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Abstract—Choosing an effective representation is fundamental
to the ability of the representation’s user to exploit it for the
intended purpose. The major contribution of this paper is to
provide a novel, flexible framework, rep2rep, that can be used by
AI systems to recommend effective representations. What makes
an effective representation is determined by whether it expresses
the necessary information, supports the execution of tasks, and
reflects the user’s cognitive abilities. In general, there is no
single ‘most effective’ representation for every problem and every
user, which makes it difficult to choose one from the plethora
of possible representations. To address this, rep2rep includes:
a domain-independent language for describing representations,
algorithms that compute measures of informational suitability
and cognitive cost, and uses these measures to recommend
representations. We demonstrate the application of rep2rep in
the probability domain. Importantly, our framework provides
the foundations for personalised interaction with AI systems in
the context of representation choice.

I. INTRODUCTION

The ability of AI systems to adapt to human users is of major
importance. This paper focuses on AI systems that recommend
representations of knowledge that are suitable and effective
for their intended use and target user. The suitability of a
representation is determined by the information it is meant
to represent and the goals for which it is intended to be
used. Effectiveness depends on the cognitive abilities of the
target user. Evidentially, the development of such AI systems is
challenging, necessarily requiring advances in computer science
and cognitive science.

An AI system that recommends representations needs a
general theoretical framework capable of: describing repre-
sentations, capturing representation-manipulation rules needed
when solving problems, and understanding correspondences
between representations in order to identify suitable alternatives.
Beyond this, the framework must identify whether alternative
choices are effective: what is effective for one user need not
be effective for another. The provision of such a framework
is well beyond the current state-of-the-art. Moreover, the goal
of providing a complete theory of representation choice based
on the cognitive abilities of users requires substantial research
advances that are beyond the scope of a single paper.

The major contribution of this paper is a novel framework,
called rep2rep, that can be used by AI systems to recommend
effective representations. §II covers background and motivation.
§III exemplifies representation choice. The core of rep2rep is
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in §IV: a theory that enables the description of representations.
We demonstrate, in §V, how rep2rep incorporates measures of
informational suitability and user-specific cognitive cost. The
complete rep2rep framework (§IV and §V), encapsulates a
process by which an AI system can recommend representations
that are suitable for the task and the user. The potential for
the successful deployment of such a system is demonstrated in
§VI: we empirically evaluate representation recommendations
made by rep2rep. We present our conclusion in §VII.

II. BACKGROUND AND MOTIVATION

In rep2rep we consider the need for a common language
to talk about representations, the requirement to identify
correspondences between representations, and the effectiveness
of representation choice on task performance.
Representations and Tasks. Representations play a fundamental
role in our lives. Our focus is on representations that commu-
nicate information and support users with tasks. One basic
goal is identifying observable information from a representa-
tion [23, 24]. More complex tasks may require representation
manipulations to make deductions using (formal or informal)
inference steps. To allow an AI system to compare repre-
sentations, we propose a language – that of representational
systems and their descriptions – that allows us to characterise
representations and their associated manipulation rules.
Existing Frameworks. Perhaps the most prominent frameworks
that support representation choice are Cognitive Dimensions [3,
7] and the “Physics” of Notations [16], but see also [4, 6].
There is subjectivity in how they are applied and, whilst useful,
they are not able to predict the relative cognitive cost of
representations and have not led to implementable AI systems.
rep2rep removes the need for subjectivity through the use of
measures of informational suitability, and takes the state-of-
the-art to a new level of precision: rep2rep includes correspon-
dences between representational systems which provide vital
foundations for objectively comparing competing choices.
Empirical Insights. Representation choice is critical: cognitive
science has established that effective representations can yield
significant improvements in human task performance and
learning [12, 14]. Researchers have empirically compared
specific representation choices by manipulating graphical or
topological features, as in [21]. This allows ‘fine-tuning’ of
representations to improve their effectiveness. Moreover, repre-
sentational system choices have been empirically compared on



a limited range of representations, e.g., [15, 22, 28]. Such
evaluations do not provide general insights about how to
choose cognitively effective representations. This necessitates
the need to improve representation choice through extensive
empirical studies involving human participants. A surprising
omission, which is addressed by rep2rep, is a general method
that supports the objective selection of representations using
measures of cognitive cost informed by the intended user and
the problem they are trying to solve.
Implemented Systems. Whilst many systems support formal
reasoning [10, 18], few have been implemented that aid repre-
sentation choice in the context of problem solving. Reasoning
tools that support multiple notations, such as [2, 26], reflect
the value of alternative representational systems, but none of
them specifically guide the user towards effective representation
choices. rep2rep addresses this problem.
Contribution. AI systems that support effective representation
choice in order to help humans solve problems are needed:
rep2rep is the basis of such a system. It includes a formal
conceptualisation of representations and problems, characteri-
sation of analogical correspondences between representations,
and computable measures of informational suitability and user-
specific cognitive cost. This allows the objective recommenda-
tion of effective representations. Importantly, as more empirical
research is undertaken, it will be possible to adapt measures
of cognitive cost so that rep2rep makes ever more robust
recommendations. The generality and extensibility of rep2rep
ensures long-term relevance.

III. THE DIVERSITY OF REPRESENTATIONS

Representations are built from tokens that satisfy some
syntactic constraints. Tokens could include the numerals 3
and 12, and the symbols + and =. Representations include
1.2 + 3.6 = 4.8 and 1.2 + 3.6 = 7 and they satisfy the rules
that + and = are binary operators that join together ‘valid’
representations; 1.+ is not a valid representation. The fact
that we can build a variety of representations from a set of
tokens is the basis on which we will define representational
systems (RSs): RSs allow us to abstractly characterise classes
of representations. To exemplify representation choices, we
present a problem and different ways in which it can be
expressed and solved. The scope of these representations, and
thus RSs from which they are drawn, is large, including natural
language (NL), formal notation, a geometric figure, and a table.
They have different syntaxes and manipulation rules so it is
likely that the cognitive effort demanded of the user varies
across representations.
Medical Test Problem (drawn from the NL RS) 4% of the
population has a disease D. For those who have the disease,
a test T is accurate 95% of the time. For those who do not
have the disease, T is accurate 90% of the time. If you take
the test and it comes out positive, what is the probability that
you have the disease?

Alternative Rep. 1 (drawn from the Bayesian RS).
Assume: Pr(D) = 0.04, Pr(T | D) = 0.95, Pr(T | D) = 0.9.
Calculate: Pr(D |T ).

Solution.
Pr(D | T ) =

Pr(T | D) Pr(D)

Pr(T )
=

Pr(T | D) Pr(D)

Pr(T ∩D) + Pr(T ∩D)

=
Pr(T | D) Pr(D)

Pr(T | D) Pr(D) + Pr(T | D) Pr(D)

=
Pr(T | D) Pr(D)

Pr(T | D) Pr(D) + (1− Pr(T | D))(1− Pr(D))

=
0.95 · 0.04

0.95 · 0.04 + (1− 0.9) · (1− 0.04)
≈ 0.28

0
.90

.9
5

0.04

1

Alternative Rep. 2 (drawn from the
Areas RS). Calculate the size ratio
between the patterned region, , and
the shaded region, .
Solution. From the figure, observe that
the area of the patterned rectangle is
0.95×0.04. The area of the two shaded
rectangles, (including the patterned region), is 0.95 × 0.04 +
(1− 0.9)× (1− 0.04). The ratio of these areas is ≈ 0.28.

Alternative Rep. 3 (drawn from the Contingency table RS).
Calculate the ratio of the value of cell (T,D) against total(T ).

D D total
T 0.95 · 0.04
T 0.9 · total(D)

total 0.04 1

Solution. Using the law of total probability, calculate total(D),
followed by the value of cell (T,D), followed by total(T ).
Finally, obtain the desired ratio ≈ 0.28.

These representations exemplify the problem our framework
aims to solve. Suppose an AI system is provided with the NL
representation. How do we know which alternative RSs may be
informationally suitable: which ones can express the required
information and deliver a solution using its laws and tactics?
All of the examples are suitable, but many other RSs exist
which are not. rep2rep, when provided with information about
correspondences between RSs and cognitive costs, can identify
suitable and cognitively effective alternatives.

IV. THE REP2REP FRAMEWORK

rep2rep aims to describe, not formalise, representations and
representational systems (RSs) with enough detail to enable
effective representation selection. Formalisation is a costly
process, and rep2rep is intended for flexible use where non-
formalised representations, such as a diagram in a textbook,
can be described. At the core of rep2rep are the notions
of RSs, which characterise classes of representations, RS-
descriptions, which encode important features of RSs, and
Q-descriptions1 that abstractly encode the representation of
a problem that is being solved. The requirements for RSs,
RS- and Q-descriptions, and an informal presentation of them,
were first given in [19, 20]. We extend that work by precisely
specifying RSs, Q- and RS-descriptions.

A. Abstract Characterisation of Representations

The representations characterised by an RS are formed over
a common syntax, which may be defined by grammatical

1‘Q’ for question; [19] refers to ‘descriptions’ as ‘tables’.



rules, along with rules of inference. We specify an RS by its
components: terms (atomic and composite), valid expressions,
types, laws, and tactics2.

Atomic terms, also called atoms, are elemental pieces from
which representations are built (e.g., Pr, |, D, =, 0.95). From
atoms, composite terms are constructed (e.g., Pr(T | D)). Valid
expressions, or simply expressions, are terms that abstractly
characterise representations (i.e., the concrete instances of an
RS, such as Pr(T | D) = 0.95). Types classify terms into
categories which allow the RS’s grammar to be specified. For
instance, replacing 0.95 by + in Pr(T | D) = 0.95, we obtain
a construction which is not an expression (or a term) within
the Bayesian RS. The type of 0.95 is real3, and anything
that takes its place must have the same type.

Laws allow inferences to be made. In the Bayesian RS, the
equality law states that if two expressions are equal then one
may be replaced by the other in any expression. Another law
states that Pr(x ∩ y) = Pr(x | y) Pr(y). Tactics are tools for
manipulating expressions, and laws are units of knowledge that
enable their use. For example, the tactic rewrite allows us to
replace the term Pr(T ∩D) with Pr(T | D) Pr(D), due to the
aforementioned laws.

B. RS- and Q-Descriptions

To facilitate the implementation of rep2rep in AI tools, we
computationally model the abstract concepts of representations
and RSs with RS-descriptions which describe complete RSs,
and Q-descriptions which describe specific representations of
problems. Both kinds of descriptions are comprised of a set of
declarations. A declaration is a triple, (k, v, A), where k is one
of the following kinds: atom, type, law, tactic, or pattern; v is
a specific value of k; and A is a finite set of attributes, written
as {a1 := x1, . . . , an := xn}. Here, we adopt a more readable
notation: k v : {a1 := x1, . . . , an := xn}. In the Bayesian RS,
we can declare

atom 0.95 : {type := real}
atom D : {type := event, occurrences := 4},

with the latter being for the medical problem’s representation.
Intuitively, attributes provide structural information or identify
features. In an RS-description, the attributes of a kind, k, and its
value, v, assert general information about v. In a Q-description,
the attributes also assert representation- and problem-specific
information, such as how many times v occurs. Thus, the
declarations of a Q-description are taken from the associated
RS-description, but include more attributes.

Pattern declarations are used to compactly describe sets of
expressions that have some common structure and they involve
three attributes: type, holes, and atoms. We explain their roles
with an example: consider the conditional probabilities structure
in Bayesian representation: Pr( | ) = . For this structure, we
declare a pattern with name CP and its associated expressions

2Prior work called atomic terms ‘tokens’; atomic terms are an abstraction
of a representation’s tokens. Composite terms and expressions were just called
expressions.

3Or more accurately, it is a base-10 real numeral.

are all of type formula. There are three holes that must be
filled: two with terms of type event and one with a term
of type real. Conditional probability expressions all use the
following atoms: Pr, |,=, (, ). Thus, we declare pattern CP as

pattern CP : {type := formula,
holes := [event,event,real],
atoms := [Pr, |,=, (, )]}.

Note that a pattern abstracts away the order in which atoms
and holes appear. This is by design as patterns are meant for
general purpose use. For instance, in the Areas RS, we can
capture an emergent new region by taking the union of two
existing regions:

pattern region_union : {type := region,
holes := [region,region],
atoms := []}.

Suppose we have an RS (e.g., Bayesian RS), with an
associated RS-description, r, that we would like to use for
representing and solving a problem (e.g., Medical test). Some
parts of this RS, and associated laws and tactics declared
within r, are necessary or helpful for this specific problem,
whereas others are irrelevant. The rep2rep framework captures
this in Q-descriptions by using representation- and problem-
specific measures of informational importance: a Q-description
for a representation and problem is a set of declarations, Dqr ,
together with a problem-specific function,

importanceqr : Dqr → [0, 1],

which indicates the importance of the concept captured by each
declaration, relative to the problem to be solved.

For instance, in the Bayesian representation of the medical
problem, the atom Pr is of high importance because every
probability problem depends fundamentally on the definition
of the probability function Pr. By contrast, the atom 0.04 is of
lower importance as the specific number may change the end
result, but does not change the nature of the solution. The law
Bayes’ theorem has high importance as it is needed to solve the
problem. By contrast, the law of monotonicity (if A ⊆ B then
Pr(A) ≤ Pr(B)) is not needed here, so has low importance.

The values for informational importance must currently be
set by an expert analyst who wants to deploy the rep2rep
framework. Future work will explore if and how these values
can be inferred automatically.

V. INFORMATIONAL SUITABILITY AND COGNITIVE COSTS

We now demonstrate how rep2rep makes recommendations:
(i) given a Q-description of a problem in some representation,
and RS-descriptions of alternative RSs, estimate the relative
informational suitability of each of these RSs; and (ii) given
a set of Q-descriptions (the problem encoded in alternative
representations), estimate their relative cognitive cost.

A. Informational suitability

Suppose we have a problem (e.g., Medical test), represented
in some RS (e.g., Bayesian). Moreover, suppose we have
a set of alternative RSs (e.g., Areas, NL, etc.), but we do



not know whether they can represent our problem. Knowing
the relationship between the original RS and the alternative
RSs is crucial for assessing whether they can represent the
problem. For example, if there exists a formal translation
of representations in the original RS into an alternative RS
then the problem can be translated and, thus represented. If,
in the alternative RS, we can also find laws and tactics for
solving the problem, then it is informationally suitable. Full
knowledge about the expressiveness of RSs and the problems
solvable using their laws and tactics is rarely available –
especially when some systems have not been fully formalised,
but are merely described. Thus, rep2rep exploits RS- and Q-
descriptions for identifying relationships, using the novel notion
of correspondences [19, 25] between RSs, in the context of
the given problem to be solved.

As well as using the declarations in RS- and Q-descriptions,
correspondences also use composite declarations (from this
point, just called declarations), formed using the operators
AND, OR and NOT. For example, we can write a declaration
(for simplicity we omit attributes) from the RS-description
of NL: ‘(atom lobster)OR (atom crab)’ and we say that it
is satisfied by a Q-description qr if one or both of the
atoms ‘crab’ and ‘lobster’ are declared in qr. Correspondences
between declarations from different RSs capture the analogical
mappings between RSs. They are accompanied by a parameter
strength, si where si ∈ [0, 1], to quantify the strength of this
analogical mapping. Here are some examples:
• atom: intersection and and in NL are analogous to ∩

in the Bayesian RS, the correspondence is written as:
〈atom intersection OR atom and, atom ∩, s1〉;

• types: every event, in the Bayesian RS, can be represented
by a region in the Areas RS: 〈type event, type region, s2〉;

• laws: the additivity of disjoint probabilities (Bayesian RS)
corresponds to the additivity of the areas of disjoint regions
(Areas RS): 〈law Pr additivity, law area additivity, s4〉.

Here, s1, s2, s3 and s4 are likely to be high (close to 1) since
the analogies are strong.

Formally, a correspondence between two RS-descriptions
r and ri is a triple 〈α, β, s〉, where α and β are declarations
stemming from RS-descriptions r and ri, respectively, and
s ∈ [0, 1]. Generally, strengths may be informed by theoretical
or empirical findings; for a probabilistic computation method,
its statistical interpretation and some of its provable conse-
quences, such as reversibility, composability, and extendability,
see [25].

Consider a problem with Q-description qr, and some al-
ternative RS described by ri. Each correspondence 〈α, β, s〉
–where α is satisfied by qr, and where β stems from the
alternative RS-description ri– indicates the suitability of ri to
represent (using β) the aspect of qr captured by α. Combining
correspondences to measure the extent to which informationally
important aspects of the problem can be represented in ri is
challenging.

To measure informational suitability, [19] combined cor-
respondences by summing their strengths multiplied by the
importance of associated declarations in the Q-description. We

refine this here to exclude redundancies (superficially similar
correspondences) from the computation. Thus, we need to
find a set of correspondences C, between r and ri, that is
minimally redundant and maximally covering (MRMC)
with respect to qr. This is defined to be the case if the
following three conditions are met (where we say that the
set {α : 〈α, β, s〉 ∈ C} are the left-hand formulae of C):
1) the left-hand formulae of C are satisfied by qr.
2) declarations in qr should be maximally covered by the

left-hand formulae of C, maximising the importance and
strength factors;

3) the information given by the declarations in qr, covered by
the left-hand formulae of C, should be minimally redundant.

Finally, we can define a relative measure of the infor-
mational suitability (IS) of a candidate representation with
RS-description, ri, for a given problem with Q-description,
qr, arising from RS-description r, and a MRMC set of
correspondences C between r and ri:

IS(qr, ri, C) =
∑

〈α,β,s〉∈C

importanceqr (α) · s (1)

In practice, finding MRMCs is computationally challenging;
we currently use approximations – developing heuristics for
this is left for future work.

The IS measure gives preference to RSs that can cover the
important aspects of a representation of a problem, whilst
also giving preference to stronger analogies. Note that IS is
a relative measure: it is only meaningful when comparing
the score for different candidate RSs with respect to the same
problem. Moreover, it depends on the choice of descriptions and
correspondences. Ultimately, the quality of heuristic solutions
will profoundly influence the robustness of the measure.

B. Cognitive costs

The IS measure allows us to compare a set of alternative RSs
described by r1, ..., rn for re-representing a problem described
by qr. Let us assume we have Q-descriptions, qr1 , . . . , qrn for
the re-represented problem. These qri could be automatically
derived from correspondences and qr (future work) or, when
such automation is not possible, correspondences could serve
as hints for an expert analyst who wants to deploy the rep2rep
framework to create them.

For each ri, we want to estimate the cognitive cost demanded
of the user solving the problem4 described by qri . Cognitive
costs arise from: (a) registering the components of a represen-
tation, (b) parsing structure, and interpreting symbols, and (c)
using the laws and tactics available to derive a solution. We
refer to the properties of representations giving rise to these
costs as cognitive properties. Most cognitive properties can
be determined from Q-descriptions and correspondence sets,
others require problem-solutions. Solution-specific information
is given by additional attributes in Q-descriptions, such as the
number of occurrences of the tactic’s use in the solution. Each

4We assume a solution is available in the system. The challenge of estimating
the cognitive cost of solving a problem without knowing a solution is the
subject of future work.
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Fig. 1. Cognitive properties organised according to notation granularity
(columns), and level of cognitive processing (rows).

property is assumed to contribute independently to the cost
when obtaining an overall measure of cognitive cost.

We present a set of core measures of cognitive cost based on
established cognitive phenomena5. They reflect two dimensions
at which cognitive processes happen: notation granularity
(spatial) and level of cognitive processing (temporal) [1, 17].
The cognitive properties of representations that we assess fall
within this 2-dimensional model (see Figure 1).

We introduce the concept of gravity, defined over the
declarations in a Q-description, qri . In particular, the gravity
of each atom, type and pattern is its number of occurrences
in the representation (taken from the occurrence attribute
of declarations in qri) times its importance, as specified
in qri . The gravity of a law or a tactic is the number
of times it is used in the known solution times its impor-
tance. Gravity moderates cognitive cost to be proportional
to the importance and the number of occurrences of the
component of the representation embodied in the declarations.
The gravity of declaration x is denoted w(x).

We proceed to briefly explain nine cognitive properties with
their associated cost functions. The properties are about register-
ing atoms and grouping of atoms, interpreting components and
parsing their structure, applying tactics and laws, and domain-
specific cognitive effects. The cost function for each cognitive
property uses values assigned to attributes in declarations of
qri (e.g., tactic has an attribute inference type that can take on
the value assign, match, substitute, calculate, or transform),
and additional parameters specific to the property (e.g., the
cost of using a tactic with inference type calculate relative to
a tactic with inference type substitute). The values of attributes
and parameters should be empirically informed for a robust
calculation, but this is out of the scope of this paper (we assign
provisional values informed by the literature) since our focus
is on building the general framework.
Registration This is the cost of the user identifying, ac-
knowledging and noting the location of an atom or term
in a representation [13, 9]. The registration of an atom is
characterised by the patterns in which it appears. Thus, for
each atom in the pattern, an attribute atom registration assigns
it a value of icon, notation index or search. The registration cost,
r(a), for atom a is assumed to be lowest for icon and highest
for search (e.g., icon = 1, notation ind. = 2, search = 4). This
assignment is not intrinsic to a, but to the (potentially multiple)

5This set is not exhaustive: producing a complete measure of cognitive cost
for any representation and problem is well beyond state-of-the-art.

patterns in which a appears, Thus, to compute r(a) from a
Q-description, all the pattern declarations where a occurs are
collected; each has an atom registration attribute (e.g., search),
which yields an individual cost (e.g., 4). The average of these
individual costs–weighted by the pattern’s gravity–yields r(a).
The registration cost for all atoms is

∑
a w(a) · r(a); this cost

is defined analogously for terms.
subRS variety This refers to a measure of heterogeneity
within a representation, in particular, how many different
sub-systems need to be taken into account by the user [27].
High heterogeneity involves a heavy cost. For example, the
Contingency table RS relies on a subRS associated with
arithmetic expressions, and another subRS associated with
tabular organisation.
Number of types Identifying the types of terms is part of
processing the semantics. A larger variety in the types of terms,
in many cases, means a higher semantic processing cost. In
rep2rep, empirically-derived knowledge about each RS would
be used to define the associated cost function.
Concept-mapping This property refers to the semantic map-
ping of terms to their corresponding concepts [28, 8, 16]. Its
cost reflects the processing of various conceptual shortcomings:
deficit (a concept with no representing symbol), redundancy
(two symbols for one concept), excess (a symbol that does not
map to an important concept) or overload (one symbol for
multiple concepts). For a Q-description, qri , we can estimate
the relative number of each of these conceptual shortcomings
by comparing qri to some reference Q-description q′ using
correspondences.6 Each conceptual shortcoming results in a
penalty. The total concept-mapping cost is the gravity-weighted
sum of the penalties.
Expression complexity This measures the complexity of
the terms generated from patterns. Specifically, we measure
how many nodes are in potential parse trees. Our algorithm
takes each pattern and instantiates its holes recursively with
type-appropriate patterns or atoms until no holes remain
uninstantiated. To ensure termination, instantiation is limited
by the occurrences of parts of the representation. This process
results in parse trees for expressions. We generate, for every
pattern, a sample of trees that satisfy it. The average number
of nodes in the trees measures the pattern’s complexity. Given
a Q-description, we estimate the complexity for each pattern,
and combine them into a measure of expression complexity.
Inference type This relates to tactics, the difficulty of applying
them [1, 11, 17]. The inference type of tactics is captured by
an attribute. Each kind of inference type is associated with a
cost. A typical cost order is: assign (lowest), match, substitute,
calculate, transform (highest). Each individual tactic gets a cost
from its inference type attribute. The total cost, for a solution,
is the gravity-weighted sum of the individual costs for each
of the tactics. Future fine-tuning is possible to reflect the laws
used within each tactic.

6The reference can, in principle, be any Q-description (for example, the
original qr). The calculations of the shortcomings will be relative to the
reference, so it is preferable, for an accurate calculation, that the reference
has fewer concept-mapping shortcomings (if this can be known in advance).



Branching factor This refers to the breadth of possible tactic
applications in the search for a solution. A higher branching
factor results in a higher cost. It is estimated from the number of
tactics and the multiple ways of applying them (using different
patterns or different laws).
Solution depth This is a solution-specific measure, simply
calculated as the total number of tactic applications (from the
tactic attribute occurrences).
Quantity scale The above eight properties are based on general
insights from cognitive science. For concepts related to quantity,
the scale hierarchy – quantity, nominal, ordinal, interval ratio
– is well documented to have increasing cognitive costs [29].
We estimate these costs according to the correspondence-
mapping between a Q-description and arithmetic concepts:
<,>,≤,≥,max,min are associated with ordinal; +,−,

∑
are associated with interval; and ·,×, ∗,÷, /,

∏
, gcd, lcm are

associated with ratio quantity scale. Further domain-specific
costs can be included in the future.

C. Integrating cognitive costs

The measures of cognitive cost associated with the cognitive
properties are independent (by design). So, a measure of total
cost can be obtained by summing the costs, provided they are
normalised in an empirically-informed way. Thus, we need
a function, normp, that normalises the cost of each property,
p, relative to the range of cognitive costs computed for the
alternative representations that we are comparing. A user-
independent measure of the total cost of a representation with
Q-description qri is given by∑

p∈P
normp(costp(qri))

where P is the set of cognitive properties (see Figure 1) and
costp is the cost function for p. Our working assumption (that
needs to be fine-tuned based on empirical findings) for normp

is that as we move higher in notational granularity and higher
in cognitive level, the cost is more substantial.

Modelling individual users We adjust the measure of cogni-
tive cost for individual users according to their expertise [5].
Expertise is encoded as a number u ∈ [0, 1]; higher values
mean a higher level of expertise. Expertise impacts how the
importance values are used to compute costs. It is also related
to the granularity dimension of the property and, thus, its cost.
Importance discernment (heuristics) A novice user may not
have the expertise to discern informational importance as well
as experts. Thus, we adapt the function importance to the
user so that importanceu is flatter for more novice users.
Specifically, we use

importanceu(x) = 1 + importance(x) · u− u.

Thus, for the least competent users (u = 0) we have
importanceu(x)=1 for any component x: every component
seems equally important. For experts (u = 1), we have
importanceu(x) = importance(x), which is simply the
informational importance as given in the Q-description: the
user can see the informational importance of component x.

For example, consider the property branching factor: if
only important patterns are identified and exploited then the
branching factor is reduced. This is equivalent to having good
heuristics. Expert users do not explore all of the patterns, but
use heuristics to identify those which are relevant to prune
the search space effectively. By contrast, a novice who cannot
differentiate which laws and tactics are useful, will need to
explore them all when deriving a solution. Now, some cognitive
cost calculations use gravity, which in turn uses importance,
so flattening importance affects the cognitive costs.
Granularity-sensitive weight differentials Cognitive processes
involving composite terms and expressions, rather than atoms,
are more sensitive to expertise [5]. In other words, the proper-
ties to the right in Figure 1 are more influenced by expertise
than those to the left. For example, the cost of registering atoms
is similar across all levels of expertise, whereas registering
composite terms is more costly for novices. We model this with
a multiplicative weight, cp(u), per cognitive property p: for
the lowest granularity, cp(u) is equal for both experts novices,
whereas for a higher granularity, cp(u) is higher for novices
than for experts.

Finally, we are able to define how to calculate the total
cognitive cost of using a representation to solve a problem
(encoded with Q-description qri ), given a user u, as:

Cost(qri , u) =
∑
p∈P

cp(u) · normp(cost
′
p(qri , u)), (2)

where cost′p(qri , u) = costp(q
′
ri), and q′ri is the result of

replacing importance in qri with importanceu.
Empirical tests are needed to ascertain the robustness of

these weights and the resulting cost function. But, the take-
away message from this section is that rep2rep incorporates
sophisticated approaches – based on Q-descriptions and the
cognitive science literature – to compute measures of cognitive
cost for competing representations, measures of informational
importance, and correspondences.

VI. EVALUATION

rep2rep is the first to lay foundations for the computational
analysis of representation choice, so cannot be compared
to existing systems. Hence, we present an empirical study,
comparing computed measures of informational suitability and
cognitive cost, to data obtained from surveying expert analysts7.
The evaluation focuses on the probability domain, following the
examples earlier in the paper, and uses the medical problem.

A. Informational suitability

We computed the IS measures (Equation 1) for the NL,
Bayesian, areas, and contingency table RSs. This required a
Q-description of one representation (we used the Bayesian
RS), RS-descriptions of the remaining RSs, and MRMC sets of
correspondences that link them (for this evaluation, we selected
these sets manually). We set the values for the informational
importance function within the Bayesian Q-description and

7These experts were not trained in how to use rep2rep, but their expertise
profile makes them target analyst-users.



analyst mean scores computed measures
Bayesian 6 17.4

Areas 4.8 11.4
Contingency 4.9 8.38

NL 3.5 6.9

TABLE I
SURVEYED SCORES AND INFORMATIONAL SUITABILITY MEASURES.

the correspondence strengths based on our expertise. Table I
shows the computed measures; the scores from surveyed expert
analysts are discussed below.

B. Cognitive cost

Cost (Equation 2) is computed using RS- and Q-descriptions
for each associated RS. Again, we set the parameters for these
calculations based on our expertise. Notably, we had three user
profiles (novice, average and expert, described below) and,
to compute Equation 2, we used the following values of u
for each profile: novice, u = 1/6; average, u = 3/6; expert,
u = 5/6. Table II shows the computed measures; the scores
from surveyed expert analysts are discussed below.

C. Design and method

The goal is to see whether IS and Cost, using the medical
problem and associated RSs, produce similar rankings to,
and are significantly correlated with profiles obtained by
surveying expert analysts. We recruited analysts (N = 11),
who were affiliated with the Univ. of Sussex’s Engineering and
Informatics School or the Univ. of Cambridge’s Department
of Computer Science and Technology. They all confirmed that
their “day-to-day work involved a lot of dealing with maths.”
Each analyst was either a PhD student or an academic staff
member. They completed the study online.

Participants were presented with the medical problem fol-
lowed by a description of an RS8. The description comprised
four short sentences stating how the RS encodes variables, rela-
tions, probability and operations. They were asked a question
regarding informational sufficiency: “To what degree is this
representation sufficient for solving the problem?” A 7-point
Likert scale was used to respond (1: extremely insufficient; 7:
extremely sufficient). The task was repeated for each RS.

Their next task was to rank the four RSs based on the user
profiles, paraphrased here: 1) is it adequate for explaining the
solution to a novice (profile: secondary school maths; 14 years
old); 2) is it adequate for explaining to an average student
(profile: post-secondary, pre-university entrance; 18 years old);
and 3) is it adequate for explaining to an expert (profile: holder
of a science or engineering degree)?

D. Results

Are the computed rankings similar to, and is there a
correlation with, the analysts responses? Concerning IS, the
mean analysts scores were compared with computed scores
for each RS (see Table I). Both approaches ranked Bayesian
and NL as the most, and respectively least, suitable. However,

8Euler diagrams were also described, but many mistook them as a geometric
representation where size is relevant, which was not intended.

expert average novice
analyst comp analyst comp analyst comp

Bayes 1.45 39.4 2.4 51.5 3.45 73
Areas 2.82 77.5 2.6 59.9 2.27 35.2
Cont 3.45 84 3.3 106.3 3.36 128
NL 3.91 89.6 4 112 3.36 134

TABLE II
SURVEYED RANKINGS AND COMPUTED MEASURES OF COGNITIVE COSTS.

there is disagreement over the areas and contingency table
RSs: the expert analysts found them similarly suitable, whereas
IS ranked the areas RS as more suitable. Despite the good
agreement on the rank-order, a one-tailed Pearson’s correlation
test gave r = 0.89, with p = 0.053: there is not a significant
correlation between the mean Likert scores and the IS measures.
The low significance value reflects the small number of
RSs being ranked, but, we can conclude that the rank-order
produced by our framework is sensible. Indeed, it would be
interesting if a future, larger, study could give insight into any
disagreement between the experts’ and rep2rep’s rankings.

Concerning cognitive cost, for each user profile, the surveyed
analysts’ rankings were combined by taking means (see
Table II): a low mean score means a higher ranking, that
is, the associated RS was judged more effective. Likewise,
a lower computed Cost measure suggests a more effective RS.
In Table II, we observe that rep2rep’s rankings are identical to
those derived from the analysts’ responses in the case of the
expert and average profiles, but deviate in the case of novices.
The correlation between the analyst and computed values for
expert and average users is high, with statistical significance,
while the novice correlation is lower and not significant (at
5%): for expert, r = 0.97 (p = 0.01); for average, r = 0.94
(p = 0.02); and for novice, r = 0.76, (p = 0.1). Disagreement
in rankings or lack of correlation does not necessarily imply
poor performance by our measures, but suggests further studies
are needed. One possible explanation is that users’ familiarity
with an RS is not yet modelled by rep2rep: analysts knew that
novices were unlikely to be familiar with the Bayesian RS.
This suggests that user profiling could include an indication of
familiarity.

E. Summary

The evaluation supports the claim that an AI system based
on rep2rep can recommend effective RSs. The results are
promising given they are based on measures informed by our
expertise. We expect stronger results when more informed
measures are derived, in part based on a deeper understanding
of the cognitive abilities of a range of user profiles as well as
more sophisticated empirical approaches.

VII. CONCLUSION AND FUTURE WORK

This paper makes an important advance that is necessary for
AI systems to be able to recommend effective representations.
rep2rep has a number of novel features. It includes a theoretical
conceptualisation of representational systems. By exploiting
RS- and Q-descriptions, rep2rep is able to identify alternative
RSs based on our theory of correspondences, alongside mea-
sures of informational suitability. Significantly, rep2rep is able



to recommend RSs, or even specific representations, based on
user-specific cognitive profiles and the particular problem to
be solved. Demonstrating the utility of rep2rep, our empirical
evaluation revealed that resulting recommendations were well-
aligned with those of expert analysts. These are promising
results, particularly as there is ample potential for the derivation
of enhanced measures. It will be exciting, in the future, to
define more robust measures of user-specific cognitive costs
as well as modelling users beyond expertise.

There are significant avenues of further research. At present,
analysts must generate RS- and Q-descriptions: the ambition
is to do this automatically. We are actively working on the
automatic derivation of correspondences and ways of measuring
informational importance. In addition, there is a wide variety
of application areas for rep2rep, reflecting the goal to improve
AI-human interaction in the context of representation choice.
This includes everyday use of AI systems (such as devices for
navigation) and specialist use (such as scientific software). For
example, rep2rep could be used to build AI assistants at the
interface between a scientist and a theorem prover or formal
ontology. Another area is education, where the teacher (taking
the role of analyst) uses a multi-representational tutoring
system, and user profiles would be developed for the students.
This would support student-tailored representation choices to
aid their individual learning. Ultimately, and importantly, the
vision is that rep2rep has the potential to be exploited in any
area in which representations of knowledge are used and for
which alternatives may be more effective.
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