet [42] and Wriggers [119].

As previously mentioned, the KL theory of shells is one of the simplest theories to

describe shell deformations. It is a direct extension of the Euler-Bernoulli beam theory

to plates. Similar to Euler-Bernoulli beam theory, KL theory assumes that the mid-

surface of the shells remain normal and that there are no through-the-thickness shear

deformations. This assumption is generally valid for thin-shells [133].
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Table 4.1: Notations and definitions

Greek indices take values 1, 2
Latin indices take values 1, 2, 3

•,i comma denotes differentiation with respect to θi

aα =
∂x

∂θα
covariant base vectors for θ3 = 0

aα =
∂θα

∂x
contravariant base vectors for θ3 = 0

gi =
∂r

∂θi
covariant base vectors

gi =
∂θi

∂r
contravariant base vectors

gij = gi · gj components of covariant metric tensor
gij = gi · gj components of contravariant metric tensor
gi = gijg

j covariant and contravariant base vectors relationship
gi = gijgj summed over j = 1, 2, 3

a3 =
a1 × a2

|a1 × a2|
orthonormal vector to the shell mid-surface

In KL formulation of shells, the geometry and kinematics of the shell are approximated

by considering only the shell mid-surface. Figure 4.1 summarises the kinematic descrip-

tion of the shell in the curvilinear coordinates. For notation consistency, this section uses

uppercase and lowercase letters to represent quantities in the reference and deformed

configurations, respectively. In Figure 4.1, Ai and ai denote the orthogonal covariant

basis vectors; ei represents the orthonormal Cartesian basis; and X and x are position

vectors of an arbitrary mid-surface material point. Then, the position vector r of points

belonging to the shell of thickness t is written as,

R(θ1, θ2, θ3) = X(θ1, θ2) + θ3A3(θ1, θ2), −t/2 ≤ θ3 ≤ t/2 (4.1a)

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2), −t/2 ≤ θ3 ≤ t/2 , (4.1b)

where A3 and a3 are the unit normal vector of the shell and θ = (θ1, θ2, θ3) is a para-

metric coordinate. Using the kinematic definitions in Table 4.1, deformation gradient F
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can be written as,

F =
∂r

∂R
=
∂r

∂θi
∂θi

∂R
= gi ⊗Gi . (4.2)

Green-Lagrange strain tensor Eij in curvilinear coordinates is defined as,

E =
1

2
(F TF − I)

=
1

2
(gij −Gij)G

i ⊗Gj

= EijG
i ⊗Gj , (4.3)

where the covariant metric tensors gij and Gij are defined as,

gij = gi · gj, Gij = Gi ·Gj, (4.4a)

gα =
∂r

∂θα
= aα + θ3a3,α , Gα =

∂R

∂θα
= Aα + θ3A3,α (4.4b)

x,α = aα =
∂x

∂θα
, X ,α = Aα =

∂X

∂θα
. (4.4c)

For KL thin-shells, following kinematic relations hold in both configurations.

a3 =
a1 × a2

||a1 × a2||
, a3 · a3 = 1 , aα · a3 = 0 . (4.5)

Using the relations in Equations (4.3), (4.4) and (4.5) and dropping the higher-order

terms, the Green-Lagrange strain tensor is written as,

Eαβ = ααβ + θ3βαβ (4.6)

ααβ =
1

2
(aα · aβ −Aα ·Aβ)

βαβ = aα · a3,β −Aα ·A3,β ,

where ααβ and βαβ are the membrane and bending strains respectively. The simplified

expression for the Green-Lagrange strain tensor in Equation (4.6) implies that the defor-

mation of a shell is completely characterised by the deformation of the shell mid-surface.

Moreover, ααβ represents the stretching of the shell mid-surface, i.e. in-plane strains and

βαβ captures the change of shell curvature, i.e. out-of-plane strains. Strains Eαβ furnish

the kinematic description to define the plane stress state of a thin-shell. Therefore, terms

Eα3, E3α naturally vanish to satisfy the plane stress state.
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Now we write the deformed configuration of a shell given by,

x(θ1, θ2) = X(θ1, θ2) + u(θ1, θ2) , (4.7)

where u represents the spatial displacement of the shell mid-surface. Differentiating

Equation (4.7) with respect to θα and substituting the resulting expressions for x,α ≡ aα
in Equation (4.6) leads to,

ααβ =
1

2
(u,α.Aβ +Aα · u,β) (4.8a)

βαβ = −u,αβ ·A3+

1

||A1 ×A2||
[u,1 · (Aα,β ×A2) + u,2 · (A1 ×Aα,β)] +

a3 · aα,β
||A1 ×A2||

[u,1 · (A2 ×A3) + u,2 · (A3 ×A1)] . (4.8b)

For additional details of derivations, see Ciarlet [42]. The transformed expression, in

Equation (4.6), for ααβ and βαβ, and hence the Green-Lagrange strain tensor Eαβ is now

expressed in terms of the known reference configuration and the unknown displacements

which need to be solved. This is evident as the strain components in Equation (4.8) are

furnished by the derivatives of displacements and covariant basis vectors of the reference

configuration. To avoid tedious equations, the term a3 · aα,β in Equation (4.8b) is left

unaltered.

4.2.2 Discretisation of the shell energy functional

In this section, we aim to arrive at the discretised weak form of the shell at equilibrium.

This is achieved by first deriving the weak form of a shell using the principle of virtual

work. Constitutive relations are then integrated to relate the stresses to strains. Lastly,

we discretise the shell weak form in a linearised algebraic domain.
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Weak form of equilibrium equations

We consider the total potential energy of a hyperelastic shell to derive the shell equilib-

rium equations in the weak form, given by,

Π(r) = Πint(r) + Πext(r) , (4.9)

where Πint is the internal and Πext is the external potential energy. At equilibrium, the

first variation of the potential energy is zero, which can be written concisely as,

δΠ = δΠint + δΠext = 0 . (4.10)

The internal potential energy is the integral of the strain energy density W . For a

hyperelastic material, strain energy density is a function of the Green-Lagrange strain

tensor E [116]. Therefore, we can write the internal potential energy as,

Πint =

∫
Ω

∫ t
2

− t
2

W (E) j dθ3 dΩ . (4.11)

Here, the Jacobian j, takes into account the curvature of the shell in the integration

across the thickness and takes the form,

j =
|(G1 ×G2) ·G3|
|(A1 ×A2) ·A3|

. (4.12)

The variation of the internal energy can be derived using the identity δ(•) = ∂(•)
∂(?)

δ(?) +
∂(•)
∂(∗)δ(∗)+ · · · . And knowing that for a hyperelastic material internal energy is a function

of E, we write,

δΠint =

∫
Ω

∫ t
2

− t
2

∂W (E)

∂E
: δEj dθ3 dΩ =

∫
Ω

∫ t
2

− t
2

S : δEj dθ3 dΩ , (4.13)

where S is the second Piola-Kirchhoff stress tensor defined for plane stress conditions.

After introducing the Green-Lagrange strain in Equation (4.6), the preceding equation

takes the form,

δΠint =

∫
Ω

∫ t
2

− t
2

S : (δα+ θ3δβ)j dθ3 dΩ . (4.14)
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Next, the membrane (or stretching) stress and moment resultants are defined by further

simplifying the Equation (4.14). These can be written as,

n =

∫ t
2

− t
2

S j dθ3 , (4.15a)

m =

∫ t
2

− t
2

θ3S j dθ3 . (4.15b)

Equations (4.15) and (4.14) enable us to write the variation of the internal energy as

an integral over the shell mid-surface as,

δΠint =

∫
Ω

(n : δα+m : δβ) dΩ . (4.16)

Recall from Equation (4.7) that the independent variable in the thin-shell model is

the mid-surface position vector x. Therefore, the variation of the internal energy with

respect to x is given by,

δΠint =

∫
Ω

(
n :

∂α

∂x
+m :

∂β

∂x

)
· δx dΩ . (4.17)

Next, we derive the variation of the external potential energy of the shell. The boundary

of the shell consists of the top (θ3 = t/2), bottom (θ3 = −t/2) and lateral surfaces (Γ)

of which, for brevity, only the lateral surface [−t/2, t/2]×Γ is considered. The external

potential energy of the shell with the external body force vector b and the external

lateral surface traction vector f is given by,

Πext = −
∫

Ω

∫ t
2

− t
2

b · (x+ θ3a3)j dθ3 dΩ−
∫

Γ

∫ t
2

− t
2

f · (x+ θ3a3)j dθ3 dΓ , (4.18)

where the kinematic assumption in Equation (4.1b) has been used. Furthermore, sim-

plifying Equation (4.18), we arrive at the following external force (p, r) and moment
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resultants (q, s).

p =

∫ t
2

− t
2

bj dθ3 q =

∫ t
2

− t
2

θ3bj dθ3 (4.19a)

r =

∫ t
2

− t
2

fj dθ3 s =

∫ t
2

− t
2

θ3fj dθ3 . (4.19b)

Thus, the variation of the external energy with respect to the mid-surface position x

can be expressed as,

δΠext = −
∫

Ω

(
p+ q

∂a3

∂x

)
· δx dΩ−

∫
Γ

(
r + s

∂a3

∂x

)
· δx dΓ . (4.20)

Summation of the variations of the internal (4.17) and external (4.20) energy eventually

yields the weak form of the shell equilibrium equation,(
∂Πint(x)

∂x
+
∂Πext(x)

∂x

)
· δx = 0 . (4.21)

Equilibrium Equation (4.21) is also referred to as the principle of virtual work or principle

of minimum potential energy.

Constitutive equations

We consider the generalised linear anisotropic material constitutive model in the Voigt

notations as, 

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66





ε1

ε2

ε3

2ε4

2ε5

2ε6


, (4.22)

where the Voigt indices 1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13 and 6 = 12 expands

Equation (4.22) to the standard fourth order tensor notation. For instance, fourth order

tensorial quantity C1111 is written as C11 following the Voigt notation [136].

Equation (4.22) is commonly referred to as the generalised Hooke’s law [71]. It linearly
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maps strains (εkl) to stresses (σij) using a linear material constitutive model Cijkl. Hence

we can expand Equation (4.22) in index notations as,

σij = Cijklεkl . (4.23)

A tensor of any order, has its components attached to a tensorial basis. We can write

the fourth-order material tensor C in the orthonormal Cartesian basis ei as,

C = Cijklei ⊗ ej ⊗ ek ⊗ el . (4.24)

But the same tensor can be written with respect to a different orthonormal basis ēi as,

C = Cijklei ⊗ ej ⊗ ek ⊗ el = C̄pqrsēp ⊗ ēq ⊗ ēr ⊗ ēs . (4.25)

Evidently, we can transform Equation (4.25) using standard tensor algebra to express

the components C̄pqrs as,

C̄pqrs = (ēp ⊗ ēq) : C : (ēr ⊗ ēs)

= (ēp ⊗ ēq) : Cijklei ⊗ ej ⊗ ek ⊗ el : (ēr ⊗ ēs)

= (ēp ⊗ ēq) : Cijklei ⊗ ej(ek · ēr)(el · ēs)

= Cijkl(ei · ēp)(ej · ēq)(ek · ēr)(el · ēs) (4.26)

where ēp is the dual vector of ēp [135]. Equations (4.26) reveal a pivotal basis conversion

which is used to map material tensor from global Cartesian coordinates to local covariant

base vectors as shown in Figure 4.1.

To this end, using Equations (4.3) and (4.25) we can derive the second Piola-Kirchhoff

stress tensor for small strains, in the convected coordinates as,

S = C : E (4.27)

= [ĈijklGi ⊗Gj ⊗Gk ⊗Gl] : [EklG
k ⊗Gl]

= ĈijklEklGi ⊗Gj(Gk ·Gk)(Gl ·Gl)

= ĈijklEklGi ⊗Gj

= SijGi ⊗Gj , (4.28)

where the dual vector identity Gk ·Gk = δkk = 1 in Table 4.1 has been used to simplify
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the terms. Also, Equation (4.28) provides the second Piola-Kirchhoff stress tensor in

the covariant basis.

Next, using Equations (4.25) and (4.26) we express the material tensor to facilitate the

constitutive relation in convected coordinates as,

Ĉpqrs = Cijkl(ei ·Gp)(ej ·Gq)(ek ·Gr)(el ·Gs) . (4.29)

At this juncture, we have gathered material tensor C and kinematic relations S, E

in convected coordinates for a general linear anisotropic material. However, it is not

convenient to operate on the implicit form of the material tensor as given in Equation

(4.29). Therefore, first, we introduce an isotropic material to derive an explicit expression

to Equation (4.29). We write the material tensor for an isotropic solid [136] using the

Voigt notation as,

C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0

1− 2ν 0 0

sym. 1− 2ν 0

1− 2ν


, (4.30)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively. Components

in Equation (4.30) can be written in a compact form as,

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (4.31)

where λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
are the Lamé material parameters [136].

Now Equation (4.31) is substituted in Equation (4.29) to arrive at the material tensor

components in convected coordinates as given in Equation (4.32). Detailed algebraic

formulations are not presented here. Interested readers are kindly referred to Ciarlet et

al. [42] and Itskov [137].

Ĉijkl = λGijGkl + µ(GikGjl +GilGjk) . (4.32)

For thin-shells, it is reasonable to assume plane stress conditions during deformation [55].
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Therefore, material components in Equation (4.32) are further simplified, respecting

plane stress conditions as,

Ĉαβγδ =
Eν

(1− ν2)
GαβGγδ +

E

2(1 + ν)
(GαγGβδ +GαδGβγ) . (4.33)

Discretisation of the shell weak form

The proposed kinematics, in Equations (4.8), contains the second-order derivatives of

the deformed shell mid-surface. Hence, smooth, or more formally H2-conforming [56],

shape functions are necessary for a robust finite element discretisation. In this thesis,

we use subdivision surfaces for the discretisation of the shell weak form. Further details

on the subdivision surfaces can be found at Farin et al. [66]. Moreover, additional

information regarding the isogeometric analysis implementations can be found at Cirak

et al. [53,55,138]. Adhering to aforementioned prerequisites, we can write the discretised

shell mid-surface configurations and displacement degrees of freedom as,

X(θ1, θ2) =
NSF∑
I=1

N I(θ1, θ2)XI (4.34a)

x(θ1, θ2) =
NSF∑
I=1

N I(θ1, θ2)xI (4.34b)

u(θ1, θ2) =
NSF∑
I=1

N I(θ1, θ2)uI , (4.34c)

where NSF is the number of vertices in one-neighbourhood of an element and N I are

the subdivision shape functions.

In the discretised domain we can write the discretised residual force vector f̂ Ires using

Equation (4.21) for an arbitrary δxI as,

f̂ Ires =

(
NEL∑
K=1

∂ΠK
int

∂xI
+

NEL∑
K=1

∂ΠK
ext

∂xI

)
= 0 , (4.35)

where NEL denotes the total number of elements in the discretised shell domain. More-

over, the foregoing summations in Equation (4.35) imply the presence of a mapping
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between the global (mesh-wide) and local (element-specific) vertex numbering. For ex-

ample, the internal force contribution of an element K to a vertex I is computed with,

f̂int
I K =

∫
ΩK

(
n :

∂α

∂xI
+m :

∂β

∂xI

)
dΩ . (4.36)

To this end, we can replace Equations (4.27), (4.33) in Equation (4.15) to explicitly

write the internal stress resultants as,

n =
Et

1− ν2
Hα (4.37a)

m =
Et3

12(1− ν2)
Hβ , (4.37b)

where H takes the form,

H =

(G11)2 νG11G22 + (1− ν)(G12)2 G11G12

(G22)2 G22G12

sym. 1
2
[(1− ν)G11G22 + (1 + ν)(G12)2]

 . (4.38)

It should be noted that Voigt notation has been used in vectorising the stress resultants

and strains in Equation (4.37).

A standard Newton-Raphson iterative solver is used to find the equilibrium solution of

the discretised shell. This solution process closely follows the steps given in Section

3.2.2, hence not repeated herein. For detailed and rigorous analytical expressions for

Hessian terms, readers are encouraged to refer to the doctoral theses of Majeed M. [45]

and Long Q. [64].

4.3 Linear material anisotropy of thin-shells

The motivation for presenting the formulations in Section 4.2 is twofold. First, the

principle of virtual work leads to analytically derive the internal forces of a hyperelastic

material, as given in Equation (4.17). This derivation, however, comes one step before

assigning a material constitutive model to the system. As shown in Equation (4.29), we

can incorporate different material models to the structural system. Such incorporation

can be directly exploited to consolidate the linear material response from computational

homogenisation of thin-shell structures.
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Secondly, and most importantly, this step would be the entry point of the data-driven ho-

mogenised material response, arriving from data-driven multiscale modelling, explained

in Section 5.3.

4.3.1 Orthotropic material symmetry

A material is said to be orthotropic if it is characterised by symmetry with respect to

three mutually-orthogonal planes, by reflections from which material properties remain

unchanged. The axes normal to these planes are called principal material directions.

This leads to 9 independent material parameters to uniquely define an orthotropic solid.

The set of all orthogonal mappings that do not violate the material symmetry forms a

group referred to as symmetry group [139,140]. Let li ·lj = δij be unit base vectors in the

principal material directions. Then, the orthotropic symmetry group can be described

by structural tensors defined as,

Li = li ⊗ li, i = 1,2,3. (4.39)

Using the above structural tensors Li along with the St.Venant-Kirchhoff material pa-

rameters aij (aij = aji, i 6= j) and bij (bij = bji, i 6= j), we can define the hyperelastic

strain energy W as a function of the Green-Lagrange strain tensor as [137],

W (E) =
1

2

3∑
i,j

aij Tr(ELi) Tr(ELj) +
3∑

i,j 6=i

bij Tr(ELiELj) . (4.40)

One could interpret the terms ELi as oriented strain tensors along the material direc-

tions. The constitutive relations and elastic moduli corresponding to the strain energy

function, in Equation (4.40), are of the form,

S =
∂W

∂E
=

3∑
i,j

aij Tr(ELi)Lj + 2
3∑

i,j 6=i

bijLiELj, (4.41)

C =
∂2W

∂E2
=

3∑
i,j

aijLi ×Lj + 2
3∑

i,j 6=i

bij(Li⊗Lj)S . (4.42)

where (•)S denotes a symmetrisation operator on fourth-order tensors [137] and oper-

ators × and ⊗ in Equation (4.42) are defined for second-order tensors A, B and C
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as,

(A×B) : C = (B : C)A A⊗B : C = ABC . (4.43)

Material parameters aij and bij can be easily understood when we overlap the principal

material directions li with the Cartesian base vectors ei, i.e. li = ei. Then we obtain

the text-book definition of an orthotropic solid constitutive model given by,

C =



E1
1− ν23ν32

∆
E1
ν12 + ν32ν13

∆
E3
ν31 + ν32ν21

∆
0 0 0

E2
1− ν31ν13

∆
E2
ν23 + ν13ν21

∆
0 0 0

E3
1− ν12ν21

∆
0 0 0

b23 0 0

sym. b13 0

b12


, (4.44)

where ∆ = (1−ν12ν21−ν32ν23−ν13ν31−2ν12ν23ν31). We identify 9 independent material

parameters [136]; three Young’s moduli (E1, E2, E3), three Shear moduli (b23, b13, b12)

and three Poisson’s ratios (ν23, ν13, ν12). Moreover, we can relate the material param-

eters aij in Equation (4.40) by comparing entries in Equation (4.44) as aij = Cij for

i, j = 1, 2, 3.

Recalling an orthotropic material is a generalised representation of a transversely isotropic

and an isotropic material, we can easily derive the following expressions using Equations

(4.42) and (4.44).

Isotropic materials

For isotropic materials, we set E1 = E2 = E3 = E, ν23 = ν13 = ν12 = ν and obtain

b23 = b13 = b12 = E
2(1+ν)

. This relation was derived earlier in Section 4.2.2. Therefore, to

avoid repetition, detailed formulations will not be presented here. However, expressions

for transversely isotropic material are presented as following.

Transversely isotropic materials

In the case of transversely isotropic material symmetry, all directions orthogonal to

the principal material one (l1) become equivalent. This equivalence can be taken into
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account by setting,

E2 = E3, ν12 = ν13, ν21 = ν31, b12 = b13, b23 =
E2

2(1 + ν23)
. (4.45)

where the five independent material parameters can be identified as E1, E2, ν12, b12, b23.

Interestingly, the same constitutive equation is presented in a compact form in the basis

ei [141]

Cpqrs = λδpqδrs + µT (δprδqs + δpsδqr) + η1 (δpqlrls + δrslplq)

+ (µL − µT ) (δqslplr + δqrlpls + δpslqlr + δprlqps) + η2l
plqlrls

(4.46)

where principal material direction one is expressed dropping the index as l(= l1). More-

over, lp refers to the pth component of the vector l. Five independent material parameters

are identified as λ, µT , µL, η1, η2. To get a clearer picture we can express Equation (4.46)

in the Cartesian basis by writing l = e1 = [1, 0, 0].

C =



(λ− 2µT + 4µL + 2η1 + η2) λ+ η1 λ+ η1 0 0 0

λ+ 2µT λ 0 0 0

λ+ 2µT 0 0 0

2µT 0 0

sym. 2µL 0

2µL


(4.47)

Orthotropic materials

A major drawback of integrating an orthotropic material model into a curvilinear coor-

dinate system exists due to the existence of three different vector bases: global Cartesian

(ei), local convected (Gi) and material principal directions (li). Therefore, material rep-

resentations in Equations (4.42) and (4.44) pose as bottlenecks to proceed with deriva-

tions in the convected coordinate system. For an isotropic material, for its simplicity, an

elegant analytical expression is formulated as given in Equation 4.32. This basis incon-

sistency issue is addressed by, first expressing the orthotropic material model in a more

concise form, like Equation (4.46) for transversely isotropic materials. Secondly, basis

conversions given in Equation (4.29) are performed algorithmically at every integration

point of each shell element.

91



Now we continue from Equation (4.44) to derive a compact form, similar to Equation

(4.46), for orthotropic materials. This is accomplished in the Cartesian basis, after some

linear algebraic simplifications of Equation (4.42) as,

Cpqrs = a11 l
p
1l
q
1l
r
1l
s
1 + a22 l

p
2l
q
2l
r
2l
s
2 + a33 l

p
3l
q
3l
r
3l
s
3

+ a12 (lp1l
q
1l
r
2l
s
2 + lp2l

q
2l
r
1l
s
1) + a13 (lp1l

q
1l
r
3l
s
3 + lp3l

q
3l
r
1l
s
1) + a23 (lp2l

q
2l
r
3l
s
3 + lp3l

q
3l
r
2l
s
2)

+ 2b12 (lp1l
r
1l
q
2l
s
2 + lp2l

r
2l
q
1l
s
1) + 2b13 (lp1l

r
1l
q
3l
s
3 + lp3l

r
3l
q
1l
s
1) + 2b23 (lp2l

r
2l
q
3l
s
3 + lp3l

r
3l
q
2l
s
2) ,

(4.48)

where shear moduli entries are restructured to maintain the symmetry of terms Cpqrs.
Similar to transversely isotropic materials, lp1 refers to the pth component of the principal

material direction l1. For instance, setting li = ei we arrive at,

C1111 = 14a11 + 04a22 + 04a33

+ a12(1202 + 0212) + a13(1202 + 0212) + a23(0202 + 0202)

+ 2b12(1202 + 0212) + 2b13(1202 + 0212) + 2b23(0202 + 0202)

= a11 .

Derivation of the compact Equations (4.46), (4.48) is important for the algorithmic

implementation of transversely isotropic and orthotropic shells. Compact equations not

only reduce the complex tensor algebra on structural tensors but also open the possibility

to analytically express the basis conversions according to Equation (4.29). Moreover,

compact equations intuitively reveal the dependency of principal material directions on

the material constants aij and bij. Material tensor is further simplified for plane stress

conditions of orthotropic materials. Detailed derivations of this formulations are given

in Jones M. [136].

4.3.2 Model verification

We consider the analytical solution derived by Dobyns et al. [142], for simply supported

plates, to verify and study the convergence of the results with the proposed solution.

First, we discuss the analytical formulations derived by Dobyns et al. [142] in a gen-

eral context. Next, we define the problem description and solve it using the analytical

expressions by Dobyns et al. [142] and the proposed method.
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Analytical solution of a simply supported orthotropic square plate

For consistency, in this short section, we use similar notations used in Dobyns et

al. [142].

Equations of motion for orthotropic plates developed by Whitney and Pagano [143],

including initial stress resultants N0
x , N0

y and a foundation stiffness K, take the form,

D11ψx,xx +D66ψx,yy + (D12 +D66)ψy,xy − κA55ψx − κA55w,x +mx = Iψ̈x (4.49a)

D22ψy,yy +D66ψy,xx + (D12 +D66)ψx,xy − κA44ψy − κA44w,y +my = Iψ̈y (4.49b)

κA55ψx,x + (κA55 +N0
x)w,xx + κA44ψy,y + (κA44 +N0

y )w,yy + pz +Kw = Pẅ , (4.49c)

where w is the z direction displacement and ψx and ψy are the shear rotations in x and

y directions respectively. Partial differentiation with respect to x or y is denoted by a

comma while differentiation with respect to time is denoted by a dot. Moreover, pz,

mx and my are the distributed loads on the plate. Also, κ is a shear correction factor

commonly taken as π2/12 (or 5/6). Aij and Dij are material parameters given by,

(Aij, Dij) =

∫ h/2

−h/2
Qij(1, z

2) dz i, j = 1, 2, 6 (4.50a)

Aij =

∫ h/2

−h/2
Cij dz i, j = 4, 5 (4.50b)

(P, I) =

∫ h/2

−h/2
ρ(1, z2) dz , (4.50c)

where Qij are reduced in-plane stiffnesses and Cij are transverse shear stiffnesses.

Simply supported boundary conditions for a rectangular plate of uniform thickness h

with dimensions a and b take the form,

w = ψx,x = 0 at x = 0, x = a (4.51a)

w = ψy,y = 0 at y = 0, y = b . (4.51b)

For a static load, solutions to equation (4.49) subjected to boundary conditions in equa-
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tion (4.51) are given by,

Ψx = Amn cos(mπx/a) sin(nπn/b) (4.52a)

Ψy = Bmn sin(mπx/a) cos(nπn/b) (4.52b)

W = Cmn sin(mπx/a) sin(nπn/b) , (4.52c)

with the loading function given by,

pz = qmn sin(mπx/a) cos(nπn/b) (4.53)

where qmn are the terms of a Fourier series representation of the load. Substituting

equations (4.52), (4.53) into the equations of motion (4.49) produces,L11 L12 L13

L12 L22 L23

L13 L23 L33



Amn

Bmn

Cmn

 =


0

0

qmn

 , (4.54)

where

L11 = D11(mπ/a)2 +D66(nπ/b)2 + κA55 L12 = (D12 +D66)(mπ/a)(nπ/b)

L22 = D66(mπ/a)2 +D22(nπ/b)2 + κA44 L13 = κA55(mπ/a)

L33 = (κA55 +N0
x)(mπ/a)2 + (κA44 +N0

y )(nπ/b)2 +K L23 = κA44(nπ/b) .

Solving equation (4.54) for Amn, Bmn and Cmn we get,

Amn =
(L12L23 − L22L13)qmn

det
, Bmn =

(L12L13 − L11L23)qmn
det

, Cmn =
(L11L22 − L2

12)qmn
det

,

where ‘det′ is the determinant of the matrix in equation (4.54).

Problem description: A simply supported square plate of uniform thickness 10−5mm,

with dimensions a = b = 10mm, was applied a pressure load as defined in equation

(4.53) for m = n = 1 and q11 = 10−10N/mm2. Following material parameters (units in

N/mm2) were used both in obtaining the analytical solution and finite element solution.

Moreover, a 20× 20 structured grid was used as the quadrilateral mesh for this problem
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and subdivision shape functions of order three were used as the basis functions.

a11 = 10005.40 a12 = 21.323 a13 = 3.748 a22 = 101.286 a23 = 3.551

a33 = 10.125 b12 = 745.0 b23 = 154.0 b13 = 234.0 (4.55)

Moreover, we set li = ei.

Figure 4.2: Convergence of the normalised L2 norm error of the simply supported or-
thotropic square plate under a uniform pressure load

Figure 4.2 shows the convergence rate of the normalised L2 norm error of the simply

supported orthotropic square plate. Normalised L2 error is defined as ||w − wh||L2 =√∫
Ω

(w − wh)2dΩ/
∫

Ω
w2dΩ. Optimal convergence has been attained by the h-refinement

of the structured mesh used in this analysis.

This thesis does not intend to discuss further on linear material models (for linear ho-

mogenisation) as the primary aim was set to analyse textile structures using nonlinear

computational homogenisation. Instead, this chapter is concluded by presenting the
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following examples to showcase different aspects of the linear anisotropic thin-shell for-

mulations.

4.3.3 Additional examples

In this section, additional examples are provided to showcase different aspects of the

formulations derived in Section 4.3. All the following examples use the material con-

stants given in Equation (4.55). A comparatively higher value for a11 in Equation (4.55)

is chosen intentionally to highlight the alignment of displacement contours along l1 di-

rection.

Simply supported square plate

The same square plate used in the previous example is considered here. A 20×20 struc-

tured grid was used as the quadrilateral mesh for these problems and subdivision shape

functions of order three were used as the basis functions. Moreover, principal material

directions were chosen as li = ei for the first two problems and l1 = [1/
√

2, 1/
√

2, 0],

l2 = [−1/
√

2, 1/
√

2, 0], l3 = [0, 0, 1] for the third problem in Figure 4.3. Figure 4.3

illustrates the importance of the principal material directions of orthotropic materials

on the deformed configuration. For instance, observe the deformations in Figures 4.3b

and 4.3c. Under the same loading (mid-point concentrated load), square plate deflects

completely distinct to each other. Figure 4.3b deforms predominantly in l1(= e1) di-

rection simply due to the higher stiffness entry a11 given in Equation (4.55). Similarly,

deformation in Figure 4.3c results as a higher resultant stiffness in l1 direction. However,

for uniform pressure loading, deformation dependency on principal material directions

is insignificant (see Figure 4.3a).
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(a) (b) (c)

Figure 4.3: Displacement contours of three identical orthotropic plates under different
loading and principal material directions. (a) Uniform pressure loading with
li = ei (b) Mid-point concentrated force with li = ei (c) Mid-point concen-
trated force with l1 = [1/

√
2, 1/
√

2, 0], l2 = [−1/
√

2, 1/
√

2, 0], l3 = [0, 0, 1]

It is straightforward to implement orthotropic materials with fixed principal material

directions in most of the existing commercial FEA software. However, the use of com-

mercial software, in the presence of complex orthotropic material directions, might limit

the users’ scope of analyses or require significant manual intervention. Our implementa-

tions can easily incorporate such complex material directions, as shown in Figure 4.4.

Figure 4.4a shows the spatially varying in-plane orthotropic principal directions l1 and

l2, which follow tangential and radial directions of a circle, respectively. Hence, the third

material direction is taken as l3 = [0, 0,−1]. We use a 20 × 20 structured grid as the

quadrilateral mesh for this problem and subdivision shape functions of order three as

the basis functions. For clarity, only one circular material curve is shown in Figure 4.4a.

Figures 4.4b and 4.4c clearly illustrate the displacement contours and their alignment

with the material principal directions.

(a) (b) (c)

Figure 4.4: Deformation of a complex orthotropic plate subject to a mid–point out of
plane loading. (a) Problem description. Displacement magnitude contours
in (b) top view and (c) side view.
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Parachute canopy-like structure

Next, we simulate a parachute canopy-like structure to visualise the deformation under

uniform internal pressure of 10−10MPa. As shown in Figure 4.5a, hemispherical canopy

is fixed at 8 different locations of the open edge of the base and the pressure is applied

on the interior side of the canopy. The base diameter was chosen as 10m and canopy

thickness was set to 10−5m. Moreover, principal material directions of the canopy, l1,

l2 and l3, were assigned as radial, polar and azimuthal directions of the hemisphere,

respectively.

(a) (b) (c)

Figure 4.5: Deformation of an orthotropic hemispherical canopy-like structure subject
to a pressure loading. (a) Problem description where principal material di-
rections are chosen to be in radial, polar and azimuthal directions of the
hemisphere. Displacement magnitude contours in (b) exterior and (c) inte-
rior of the canopy.

High-fidelity models for microscale and macroscale simulations have been introduced

respectively in Chapters 3 and 4. Now we use Chapter 5 to kinematically assemble

them to arrive at a data-driven computational homogenisation framework for textile

materials. A neat extension to textile material design is also proposed in the forthcoming

chapter. One highlight of the subsequent chapter is that it proposes a statistical learning

technique that outshines the conventional computational homogenisation schemes in

many aspects.

98



5 Computational homogenisation

This chapter begins with a discussion on conventional multiscale techniques and their

evolution. It also includes a discussion on the strengths and weaknesses of conventional

multiscale methods. In Section 5.1, fundamental principles of multiscale methods have

been briefly discussed for a twoscale problem. This includes formulations of a con-

ventional computational homogenisation scheme to attain the equilibrium solution by

averaging field variables over a boundary value problem domain. Next, the latest devel-

opments in multiscale methods will be discussed to merit their strengths to mitigate the

weaknesses identified in conventional computational homogenisation schemes.

Section 5.2 is reserved for introducing readers to machine learning. Starting with gen-

eral facets of machine learning, this section is concluded with detailed discussions and

formulations concerning Gaussian Process Regression (GPR) Bayesian machine learning

technique. In this thesis, we use the term ‘machine learning’ to refer to Bayesian machine

learning. Also, we drop the slight differences between machine learning and statistical

learning and use the two interchangeably. The next section elaborates on the proposed

data-driven homogenisation technique, highlighting the merits of data-driven methods

to mitigate the weaknesses mentioned in Section 5.1. Section 5.3 also discusses the im-

plementation details of the proposed scale transition framework, error and sensitivity

analyses. Chapter 5 is concluded with a proposed framework for data-driven material

designing under the domain of computational homogenisation. This is identified as a

neat extension to the proposed data-driven homogenisation strategy.

For fibre-based periodic structures, like woven and knitted textiles, Chapter 5 blends

the models introduced in Chapters 3 and 4 elegantly using GPR machine learning.

Intuitively, applications of this nature are not limited to technical textiles, but can

be used in the homogenisation of 3D printed lattices, textile composites and digitally

interlooped structures.
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5.1 Conventional multiscale modelling

For the clarity of the upcoming discussions, we establish the following abbreviations,

notations and definitions given in Table 5.1.

Table 5.1: Abbreviations, notations and definitions

(•)M quantity in Macroscale
(•)m quantity in microscale
V0 volume in the reference configuration
∇0m gradient operator with respect to reference microscale configuration
AI Artificial intelligence
RQ Rational Quadratic covariance function
SE Squared Exponential covariance function

5.1.1 Preliminaries

Modern multiscale methods have deep-rooted in powerful state-of-the-art nonlinear com-

putational techniques addressing scientific and engineering problems of different scales.

Multiscale methods gained increasing popularity in the past few decades due to well-

understood scale transitions and properly developed fundamental principles on the in-

trinsic roles of each scale. Multiscale methods, in general, aim to predict the macroscopic

behaviour of engineering materials through a systematic and consistent modelling of the

fundamental mechanics and physics of underlying microstructures. These microstruc-

tures can be of different scales. A proper understanding of the microscale behaviour,

evolution, and mechanical response of materials is critical in modelling such microstruc-

tures. Applications of multiscale methods are diverse, but certainly not limited to: het-

erogeneous solids [39,144], complex fluids [145], microfluidics [146], heat transfer [147] ,

anisotropic electrical conductivity [148] and neuroscience [149].

Accurate coupling of different scales, respecting the mechanics and compatibility con-

ditions, lies at the core of multiscale strategies. A number of methods have been pro-

posed to achieve this. Homogenisation, a common reference in mechanics communi-

ties [38,39,150–152] also termed coarse-graining in the physics community [153], plays a

major role in plethora of multiscale methods. In this thesis, we interchangeably use the

terms homogenisation and multiscale modelling by dropping the distinctions between
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them. Ivo Babuska, in 1976, originally coined the term homogenisation which essen-

tially is based on averaging theorems between the different scales. Original works of

homogenisation date back to more than a century when the interest for micromechanics

of heterogeneous material became prevalent. Voigt (1887), Sachs (1928), Reuss (1929)

and Taylor (1938) led the early steps in homogenisation schemes, and significant con-

tributions were later added by Eshelby (1957), Kroner (1958), Hashin and Shtrikman

(1963), Hill (1965), Mori and Tanaka (1973) and many others [154].

Different classifications have been suggested to categorise multiscale methods. One clas-

sification divides the manifold multiscale methods as concurrent, hierarchical and hybrid

methods [39, 155]. In this thesis, and also the method of choice in the mechanics com-

munity, we focus on the hierarchical multiscale methods. In the hierarchical methods,

the scales are coupled in a hierarchical manner, which implies that different scales are

considered and linked in the same part of a domain. The hierarchical link is usually es-

tablished through volume averaging of field variables [39], and different scales are solved

in parallel to arrive at the global equilibriums in all scales. Moreover, this thesis fo-

cusses only on twoscale problems where two distinct scales are named as macroscale and

microscale (or finescale). On a big picture, the hierarchical link for general twoscale

problems follows the traditional loop strategy as depicted in Figure 5.1.

Figure 5.1: Conventional computational homogenisation scheme for a twoscale problem.
FM, PM and CM are macroscale deformation gradient, First Piola-Kirchhoff
stress and material constitutive tensor, respectively.
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Next, a general twoscale problem is formulated to familiarise the reader with the first

principles of computational homogenisation. Table 5.1 summarises some of the com-

monly used notations and definitions in this chapter. Moreover, for brevity, detailed

derivations of certain formulations have been intentionally omitted in this thesis. In-

terested readers are kindly invited to refer to Geers et al. [38, 39, 150, 156] for further

details.

5.1.2 Twoscale problem

Macroscale problem

At the macroscopic scale, in the absence of body forces, momentum balance can be

expressed as the divergence of the first Piola-Kirchhoff stress tensor P as [38],

∇M · P T
M = 0. (5.1)

A constitutive relation between the stress and kinematic quantities needs to be postu-

lated for the completion of the macroscale problem given in Equation (5.1). In Section

4.2, we formulated equations required to completely solve the kinematics of thin-shells

by assuming a linear isotropic material model. However, for materials such as com-

posites, textiles, glass, biological tissues and polymers, not only the material models

become nonlinear and anisotropic but also tend to be locally heterogeneous. A con-

ventional computational homogenisation scheme, as shown in Figure 5.1, plays a vital

role in tackling these issues and proven to be exceptionally effective [39]. In a broad

view, computational homogenisation technique systematically extracts the constitutive

response numerically from rigorous computations of a microstructural Representative

Volume Element (RVE) to solve the macroscale equilibrium equation.

Deformation gradient FM is the macroscale quantity that departs from the macroscale

as an input to the microscale boundary value problem. Therefore, Equation (5.1) is

written in terms of the first Piola-Kirchhoff stress tensor, which is the energy conjugate

of the deformation gradient. To this end, the relationships between the commonly used
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stress tensors take the forms [116,120],

P = JσF−T (5.2a)

S = JF−1σF−T (5.2b)

P = FS , (5.2c)

where P , S and σ are first Piola-Kirchhoff, second Piola-Kirchhoff and Cauchy stress

tensors, respectively. Moreover, J is the Jacobian determinant and F is the deformation

gradient.

Microscale problem

An appropriate RVE, capable of capturing relevant microscale kinematic fluctuations,

should be selected to kinematically couple with the macroscale. This, however, should

respect the separation of scales principle, such that the selected RVE should be finer

than the characteristic length of the relevant macroscopic field variation, but sufficiently

larger than microfluctuations [39]. With a characteristic RVE in hand, next steps involve

deriving expressions to relate the microscale deformation gradient to the macroscale

deformation gradient. Herein, we use the Taylor expansion to express variations in an

arbitrary macroscale position vector. This position vector is denoted as X and x in the

reference (or undeformed) and deformed configurations, respectively.

The Taylor expansion of the nonlinear deformation map takes the series form as given

in Equation (5.3). This expansion has been supplemented by an additive component

w, that can be interpreted as the microstructural contribution on the macroscale. Con-

sidering the first two terms on the right-hand side of Equation (5.3) lead to first-order

computational homogenisation whereas taking more than two terms yield the expansion

of a higher-order computational homogenisation strategy.

∆x = w + FM ·∆X +
1

2
∆X · (∇M · FM) ·∆X + · · · · · · (5.3)

In this thesis, we resort to the first order computational homogenisation and therefore

Equation (5.3) takes the truncated form,

∆x = w + FM ·∆X . (5.4)
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Prior to establishing the relationship between macroscale and microscale deformation

gradients, it is important to discuss the boundary enforcement of RVEs. These boundary

conditions are specifically designed to treat microfluctuations w in Equation (5.4).

Microscale RVE boundary conditions

A solution to the microscale boundary value problem is attained after the compatible

enforcement of boundary conditions of the RVE. Figure 5.2 is a 2D schematic of a gener-

alised RVE which is used to discuss the enforcement of boundary conditions. Moreover,

Γ refers to the RVE boundary and the subscripts T, B, L, R refer to Top, Bottom, Left

and Right, respectively. Boundary nodes are labelled in roman numerals.

Figure 5.2: Schematic of a generalised RVE

We identify three main boundary enforcement techniques commonly used in the com-

putational homogenisation communities.

� Displacement boundary conditions: This sets the microfluctuations at the

RVE boundary to zero. Thus, equation (5.4) simplifies to,

∆x = FM ·∆X . (5.5)

This relation also means that the linear mapping of the macroscopic deformation

gradient is applied over the RVE and solely governs the positions of the RVE

boundary. In the literature, this is known as the Taylor (or Voigt) assumption [38].
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� Traction boundary conditions: PM is prescribed on the RVE based on Sachs (or

Reuss) assumption. But this is not widely used in computational homogenisation

as it leads to unsatisfactory results [39].

� Periodic boundary conditions: Considering the local periodicity of a RVE,

periodic boundary conditions are written as,

x+
m − x−m = FM · (X+

m −X−m) . (5.6)

Equation (5.6) requires the microfluctuations wm and the normal vectors at the

boundary to be anti-periodic. Hence we write,w+
m = w−m and n+

m = n−m

5.1.3 Scale transitions

Interactions between the two scales occur at two different levels of the computational

homogenisation process. First, macro-micro transition, where a macroscale quantity

(usually FM) departs from the macroscale to the microscale devises the boundary value

problem at the microscale. Secondly, in micro-macro transition, the stress resultants

(usually PM) and their tangents are transferred from microscale to macroscale to com-

plete the cyclic solution process as illustrated in Figure 5.1. In literature, this is also

known as the handshake or coupling process [18,38].

Macro-Micro scale transition

The most commonly used scale transition to establish the macro-to-micro coupling is the

kinematical averaging relation. It requires the volume averaged microscale deformation

gradient tensor Fm, to be equal to the macroscale deformation gradient tensor FM,

which takes the form,

FM = Fm =
1

V0m

∫
V0m

FmdV . (5.7)

Microscale deformation gradient in Equation (5.7) is further expanded using Equation

(5.4) and simplified using the divergence theorem to arrive at the following relation.

1

V0m

∫
V0m

FmdV0m = FM +

∫
Γ0m

w ⊗ nmdΓ . (5.8)
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Thus, comparing the equations (5.7) and (5.8), it is evident that, the second term on the

right-hand side of equation (5.8) should vanish consistently based on the contributions

from microfluctuations w. It has been proven that the use of any boundary conditions

enlisted in section 5.1.2 will satisfy this requirement [38,39].

Micro-Macro scale transition

The micro-macro scale transition relation is usually established based on the Hill–Mandel

condition or macrohomogeneity condition [157]. This condition requires the volume

average of the virtual of work performed on the microscale RVE to be equal to the

variation of local work on the macroscale. Formulated in terms of work conjugates F

and P , the Hill–Mandel condition reads,

1

V0m

∫
V0m

Pm : δF T
m dV = PM : δF T

M . (5.9)

Substituting Equation (5.8) in (5.9) for microscale deformation gradient tensor, and

using the divergence theorem, macroscale first Piola-Kirchhoff stress tensor is written

as,

PM =
1

V0m

∫
Γ0m

pm ⊗XmdΓ (5.10)

where pm = Pm · nm . Pleaser refer to Geers et al. [39] for the rigorous derivations.

Furthermore, using the following identity and the divergence theorem, the boundary

surface integral of equation (5.10) can be transformed into a volume integral as given in

Equation (5.11).

∇0m · (P T
m ⊗Xm) = (∇0m · P T

m )⊗Xm + Pm · (∇0mXm) = Pm

where ∇0mXm = I and ∇0m · P T
m = 0 in the absence of body forces of the RVE.

PM =
1

V0m

∫
V0m

PmdV (5.11)

Thus, based on the Hill–Mandel energy conservation relation, the macroscale first Pi-

ola–Kirchhoff stress tensor can simply be identified as the volume average of the mi-

croscale first Piola–Kirchhoff stress tensor, as given in Equation (5.11).
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Extraction of the material constitutive model

To solve the nonlinear macroscale problem in Equation (5.1), it requires to compute the

tangents of internal forces with respect to strain components at every integration point.

This requires the extraction of, not only the macroscopic stress tensor PM, but also

the material tangent matrix CM (see micro-macro transition in Figure 5.1). In linear

computational homogenisation, it is not necessary to compute the material tangents

at every integration point, as the linearity priori assumes the material tangent to be

constant at any material point in the macroscale. In this case, we can use the linear

anisotropic material models introduced in Section 4.3. In computational homogenisation

literature, such constant material tangent matrices are abbreviated as ABD stiffness

matrices [57–59,158]. In a 6×6 ABD matrix, 3×3 sub-stiffness-matrices A, D and B stand

for membrane, bending and coupling between membrane and bending, respectively.

Extraction of the material tangent matrices has been approached using a forward dif-

ference method by Miehe [159] and Nadler et al. [18]. Moreover, schemes that employ a

direct condensation of the constrained degrees of freedoms are considered to extract the

(integration) point-wise material tangent matrices [38,39,156,160,161]. Detailed discus-

sions on these methods are not presented here as we employ a data-driven technique in

Section 5.3 to extract the stresses and material tangent matrices.

5.1.4 Recent developments

In the past few years, significant progress had been made in bridging the mechanics of

materials into other disciplines, e.g. downscaling to materials science or upscaling to

structural engineering. Also, upon the rapid technological developments in 3D printing

and CNC, engineers look for more advanced and optimised structures to achieve time

and cost savings. A few of these structures would include lattices [34], bio-inspired

structures [162] and 3D printing of polymers onto textiles [163]. Alongside these techno-

logical advancements, we notice some improvements in multiscale modelling techniques

to handle the complexity of such structures.

Damanpack et al. [34] and Ptochos et al. [164] compare and validate homogenised unit

cell response of a lattice structure to that of a large scale experimental results from

3D printed lattices. Their motive was not to seamlessly integrate the macroscale to
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microscale, but to experimentally validate the nonlinear multiscale response to experi-

mental results. Ahmadi et al. [165] experimented on open-cell porous biomaterials made

of diamond lattice unit cells. They used Euler-Bernoulli and Timoshenko beam theories

to validate them in a finite element environment.

On a broader topic, research works of Weeger et al. [1], Dinh et al. [20], Vassiliadis

et al. [114], Kueh et al. [58], Nadler et al. [18] and Nilakantan et al. [166] fall under

computational homogenisation of technical textiles. Some of these works predict the

mechanical response of a textile RVE and validate against corresponding experimental

results [20, 58, 114]. They do not aim to seamlessly couple the macroscale with mi-

croscale in a nested form. However, the coupling between macroscale and microscale

can be handy in most cases when one needs to consider local enrichments, multiphase

microstructures and testing of RVE parameters [39]. For this coupling, Miehe [159] and

Nadler et al. [18] used a forward difference technique to combine the two scales whereas

Weeger et al. [1] used a B-spline surface parameterisation technique to homogenise the

constitutive behaviour of knitted textiles.

Based on the underlined theory, computational homogenisation can be classified as linear

and nonlinear. In linear homogenisation, the coupling between two scales is achieved

simply by formulating the ABD stiffness matrix from RVE simulations [57–59, 158].

Such ABD matrices are subsequently used in the macroscale simulations to couple the

macroscale strains to stress resultants. In nonlinear homogenisation, however, scales

are coupled at every integration point in the macroscale domain. Due to the complexity

and higher computational costs involved in nonlinear homogenisation, researchers aim to

simplify the material models by introducing material model parameterisations [1,21].

The latest addition to the family of multiscale modelling techniques comes from the

works of Bessa et al. [61, 167] and Liu et al. [168] where data-driven techniques have

been explored within the domain of nonlinear computational homogenisation. In this

thesis, we closely follow such data-driven techniques to implement a multiscale modelling

framework for plain-woven and weft-knitted textiles.

5.2 Gaussian Process Regression

From a historical point of view, one can argue for significant distinctions in statistical

modelling, machine learning and artificial intelligence (AI). However, with the evolution
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of data science, we can see the overlaps and relations of each of these key terms. In a big

picture, we see machine learning is one of the biggest subsets of AI. Statistical modelling

departs the problem with a known model, to be trained using the available data to solve

the problem. However, in machine learning, model selection is crucial as the problem

at hand does not reveal any information about the model. Therefore, machine learning

uses the available data to train a model first and then to solve the problem. This relation

is illustrated in Figure 5.3.

Figure 5.3: Statistical modelling versus Machine learning

In this chapter, we do not intend to discuss about AI as it is not directly relevant

to the context of this thesis. However, a broad overview is presented in Section 5.2.1

about machine learning, highlighting the latest developments and motivations to include

machine learning under the domain of multiscale modelling. This broad discussion is

reserved for the readers coming from a non-data-science background.

5.2.1 Background

Machine learning, effortlessly, became a hot topic in the past decade, mainly due to

the rapid increase of computational capabilities to implement and optimise machine

learning algorithms. In addition, a wide range of applications in diverse industries such

as banking, retail, medical, defence, social media, and energy, not only made machine

learning the tool of choice to make predictions, but also attracted manifold research

communities to upgrade the current practices to the next level. The term Machine

learning was first coined by Arthur Samuel as the “Field of study that gives computers

the ability to learn without being explicitly programmed” where he studied machine

learning with the aid of playing checkers [169]. Later in 1997, Tom Mitchell provided a
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broad definition, widely quoted in the related communities as ”A computer program is

said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience

E” [170]. For detailed discussions on different aspects of machine learning and machine

learning algorithms, readers are encouraged to refer to Bishop [37], Goodfellow et al. [171]

and Rogers et al. [41].

To this end, some technical terms are listed as follows and used consistently throughout

this section. Most of these terms follow from its original meanings.

� dataset/database: a collection of many examples points. These example points

are also named data points.

� data point: one example point of a dataset.

� inputs: inputs are the independent variables of a dataset.

� output(s): output(s) is/are the dependent variable(s) in the dataset.

� features: features of a dataset refer to the different labels in the input space.

� targets: targets of a dataset refer to the different labels in the output space.

For instance, we denote a dataset as (xji ,y
k
i ) with j = 1, 2, 3, i = 1, 2, · · · , 100 and

k = 1, 2. We expand the dataset for clarity as

(xji ,y
k
i ) =



x1
1 x2

1 x3
1 y1

1 y2
1

x1
2 x2

2 x3
2 y1

2 y2
2

x1
3 x2

3 x3
3 y1

3 y2
3

...
...

...
...

...

x1
99 x2

99 x3
99 y1

99 y2
99

x1
100 x2

100 x3
100 y1

100 y2
100


(5.12)

Dataset in Equation (5.12) has 100 data points (i), 3 features (j), 2 targets (k) and

(100× 3 =) 300 inputs and (100× 2 =) 200 outputs.

Using intuitive examples, now we discuss each of these three components; Tasks (T),

Performance measures (P) and Experiences (E).
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Task - T

Machine learning automates the solution process of some problems (tasks) that are too

complex to be solved using fixed programs or human intervention. We formally introduce

a task as the activity that a machine learning algorithm learns to achieve. Some of the

commonly used machine learning tasks are listed below. For further applications of

machine learning tasks, readers are invited to refer to Goodfellow et al. [171].

Classification: Classification tasks require the computer program to specify which of k

categories some inputs belong into. Machine learning algorithm produces a function

f : Rn −→ {1, · · · , k}. Examples of classification tasks include object recognition [172]

and facial recognition tools in social media. Classification tasks are designed to produce

discrete outputs.

Regression: In regression type tasks, the computer program is required to output a

numerical value for a given input, i.e. f : Rn −→ Rm. Regression type tasks are

common in future predictions of energy usage, customer demand, insurance claims,

security pricing etc. Regression is the machine learning task used in this thesis in the

context of multiscale modelling.

Translation: Machine translation involves translating a series of symbols in one language

to a series of symbols of another language. This is widely used in the context of Natural

Language Processing (NLP) [173].

Anomaly detection: As the name implies, the computer program is intended to filter

unusual or atypical entries in a set of events or objects. One common application is

credit card fraud detection where unusual transactions are flagged automatically to

identify any abnormal purchases.

Performance measure - P

It is crucial to measure the performance of a machine learning algorithm quantitatively.

Usually, performance measures are task-dependent. For instance, the accuracy of a clas-

sification task is measured by the error rate as the expected 0−1 loss [171]. Mean Squared

Error (MSE) can be used as a performance measure for regression problems. Notwith-

standing the task-specific performance measures, any performance measure should be

tested on a set of data, that has not been seen by the machine learning algorithm, during
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the training process. At this juncture, we formally distinguish ‘model unseen data’ as

test data and ‘model seen data’ as training data. In literature, three distinct datasets

can be found namely training, validation and testing datasets. But in this thesis, the

distinction between validation and test datasets has been dropped for the explanation

purpose [61].

Experience - E

Machine learning algorithms are broadly categorised as supervised, unsupervised and

reinforcement learning [37,171,174,175]. These three categories control what the machine

learning algorithms are expected to experience during the learning process.

Supervised learning algorithms: experience a dataset containing features that already

have been associated with a feature label or a target label. For example, take Iris

dataset [176]. For each labelled length and width of sepals and petals, Fisher classified

iris plants into three different species.

Unsupervised learning algorithms: experience a dataset containing features but not ex-

plicitly labelled like in supervised learning. The aim is to learn the useful properties of

the structure of this dataset and to categorise or cluster similar data points.

Reinforced learning algorithms: experience an interaction with the environment and

learn by rewarding or punishing the output produced. This type of algorithms is used

in optimising the winning strategies of games like chess and checkers.

There are many machine learning algorithms, based on different underlying principles,

to learn from data and make predictions on unseen or new data points. These include,

but not certainly limited to linear regression, linear classification models, neural net-

works, kernel methods, sparse kernel machines, graphical models and mixture models.

Readers are recommended to read through Bishop [37] for clear, eloquent and descrip-

tive explanations on each of these methods. But in this thesis, attention is only given

to one of the commonly used Bayesian machine learning technique, Gaussian Process

Regression.

Gaussian process machine learning is also termed Kriging [61,167,177] in the literature

and has promising merits to be chosen over other machine learning techniques. These
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advantages include the ability to perform well with relatively smaller datasets, non-

parametric, well-established theoretical basis and less uncertain decisions required than

a neural network algorithm [174]. However, it suffers from large dimensionality issues

and inability to operate on relatively bigger datasets simply due to the expensive matrix

inverse computations. Aforementioned merits motivate the choice of using Gaussian

processes in this context due to the use of relatively smaller datasets and specificity of

the problem.

5.2.2 Gaussian Process Regression - A deep dive

First, for clarity, we present Table 5.2 that contains frequently used notations, abbrevi-

ations and definitions.

Table 5.2: Notations, abbreviations and definitions used in Gaussian Process Regression

GP Gaussian Process
n number of training data points
d number of input features
xp the pth training input data point
x∗ a testing data point

(•)∗ denotes a quantity in testing dataset
X the d× n design matrix of training inputs; X(q, p) = xqp
X∗ matrix of testing inputs
yp the pth training output (or target)
y∗ a target in the testing outputs
0 a vector of zeros

k(xp,xq) covariance (or kernel) function evaluated at xp and xq
K or K(X,X) n× n covariance (Gram) matrix where K(p, q) = k(xp,xq)
K∗ or K(X,X∗) n× n∗ covariance matrix between training and testing inputs
k∗ or k(x∗) n× 1 vector (K(X,x∗)) between training inputs

and one testing input
Θ vectorised hyperparameters
` lengthscale hyperparameter
σf scaling hyperparameter
σn variance of Gaussian noise

This section is reserved for introducing the readers to Gaussian Process Regression,

abbreviated as GPR consistently in the subsequent text. We closely follow the guidebook

of Rasmussen and Williams [174] in this section to establish the theoretical basis for
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explaining the role of GPR in multiscale modelling. We formally start with the definition

of a Gaussian process as, ‘A Gaussian process is a collection of random variables, any

finite number of which have a joint Gaussian distribution’ [174]. Moreover, a Gaussian

process is completely specified by its mean function and covariance function.

We define the mean functionm(x) and the covariance function k(x,x′) of a real Gaussian

process f(x) as,

m(x) = E[f(x)], (5.13)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] , (5.14)

where E[(•)] refers to the expected value of a quantity (•). Moreover, m(x) is further

decomposed as,

m(x) = nT(x)β (5.15)

with n = [n1(x), n2(x), · · · , nu(x)]T being u known functions. They can be constant,

linear, quadratic, exponential etc., functions. β = [β1, β2, · · · , βu]T is a vector of un-

known co-efficients to be determined.

We also write the covariance function k(x,x′) using a squared exponential (Gaussian

covariance) function as,

k(x,x′) = σ2
fexp

(
−1

2
(x− x′)TM(x− x′)

)
, (5.16)

where σ2
f is the scaling hyperparameter and M is a diagonal matrix containing the

lengthscale hyperparameters (`i i = 1, 2, · · · , n). We define Θ = {`i, σ2
f}T as a vector

containing lengthscale and scaling hyperparameters. Simplest form of M would be in the

form M = `−2I where ` is a constant, i.e. `i = `. Note that there are many choices for

covariance function. Gaussian covariance in Equation (5.16) is used only for introducing

GPR to the reader. Further details on possible covariance functions are discussed later

in this section.

Now we write the Gaussian process as,

f(x) ∼ GP (m(x), k(x,x′)) . (5.17)
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We briefly acknowledge the reader on the following definitions and relations used in

probability theories [171,178].

� Random variable: A discrete or continuous variable which takes up possible

values, whose outcomes are numerical from a random phenomenon. For instance,

a discrete random variable x can take x1 and x2 out of a random process.

� Joint probability: Consider two random variables x and y. Probability of having

x = x and y = y simultaneously (or jointly) is named the joint probability of two

random variables. We denote it as P (x = x, y = y) or P (x, y).

� Marginal probability: The probability of any single event occurring uncondi-

tioned on any other events. For instance, considering two discrete random variables

x and y, we write the marginal probability of x = x as P (x = x),

∀x ∈ x, P (x = x) =
∑
y

P (x = x, y = y) . (5.18)

� Conditional probability: The probability of some event, given that (conditioned

on) some other event has happened is called conditional probability. We write the

conditional probability of two random variables x and y as,

P (y = y|x = x) =
P (y = y, x = x)

P (x = x)
. (5.19)

� Bayes’ theorem: This describes the probability of an event, based on prior knowl-

edge of conditions that might be related to the event. We write the following based

on Equations (5.18) and (5.19),

P (y = y, x = x) = P (y = y|x = x)P (x = x) = P (x = x|y = y)P (y = y) (5.20)

=⇒ P (y = y|x = x) =
P (x = x|y = y)P (y = y)

P (x = x)
(5.21)

or =⇒ P (x = x|y = y) =
P (y = y|x = x)P (x = x)

P (y = y)
. (5.22)

where Equations (5.21) and (5.22) are two forms to interpret Bayes’ theorem.
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Prediction with noise-free observations

Now we move forward to an in-depth discussion on using GPR to train a model and

make predictions. Marginalisation property implied from the GPR definition in Equation

(5.17) leads us to write, for a general case,

y ∼ N (µ,Σ) , (5.23)

where µ is the vectorised mean and Σ is the covariance matrix of the normal distribution

N . Then Equation (5.23) must also satisfy y1 ∼ N (µ1,Σ11) with y1, µ1 and Σ11 being

relevant parts of y, µ and Σ, respectively.

Equation (5.15) revealed that the choice of mean function is arbitrary. To this end, we

assume a zero mean as a prior, and therefore, the joint distribution of training and test

outputs are written as,[
y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
, (5.24)

where we decompose the covariance matrix Σ in Equation (5.23) following the definitions

given in Table 5.2. We remind the reader on the following identity in relevance to

conditioning and marginalisation of joint distributions.[
x

y

]
∼ N

([
µx

µy

]
,

[
A C

CT B

])
(5.25a)

x ∼ N (µx, A) (5.25b)

x|y ∼ N (µx + CB−1(y − µy), A− CB−1CT) . (5.25c)

We can use Equation (5.25) directly on the joint distribution in Equation (5.24). More-

over, predictions based on the conditioning of the joint Gaussian prior distribution on

the observations and test inputs follows a Gaussian distribution similar to Equation

(5.25c) as,

y∗|X∗, X,y ∼ N (K(X∗, X)K(X,X)−1y,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)) .
(5.26)

Hence the best estimate for y∗ is the mean of the distribution (denoted as y∗) in Equation
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(5.26) given by,

y∗ = K(X∗, X)K(X,X)−1y , (5.27)

and the uncertainty of the estimate is given by the variance of the Gaussian distribution

as,

var(y∗) = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗). (5.28)

In the presence of noisy-observations, K(X,X) in Equations (5.24), (5.26), (5.27) and

(5.28) will simply be replaced by K(X,X) + σ2
nI where the independent observation

errors ε are assumed to be of a Gaussian distribution, i.e. ε ∼ N (0, σ2
nI).

Hyperparameter estimation

Equation (5.26) furnishes the Gaussian distribution of the predictions (conditioned on

the database). However, matrix K remains unknown because we did not specify the

hyperparameters of the covariance functions. For instance, squared exponential covari-

ance function given in Equation (5.16) has two hyperparameters σ2
f and ` that control

the entries in K. Hence, it is necessary to systematically arrive at the best possible

hyperparameters that will not overfit the trained GPR model. We use the Maximum

Log Marginal Likelihood (MLML) approach to obtain the optimum hyperparameters

that maximise the log marginal likelihood.

First, we establish the relationships between posterior, likelihood, prior and marginal

likelihood given by,

posterior =
likelihood× prior

marginal likelihood
, P (Θ|y, X) =

P (y|X,Θ)P (Θ)

P (y|X)
. (5.29)

To this end, we write the marginal likelihood using Equations (5.18) and (5.29) as,

P (y|X) =

∫
P (y|X,Θ)P (Θ)dΘ , (5.30)

where model parameters are conditioned on hyperparameters.

Marginal likelihood in Equation (5.30) can be further simplified in order to obtain an

analytically tractable form of the integral as follows [174]. This is achieved by first

taking the logarithm of the marginal likelihood function given in Equation (5.30) and
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simplifying the terms to arrive at,

log P (y|X) = −1

2
yTK−1y − 1

2
log|K| − n

2
log2π , (5.31)

where |K| denotes the determinant of K. Additionally, the term n
2
log2π in (5.31) is a

normalising constant that depends only on the size of the training database n.

Determination of the hyperparameters Θ departs from maximising the log marginal

likelihood as given in Equation (5.31). Gradient-based optimisation tools require the

partial derivatives of the log marginal likelihood with respect to hyperparameters. This

is written as,

∂

∂Θj

log P (y|X) =
1

2
yTK−1 ∂K

∂Θj

K−1y − 1

2
Tr

(
K−1 ∂K

∂Θj

)
=

1

2
Tr

((
ααT −K−1

) ∂K
∂Θj

)
where α = K−1y .

(5.32)

Note that computational complexity of training a GPR model lies on the inversion of

the Gram matrix K. Standard matrix inversion methods for n × n positive definite

symmetric matrices require time O(n3). Therefore, GPR machine learning is inefficient

in handling very large databases.

Covariance functions

The Gram matrix K, also referred to as the design matrix, requires a stringent require-

ment of being positive semidefinite [174]. Therefore, any arbitrary function of input pairs

x and x′ will not, in general, be a valid covariance (or kernel) function. We discuss, in

brief, the possible covariance functions that can be used to produce the design matrix

K. All covariance functions are broadly categorised as stationary and non-stationary.

A stationary covariance function is a function of x− x′. All other covariance functions

come under non-stationary covariance functions. Both stationary and non-stationary

covariance functions can be further divided into subcategories. However, we do not in-

tend to go into further details. Interested readers are invited to refer to Rasmussen and

Williams [174] for more information.

Now we start introducing some of the widely used covariance functions.
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Squared exponential covariance function: This was earlier introduced in Equation (5.16).

Squared exponential covariance function is infinitely differentiable and usually carries

two hyperparameters: lengthscale (`) and scaling (σ2
f ) hyperparameters.

The Matérn class of covariance functions: The Matérn class of covariance function is

stationary and identified as a generalization of the squared exponential covariance func-

tion. It has an additional parameter ν which controls the smoothness of the resulting

covariance function. We write the commonly used two forms of Matérn covariance func-

tions as,

kν=3/2(x,x′) = σ2
f

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
(5.33a)

kν=5/2(x,x′) = σ2
f

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
, (5.33b)

where r = |x − x′| and ν, `, σf are identified as the hyperparameters. Moreover,

Equations (5.33a) and (5.33b) are, respectively, at least once or twice differentiable.

A more general equation for Matérn class of covariance functions can be found in the

literature [174,175].

γ-Exponential covariance function: This family of covariance functions includes both

the exponential and squared exponential functions given by,

k(x,x′) = σ2
f (−(r/`)γ) 0 < γ ≤ 2 , (5.34)

where γ, ` and σ2
f are the hyperparameters.

Rational quadratic covariance function: The Rational quadratic covariance function can

be seen as a scale mixture (an infinite sum) of squared exponential covariance functions

with different characteristic lengthscales given by,

k(x,x′) = σ2
f

(
1 +

(x− x′)TM(x− x′)
2α

)−α
, (5.35)

where α > 0, ` and σ2
f are identified as hyperparameters of the rational quadratic

covariance function.

Squared Exponential-Sine covariance function: This is a popular choice in modelling

periodic functions and can be seen as a combination of sine and exponential functions.
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It takes the form,

k(x,x′) = σ2
fexp

[
−2 (sin(π/p ∗ r)/`)2] , (5.36)

where p > 0, ` and σ2
f are identified as hyperparameters of the squared Exponential-Sine

covariance function.

Dot-product covariance function: The dot-product covariance function is non-stationary

and takes the following form.

k(x,x′) = σ2
f (σ

2
0 + x · x′)p , (5.37)

where p > 0, σ2
0 and σ2

f are identified as hyperparameters of the dot-product covariance

function.

Different covariance functions mentioned above can be combined to form new covariance

functions that can be used in GPR. A more detailed discussion on this topic can be found

in Bishop [37].

Next, a comparative study is carried out to investigate the influence of covariance func-

tions on the prediction errors (see Figure 5.4). For this, a sample dataset from weft-

knitted textile microscale simulations has been used. Further details on the weft-knitted

fabric microscale simulations can be found later in Section 6.2. Furthermore, tabulated

results of generating Figure 5.4 and corresponding machine learning algorithm settings

can be found in Appendix A.2.1.

Additional details on database construction, mean squared error (MSE) calculations

and the use of scikit-learn library is provided in Section 5.3. Specifically, database

construction is given in Equation (5.46) and MSE of energy prediction is defined in

Equation (5.48).
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(a) (b)

Figure 5.4: Influence of covariance functions on the energy potential mean squared errors
of (a) training data and (b) testing data. RQ and SE are abbreviated,
respectively, for Rational Quadratic and Squared Exponential covariance
functions.

As we see from Figure 5.4 Matérn and squared exponential covariance functions tend to

converge better than the other two. Choice of covariance functions is purely governed

by the nature of application and type of data that forms databases.

Partial derivatives of the posterior mean

Many applications require the partial derivatives of predictions with respect to the input

variables. In the computational mechanics context of a hyperelastic material, predicted

strain energy (ψ) needs to be differentiated with respect to the Green-Lagrange strain

tensor (E) components to arrive at the second Piola-Kirchhoff stress tensor (S) compo-

nents. Moreover, because differentiation is a linear operation, a derivative of a Gaussian

process remains a Gaussian process [179].

Consider a single new data point as x∗. Thus K(X∗, X) matrix has one row and d

number of columns. The aim is to find the partial derivatives with respect to this new

test point x∗, so we have a closed-form equation for the first derivative of the posterior
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mean obtained in Equation (5.27).

∂y∗
∂x∗

=
∂

∂x∗

(
K(X∗, X)K(X,X)−1y

)
=
∂K(X∗, X)

∂x∗
K(X,X)−1y

(5.38)

To this end, we choose a squared exponential covariance function to derive the analyt-

ical partial derivatives of the predicted mean. This choice is justified by the following

reasons.

� Smoothness - Squared exponential covariance function is infinitely differentiable,

therefore very smooth.

� Analytically tractable - It is convenient to derive the compact forms upon differ-

entiation and integration.

� Widely used in literature - Many research communities use squared exponential

covariance functions [61,167,180,181].

� Accuracy - A good accuracy compared to other covariance functions. See Figure

5.4.

Now we write the vector k(x∗,xi) as,

k(x∗,xi) = σ2
fexp

(
−1

2
(x∗ − xi)TM(x∗ − xi)

)
, (5.39)

and its derivatives with respect to the new input x∗ as,

∂k(x∗,xi)

∂x∗
= −M(x∗ − xi)k(x∗,xi) . (5.40)

Substituting Equation (5.40) in Equation (5.38) produces the partial derivative of the

posterior mean y∗ with respect to x∗. This is written as,

∂y∗
∂x∗

= −M
[
X̂T
∗
(
k(x∗, X)T �K(X,X)−1y

)]
, (5.41)

where X̂∗ is given by [x∗ − x1,x∗ − x2, ......,x∗ − xn]T and � denotes an element-wise

product, also known as Hadamard or Schur product. That is, for two vectors of the
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same size (say N × 1), (a� b)i = aibi for i = 1, 2, · · · , N , where summation convention

is not implied over i.

Next, second-order partial derivatives are obtained following a similar manner. In a

computational mechanics context, these second derivatives are analogous to the fourth-

order material tangent tensor. That is, C = ∂ψ/∂E∂E. In addition, α = K(X,X)−1y

has been used henceforth to simplify the expressions as it is not a x∗ dependent. First,

for convenience, Equation (5.41) is expanded to arrive at,

∂y∗
∂x∗

= −M [(x∗ − x1)k(x∗,x1)α1 + . . .+ (x∗ − xn)k(x∗,xn)αn] . (5.42)

Now we differentiate Equation (5.42) to derive the second partial derivative of the pos-

terior mean as,

∂2y∗
∂x∗∂x∗

=
∂

∂x∗
[−MX̂T

∗
(
k(x∗, X)T �α

)
]

= −M

(
∂X̂T
∗

∂x∗

(
k(x∗, X)T �α

)
+ X̂T

∗
∂k(x∗, X)T �α

∂x∗

)
. (5.43)

Using the expanded Equation (5.42), same Equation (5.43) can be obtained, which looks

more elegant for algorithmic implementations.

∂2y∗
∂x∗∂x∗

= −M
∂

∂x∗
[(x∗ − x1)k(x∗,x1)α1 + . . .+ (x∗ − xn)k(x∗,xn)αn]

= −M

[
∂(x∗ − x1)

∂x∗
k(x∗,x1)α1 + (x∗ − x1)

∂k(x∗,x1)

∂x∗
α1 + . . . . . .

]
= −M [ Ik(x∗,x1)α1 − (x∗ − x1)⊗ (M(x∗ − x1))k(x∗,x1)α1 + . . . . . .]

= −M [(I− (x∗ − x1)⊗ (M(x∗ − x1))) k(x∗,x1)α1 + . . . . . .]

∂2y∗
∂x∗∂x∗

= −M
n∑
i=1

(I− (x∗ − xi)⊗ (M(x∗ − xi))) k(x∗,xi)αi . (5.44)
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5.3 Data-driven multiscale modelling

5.3.1 Scale transition framework

Figure 5.5: Data-driven multiscale modelling and material designing framework using
GPR machine learning
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Having discussed the basic principles of conventional multiscale modelling and GPR ma-

chine learning, now we amalgamate them to introduce a homogenisation technique (see

Figure 5.5) for the analysis of textile materials. The novelty in the proposed technique

can be identified as a neat extension to the recent work by Bessa et al. [61]. Bessa et

al. used neural networks in multiscale modelling and worked predominantly towards

the designing of material systems. Our work, first, includes a complete multiscale mod-

elling technique to simulate thin membranes. Here, we train a GPR model using a

response database constructed by microscale RVE simulations. This GPR model is later

integrated to our in-house thin-shell solver to simulate membranes in the macroscale.

Secondly, we embed non-deformation measures, i.e. geometric and material properties,

into the response database to enhance the flexibility and versatility of the proposed mul-

tiscale modelling technique. This eventually leads to a range of potential applications in

multiscale modelling and material systems designing. Figure 5.5 illustrates the proposed

data-driven homogenisation strategy.

In a big picture, as shown in Figure 5.5, we identify three main sub-processes in the

proposed multiscale strategy, namely: RVE response database construction; GPR Model

training and testing; Making predictions.

5.3.2 RVE response database construction

Development of a complete space-filling response database is pivotal in machine learning.

This is achieved by designing experiments to simulate microscale RVEs constrained by

predefine BVPs. These BVPs, as shown in Figure 5.5, has three main ingredients,

namely Geometric, Material and Deformation.

1. Geometric properties - Geometric properties include RVE spatial dimensions, yarn

cross-section properties (for fibre-based RVEs), initial curvatures (or angles), wavi-

ness parameters of sinusoidal RVEs etc. Care should be taken when there are

intrinsic relationships between two geometric properties. Geometric properties

govern the material design aspects of the proposed framework in Figure 5.5.

2. Material properties - Material properties of a RVE refer to the Young’s moduli

and Poisson’s ratios of a general heterogeneous linear material model. Material

nonlinearities can also be included in a systematic manner. Material properties

also govern the material design aspects of the proposed framework in Figure 5.5.
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3. Deformation states - Deformation states provide the basis of multiscale modelling.

Usually, deformation states are taken to be any strain tensor (small strain, Euler-

Almansi,logarithmic, Green-Lagrange), deformation gradient or a combination of

displacements and rotations. In this thesis, we use the deformation gradient to ap-

ply boundary constraints, as given in Equation (5.6), and compute Green-Lagrange

tensor components to construct the response database.

It is important to establish design domains to the aforementioned three ingredients of

RVE experiments. This ensures that the response database is well-defined and complete.

For instance, we consider two geometric, two material and three plane-stress Green-

Lagrange strain descriptors to construct a response database. Following the notations

in Table 5.1 and Figure 5.5 we write,

Gm =

G1
m G1

m ∈ [a1
m, b

1
m]

G2
m G2

m ∈ [a2
m, b

2
m]

(5.45a)

Mm =

M1
m = E E ∈ [105, 109]

M2
m = ν ν ∈ [0.0, 0.5]

(5.45b)

DM =


D1

M = E11 E11 ∈ [−0.5, 1.5]

D2
M = E22 E22 ∈ [−1.5, 1.0]

D3
M = E12 E12 ∈ [−0.5, 0.5],

(5.45c)

where positive am and bm (am < bm) bound the two geometric descriptors. Note that

the above values and descriptors are arbitrarily chosen and used only to elaborate on

the response database construction process.

Note: If we use only DM to construct the response database, this is equivalent to

data-driven computational homogenisation. Further expansion of the response database

domain (adding Gm, Mm) leads to data-driven homogenisation integrated to materials

system designing. The former is discussed in this section, and the latter is explored in

detail under Section 5.4.

At this juncture, we express the response databases for data-driven multiscale mod-

elling. As this decision is purely macroscale application-based, we resort to plane-stress

thin-shell mechanics introduced in Section 4.2.1 for the response database construction.

Hence, a plane-stress response database is defined as (xi, yi) where x = {E11, E22, E12}
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and y = ψ. In other words, we furnish in-plane strains and strain energy density (ψ) in

the construction of a response database. We use energy density as the target output for

energetic consistency of thin-shell mechanics. Moreover, the same choice allows us to

write the Second Piola-Kirchhoff stress tensor S = ∂ψ
∂E

and Material constitutive tensor

C = ∂S
∂E

.

5.3.3 GPR Model training and testing

GPR machine learning technique discussed in Section 5.2.2 is now used to train a GPR

model using a constructed response database. Python-based scikit-learn library [175] is

used for this purpose. Following steps were taken to complete the GPR model training

and testing process.

First, the response database used for plane-stress data-driven computational homogeni-

sation is succinctly written as,

DM =


D1

M = E11 E11 ∈ [Emin
11 , Emax

11 ]

D2
M = E22 E22 ∈ [Emin

22 , Emax
22 ]

D3
M = E12 E12 ∈ [Emin

12 , Emax
12 ] .

(5.46)

where (•)min and (•)max refer to the predefined minimum and maximum bounds of

a quantity (•), respectively. Values for these bounds are user-defined and the range

((•)max − (•)min) depends on the desired application.

GPR model training and testing: We start by randomly shuffling the data points in

the response database. Next, the response database is split into equal (approximately)

k folds for k fold cross-validation. Empirically proven values for k take values k =

5, 10 [182]. The special case of k = 1 is known as Leave One Out Cross-Validation

(LOOCV). As shown in Figure 5.5, k− 1 fold data from the randomly shuffled response

database is used to train a GPR model and the remaining fold, in turn, is used to test the

trained model. In simple terms, the process is repeated k times until every fold becomes

a test fold. In this thesis, we use k = 5. During this process, it is essential to establish

performance indicators to quantitatively and qualitatively assess cross-validation.
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Error estimates: We use Mean Squared Error (MSE) and co-efficient of determination

(R2) to quantify the accuracy of cross-validation.

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − yi)2

(5.47)

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (5.48)

where yi, ŷ and y stand for target output, predicted output and mean of the target

outputs, respectively. Furthermore, as stress is a tensorial quantity, we take the norm

of mean squared errors of individual stress components,

MSE(||S||) =

√
MSE2(S11, Ŝ11) + MSE2(S22, Ŝ22) + MSE2(S12, Ŝ12) . (5.49)

Hyperparameter tuning: Overfitting and underfitting are two of the most prevalent ma-

chine learning challenges [41, 171]. There are several ways to circumvent these two

challenges.

Overfitting occurs in analyses that regress too closely or exactly to a particular set of

data, and may therefore, fail to fit new data or predict future observations reliably. A

simple example would be to fit three (non-coincident) collinear points using a polynomial

of degree more than one. A quadratic or any higher degree polynomial can exactly

represent the given three points but the data, in reality, could be following a simple

linear model. Therefore, when a model is overfitted, we observe very low MSE and R2

close to 1 for the training dataset but not for the testing dataset.

In contrast, underfitting, as the name implies, refers to a model that does not fit well

even for the training data. Intuitively, underfitting occurs when the model cannot trace

the underlying trend of the training data. Imagine using a linear model to capture the

trend of a dataset that in reality follows a high-amplitude sinusoid. Underfitting always

leads to a comparatively higher MSE and near-zero R2 values for the training dataset.

Hyperparameter tuning keeps track for any occurrences of overfitting or underfitting.

From our experience, GPR models usually do overfit but not underfit. This happens

mainly due to the use of infinitely smooth squared exponential covariance functions.

Overfitting is triggered when hyperparameters reach their predefined lower bounds or

when the hyperparameter bounds are too wide. In addition to very low training errors

and high testing errors, overfitting is revealed when optimised hyperparameters and

128



MLML significantly differ in each fold of k fold cross-validations. When this happens,

the hyperparameter setting is revised so that overfitting is avoided in the final GPR

model.

5.3.4 Prediction

Lastly, the trained GPR model is used to make predictions based on new data points

departing from the macroscale problem. At the reference (stress-free) configuration, all

three strain components (zero in magnitude) will arrive at the trained GPR model to

predict the internal strain energy density, first Piola-Kirchhoff stress tensor and material

constitutive tensor. Likewise, at every load step and equilibrium iteration, the enlisted

strain components at integration points will communicate with the GPR model to make

predictions. This step is illustrated in Figure 5.5 as the third key step in the proposed

data-driven homogenisation technique.

Sampling of the input feature space is also important for the accurate GPR model

training, testing and prediction. This thesis investigates uniform and Sobol sequence

sampling methods where the latter is a quasirandom sampling technique [183].

Figure 5.6: Testing errors of the predictions using uniform and Sobol sampling methods.
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We use a set of microscale analyses from Section 6.2 to assess the influence from the

sampling technique on the GPR model training, testing and prediction. Figure 5.6

shows the comparison of the two sampling techniques. Sobol sequence sampling method

performs better for smaller databases in comparison to uniform sampling. However,

there is no convincing evidence to reject either of these two methods as they converge

similar to each other. This is mainly due to the non-existing redundancies in the input

variables. Random sampling is used to detect any redundant variables and, in the case

of strain components, it is certain that in-plane strains are independent. Therefore, we

observe similar errors in both sampling methods.

One of the main advantages of the proposed technique is its ability to operate off-line

from element-wise microscale simulations. As previously discussed, conventional multi-

scale strategies link every element of the macroscale to a microscale simulation, thus,

become computationally very expensive. The proposed data-driven method circumvents

this issue by simply feeding all macroscale strains into the trained GPR model and

extracting relevant quantities as GPR predictions.

5.4 Design of materials

Data-driven material design is proposed in this section as a neat extension to the pro-

posed data-driven multiscale modelling strategy in the previous section. As illustrated in

Figure 5.5 and given in Equation (5.45), we enhance the response database to accommo-

date material design parameters. In addition to the homogenised strains DM, we include

yarn material parametersMm and geometric parameters of RVEs, Gm, to construct the

response databases. However, certain prerequisites need to be satisfied when selecting

parameters for database construction. These constraints play a major role in developing

accurate response databases. Because, one would validate the numerical RVE response

against experimental measures, only for a fixed set of geometric and material parame-

ters. Therefore, any material design enhancements of the response databases might give

accurate-looking numerical solutions, but such enhancements may not be feasible from

a physical or manufacturing standpoint.
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5.4.1 Prerequisites

A set of constraints are identified as prerequisites to be satisfied in material designing

of woven and knitted textiles. These are enforced systematically so that the final GPR

models will produce accurate results and will not lead to any numerical instabilities in

the macroscale finite element analyses.

Penetrations/Collisions: Attention must be given to large self-collisions or yarn-to-yarn

contacts at the reference configurations. This might happen if one merely increases the

radius of yarns without considering the change of thickness of the RVE. Also, large initial

penetration depths will cause ill-conditioned constraint enforcements and lead to poor

convergence of RVE simulations.

Scalability: It is important to bring all the inputs to a comparable scale for numerical

stability. For instance, we will have strains usually within a range of 0.0 ≤ |Eij| ≤ 1.0.

In contrast, when we try to incorporate true values of yarn Young’s modulus (E ∼ 106)

into the response database, model training would find it difficult to converge due to

parameter scalability issues. Thus, we normalise varying values of Young’s moduli by a

base Young’s modulus, to scale the input parameters. Hence instead of using true values

of E, we define the normalisation as,

Escaled =
E

Ê
where Ê =

Emax + Emin

2
. (5.50)

In a similar way, we normalise the yarn radii R as Rscaled = R/R̂.

Above normalisations are not intended to be within a specified range. But sometimes it

is preferred to use a min-max normalisation to confine the normalised variable within a

given range. Moreover, Ê in Equation (5.50) can also be a user-defined reference Young’s

modulus.

Numerical stability: Whether we are using a data-driven approach or conventional mul-

tiscale modelling technique, eventually we resort to solving a linear system of equations.

Therefore it is crucial to keep the numerical stability of the linear solver during the

equilibrium iterations. We aim to maintain the stability of the solver by avoiding the

ill-conditioning of the system stiffness matrix and load vector [184]. At this juncture, a

set of cases are identified for the ill-conditioning of the system stiffness matrix and the

load vector.
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– Young’s moduli: In the case of woven fabrics, we can have two different yarns

in either direction. Minimum and maximum Young’s moduli should be chosen

carefully so that when we use the minimum of one yarn and the maximum of the

other we will not anticipate any numerical instabilities of the linear solvers.

– Yarn Radii: Yarn radii could also be a candidate to make the stiffness matrix ill-

conditioned. Unlike the Young’s moduli, the influence of yarn radii on the stiffness

matrix is not linear. Axial and bending stiffnesses are proportional to yarn radius

in the orders of two and four, respectively. Hence, from a numerical standpoint,

yarn radii can cause significant numerical instabilities of the linear solver compared

to Young’s moduli.

– Characteristic lengths: To respect the principle of separation of scales, we choose

a macroscale mesh of which the finite elements are coarser than that of the RVE

size [18]. Also, classical 2D finite elements are recommended to have a maximum

aspect ratio of five but preferably less than three [71]. Therefore, when constructing

the response databases, care should be taken in varying the spatial dimensions of

RVEs not to violate these aspect ratio restrictions.

Variable dependencies: Attention must be given to dependent variables when construct-

ing the response databases. For instance, the amplitude of sinusoidal plain-woven yarns

is sometimes parameterised by the wavelengths [18]. Thus, when we vary wavelengths to

construct the response database, a natural need arises to vary the wave amplitudes. But

on the other hand, identifying these variable dependencies, we reduce the dimension of

the feature space of inputs. This can be interpreted as a simplified version of Principal

Component Analysis (PCA) [185], which is analogous to the Principal axis theorem in

mechanics. PCA systematically reduces the real dimensions (D) to a set of principle

dimensions (d < D), to represent the same data, by identifying correlations between fea-

tures of dimension D [186]. This data restructuring is a pivotal step in machine learning

to reduce the computational cost of analysing very large databases.

5.4.2 Framework for data-driven material design

Conditioned on the highlighted prerequisites in Section 5.4.1, we now explain the pro-

cedure to use machine learning in a material design framework. In other words, we can

see this step as an extension to the data-driven multiscale modelling as we now couple
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the scales not only using deformation measures (see Figure 5.1) but also embedding

the geometric and material parameters of the yarns (see Figure 5.5). This data-driven

material design strategy would now answer to the following questions.

– How would the nonlinear stress-strain relationship look like, if I change the yarn

material or RVE geometry?

– How can I compare the homogenised response of two or more different (but compa-

rable) textiles without repeating the same RVE modelling and simulation process?

– How sensitive are the material and geometric parameters on the homogenised re-

sponse?

– How would the material and geometric parameters interact with each other and

influence the overall response in the macroscale?

– Can we enhance this scheme to optimise the mechanical response of technical

textiles based on different yarn arrangements?

Next, we discuss the details of including Gm and Mm in response databases for data-

driven material design. Readers are reminded of the notation convention where subscript

m is used to denote a property in the microscale.

Response databases for material design are constructed following a similar procedure as

data-driven multiscale modelling. However, we include all three design categories (Gm,

Mm and DM) in the feature space of a response database. Response databases used for

material designing take the generalised form,

Gm = {Gim} Gim ∈ [gimin, g
i
max] with i = 1, 2, ...iG (5.51a)

Mm = {Mi
m} Mi

m ∈ [mi
min,m

i
max] with i = 1, 2, ...iM (5.51b)

DM = {DiM} DiM ∈ [dimin, d
i
max] with i = 1, 2, ...iD (5.51c)

where iG, iM and iD refer to the number of design variables considered in each design

category Gm, Mm and DM, respectively. Furthermore, we define boundaries for ith

design variable, given as [(•)imin, (•)imax]. The schematic of a generalised RVE shown in

Figure 5.7 is used to intuitively discuss the data-driven material design. For simplicity,

a RVE of a composite material consisting of a matrix (subscript mat) and reinforcements
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Figure 5.7: Generalised RVE of a composite material with microstructural particles (re-
inforcement) embedded in a matrix

(subscript r) is considered. Response database in Equation (5.51) is expanded for the

composite RVE in Figure 5.7 as,

Gm =

G1
m = `1 `1 ∈ [`min

1 , `max
1 ]

G2
m = `2 `2 ∈ [`min

2 , `max
2 ]

(5.52a)

Mm =



M1
m = Emat Emat ∈ [Emin

mat ,E
max
mat ]

M2
m = νmat νmat ∈ [νmin

mat , ν
max
mat ]

M3
m = Er Er ∈ [Emin

r ,Emax
r ]

M4
m = νr νr ∈ [νmin

r , νmax
r ]

M5
m = Np Np ∈ [Nmin

p ,Nmax
p ]

(5.52b)

DM =


D1

M = E11 E11 ∈ [Emin
11 , Emax

11 ]

D2
M = E22 E22 ∈ [Emin

22 , Emax
22 ]

D3
M = E12 E12 ∈ [Emin

12 , Emax
12 ]

(5.52c)

where Np is the number of reinforcement particles in the RVE.

5.4.3 Using the scikit-learn Python library

All the GPR tasks performed in this thesis use the open source machine learning imple-

mentation, scikit-learn library [175]. We outline the key steps used for this purpose in Al-

gorithm 2. Algorithm 2 also highlights key functions of the class sklearn.gaussian process.

GaussianProcessRegressor() used in the scikit-learn library.
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Algorithm 2 GPR model training and testing

// construct the response database

1: preprocessor : define parametric geometry of the RVE, bounds of the features,
number of data points, sampling technique

2: for i ≤ data points do
3: define BVP of the RVE
4: solve constrained RVE problem
5: extract inputs and output(s)
6: record data to construct the response database in the form of Equation (5.52)
7: end for

// prerequisite diagnosis

8: check : normalised inputs, outlier identification
9: shuffle : to randomise the response database using numpy.random.shuffle()

// start GPR model training using scikit-learn

10: define covariance function, hyperparameter bounds, optimisation scheme using ker-
nel = σ2

f×RBF(length scale, length scale bounds=())
// 5-fold cross-validation

11: for i ≤ 5 do
12: get ith one-fifth of the database
13: train GPR model for the remaining four-fifths using GaussianProcessRe-

gressor(kernel, random state, normalize y = True, n restarts optimizer =
10).fit(Training inputs, Training output)

14: record optimal hyperparameters, MLML, training time, training MSE and R2

15: test GPR model using the ith one-fifth using predict(Testing data, return std)
16: record testing MSE and R2 using mean squared error and r2 score
17: check over-fitting, under-fitting, non-convergence
18: tune hyperparameter bounds
19: end for

// save trained GPR model

20: save GPR model to as a abc.joblib for later use

The well-trained GPR trained model is subsequently used for the data-driven computa-

tional homogenisation and design of textile membranes. The key algorithmic steps are

outlined in the Algorithm 3. Algorithm 3 also provides the algorithmic implementation

of the nonlinear orthotropic thin-shell solver discussed in detailed under Chapter 4.
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Algorithm 3 Data-driven computational homogenisation

// run the analysis preprocessor

1: preprocessor : definition of the geometry and external loading
// define the reference configuration of the structure

2: initialise : fext = 0, x = X, fres = 0
// start step-loading the structure

3: for i ≤ load steps do
4: find ∆fext

5: set fext ← fext + ∆fext

6: set fres ← fres −∆fext

// equilibrate the structure at every load step

7: while (||fres||/||fext|| < tolerance) do
8: load trained GPR model as a abc.joblib

// for every integration point

9: input strain components to abc.joblib
10: predict strain energy ψ
11: compute fint and K
12: update fres ← fint − fext

13: solve Ku = −fres

14: update x← x+ uu

15: compute vector triad (a1, a2 and a3) and their derivatives
16: update strain components
17: end while
18: end for

This chapter formed an imperative basis for this thesis by extensively discussing the

data-driven frameworks for computational homogenisation and material design of tex-

tiles. The combined contributions from Chapter 3 on spatial rod-based microscale simu-

lations, and Chapter 4 on thin-shell analysis, brought the ingredients together to solve a

twoscale homogenisation problem in Chapter 5. Forthcoming chapter crowns this thesis

by presenting two applications of data-driven homogenisation and material design using

the proposed framework.
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6 Applications

This chapter presents two selected applications of the proposed data-driven homogeni-

sation and material design methods in Chapter 5. Even though one can think of many

applications to use the suggested techniques, we limit our attention to two types of tech-

nical textiles, namely plain-woven and weft-knitted. Sections 6.1 and 6.2 are dedicated to

present the data-driven results of plain-woven and weft-knitted textiles, respectively.

Both applications in this chapter follow a similar structure. First, geometric modelling of

a RVE is detailed using illustrations and centreline equations. Next, microscale bound-

ary value problems are defined for uniaxial, biaxial and pure shear deformations of RVEs

using periodic boundary conditions. Enforcement of boundary conditions is illustrated

with the respective deformed RVEs for visual verification. Visual verification is followed

by a quantitative verification of the numerical model in reference to similar problems

solved using distinct methods. Next, a yarn-level phenomenological model is simulated

to qualitatively discuss and intuitively justify the deformations observed in the phe-

nomenological model. A parametric study is carried out to investigate the sensitivity of

the problem parameters on the homogenised response. Lastly, data-driven macroscale

analyses are performed as outlined in Section 5.3 and material design aspects are further

elaborated.

A special note is warranted on the microscale numerical model verifications. Our nonlin-

ear isogeometric spatial rod model together with contact schemes (see Chapter 3) is used

in simulating plain-woven and weft-knitted RVEs. However, in literature, authors use

different methods to analyse rod structures that have distinct discretisations, degrees

of freedom and other geometric considerations. Moreover, some authors use different

boundary conditions (fixed displacements, periodic) to constrain RVEs in the compu-

tational homogenisation process [1, 18, 20]. Nevertheless, verifying our results with that

of the other authors’ works, not only it proves the accuracy of our implementations but

also provides an independent certification to our methods.
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6.1 Plain-woven textiles

Woven textiles, as the name implies, can be defined as any textile formed by weaving.

Woven fabrics are often created on a loom [187], and made of many threads (yarns)

woven in warp and weft directions (see Figures 6.1 and 6.2). Precisely, a woven textile

is made by interlacing two or more yarns at given angles to one another. Mostly, we

come across perpendicular interlacing of yarns as shown in Figure 6.1. However, there

are non-perpendicular interlacing variants of woven textiles [58,188] for which one would

observe the coupling between axial (tension predominant) and shear responses.

Figure 6.1: Types of weaving techniques of woven textiles [189]

In this thesis, we only consider the plain-woven textiles. However, it is straightforward

to apply the proposed analysis tools to homogenise and design other variants of woven

textiles. As common to any multiscale strategy, the first task is to identify an element to

represent the macroscale continuum. Respecting the prerequisites highlighted in Section

5.1.2, we select a representative volume element as shown in Figure 6.2. Next task

is to accurately model the identified analysis-suitable RVE using one of the geometric

modelling techniques introduced in Chapter 2. In this section, we use smooth manifold-

based basis functions introduced in Section 2.2 for the geometric modelling and analysis

of plain-woven RVEs.

6.1.1 RVE Geometry modelling

For notational convenience, we denote any property of warp and weft/fill yarns (see

Figure 6.2) using subscripts 1 and 2, respectively.
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Figure 6.2: Selection of a multiscale analysis-suitable RVE of the plain-woven textile.

As shown in Figure 6.3, we first define the yarn centrelines and render the full yarns by

adding a radius to these centrelines. Each yarn centreline is discretised using 20 finite

deformable rod elements. Moreover, we define the global Cartesian coordinate system

in a manner where x and y axes correspond to the in-plane and z axis denotes the

out-of-plane (thickness) direction of the RVE. Additionally, we define the RVE in-plane

dimensions as wi where i = 1, 2 refer to warp and weft directions, respectively.

Figure 6.3: Different views of a plain-woven textile RVE. Rod centerlines are shown to
define the sinusoidal geometry of a yarn.

For model verification and homogenised RVE result justification, we use the yarn models

used by Nadler et al. [18] and Warren [103]. Hence, we define the geometry of a warp
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yarn as a smooth sinusoidal curve given by,

z = A sin (Bx) (6.1)

where A and B are constants with former scaling the amplitude and latter scaling

the wavelength of the sinusoid. For yarns in weft direction, we simply replace the

independent variable x in Equation (6.1) by y (see Figure 6.3). Furthermore, constant

A is taken as Hi and B is defined as B = 2π/wi for warp (i = 1) and weft (i = 2) yarns,

respectively. According to the geometry definition by Nadler et al. [18], amplitude Hi

is taken to be Cwi/π, where C is a constant. Table 6.1 summarises the material and

geometric properties used herein as well as in the RVE simulations of Nadler et al. [18].

In Table 6.1, yarn density is denoted by ρi in respective direction i.

Table 6.1: Warp and weft yarn geometric and material parameters

Yarn
Axial
stiffness (N)

Bending
stiffness (N/mm2)

wi(mm) Hi(mm) ρi(yarns/mm)

warp (i = 1) 1156 0.027975 0.95292 0.31684 2.10
weft (i = 2) 1165 0.045668 0.94248 0.13345 2.12

6.1.2 Microscale boundary value problems

We employ boundary value problems on plain-woven RVEs to simulate distinct defor-

mation modes as shown in Figure 6.4. Constraint enforcement at the boundary nodes of

each yarn is achieved using periodic boundary conditions as previously discussed in Sec-

tion 5.1.2. At every boundary node, there are four degrees of freedom to be constrained:

three displacements and one axial rotation. Thus, the four characters at each boundary

node (see Figure 6.4) denote spatial displacements (ux, uy, uz) and axial rotation (ϑ),

respectively. Moreover, we use shortened notations p, f, 0 to refer to periodic, f ree and

zero-displacement constraints. Any prescribed displacement is indicated by a compo-

nent in the displacement vector u. For instance, applied displacement in the x-direction

is given by ux (see Figure 6.4).
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Figure 6.4: Periodic boundary condition enforcement (top row) and respective deformed
RVEs (bottom row). At every boundary node, four characters denote the
constraint enforcement to each degree of freedom at the respective boundary
node. ui refers to the applied displacements in the i direction. Moreover,
p, f, 0 refer to periodic, f ree and zero-displacement constraints respectively.

Verification of the numerical model

We use the results obtained by Nadler et al. [18] to verify the solutions from microscale

boundary value problems defined in Figure 6.4. Nadler et al. use displacement boundary

conditions to define the constraints applied to the boundary nodes of the RVEs. In other

words, they set the microfluctuations at the boundary to zero, thus resembling Taylor

(or Voigt) conditions [38]. Herein, however, we use periodic boundary conditions, as

shown in Figure 6.4 to enforce boundary conditions of the RVEs. Motivation to use

periodic boundary conditions comes directly from their merits on faster convergence

and accurate modelling [38].

Nadler et al. [18] produces three main results in their homogenised uniaxial deformation

simulations. Therefore, we first simulate homogenised uniaxial tension and compression
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tests using the properties in Table 6.1 to verify the mechanical response of RVEs. Ho-

mogenised first Piola-Kirchhoff stress tensor (P ) is extracted using Equation (5.11).

Axial stress resultant (P11): Figure 6.5 depicts the axial response of the plain-woven

RVE subjected to a uniaxial deformation (see the left of Figure 6.4). We have con-

sidered a 5% compressive strain region to show that, due to yarn contact separation,

there will be small compressive stresses developed in the warp yarns due to further

crimping. However, the same axial response is different in the tensile strain regime. We

see a highly nonlinear response in the strain range 0 − 4% due to decrimping of the

warp yarns. Contacts between warp and weft yarns start to develop during this stage

and grow rapidly during the decrimp of warp yarns. When applied strain reaches 5%,

warp yarns are nearly straightened and therefore the homogenised response becomes

less nonlinear. At this stage, yarn contacts are well established (see Figure 6.7) and

the homogenised response converges towards a linear relationship compared to the high

nonlinearity observed during decrimping.
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Figure 6.5: Stress resultant P11 vs E11 for homogeneous uniaxial deformation.

Poisson’s effects: Poisson’s ratio is computed as the gradient of the graph of transverse

strain versus axial strain. For this purpose, we plot the variation in the transverse strain
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E22 due to the applied strains E11 (see Figure 6.6). The compressive strain region does

not contribute to the Poisson’s ratio due to the separation of yarns, as discussed earlier.

As there is no contact force transferred from warp to weft yarns, weft yarns do not

deform and thus would not give rise to a transverse strain. Interestingly, a significant

variation of the Poisson’s ratio is observed in the decrimp stage (0− 4%) of warp yarns

(see Figure 6.6) mainly due to the contact formation between warp and weft yarns. RVE

is observed to be stiffer in transverse deformations when we pay attention to the axial

strains higher than 5%. Also, the gradient of the curve in Figure 6.6 gradually decreases

in its magnitude as expected, due to the dominant deformations of nearly straightened

warp yarns.
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Figure 6.6: E22 vs E11 for homogeneous uniaxial deformation.

Internal stress developed due to contacts: Internal stress can also be identified as a pres-

sure force that acts in between two yarns at the contact location. One advantage of

using the Lagrange multiplier method to enforce contact constraints is that the result-

ing Lagrange multiplier value corresponds to the contact force at the respective contact

location. Denoting these four contact forces as λi (i = 1, 2, 3, 4) we derive the internal
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stress as,

P0 = ρ1ρ2

4∑
i=1

|λi|

4
(6.2)

where ρ1 and ρ2 denote the yarn densities in warp and weft directions, respectively (see

Table 6.1). We use the magnitude values of λi in Equation (6.2) to consider only one

force from the equal and opposite contact forces. Observations closely follow from both

axial stress resultants and Poisson’s effects. Compressive strains give no rise to internal

stresses due to contact separation. There is a rapid increase of the internal stress during

the contact formation (strains 0 − 4%) and gradually converges at latter stages of the

decrimping process of warp yarns.
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Figure 6.7: Internal stress P0 vs E11 for homogeneous uniaxial deformation.

Shear stress resultant (P12): Zero shear stiffness assumption made by Nadler et al. [18]

in their work, is mainly twofold. First, shear stiffness observed in real textiles is very

low in comparison to axial stiffnesses. Secondly, beam models used by Nadler et al. [18]

and Warren [103] are deformable only in 2D space, thus not allowing to simulate shear

deformations in plain-woven RVEs. However, our spatial rod implementation detailed in

Section 3.2 allows to enforce pure shear conditions in plain-woven RVEs (see Figure 6.4).

Figure 6.8 illustrates the homogenised RVE response under pure shear deformations. As
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expected, we observe not only a very low shear stiffness but also a nearly linear shear

response of the plain-woven RVE.

Figure 6.8: Stress resultant P12 vs E12 for homogeneous pure shear deformation.

Yarn-level simulation of a plain-woven textile

Departing from the main focus on multiscale modelling of plain-woven fabrics, now

we aim to develop a phenomenological model using the finite deformation rod model

implemented in Section 3.2. The objective of this phenomenological model is to visually

verify the deformation of a membrane made out of yarns defined according to Equation

(6.1) and properties in Table 6.1. For brevity, we consider applying unidirectional forces

to a 16× 16 grid of yarns in a displacement controlled manner. Figure 6.9 visualises the

deformation of the yarn-level model subject to a E11 = 10% strain level.
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(a) (b)

Figure 6.9: Yarn-level pull test of a plain-woven textile. (a) Reference configuration of
the 16×16 grid of yarns (b) Deformed configuration due to the applied load
in the x-direction. Colour distribution refers to the x-direction displacements
of the yarns.

We verify the phenomenological model by closely observing the followings.

� Poisson’s effects: The transverse deformation (in the y-direction) of the yarn-level

model due to loading in axial (x) direction, clearly proves the existence of Poisson’s

effects. Reader is encouraged to see Figure 6.9 in combination with Figure 6.6.

� Decrimping of warp yarns: Due to externally applied loading in x (parallel to warp)

direction, forces are predominantly transferred by the warp yarns. Thus, warp

yarns decrimp until they are fully straight. This warp yarn decrimping process is

clearly observed in Figure 6.5.

� Yarn contacts: We assume full friction between the warp and weft yarns similar

to the works of Nadler et al. [18]. Hence the deformation in Figure 6.9 verifies

the static frictional contacts between two yarns due to the observed translations

of yarn contact points during deformation.

� Crimping of weft yarns: Weft yarns go through additional crimping due to Pois-

son’s effects. This can be easily understood by comparing weft yarns at the fixed

end to the ones in the middle.
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We do not focus more on the yarn-level models due to higher computational cost as-

sociated with the numerical simulations [2, 17, 190]. However, compared to existing

commercial finite element software, our implementations can easily vary warp and weft

yarns to simulate full-scale yarn-level textiles.

Sensitivity analysis

A set of sensitivity analyses is carried out to investigate the dependency of the ho-

mogenised response on material and geometric property parameters. This sensitivity

analysis is qualitatively a crucial step in building the response database discussed in

Section 5.3.1. The sensitivity of each parameter is essential to investigate the parameter

dependencies, redundant parameters and uncertainties of each parameter on the ho-

mogenised response of RVEs. Uncertainty quantification is one of the most sought after

topics since the inception of data-driven techniques [191]. Even though we do not intend

to go further into this topic, it is important to leave a remark here for completeness.

For instance, one can think of a probability distribution for warp and weft yarn Young’s

moduli and formulate a probabilistic homogenised response. Thus, we can generate a

mean and confidence interval for the homogenised response of the RVE and include it

in the scale transitions to introduce a data-driven probabilistic multiscale strategy.

For brevity, only homogenised uniaxial tensile response is considered herein for the

sensitivity analysis of plain-woven RVEs. As common to sensitivity analyses, we change

one variable and hold others constant, unless there are any variable dependencies. A

maximum 10% strain level is used in the following analyses following periodic boundary

conditions to enforce the constraints.

RVE size

First, we study the sensitivity and convergence of the homogenised response on the

chosen RVE size. For a general RVE, the accuracy of the homogenised response depends

heavily on the selected RVE size. Geers et al. [38] and Huet [192] studied this by

comparing the convergence rates of different boundary enforcement methods versus the

RVE size. But as shown in Figure 6.10, all curves overlap and hence it is evident that

RVE size has negligible influence on the homogenised response of the plain-woven RVE.

It is mainly due to the exact definition and simplicity of the RVE compared to more

complex RVEs considered by Geers et al. [38] and Huet [192] in their works. This
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also proves that the selected RVE in Figure 6.2 is a good approximation to perform

computational homogenisation [193].

Figure 6.10: Convergence of the homogenised response for different sizes of plain-woven
RVEs. Here, Nwarp and Nweft refer to the number of yarns in warp and
weft directions of the RVEs, respectively.

Young’s moduli of warp and weft yarns

We study the homogenised response for different Young’s moduli values assigned to yarns

in both directions. First, we use yarns made from the same material (Ewarp = Eweft)

and investigate how the homogenised response would vary. As shown in Figure 6.11a, we

can see a linear relationship between the homogenised P11 and the yarn Young’s moduli.

This is expected if one recalls that the system stiffness matrix is linearly scaled by the

Young’s moduli of the yarns. Equations (3.92) - (3.95) evidently prove this.

Next, we vary the Young’s moduli of warp and weft yarns. In other words, we use one

material to manufacture warp yarns and another to manufacture weft yarns. There are

a few key observations that are interesting to discuss from Figure 6.11b.

– Young’s modulus of weft yarns is mechanically effective only during the decrimping

process of warp yarns. When applied strain is in the range 0− 4%, we can see the
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induced stress resultant P11 is increased with the Young’s modulus of weft yarns.

– At higher strains (> 5%), nearly straightened warp yarns are predominant in

carrying the axial forces. Hence the effective contribution to the homogenised

response from weft yarns is negligible.

(a) (b)

Figure 6.11: Sensitivity analysis of the Young’s moduli of warp and weft yarns. (a) Same
yarns in both directions. (b) Different yarns in warp and weft directions.

Radius of warp and weft yarns

Next, we vary the yarn cross-sections. We use yarn radii to define the cross-section details

of warp and weft yarns uniquely. For simplicity and respecting the spatial distribution

of yarns, we use the same value for both yarn radii. As expected, the homogenised

response is stiffened, upon the increase of the yarn radii. This is intuitively understood

because stress resultants are proportional to RVE stiffness.
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Figure 6.12: Sensitivity analysis of yarn radii of warp and weft yarns on the homogenised
material response.

Next, we consider the sensitivity of the parameters that define the yarn geometry. Ac-

cording to Equation (6.1) we have two parameters: amplitude (H) and wavelength (w)

that define the yarn geometry (see Figure 6.3). The primary motive of considering these

two parameters is to understand the influence of initial crimp, decrimp phase and RVE

in-plane dimensions on the overall homogenised response. Moreover, we investigate on

lower and upper bounds of these parameters to analyse the change in mechanical re-

sponse to get a better understanding of the influence factors mentioned earlier. Thus,

some values used for H and w below, may not seem realistic in a practical sense.

Amplitude (H) of warp and weft yarns

We vary the amplitudes of both warp and weft yarns systematically to understand the

influence of the initial crimp on the homogenised response.

– By setting Hwarp = 0.0001mm, we nearly straighten the warp yarns. As expected,

we do not observe any decrimping phase, and the warp yarns predominantly govern

the homogenised response.
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– By setting Hwarp = 0.50mm, we introduce additional crimp to warp yarns. Now

the decrimping phase is stretched from 0 − 4% (see Figure 6.5) to 0 − 8% (see

Figure 6.13).

– Homogenised response of other combinations of yarn amplitudes can be easily

deduced following a similar rationale.

Irrespective of the warp yarn amplitude, amplitude of the weft yarns has a negligible

influence on the homogenised response in warp direction. This is mainly due to the

predominant tensile forces transferred by the yarns in the warp direction is least affected

by the weft yarn amplitudes.

Figure 6.13: Sensitivity analysis of yarn amplitudes of warp and weft yarns on the ho-
mogenised material response.

Wavelength (w) of warp and weft yarns

For clarity, it is restated that warp, weft yarns and their spacings are defined according

to Figures 6.2 and 6.3. For instance, uniaxial deformation in the warp direction is

homogenised using the weft spacing (w2). Hence, the following conclusions can be made

using the wavelength sensitivity analysis in Figure 6.14.
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– For constant values of wweft, we can see only a small variation in the homogenised

response. This small variation is due to the nonlinearity during the decrimp process

of warp yarns.

– By lowering wweft, we can observe a rapid increase in the homogenised stress re-

sultants due to the increase in warp yarn density (ρ1).

Figure 6.14: Sensitivity analysis of yarn wavelengths of warp and weft yarns on the
homogenised material response.

6.1.3 Data-driven macroscale analysis

Data-driven multiscale modelling proposed in Section 5.3 is evaluated here for the com-

putational homogenisation of plain-woven textiles. Provision of microscale model ver-

ifications, convergence study and sensitivity analyses in Section 6.1.2 constitute the

applicability of machine learning for macroscale analysis.

It is not intended to repeat in-depth discussions here, because rigorous discussions

on generalised formulations and implementations are provided in Section 5.2. Thus,

in successive discussions, we elaborate on the results obtained for plain-woven tex-

tiles. We start building the response database using a uniform sampling technique
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for strain bounds given in Equation (6.3). Response database is succinctly represented

as (E11, E22, E12, ψ) where E is the Green-Lagrange strain tensor and ψ gives the area-

averaged energy in mJ/mm2.

DM =


D1

M = E11 E11 ∈ [−0.05, 0.22]

D2
M = E22 E22 ∈ [−0.05, 0.22]

D3
M = E12 E12 ∈ [0.0, 0.2]

(6.3)

Geometry (Gm) and material (Mm) parameters are held constant and take values given

in Table 6.1.

Strain energy prediction and uncertainty

Using the scikit-learn Python library [175], we train a GPR model based on the response

database constructed according to Equation (6.3). GPR model training, cross-validation

and partial derivative formulae are detailed in Section 5.2. A small but complete subset

of the full database is extracted to train a GPR model. As shown in Figure 6.15,

we use 90 new data points from the full database to test the accuracy of the trained

GPR model. Figure 6.15 also presents the corresponding 95% confidence interval of

the predicted energy of the new data points. For this particular database, training

and testing errors were recorded as 1.72 × 10−11 and 0.82 × 10−5. Detailed analysis on

these errors, optimised hyperparameters and maximum log marginal likelihood values

are provided later in this chapter.
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Figure 6.15: (a) Strain energy prediction for unseen data points sorted by ascending
potential (b) 95% confidence interval of the predicted mean energy

Stress predictions

Accuracy test on predicted energy has to be followed by an accuracy test on the stress

components. Using Equations (5.41) and (3.35), we evaluate the degree of accuracy of

the predicted stresses to that of observed stresses in the database. Figure 6.16 provides

two principal stress component comparisons by setting E12 = 0.0. For visualisation

purposes, one strain component is held constant while the other is increased from 0.0 to

0.22. We observe nearly exact stress predictions from the trained GPR model. However,

we notice slight deviations close to the bounds of strain components. Near boundary

errors are common to many regression techniques, and hence additional care should be

taken to avoid model overfitting while addressing such boundary errors [171]. In this

thesis, boundary errors are minimised by refining the data points close to any feature

bounds.
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Figure 6.16: Prediction and comparison of the second Piola-Kirchhoff stress components.
(a) S11, S22 for E11 = [0.%, 22%] and E22 = 8%. (b) S11, S22 for E22 =
[0.%, 22%] and E11 = 10%.

GPR model testing error quantification

It is of paramount importance to maintain algorithmic efficiency when training GPR

models. Equation (5.32) indicates the requirement to invert the Gram matrix during

the optimisation process which requires time O(n3). Hence, in Figure 6.17, we present

the variability of GPR model testing errors for energy and stress predictions. Equation

(5.48) is used to compute the mean squared errors of energy predictions.
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Figure 6.17: Errors of the predicted strain energy density and the norm of the vectorised
second Piola-Kirchhoff stress tensor components

Errors in stress predictions are comparatively higher than the energy predictions. This

observation is natural in data-driven analyses because the derivative of a data-fitted

model is considered as an approximation of an approximation [61]. And this is also

due to the fact that MSE is not a normalised measure of error. Hence the error con-

vergence depends on the magnitude of the quantity being measured. Considering the

error convergence and algorithmic efficiency, we use a response database with 2601 data

points. Moreover, for every database, we optimise the log marginal likelihood (given in

Equation (5.31)) with respect to hyperparameters and arrive at the optimum hyperpa-

rameters that yield the maximum log marginal likelihood. Table A.2 presents a concise

tabulated results: error analyses R2 and MSE; MLML and optimum hyperparameters

(σf , `).
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Pull tests on data-driven plain-woven textiles

Numerically tested and verified GPR model is next applied to simulate the membrane

response of pull tests along the two principal directions, namely warp-wise and weft-wise

pull tests. Each membrane specimen is a square of side 10mm. These tests are designed

in a way where one edge is held fixed, and the opposite edge is pulled in warp or weft

directions by 1mm. The non-zero stress component distributions are shown in figures

6.18 and 6.19. It is important to emphasise on the symmetry of the stress distributions

predicted by the Gaussian process model. For example, observe S11 in Figure 6.18 and

S22 in Figure 6.19 for very close similarities in stress magnitudes. This is mainly due to

the use of same (warp yarn) geometric and material properties for both warp and weft

yarns in the microscale simulations (see Table 6.1). Symmetric results also prove the

accuracy of the trained GPR model in two independent directions.

Figure 6.18: Stress distribution of a warp-wise pull test on a data-driven plain-woven
membrane
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Figure 6.19: Stress distribution of a weft-wise pull test on a data-driven plain-woven
membrane

Yarn-level versus data-driven homogenisation

After discussing the data-driven homogenisation of woven membranes, we present a

quantitative comparison of the problem presented in Figure 6.9b. The yarn-level model

comprises of 16 loops in the warp direction and 16 loops in the weft direction. Hence, we

use an equal size membrane, 15.25mm long, 15.08mm wide and 0.64mm thick, for the

homogenised macroscale analysis. Homogenised membrane model is analysed using a

16×16 structured mesh using the proposed Gaussian process homogenisation technique.

For comparison purposes, yarn-level model in 6.20a is created by projecting it onto the xy

plane using Delaunay mesh generation. We can observe a very good agreement between

the two models.
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(a) (b)

Figure 6.20: Quantitative comparison between yarn-level and homogenised models.
Here, x and y displacement distributions of (a) yarn-level model and (b) ho-
mogenised woven membrane of a pull test along x-direction are illustrated.

6.1.4 Data-driven plain-woven textile design

The extension to data-driven plain-woven textile design is achieved by incorporating

the design (material and geometric) parameters into the response databases. In this

thesis, two examples of plain-woven textile designs have been presented. However, it

is straightforward to consider desired combinations of Gm and Mm to construct the

response databases. This essentially is an application-based decision.

Plain-woven textile design: Case 1

We first vary the Young’s moduli of warp and weft yarns simultaneously and keep all

geometric parameters constant, as given in Table 6.1. We define the response database

entries succinctly as (E11, E22, E12, [E/Ê]warp, [E/Ê]weft, ψ) where Ê takes the warp yarn
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Young’s modulus value used by Nadler et al. [18]. We specify the feature bounds to be

used in constructing the response database as given in Equation (6.4).

Mm =


M1

m =

[
E

Ê

]
warp

[
E

Ê

]
warp

∈ [0.01, 2.0]

M2
m =

[
E

Ê

]
weft

[
E

Ê

]
weft

∈ [0.01, 2.0]

(6.4a)

DM =


D1

M = E11 E11 ∈ [−0.05, 0.22]

D2
M = E22 E22 ∈ [−0.05, 0.22]

D3
M = E12 E12 ∈ [0.0, 0.2]

(6.4b)

We take advantage of the linearity of Young’s moduli to axial and bending stiffnesses

of warp and weft yarns. Thus, by varying [E/Ê]warp and [E/Ê]weft, we linearly vary the

axial and bending stiffness given in Table 6.1.

GPR model testing error quantification

We quantify the prediction errors to measure the accuracy of the trained GPR model

for plain-woven textile design. Following a similar approach considered in Section 6.1.3,

we produce prediction errors for both energy and stress components, as shown in Figure

6.21. Variation and convergence of these errors follow a similar pattern to Figure 6.17.

Thus, the increase in the number of features has no direct influence over the error rates.

But one needs to be aware of the curse of dimensionality when increasing the dimensions

of the features space [37]. Considering the error convergence and efficiency of model

training, we use a response database with 6561 data points in subsequent analyses. For

this specific database: recorded optimum hyperparameters were σ2
f = 8.3932, ` = 0.0588;

maximum log marginal likelihood was 8336.441. Time taken for model training was

recorded as 129 minutes and 48 seconds on an Intel Core i5-4590 CPU 3.30GHz × 4

processor.
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Figure 6.21: Design case 1: Error metrics of the predicted strain energy density and the
norm of the vectorised second Piola-Kirchhoff stress tensor components

Now we are interested to see how the stress-strain variations would look like for a given

combination of [E/Ê]warp and [E/Ê]weft. We start with two strip biaxial tests, as shown

in Figures 6.22a and 6.22b, where strain combinations E11 : E22 = 1 : 0 and E11 : E22 =

0 : 1 have been enforced respectively on the RVEs. Then we vary [E/Ê]warp and [E/Ê]weft

on a refined grid consisting 28561 data points. This refined grid is defined in a way that

only Young’s moduli ratio bounds (0.01 and 2.0) are common to the response database

used for model training and the refined grid. Thus, except for bounds, all other points

act as unseen data points to the trained GPR model. Next, we present the stress-strain

relationship of a biaxial test as shown in Figure 6.22c.

For illustration purpose, arbitrary strain values are used to represent different states of

deformations. Moreover, all stress components in Figure 6.22 take the unit MPa.

161



(a)

(b)

(c)

Figure 6.22: Stress distributions (in MPa) for different combinations of Young’s moduli
of warp and weft yarns. Results of three biaxial tests are shown in each
figure. (a) Strip biaxial test (E11 : E22 = 1 : 0). (b) Strip biaxial test
(E11 : E22 = 0 : 1). (c) Biaxial test
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Plain-woven textile design: Case 2

Second plain-woven textile design example consists of all three design variables as defined

in Equation (6.5).

Gm =

G1
m = w1 w1 ∈ [0.762, 0.953]

G2
m = w2 w2 ∈ [0.762, 0.953]

(6.5a)

Mm =


M1

m =

[
E

Ê

]
warp

[
E

Ê

]
warp

∈ [0.5, 1.5]

M2
m =

[
E

Ê

]
weft

[
E

Ê

]
weft

∈ [0.5, 1.5]

(6.5b)

DM =


D1

M = E11 E11 ∈ [0.0, 0.22]

D2
M = E22 E22 ∈ [0.0, 0.22]

D3
M = E12 E12 ∈ [0.0, 0.20]

(6.5c)

As previously discussed, Young’s modulus of yarns in the loading direction linearly scales

the homogenised uniaxial response (see Figure 6.11). However, introducing warp and

weft spacing as design variables, now it is not straightforward to predict the relationship

between the design variables and homogenised response. Warp and weft spacings appear

first in microscale RVE geometry, given by Equation (6.1) and secondly in volume aver-

aged homogenised response, given by Equation (5.11). Hence, this complex relationship

is expected to be captured by the GPR machine learning technique.

GPR model testing error quantification

We produce prediction errors for both energy and stress components, as shown in Fig-

ure 6.23. Considering the error convergence and efficiency of model training, we use

a response database with 6400 data points in subsequent analyses. For this specific

database: recorded optimum hyperparameters were σ2
f = 11.8322, ` = 0.125; maximum

log marginal likelihood was 8780.429. Time taken for model training was recorded as

121 minutes and 27 seconds on an Intel Core i5-4590 CPU 3.30GHz× 4 processor.
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Figure 6.23: Design case 2: Error metrics of the predicted strain energy density and the
norm of the vectorised second Piola-Kirchhoff stress tensor components

Now we visualise the influence of different combinations of design variables on the ho-

mogenised response of plain-woven RVEs. Figure 6.24a presents the variation of the

homogenised axial stress components subject to different weft spacings. Figure 6.24b

shows the homogenised axial stress component predictions for varied weft spacings and

weft yarn Young’s moduli. For clarity, results in Figure 6.24 consider constant E11 and

E12. These constant strain components and other fixed design variables are given in

figure sub-captions. Non-design variables such as yarn radii and wave amplitudes are

held constant and take values given in Table 6.1.
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(a) E11 = 5.125%, E12 = 0.0%, [E/Ê]warp = [E/Ê]weft = 0.90

(b) E11 = 10.5%, E12 = 0.0%

Figure 6.24: Stress-strain relationships for different combinations of design variables.
Homogenised responses S11 and S22 for (a) different weft spacings and (b)
different weft spacings and weft yarn Young’s moduli.

6.2 Weft-knitted fabrics

Knitted textiles are fundamentally different from woven textiles by the manner they are

made. Knitting is the process of making textiles by interlooping a thread (yarn) where,

in contrast, weaving involves interlacing of two or more yarns. On a broad picture,

we identify two main types of knitted textiles: warp-knitting and weft-knitting. While

weft-knitted textiles are easily handmade and commonly used, warp-knitted textiles
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are popular products of knitting machines. There are other variants of knitted textiles

based on stitch types and stitch patterns that we do not intend to discuss in this thesis.

However, interested readers are invited to refer to Au [194] for further information.

Furthermore, we restrict our focus only on the homogenisation of weft-knitted textiles

as they are prevalent in various technical applications [1, 20] compared to warp-knitted

textiles.

Vassiliadis et al. [114, 115] initiated geometric modelling, mechanical experiments and

simulation of weft-knitted textiles for a range of stitch patterns. Weeger et al. [1] and

Dinh et al. [20] continued to work on simplifying the complicated mechanical behaviour

of weft-knitted textiles using computational homogenisation techniques. As common to

any multiscale strategy, the first task is to identify an element to represent the macroscale

continuum. Respecting the prerequisites highlighted in Section 5.1.2, we select a rep-

resentative volume element as shown in Figure 6.25. The next task is to accurately

model the identified analysis-suitable RVE using one of the geometric modelling tech-

niques introduced in Chapter 2. In this section, we use quintic B-spline basis functions

introduced in Section 2.1 for the isogeometric analysis of weft-knitted RVEs.

6.2.1 RVE Geometry modelling

As shown in Figure 6.25, we first define the yarn centrelines and render the full yarns by

adding a radius to these centrelines. Moreover, we define the global Cartesian coordinate

system in a manner where x and y axes correspond to the in-plane and z axis denotes

the out-of-plane (thickness) direction of the RVE.

Weft-knitted RVE geometry is first defined in three different geometric equations for

the three distinct regions, namely EM, MK and KA (see Figure 6.26). Later, they

are connected smoothly using cubic B-splines at the boundary segments of the two

intersections at M and K. Moreover, from a computational point of view, only yarn

centerlines of the RVE are defined in the following equations. Thus, a constant diameter

D renders the complete tubular geometry of the weft-knitted RVE [114,115].
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Figure 6.25: Selection of a multiscale analysis-suitable RVE of the weft-knitted textile.

Figure 6.26: Geometry modelling of a weft-knitted RVE (a) Different views of a RVE of
a weft-knitted textile (b) Introducing the geometric parameters that define
the geometric description of the selected RVE [114]

.
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The following geometric equations are extracted from Vassiliadis et al. [115] and smoothened

at C1 locations to recover the real smooth geometry of the RVE.

� Part EM (0 < y < c/2):

x(y) = −D
c
y

z(y) =

√(
r +

D

2

)2

− y2 −
(
r +

D

2

)

where r =

[(
c− D

2
− t

2

)2

−
(
D

2
+
t

2

)2
]

2D

� Part MK (c/2 < y < c/2 +R):

x(y) = h− a

√
1−

(
y − c/2

b

)

z(y) =

√(
r +

D

2

)2

− y2 −
(
r +

D

2

)

where h =
( c

2
−R

)
tan
(π

2
− ω

)
, R =

c

2
− t

2
−D

2
, ω = arctan

(
c−D sin γ

D

)
and γ = arcsin

(
c/2

r +D/2

)
� Part KA (x(y = c/2 +R) < x < w/4):

y(z) =

√(
r +

D

2

)2

−
(
z + r +

D

2

)2

z(x) = OZ −
√
A2 − (x−OX)2

where OX = w/4, OZ =
(x2 −OX)2 − (x1 −OX)2 + z2

2 − z2
1

2(z2 − z1)

and A =
√

(x1 −OX)2 + (z1 −OZ)2 Additionally, (x1, z1) and (x2, z2) are the

coordinates of two points in part MK with y1 = c/2 +R− 0.001 and y2 = c/2 +R

� A cubic B-spline curve was fitted at C0 continuous locations namely, M and K.

Moreover, this smooth curve EMKA is mirrored on the vertical axis passing at

point A to obtain the complete geometry of the red yarn shown in Figure 6.26.

168



� Lastly, one smooth EMKA is rotated and translated appropriately to create the

left blue yarn of Figure 6.26 and mirrored subsequently, to complete the RVE

geometry.

For model verification and homogenised RVE response validation, we use the problem

parameters as given in Table 6.2, which have been extracted from the works of Weeger

et al. [1].

Table 6.2: Weft-knitted RVE yarn geometric and material parameters

D(mm) c(mm) w(mm) t(mm)
Young’s
modulus(N/mm2)

Poisson’s
ratio

0.1845 0.4857 0.8327 0.072 800.0 0.0

6.2.2 Microscale boundary value problems

Similar to plain-woven textiles in Section 6.1, finite element analysis is used for RVE

simulations subjected to periodic boundary conditions. Here, four main analyses have

been considered for the simulations namely: uniaxial tension in course direction (course-

wise uniaxial tension); uniaxial tension in wale direction (wale-wise uniaxial tension);

biaxial tension and pure shear. The boundary value problems for the aforementioned

four analyses are illustrated in Figure 6.27.

Due to the complicated load transferring mechanism and fuzziness of the fibrous mi-

crostructure, we make the following assumptions to idealise the kinematics of real weft-

knitted textiles [1, 114].

� We penalise yarn bending stiffnesses by a factor of 0.5 to account for the fuzziness

of the knitting yarns. Thus, the Young’s modulus used to compute axial stiffness

(EA), is halved to compute the bending stiffnesses (0.5EI2 and 0.5EI3). See

Equation (3.59b).

� For numerical stability and consistency, initial frictionless point-to-point yarn con-

tacts are enforced by introducing an artificial penetration depth of magnitude

10−5mm.
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Figure 6.27: Periodic boundary condition enforcement (top row) and respective de-
formed RVEs (bottom row). At every boundary node, four characters de-
note the constraint enforcement to each degree of freedom at the respective
boundary node. ui refers to the applied displacements in the i direction.
Moreover, p, f, 0 refer to periodic, f ree and zero-displacement constraints
respectively.

Verification of the numerical model

We use the experimental and numerical results obtained by Vassiliadis et al. [114],

Weeger et al. [1] and Dinh et al. [20] to compare the homogenised responses of weft-

knitted RVEs. These results correspond to two strip biaxial tests and one pure shear

test. Two strip biaxial tests refer to E11 : E22 = 1 : 0 (course-wise) and E11 : E22 = 0 : 1

(wale-wise). Moreover, for comparison purpose, we use a unit conversion 1 N/mm =

1019.716 gf/cm.

Result comparison is presented in Figure 6.28 and we conclude our microscale RVE sim-

ulations approximate the experimental results very well, and follow a better trend than

that of the numerical results from Weeger et al. [1]. It is evident that the homogenised

responses of strip biaxial tests are nonlinear and RVEs are stiffened (increasing gradi-

ents) at higher strains. Moreover, the shear response is observed to be nearly linear.
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Thus, shear stiffnesses at each strain level can be considered constant and compara-

tively lower. We can safely assume there are no axial-shear coupling effects due to yarn

alignments in Figure 6.26. Therefore, we use a constant shear modulus in macroscale

simulations to relate shear strains to shear stresses.

Figure 6.28: Comparison of simulation results for course-wise and wale-wise strip biaxial
tension and pure shear test against the experimental results obtained in
Vassiliadis et al. [114] and numerical simulations by Weeger et al. [1], Dinh
et al. [20].

Yarn-level simulation of a weft-knitted fabric

Similar to plain-woven textiles (see Figure 6.29), we develop a yarn-level phenomenolog-

ical model of a weft-knitted fabric to visually verify the deformations of a pull test. A

specimen weft-knitted textile made of 12× 10 (course loops×wale loops) loops is loaded

in the x-direction by a 10% strain level (see Figure 6.29a). Figure 6.29 illustrates the

deformation of the weft-knitted specimen held in place at the top and bottom edges

by two bounding yarns. Some of the key observations can be discussed not only to
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visually verify the phenomenological model but also to verify the accuracy of the finite

deformable rod model introduced in Section 3.

� Poisson’s effects: The transverse deformation (in the y-direction) of the yarn-level

model due to loading in axial (x) direction, clearly highlights the Poisson’s effects

in weft-knitted textiles.

� Deformed loops: Loops are elongated predominantly in the x-direction by main-

taining stable contacts at penetration-prone locations.

� Decrimping of bounding yarns: Two bounding yarns are used to avoid the unravel-

ling of knitted loops. As expected, they have been decrimped (nearly straightened)

during the deformation process.

� Asymmetry about mid-y-plane: Reference geometry in Figure 6.29a is not sym-

metric about mid-y-plane. This is evident because RVE in Figure 6.26 is also

asymmetric about mid-y-plane. Thus we observe distinct deformations in the top

and bottom edges of the fabric. However, in reality, these are not observed due to

tightly restrained edges by applying selvedge stitches [194].

(a) (b)

Figure 6.29: Yarn-level pull test of a weft-knitted fabric. (a) Problem description of
the reference configuration. (b) Deformed configuration due to the applied
load in the x-direction. Colour distribution refers to the x-direction dis-
placements of the yarns.

Sensitivity analysis

A sensitivity analysis is carried out to investigate the dependency of the homogenised

response on material and geometric property parameters. This is qualitatively a vital

step in building the response database discussed in Section 5.3.1. The sensitivity of each
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parameter is important to investigate the parameter dependencies, redundant param-

eters and uncertainties of each parameter on the homogenised response of RVEs. For

brevity, only homogenised tensile response is considered herein for the sensitivity anal-

ysis of weft-knitted RVEs. As common to sensitivity analyses, we change one variable

and hold others constant, unless there are any variable dependencies.

RVE size

It is a common practice in computational homogenisation communities to study the

convergence of the homogenised response for different RVE sizes. Figure 6.30 shows the

convergence results for different sizes of weft-knitted RVEs. For this study, we use the

same number of loops in both course and wale directions. From a theoretical stand-

point, however, it is possible to consider different combinations of course and wale loops

that can represent the weft-knitted textile in the macroscale. Moreover, for notational

convenience, we use nc × nw to classify RVEs by their number of course loops (nc) and

wale loops (nw).

When the RVE size is increased from 1 × 1 to 6 × 6, as shown in Figure 6.30, we can

clearly observe the convergence of the homogenised response P11. This RVE size conver-

gence is important to establish the principle of separation of scales for using hierarchical

computational homogenisation. Unlike in woven textiles, there are some variations in

this convergence study due to the frictionless contacts and the comparative complexity

of the RVE model in terms of arbitrary initial curvatures and out-of-plane yarn deforma-

tion. However, since we do not observe significant changes in the homogenised response,

and also considering the numerical efficiency of the database construction, 1 × 1 RVEs

are used henceforth.
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Figure 6.30: Convergence of the homogenised response for different sizes of weft-knitted
RVEs. Equal number of loops in course and wale directions have been
considered here.

Young’s modulus of yarns

Figure 6.31 presents the sensitivity of yarn Young’s modulus on the homogenised axial

response of the weft-knitted RVE. As expected, we can observe a linear increase of the

stress resultant P11. This is obvious as we are using a linear isotropic material to analyse

the RVEs. Ê in Figure 6.31 refers to the original value of Young’s modulus used to verify

the microscale simulations in Section 6.2.2 (see Table 6.2).
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Figure 6.31: Sensitivity analysis of the Young’s modulus of yarns on the homogenised
response of weft-knitted RVEs.

6.2.3 Data-driven macroscale analysis

Data-driven multiscale modelling proposed in Section 5.3 is evaluated here for the com-

putational homogenisation of weft-knitted textiles. Provision of microscale model ver-

ifications, convergence study and sensitivity analyses in Section 6.2.2 constitute the

applicability of machine learning for macroscale analysis.

Similar to data-driven plain-woven macroscale analysis, we represent the response database

succinctly as (E11, E22, E12, ψ) where E is the Green-Lagrange strain tensor and ψ gives

the area-averaged energy in mJ/mm2.

DM =


D1

M = E11 E11 ∈ [−0.05, 0.15]

D2
M = E22 E22 ∈ [−0.05, 0.15]

D3
M = E12 E12 ∈ [0.0, 0.15]

(6.6)

Geometric (Gm) and material (Mm) parameters are held constant and take the values

given in Table 6.2.
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Strain energy prediction and uncertainty

Similar to plain-woven textiles, we train a GPR model using the constructed response

database as given in Equation (6.6). A small but complete subset of the full database is

extracted to train a GPR model. As shown in Figure 6.32, we use 90 new data points from

the database to test the accuracy of the trained GPR model. Figure 6.32 also presents

the corresponding 95% confidence interval of the predicted energy of the new data points.

For this particular database, training and testing errors were recorded as 6.52×10−12 and

3.48×10−6. Detailed analysis on these errors, optimised hyperparameters and maximum

log marginal likelihood values are provided later in this chapter.

Figure 6.32: (a) Strain energy prediction for unseen data points sorted by ascending
potentials (b) 95% confidence interval of the predicted mean energy.

Stress predictions

Accuracy test on predicted energy has to be followed by an accuracy test on the stress

components. Using Equations (5.41) and (3.35) we evaluate the degree of accuracy of

the predicted stresses to that of observed stresses in the database. Figure 6.33 provides

two principal stress component comparisons thus setting E12 = 0.0. For visualisation

purpose, one strain component is held constant while the other is increased from 0.0

to 0.16. We can observe nearly exact stress predictions from the trained GPR model.

Moreover, we notice slight deviations close to the bounds of strain components which is

treated by refining the data points close to these bounds.
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Figure 6.33: Prediction and comparison of the second Piola-Kirchhoff stress components.
(a) S11, S22 for E11 = [0.%, 22%] and E22 = 8%. (b) S11, S22 for E22 =
[0.%, 22%] and E11 = 10%.

GPR model testing error quantification

Here, similar to plain-woven textiles, we present the variability of GPR model testing

errors for energy and stress predictions. This is a vital step to investigate the error

convergence and algorithmic efficiency of the model training and testing phase. Equation

(5.48) is used to compute the mean squared errors (MSE) of energy predictions.
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Figure 6.34: Error metrics of the predicted strain energy density and the norm of the
vectorised second Piola-Kirchhoff stress tensor components

As expected, errors in stress predictions are comparatively higher than the energy pre-

dictions. Considering the error convergence and algorithmic efficiency, we use a response

database with 2601 test data points. Moreover, for every database, we optimise the log

marginal likelihood (given in Equation (5.31)) with respect to hyperparameters and ar-

rive at the optimum hyperparameters that yield the maximum log marginal likelihood.

Table A.3 presents a concise tabulated results of the error analyses (R2, MSE), maximum

log marginal likelihood (MLML) and optimum hyperparameters (σf , `).

Pull tests on data-driven weft-knitted textiles

Numerically tested and verified GPR model is next applied to simulate the membrane

response of pull tests along the two principal directions, namely course-wise and wale-

wise pull tests. Each membrane specimen is a square of side 10mm. These tests are

designed in a way where one edge is held fixed and the opposite edge is pulled in the

course or wale directions by 1mm. The non-zero stress component distributions are

shown in figures 6.35 and 6.36.
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It is important to emphasise on the asymmetry of the stress distributions predicted

by the Gaussian process model where S11 in Figure 6.35 is not equal to S22 in Figure

6.36. This is mainly due to the anisotropy of the mechanical response of RVEs in the

course and wale directions. This is also observed in the numerical strip biaxial tests

used in microscale model verification (see Figure 6.28). In Figure 6.28, for a constant

macroscopic strain of 10% (E11 or E22), we observe the corresponding stress resultants

taking different values, S11 = 24.53 gf/cm and S22 = 44.27 gf/cm, respectively.

Figure 6.35: Stress distribution of a course-wise pull test on a data-driven weft-knitted
textile
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Figure 6.36: Stress distribution of a wale-wise pull test on a data-driven weft-knitted
textile

Yarn-level versus data-driven homogenisation

After discussing the data-driven homogenisation of knitted membranes, we present a

quantitative comparison of the problem presented in Figure 6.29. The yarn-level model

comprises of 12 loops in the course direction and 12 loops in the wale direction. Hence,

we use an equal size membrane, 10.00mm long, 5.85mm wide and 0.2356mm thick,

for the homogenised macroscale analysis. Homogenised membrane model is analysed

using a 12 × 12 structured mesh using the proposed Gaussian process homogenisation

technique. For comparison purposes, yarn-level model in 6.37a is created by projecting

it onto the xy plane using Delaunay mesh generation. We can observe a very good

agreement between the two models. However, y-direction displacement distribution of

the yarn model in Figure 6.37a is slightly different to that of the homogenised membrane

in Figure 6.37b. This difference results mainly from two reasons. First, zero out-of-plane

displacement boundary conditions on the top and bottom edges of the yarn-level model

directly contribute to the observed difference. These boundary conditions are applied to
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simulate selvage stitches that restrict the top and bottom yarns being freely straightened

during deformation. Secondly, the geometric asymmetry of the yarn-level model about

the mid-horizontal plane has an influence on the overall response due to the relatively

small number of loops used in both course and wale directions.

(a) (b)

Figure 6.37: Quantitative comparison between yarn-level and homogenised models.
Here, x and y displacement distributions of (a) yarn-level model and (b)
homogenised knitted membrane of a pull test along x-direction are illus-
trated.

6.2.4 Data-driven weft-knitted textile design

The extension to data-driven weft-knitted textile design is achieved by incorporating the

design (material and geometric) parameters into the response databases. We simulta-

neously vary the Young’s moduli and radius of yarns constrained by the prerequisites

discussed in Section 5.4.1. We define the design response database entries succinctly as

(E11, E22, E12,E/Ê,R/R̂, ψ). We specify the feature bounds to be used in constructing
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the response database as given in Equation (6.7).

Gm =

{
G1

m =
R

R̂

R

R̂
∈ [0.8, 1.2] (6.7a)

Mm =

{
M1

m =
E

Ê

E

Ê
∈ [0.01, 3.0] (6.7b)

DM =


D1

M = E11 E11 ∈ [−0.05, 0.15]

D2
M = E22 E22 ∈ [−0.05, 0.15]

D3
M = E12 E12 ∈ [0.0, 0.15]

(6.7c)

GPR model testing error quantification

We quantify the prediction errors to measure the accuracy of the trained GPR model

for plain-woven textile design. Following a similar approach considered in Section 6.2.3,

we produce prediction errors for both energy and stress components, as shown in Figure

6.38. Variation and convergence of these errors follow a similar pattern to Figure 6.34.

Considering the error convergence and efficiency of model training, we use a response

database with 4096 data points. For this specific database: recorded optimum hyperpa-

rameters were σ2
f = 6.7212, ` = 0.112; maximum log marginal likelihood was 15890.915.

Time taken for model training was recorded as 33 minutes and 28 seconds on an Intel

Core i5-4590 CPU 3.30GHz× 4 processor.
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Figure 6.38: Error metrics of the predicted strain energy density and the norm of the
vectorised second Piola-Kirchhoff stress tensor components

Weft-knitted textile design examples

Now we are interested to see how the stress-strain variations would look like for a given

combination of E/Ê and R/R̂. We start with two strip biaxial tests, as shown in Figures

6.39a and 6.39b, where strain combinations E11 : E22 = 1 : 0 and E11 : E22 = 0 : 1

have been enforced respectively on the RVEs. Then we vary [E/Ê]warp and [E/Ê]weft on

a refined grid consisting 20736 data points. This refined grid is defined in a way that

only Young’s modulus ratio bounds (0.01 and 3.0) and radius ratio bounds (0.8 and

1.2) are common to the response database used for model training and the refined grid.

Thus, except for bounds, all other points act as unseen data points to the trained GPR

model. Next, we present the stress-strain relationship of a biaxial test in Figure 6.39c.

For illustration purpose, arbitrary strain values are used to represent different states of

deformations.
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(a)

(b)

(c)

Figure 6.39: Stress distributions for different combinations of yarn Young’s modulus and
radius. Results of three biaxial tests are shown in each figure. (a) Strip
biaxial test (E11 : E22 = 1 : 0). (b) Strip biaxial test (E11 : E22 = 0 : 1).
(c) Biaxial test
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7 Conclusions and Future Research

7.1 Conclusions

The primary aim of this thesis is to introduce and detail unified data-driven frame-

works for nonlinear computational homogenisation and material design of textiles. On

the journey to the successful completion of the primary aim, there were secondary but

significant objectives achieved that are regarded as contributions towards respective re-

search fields. At this juncture, all these contributions are summarised in the appreciation

of this research work.

� Non-smooth manifold-based basis functions: A novel set of univariate basis func-

tions were introduced specifically for modelling non-smooth rod structures. Frames,

lattices and trusses usually have one or more C1-smooth locations within the struc-

ture. Using non-smooth manifold basis functions we have proven that such geome-

tries can be represented exactly. Moreover, the existence of these non-smooth

features as singularities of smooth curves can also be easily incorporated using

manifold basis functions. This is straightforward as one needs to choose between

smooth or non-smooth local polynomials accordingly during the mapping from

parametric to physical domains.

In Chapter 3, we detailed rigorous formulations and implementation aspects of a finite

deformable spatial rod model. Some key contributions deserve to be mentioned.

� Analytical expressions for initially curved rods: Using Jacobian expansions we

derived analytical expressions for initially curved rods. Bauer et al. [52] approxi-

mated stretching internal force contributions from initial curvatures. However, our

formulations not only deduced exact internal force contributions (both stretching

and bending) but also attained the Hessian contributions.
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� Non-conservative loading simulations: Another demerit of many beam formula-

tions is the inability to handle non-conservative (follower) loading. Under the

domain of differential geometry, we have successfully formulated and verified the

applicability of follower loading in rod structures. Moreover, in a more general con-

text, our formulations can handle external stiffness matrices arising from non-zero

external loading tangents.

� Isogeometric analysis of hinged beams: Isogeometric analysis of hinged beams

using the introduced non-smooth manifold basis functions was implemented. One

example was used to verify the results and the same example was used to study the

error convergence rate of using manifold basis functions in isogeometric analysis.

� Anisotropic thin-shell simulator: Based on a differential geometric approach, im-

plementation of an anisotropic thin-shell simulator has many advantages. In this

context, the most important advantage would be the ability to implement linear

computational homogenisation of anisotropic shells. Accuracy of the implementa-

tions was measured against a well-established example from the literature and the

optimal convergence was also observed.

� Data-driven computational homogenisation of textiles: In-depth discussions on

machine learning, specifically on Gaussian Process Regression technique, have been

thoroughly explored in Chapter 5 to introduce machine learning in the context

of computational homogenisation. Extensive formulations of Gaussian Process

Regression were implemented within a finite element environment to initiate a

data-driven nonlinear computational homogenisation scheme for technical textiles.

Appreciation of the merits of using machine learning in a FE2 framework was

elaborated in Chapter 6 using two types of textiles namely, plain-woven and weft-

knitted.

� Data-driven textile design: Lastly, another advantage of using machine learning is

exploited to incorporate material design in computational homogenisation. Sev-

eral prerequisites, concerning geometric constraints and numerical stability, were

established to perform data-driven material designs of textiles. Each application

in Chapter 6 was extended to include material designs and some examples were

included to prove the robustness of simulations.
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7.2 Future work

The presented research work in this thesis can be extended in many ways.

� Though, the attention was focussed only on plain-woven and weft-knitted fabrics,

the presented data-driven computational homogenisation strategy can be applied

to other stitch and weave pattern types. In woven textiles, this extension can

be used to homogenise satin, twill, basketweave, dobby, cross and jacquard weave

types. Different stitch types in weft-knitted and warp-knitted can also be ho-

mogenised using the proposed data-driven framework.

� Data-driven material design framework can be further extended by adding more

material and geometric parameters. Thus, not only the design framework becomes

more general and versatile but also gives more handles to control the homogenised

response of plain-woven and weft-knitted fabrics.

� Similar to computational homogenisation of other weave and stitch types of woven

and knitted textiles, we can use the data-driven material design framework to

design for other stitch and weave types.

� Departing from textiles, aforementioned data-driven techniques can be directly

applied in homogenisation and design of fibre composites, lattice structures and

other 3D printable periodic structures. This extension should be equipped with

bending deformations which are dominant in non-textile applications.

� Spatial rod model can be further extended to include material anisotropy in both

linear and nonlinear regimes. Moreover, warping effects can be included to simulate

warping torsion effects in beams. Extension of the rod model to include linear

material anisotropy would not take much efforts as a similar implementation has

been carried out for thin-shells.

� Another extension would be to try different regression machine learning techniques

to assess the accuracy of predictions, algorithmic efficiency and overall computa-

tional budget. This could be interesting if one uses complex material models with

finite deformations and rotations to perform computational homogenisation.
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� A direct extension would be to include plasticity and peridynamics into the compu-

tational homogenisation framework. This would be crucial in analysing the failure

criterion for different textiles.

� Departing from computational homogenisation, we can use the spatial rod model to

arrive at Bayesian displacement models. This can be accomplished in many ways.

One straightforward technique would be to add probability distributions to applied

loading (or displacements) so the model results not only a mean displacement

distribution, but also predicts its variations given a confidence interval. Another

way would be to depart from the material models. For instance, one would attach

a probability distribution to the Young’s modulus of a linear isotropic material

and arrive at a similar statistical displacement field. In a broad picture, this can

be identified as uncertainty quantification in the context of continuum mechanics.

� On a slightly different research focus, we can use data-driven techniques in optimis-

ing structures. For instance, consider optimising a steel structure. Prevalent topol-

ogy, shape and size optimisation schemes has a barrier to entry into the industrial

applications due to manufacturing difficulties of complicated optimum shapes and

topologies. However, we can specify the existing standardised steel cross-sections

(e.g. Universal Beams, Universal Columns, Channel and Angle cross-sections etc.,)

when constructing the response databases, and the optimisation schemes are set

to a discrete form than the traditional continuous forms. Continuous forms lead

to better structures in an optimisation sense, but require advanced additive manu-

facturing technologies to manufacture the optimal shapes which is not yet feasible

for medium-to-large scale constructions.
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A Appendix

A.1 Finite deformable rod - Detailed formulations

A.1.1 Rotation matrix gradients

Gradient of Λ1,Λ1,1 with respect to axial torsional degrees of freedoms,

∂2Λ1

∂ϑI∂ϑJ
= (− sinϑK(A1u) + cosϑK(A1u)K(A1u)N

INJ (A.1)

∂Λ1,1

∂ϑI
= cosϑK,1N

I − sinϑKϑ,1N
I + cosϑKN I

,1 + sinϑ(KK,1 +K,1K)N I

+ cosϑKKϑ,1N
I + sinϑKKϑ,1N

I
,1

(A.2)

∂2Λ1,1

∂ϑI∂ϑJ
= − sinϑK,1N

INJ − cosϑKϑ,1N
INJ

− sinϑKϑ,1N
INJ

,1 + (KK,1 +K,1K) cosϑN INJ

− sinϑKKϑ,1N
INJ + cosϑKKN INJ

,1 + cosϑKKN I
,1N

J .

(A.3)

Gradient of Λ2 with respect to displacement degrees of freedom uI ,

∂Λ2

∂uI
=
∂Λ2

∂a1u

∂a1u

∂uI
(A.4)

∂Λ2

∂a1u

= −(A1u + a1u)⊗ I

(1 + a1u ·A1u)
− I⊗ a1u

(1 + a1u ·A1u)
+

((A1u + a1u)⊗A1u)⊗ a1u

(1 + a1u ·A1u)2
(A.5)

∂a1u

∂uI
=

(
I

||a1||
− a1 ⊗ a1

||a1||3

)
N I
,1 (A.6)
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A.1.2 Hessian terms

Second variations of strain components as required by Equations (3.92), (3.93), (3.94),

(3.95) to compute the stiffness matrix. First taking the second variants with respect to

u

∂2α

∂uI∂uJ
=

∂

∂uJ

(
a1 ·

∂a1

∂uI

)
=
∂a1

∂uJ
· ∂a1

∂uI
(A.7)

∂2βj
∂uI∂uJ

= − ∂

∂uJ

(
∂βj
∂uI

)
= − ∂

∂uJ

(
∂aj
∂uI
· a1,1 + aj ·

∂a1,1

∂uI

)
= −∂aj

∂uI
· ∂a1,1

∂uJ
− ∂2aj
∂uI∂uJ

· a1,1 −
∂aj
∂uJ

· ∂a1,1

∂uI
j = 2, 3 (A.8)

∂2aj
∂uI∂uJ

=
∂

∂uJ

(
∂Λ2

∂uI
Λ1Aj

)
=

∂2Λ2

∂uI∂uJ
Λ1Aj j = 2, 3 (A.9)

∂2γ

∂uI∂uJ
=

1

2

∂

∂uJ

(
∂a2

∂uI
· a3,1 + a2 ·

∂a3,1

∂uI

)
=

1

2

(
∂a2

∂uI
· ∂a3,1

∂uJ
+

∂2a2

∂uI∂uJ
· a3,1 +

∂a2

∂uJ
· ∂a3,1

∂uI
+ a2 ·

∂2a3,1

∂uI∂uJ

)
(A.10)

∂2a3,1

∂uI∂uJ
=

∂

∂uJ

(
∂Λ2,1

∂uI
Λ1A3 +

∂Λ2

∂uI
Λ1,1A3 +

∂Λ2

∂uI
Λ1A3,1

)
=

∂2Λ2,1

∂uI∂uJ
Λ1A3 +

∂2Λ2

∂uI∂uJ
Λ1,1A3 +

∂2Λ2

∂uI∂uJ
Λ1A3,1 (A.11)
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u and ϑ coupled second variants

∂2βj
∂uI∂ϑJ

= − ∂

∂ϑJ

(
∂βj
∂uI

)
= − ∂

∂ϑJ

(
∂aj
∂uI
· a1,1 + aj ·

∂a1,1

∂uI

)
= − ∂2aj

∂uI∂ϑJ
· a1,1 −

∂aj
∂ϑJ
· ∂a1,1

∂uI
j = 2, 3 (A.12)

∂2aj
∂uI∂ϑJ

=
∂

∂ϑJ

(
∂Λ2

∂uI
Λ1Aj

)
=
∂Λ2

∂uI

∂Λ1

∂ϑJ
Aj j = 2, 3 (A.13)

∂2γ

∂uI∂ϑJ
=

1

2

∂

∂ϑJ

(
∂a2

∂uI
· a3,1 + a2 ·

∂a3,1

∂uI

)
=

1

2

(
∂a2

∂uI
· ∂a3,1

∂ϑJ
+

∂2a2

∂uI∂ϑJ
· a3,1 +

∂a2

∂ϑJ
· ∂a3,1

∂uI
+ a2 ·

∂2a3,1

∂uI∂ϑJ

)
(A.14)

∂2a3,1

∂uI∂ϑJ
=

∂

∂ϑJ

(
∂Λ2,1

∂uI
Λ1A3 +

∂Λ2

∂uI
Λ1,1A3 +

∂Λ2

∂uI
Λ1A3,1

)
=
∂Λ2,1

∂uI

∂Λ1

∂ϑJ
A3 +

∂Λ2

∂uI

∂Λ1,1

∂ϑJ
A3 +

∂Λ2

∂uI

∂Λ1

∂ϑJ
A3,1 (A.15)

second variants with respect to ϑ

∂2βj
∂ϑI∂ϑJ

= − ∂

∂ϑJ

(
∂βj
∂ϑI

)
= − ∂

∂ϑJ

(
∂aj
∂ϑI
· a1,1

)
= − ∂2aj

∂ϑI∂ϑJ
· a1,1 (A.16)

∂2aj
∂ϑI∂ϑJ

=
∂

∂ϑJ

(
Λ2

∂Λ1

∂ϑI
Aj

)
= Λ2

∂2Λ1

∂ϑI∂ϑJ
Aj j = 2, 3

∂2γ

∂ϑI∂ϑJ
=

1

2

∂

∂ϑJ

(
∂a2

∂ϑI
· a3,1 + a2 ·

∂a3,1

∂ϑI

)
=

1

2

(
∂a2

∂ϑI
· ∂a3,1

∂ϑJ
+

∂2a2

∂ϑI∂ϑJ
· a3,1 +

∂a2

∂ϑJ
· ∂a3,1

∂ϑI
+ a2 ·

∂2a3,1

∂ϑI∂ϑJ

)
(A.17)

∂2a3,1

∂ϑI∂ϑJ
=

∂

∂ϑJ

(
Λ2,1

∂Λ1

∂ϑI
A3 + Λ2

∂Λ1,1

∂ϑI
A3 + Λ2

∂Λ1

∂ϑI
A3,1

)
= Λ2,1

∂2Λ1

∂ϑI∂ϑJ
A3 + Λ2

∂2Λ1,1

∂ϑI∂ϑJ
A3 + Λ2

∂2Λ1

∂ϑI∂ϑJ
A3,1 (A.18)
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A.2 GPR model training and testing results

Presented here are the tabulated results of training and testing of the GPR models for

plain woven and weft-knitted fabrics. We restate the following abbreviations.

R2 score - Coefficient of determination

MSE - Mean Squared Error

MLML - Maximum Log Marginal Likelihood

A.2.1 Influence of covariance functions on predictions

Table A.1: GPR model training and testing results for different covariance functions

Covariance
function

Data
points

Model training Model testing (on unseen data)

R2 MSE
(×10−10)

R2 MSE
(×10−8)

Optimised
Θ MLML

{Θ1,Θ2, · · · }

RQ

36 1.0 114.38 1.0 5030.0 37.13, 0.0177, 0.989 525.801
121 1.0 1.971 1.0 3.472 23.63, 0.00121, 1.262 2022.679
441 1.0 5.082 1.0 4.455 8.82, 0.00255, 0.556 4715.243
961 1.0 5.655 1.0 7.899 11.16, 0.00024, 0.053 13784.370
2601 1.0 15.238 1.0 0.163 8.77, 0.00012, 0.658 57351.711

SE

36 1.0 33.352 1.0 5826.5 7.87, 0.0785 433.224
121 1.0 0.639 1.0 3.698 2.17, 0.0288 1344.696
441 1.0 0.567 1.0 8.708 1.51, 0.0192 3315.804
961 1.0 0.958 1.0 3.340 0.162, 0.0545 -8920.712
2601 1.0 0.492 1.0 0.144 0.161, 0.0545 12646.968

Exp-Sine

36 1.0 792.12 1.0 5936.7 8.41, 0.612, 1.0 452.758
121 1.0 2.069 1.0 8.631 1.65, 0.138, 1.0 1377.407
441 1.0 1.069 1.0 3.512 4.89, 0.323, 1.0 3034.238
961 1.0 11.468 1.0 5.987 19.35, 0.144, 2.91 6822.816
2601 1.0 14.481 1.0 1.693 6.84, 0.124, 3.08 29254.113

Matérn

36 1.0 139.26 1.0 16211.8 119.34, 3.37, 2.50 51.883
121 1.0 13.188 1.0 6.577 107.45, 2.43, 2.50 2652.891
441 1.0 0.238 1.0 0.397 95.72, 2.14, 2.50 6519.493
961 1.0 0.416 1.0 0.570 41.36, 1.01, 2.50 18264.605
2601 1.0 0.271 1.0 0.303 11.12, 0.303, 2.50 72549.535

where ΘRQ = {σf , α, `}, ΘSE = {σf , `}, ΘExp-Sine = {σf , `, periodicity}, ΘMatérn =

{σf , `, ν = 2.5}.
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A.2.2 Plain woven fabrics

Table A.2: 5−fold data training and testing results for multiscale modelling of plane-
woven fabrics using Gaussian Process Regression.

Data
points

Trial #
Model training Model testing (on unseen data)

R2 MSE
(×10−11)

R2 MSE
(×10−5)

Optimised
Θ MLML

σf `

36

1 1.0 0.032 1.0 81.42 62.34 0.172 -27.265
2 1.0 0.007 1.0 67.23 59.21 0.171 -29.481
3 1.0 0.216 1.0 84.29 68.13 0.173 -24.147
4 1.0 0.167 1.0 74.17 65.36 0.173 -25.471
5 1.0 0.037 1.0 99.34 57.98 0.168 -34.725

121

1 1.0 0.544 1.0 5.23 23.64 0.0677 72.986
2 1.0 0.463 1.0 8.62 27.41 0.0684 81.326
3 1.0 0.753 1.0 2.81 19.36 0.0648 68.264
4 1.0 0.549 1.0 3.45 26.11 0.0680 78.399
5 1.0 0.742 1.0 1.53 25.26 0.0681 76.341

441

1 1.0 5.541 1.0 1.44 12.52 0.0298 465.997
2 1.0 5.302 1.0 3.56 14.92 0.0304 513.362
3 1.0 7.461 1.0 2.72 11.32 0.0296 431.732
4 1.0 2.661 1.0 0.99 12.53 0.0298 469.873
5 1.0 3.767 1.0 0.48 8.23 0.0284 389.232

1296

1 1.0 4.442 1.0 1.21 8.96 0.0148 1488.52
2 1.0 3.093 1.0 2.47 7.45 0.0142 1387.37
3 1.0 2.893 1.0 0.71 7.12 0.0140 1299.15
4 1.0 1.251 1.0 0.81 8.08 0.0144 1411.57
5 1.0 1.892 1.0 0.35 8.38 0.0146 1432.59

2601

1 1.0 2.493 1.0 1.15 8.12 0.0105 3011.58
2 1.0 5.614 1.0 1.03 7.96 0.0101 3110.44
3 1.0 4.633 1.0 1.85 8.05 0.0103 3063.82
4 1.0 2.122 1.0 0.62 7.92 0.0099 3102.93
5 1.0 2.452 1.0 0.46 8.21 0.0110 3183.52
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A.2.3 Weft-knitted fabrics

Table A.3: 5−fold data training and testing results for multiscale modelling of weft-
knitted fabrics using Gaussian process regression.

Data
points

Trial #
Model training Model testing (on unseen data)

R2 MSE
(×10−10)

R2 MSE
(×10−8)

Optimised
Θ MLML

σf `

36

1 1.0 0.202 1.0 6532.24 19.23 0.172 37.173
2 1.0 0.223 1.0 6485.43 19.21 0.171 36.481
3 1.0 0.256 1.0 6783.94 18.59 0.169 34.271
4 1.0 0.197 1.0 5768.74 20.06 0.174 39.761
5 1.0 0.237 1.0 6138.49 17.98 0.166 31.946

121

1 1.0 0.594 1.0 2.15 6.99 0.0723 344.74
2 1.0 0.783 1.0 2.27 7.09 0.0725 356.12
3 1.0 0.713 1.0 2.06 6.89 0.0722 339.82
4 1.0 0.635 1.0 1.92 6.71 0.0716 321.86
5 1.0 0.689 1.0 1.83 7.12 0.0725 362.83

441

1 1.0 4.501 1.0 1.48 2.17 0.0292 1322.73
2 1.0 4.682 1.0 1.45 2.09 0.0289 1284.82
3 1.0 4.418 1.0 1.35 2.13 0.0290 1298.72
4 1.0 4.531 1.0 1.39 2.31 0.0295 1361.82
5 1.0 4.877 1.0 1.34 2.23 0.0293 1357.22

961

1 1.0 1.542 1.0 2.41 1.28 0.0142 2899.49
2 1.0 1.354 1.0 2.31 1.25 0.0142 2868.41
3 1.0 1.683 1.0 2.38 1.16 0.0139 2793.85
4 1.0 1.461 1.0 2.45 1.31 0.0143 2904.62
5 1.0 1.498 1.0 2.40 1.39 0.0146 2984.91

2601

1 1.0 2.193 1.0 0.96 1.05 0.00899 9407.88
2 1.0 1.756 1.0 1.07 1.13 0.00901 9531.86
3 1.0 1.493 1.0 1.12 1.25 0.00904 9594.98
4 1.0 1.892 1.0 0.92 0.92 0.00889 9291.49
5 1.0 1.782 1.0 0.98 1.19 0.00902 9552.66
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[140] Y Başar, M Itskov, and A Eckstein. Composite laminates: nonlinear interlami-

nar stress analysis by multi-layer shell elements. Computer Methods in Applied

Mechanics and Engineering, 185(2):367–397, 2000. 89

[141] A J M Spencer. Continuum Theory of the Mechanics of Fibre-Reinforced Compos-

ites. CISM International Centre for Mechanical Sciences. Springer Vienna, 2014.

91

[142] A L Dobyns. Analysis of Simply-Supported Orthotropic Plates Subject to Static

and Dynamic Loads. AIAA Journal, 19(5):642–650, may 1981. 92, 93

[143] J M Whitney and N J Pagano. Shear Deformation in Heterogeneous Anisotropic

Plates. Journal of Applied Mechanics, 37(4):1031–1036, 12 1970. 93

[144] V G Kouznetsova, M G D Geers, and W A M Brekelmans. Computational ho-

mogenisation for nonlinear heterogeneous solids, pages 1–42. 100
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