View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Apollo

Recovering Purity with Comonads and Capabilities

The marriage of purity and comonads

Vikraman Choudhury
Indiana University
University of Cambridge
vikraman@indiana.edu

Abstract

In this paper, we take a pervasively effectful (in the style of
ML) typed lambda calculus, and show how to extend it to
permit capturing pure expressions with types. Our key obser-
vation is that, just as the pure simply-typed lambda calculus
can be extended to support effects with a monadic type dis-
cipline, an impure typed lambda calculus can be extended to
support purity with a comonadic type discipline.

We establish the correctness of our type system via a sim-
ple denotational model, which we call the capability space
model. Our model formalizes the intuition common to sys-
tems programmers that the ability to perform effects should
be controlled via access to a permission or capability, and
that a program is capability-safe if it performs no effects that
it does not have a runtime capability for. We then identify
the axiomatic categorical structure that the capability space
model validates, and use these axioms to give a categorical
semantics for our comonadic type system. We then give an
equational theory (substitution and the call-by-value 8 and 1
laws) for the imperative lambda calculus, and show its sound-
ness relative to this semantics.

Finally, we give a translation of the pure simply-typed
lambda calculus into our comonadic imperative calculus, and
show that any two terms which are By-equal in the STLC
are equal in the equational theory of the comonadic calcu-
lus, establishing that pure programs can be mapped in an
equation-preserving way into our imperative calculus.

1 Introduction

Consider the two following definitions of the familiar map
functional, which applies a function to each element of a list.

mapl : YV ab. (a - b) — List a — List b
map1 f [] =[]
mapl f (x :: xs) = let zs = mapl f xs in
let z=f x in
zZ :: zs

map2 : YV ab. (a - b) — List a — List b

map2 f [] =[]

map2 f (x :: xs) = let z =f x in
let zs = map2 f xs in
z :: zs

Neel Krishnaswami
University of Cambridge
nk480@cl.cam.ac.uk

In a purely functional language like Haskell, these two def-
initions are equivalent. But in an impure functional language
like ML. the difference between these two definitions is ob-
servable:

let xs = ["left "; "to "; "right "]
let f s = stdout.print(s); s

let ys = mapl1 f xs
let zs = map2 f xs

—— Prints "right to left "
—— Prints "left to right "

So something as innocuous-seeming as a print function can
radically change the equational theory of the language: no
program transformation that changes the order in which sub-
expressions are evaluated is in general sound. This greatly
complicates reasoning about programs, as well as hindering
many desirable program optimisations such as list fusion and
deforestation [35]. Transformations that are unconditionally
valid ina pure language must, in an impure language, be gated
by complex whole-program analyses tracking the purity of
sub-expressions.

Contributions Itisreceived wisdom that much asadrop of
ink cannot be removed from a glass of water, once a language
supports ambient effects, there is no way to regain the full
equational theory of a pure programming language. In this
paper, we show that this folk belief is false: we extend an am-
biently effectful language to support purity. Entertainingly,
it turns out that just as monads are a good tool to extend pure
languages with effects, comonads are a good tool to extend
impure languages with purity!

e We take a pervasively effectful lambda calculus in the
style of ML and show how to extend it with a comonadic
type discipline that permits capturing pure expressions
with types.

e We give a simple and intuitive denotational model for
our language, which we call the capability space model.
Our semantics is a formalisation of the intuition under-
pinning the object-capability model [15, 16, 20] familiar
to systems designers, which says that the ability to per-
form effects should be controlled via access to a permis-
sion or capability, and that a program is capability-safe
precisely when it can only perform effects that it pos-
sesses a runtime capability for.

https://core.ac.uk/display/334410832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We do this by extending the most naive model of the
lambda calculus - sets and functions — with justenough
structure to model capability-safety. In our model, a
type is just a set X (denoting a set o f values), together
with arelation wy saying which capabilities each value
x may own. Morphisms f : X — Y are capability-safe if
the capabilities of f(x) are bounded by the capabilities
of x.

It is already known in the systems community that ef-
fectful lambda-calculi without ambient authority are
capability-safe. Our model demonstrates that this ob-
servation isincomplete — having a comonad witnessing
the denial of a capability is also very beneficial.

e We then identify the axiomatic categorical structure
the capability space model validates, and use these ax-
ioms to give a categorical semantics for our comonadic
type system. We then give an equational theory (sub-
stitution and the call-by-value B and # laws) for the
imperative lambda calculus, and show its soundness
relative to this semantics.

e Finally, we give a translation of the pure simply-typed
lambda calculus into our comonadic imperative calcu-
lus, and show that any two terms which are Sy-equal
in the STLC are equal in the equational theory of the
comonadic calculus under the translation, establish-
ing that pure programs can be mapped in an equation-
preserving way into our imperative calculus.

Detailed proofs of the lemmas and theorems, as well as ad-
ditional material are given in the supplementary appendices,
and we refer to them in the text.

2 Purity from Capabilities

The object-capability model is a methodology originating
in the operating systems community for building secure op-
erating systems and hardware. The idea behind this model
is that systems must be able to control permissions to per-
form potentially dangerous or insecure operations, and that
a good way to control access is to tie the right to perform ac-
tions to values in a programming language, dubbed capabili-
ties. Then, the usual variable-binding and parameter-passing
mechanisms of the language can be used to grant rights to
perform actions — access to a capability can be prohibited to
aclient by simply not passing it the capability as an argument.
To quote Miller [20]:

Our object-capability model is essentially the un-
typed call-by-value lambda calculus with applicative-
order local side effects and a restricted form of
eval — the model Actors and Scheme are based

on. This correspondence of objects, lambda cal-
culus, and capabilities was noticed several times

by 1973.

Vikraman Choudhury and Neel Krishnaswami

We use this observation to design our type system, by
noting that it is the capability to perform effects that distin-
guishes impure from pure code. In the example in section 1,
the operation that distinguished between map1 and map2 was
the ability to print to a channel. So if we view channels as capa-
bilities, we know that a piece of code lacking any capabilities
must be pure.

The c-print(s) operation takes the channel c and prints
the string s to it. If we did not possess the capability c, then
we could not print to that channel. This property is actually
fundamental to the object-capability model, which says that
the only way to access capabilities must be through capa-
bility values. Naturally, there are many data types in a real
programming language, but each value can access some set
of capabilities (eg, a list of files can access any of the channels
in the list, or a closure can access any capability it receives as
an argument or possesses in its environment).

This lets us define the notion of “pure term” in a simple
and brutal fashion: we judge a pure term to be one which has
no access to any capabilities. Lacking access to any channels,
it can do no I/0, and hence must be pure. Furthermore, we
introduce two kinds of variables: pure variables and arbi-
trary (or impure) variables. By restricting the substitution to
only permit substituting pure terms for pure variables, the
judgement of purity will be stable under substitution. Then,
by internalising the purity judgement as a type, we can pass
pure values - i.e., values without access to any capabilities —
as first-class values.

To understand this, let us begin with a simple call-by-value
higher-order functional language extended with types for
string constants, channels (or output file handles), and a sin-
gle effect: outputting a string onto a channel with the expres-
sion chan.print(s). There is no monadic or effect typing
discipline here; the type of print is just as one might see in
OCaml or Java.

print : Channel — String — Unit

For example, here is a simple function to print each element
of a pair of strings to a given channel:

print_pair : String x String — Channel — Unit
print_pair = fun p chan —
chan.print(fst p);
chan.print(snd p)

Here, for clarity we use a semicolon for sequencing, and
write print in method-invocation style d la Java (to make it
easy to distinguish the file handle from the string argument).

To support purity, we extend the language with a new type
constructor Pure a, denoting the set of expressions of type a
which are pure - i.e., they own no file handles and so their
execution cannot do any printing. So we add the introduc-
tion form box (e) to introduce a value whose type is Pure a;
the type system accepts this if e has type a and is recognis-
ably pure, but rejects it otherwise. Here, “recognisably pure”

means that the term e has no syntactically obvious effects of
its own, and all of its free variables are pure variables.

To eliminate a value of type Pure a, we will use pattern
matching, writing the elimination form let box(x) = el
in e2tobind the pure expressionin el to the variable x. The
only difference from ordinary pattern matching is that x is
marked as a pure variable, permitting it to occur inside of
pure expressions. Intuitively, this makes sense — e1 evaluates
to a pure value, and so its result should be allowed to be used
by other pure expressions.

It turns out that this discipline of tracking whether a vari-
able is pure or not is precisely a comonadic type discipline,
corresponding to the O modality in S4 modal logic, and that
the syntax can be interpreted in a denotational model formal-
ising object capabilities.

The capability discipline permits typing functions whose
behaviour is intermediate between pure and effectful. For
example, suppose that we see the following type declaration:

maybe_print : Pure (Maybe Channel — String)
——definition not visible

We do not know anything about the body of the definition,
but due to the typing discipline, we know that maybe_print
owns no capabilities of its own. As a result, we can make some
inferences when we see the following two declarations:

X y : String

x = let box(f) = maybe_print in
f (Some stdout)

let box(f) = maybe_print in
f None

<
1

The definition of x passes a channel to maybe_print, and
so it may have an effect (it might use it to print).

On the other hand, we know that the evaluation of y will not
have an effect — we know that maybe_print owned no chan-
nels, and since we did not give it a channel, it can therefore
perform no effects. Moreover, we know this without having
to see the definition of maybe_print!

3 Typing

We give the grammar of our language in figure 1.

We have the usual type constructors for unit, products, and
functions from the simply-typed lambda calculus. In addition
to this, we have the type str for strings, and the type cap repre-
senting output channels (used in the imperative e - print(e;)
statement). Finally, we add the comonadic ["] type construc-
tor which corresponds to the Pure type constructor we intro-
duced in section 2.

Despite the fact that there is a type cap of channels, and a
print operation which uses them, there are no introduction
forms for them. This is intentional! The absence of this facility
corresponds to the principle of capability safety — the only ca-
pabilities a program should possess are those that are passed

TYPES A,B = unit|str|cap
| AxB|A=B|[A

TERMS e = ()|s]|eq-print(ep)

| (e1,ey) | fste|snde

| x| Ax:A.elejer

| box[e]| letbox[x]=ejiney
VALUES v u= ()s](vg,02)

| x| Ax:A.e|box|e]
QUALIFIERS gr uw=pli
ConTEXTs I,AY o= -|T,x:A1
SUBSTI- 0, == ()10, e/x)
TUTIONS

Figure 1. Grammar

by its caller. So, a complete program will either be a function
that receives a capability token as an argument, or have free
variables that the system can bind capability tokens to. !

The expressions in our language include the usual ones
from the simply-typedlambda calculus, constants s for strings,
and print. We also have an introduction form box E] and a
let box elimination form for the [[] A type; we’ll explain how
these work later. Values are a subset of expressions, but box
turns any expression into a value. ?

We would like a modal type system where we can distin-
guish between expressions with and without side-effects. Fol-
lowing the style of [29] for S4 modal logic, we could build
a dual-context calculus. However, such a setup makes it dif-
ficult to define substitution; we can avoid dual contexts by
tagging terms with qualifiers instead. We use two qualifiers
that we can annotate terms with, in the appropriate places.
We use p to tag pure terms, and i to tag impure terms.

Next, we define contexts of variables. A well-formed con-
text is either the empty context -, or an extended context
with a variable x of type A and qualifier g. Finally, we give a
grammar for substitutions. A substitution is either the empty
substitution (), or an extended substitution with an expres-
sion e substituted for variable x qualified by g.

3.1 Typing Judgements

Infigure 2a we introduce three kinds of judgement forms, and
give typing rules in figure 3.

We have the usual introduction and elimination rules for
constants and products. If a variable is present in the context,
we can introduce it, using the VAR rule. In the introduction

1Of course, a full system should have the ability to create new private
capabilities of its own. We omit this to keep the denotational semantics
simple, but discuss how to add it in section 8.

2We write sequencing as e; ; €5, which is sugar for (Ax : unit. e;) ey.

3We use different colours to distinguish pure and impure syntactic objects,
and we’ll follow this convention henceforth. When we have unknown
qualifiers occurring on terms, we highlight them in a different colour, and
the colour changes to the appropriate one when the qualifier is p or i.

Vikraman Choudhury and Neel Krishnaswami

x: A7 €T xisavariable of type A with qualifier 4 in context T’
I'e:A eisanexpression of type A in context I

THPe: A

eis a pure expression of type A in context I

(a) Typing Judgements

I' D A Tisaweakening of context A
I'6:A 6isawell-formed substitution from context I" to A

(b) Weakening and Substitution Judgements

e; and e, are equal expressions of type A in context I

(c) Equality Judgements

Figure 2. Judgement forms

I'-eq:cap I' e, :str
—— unitl — strl PRINT
T ():unit Ik s:str I' e -print(ey) : unit
e :A I'+e,:B I'-e:AxB '+e:AxB
x1 — xE; ——— xE,
I'(e;,e):AxB Ik fste: A I'+snde:B
x:A1eTl I,x:A'+e:B T'e:A=>B The:A
— VAR =] =E
F'-x:A I'-Ax:A.e:A=B I'-eje,:B
IPhe:A I'HPe:A I'ke :0A Ix:A? Fe,:B
————— CTX-PURE e—— D [JE
F'HPe:A I' - box[e]:[[JA I' - letbox[x]|=eine,: B

Figure 3. Typing Rules

()= - OF =0
(T,x: AP)P .= TP, x: AP (0, eP[x)P := (6P, e [x)
(T, x: AHP = T? (0, ¢ /x)’ = 6P
() (b)

Figure 4. Purifying Contexts and Substitutions

rule for functions = I, we mark the hypothesis as impure
when forming a A-expression, because we do not want to
restrict function arguments in general. The elimination rule
= E, or function application works as usual. The print state-
ment performs side-effects but has the type unit. We need to
do more work to add the comonadic type constructor.

We can mark a term as pure if it was well-typed in a pure
context, where every variable has the p annotation. So we
define a syntactic purify operation, which acts on contexts;
applying it drops the terms with the impure annotation, as
shown in figure 4a. This is expressed by the cTx-PURE rule,
which introduces a pure expression using the pure judgement

form. And then, we can put it in a box using the [T rule, to
get a[]-typed value.

We give an elimination rule [']E using the let box binding
form. Given an expression in the [[] type, we bind the un-
derlying pure expression to the variable x. With an extended
context that has a free variable x marked pure, if we can pro-
duce a well-typed expression in the motive, the elimination
is complete.

3.2 Weakening and Substitution

Next, we can define syntactic weakening and substitution.
I' D Aindicates that I has more variables than A, and is de-
fined as an inductive relation (in figure 11b in the appendix).
Once defined, we can prove a syntactic weakening lemma.

Lemma 3.1 Syntactic weakening,.
T D AandAte: A thenl -e: A.

Substitution requires a bit more care. First, we define the
judgementI' - 0 : A, which says that 6 is a well-formed sub-
stitution from context I' to A. Since our language is effectful,

we restrict the definition of substitutions (figure 11c in the
appendix) to substitute values for impure variables, while per-
mitting pure expressions for pure variables. Furthermore, the
definition of the application of substitutions has to drop bind-
ings whenever a term is purified — we give the interesting
cases below (with the full definition in definition B.10 in the
appendix):

Definition 3.2 (Syntactic substitution on raw terms).

B(Ax. e) = Ay. (0, y'/x)(e)
6(box[e]) := box

O(let box[x] = ejine,) := let box =0(eq)in{O, yP/x)(ey)
Then, we can prove the type-correctness of substitution:

Theorem 3.3 Syntactic substitution.
T+ 0:AandA+e: A, thenT - 6(e) : A.

4 Semantics

In this section, we sketch a categorical semantics for our
language, motivated by an abstract model of capabilities.

4.1 Capability Spaces

Let C be a fixed set of capability names, possibly countably
infinite. The powerset ©(C) denotes the set of all subsets of
C,and (9(C); ®,C, C) is the complete lattice ordered by set
inclusion.

A capability space X = (|X|, wy) is a set |X| with a weight
relation wy : |X| - @(C) that assigns a set of capabilities
to each member in X. Intuitively, we think of the set |X| as
the set of values of the type X, and we think of the weight
relation wy as defining the possible sets of capabilities that
each value may own.

We require maps between capability spaces to preserve
weights, i.e., a map between the underlying sets | X| and |Y|
is a morphism of capability spaces iff for each x in |X], all the
weights in Y for f(x) are bounded by the weights in X for x.
If we think of a function f : X — Y as a term of type Y with
a free variable of type X, then this condition ensures that the
capabilities of the term are limited to at most those of its free
variables. In other words, weight-preserving functions are
precisely those which are capability-safe; they do not have
unauthorised access to arbitrary capabilities, and they do not
have any ambient authority.

We now formally define the category of capability spaces
C, with objects as capability spaces and morphisms as weight-
preserving functions.

Definition 4.1 (Category C of capability spaces).
Obje := X = (|X] : Set, wx : |X| + 9(C))
Home (X,Y) :=
Vx,C,, wx(x,C,) =
{f € X[~ Y] ‘ 3C, C Cywy(f(x),C,) }

We remark that the definition of this category is inspired
by the category of length spaces defined by Hofmann [12],
which again associates intensional information (in his work,
memory usage, and in ours, capabilities) to a set-theoretic
semantics.

4.2 Cartesian Closed Structure

We now observe that C inherits the cartesian closed structure
of Set. The definitions are the same as in the case of sets, but
we additionally have to verify that the morphisms are weight-
preserving.

Definition 4.2 (Terminal Object).
1 = {*}
wl = { (>(-, @) }

The terminal object 1 is the usual singleton set, and it has
no capabilities. For any object A, the unique map!: A — 1
is given by ! 4 (a) = *, which is evidently weight preserving.

Definition 4.3 (Product).
|A x B| := |A] x |B|
WaxB = { ((a/b)lcu) Cb) ’ ZUA(I/'!, Ca) A wB(b/ Cb) }

Products are formed by pairing as usual, and the set of capa-
bilities of a pair of values is the union of their capabilities. The
projectionmaps 71; : A; xA, — A, arejustthe projectionson
the underlying sets, which are weight preserving as well. We
verify the universal property in lemma C.1 in the appendix.

Definition 4.4 (Exponential).
|A — B| := |A| - |B|

(o

Wa-p =

Vﬂ, Cal wA(al Cﬂ) =
ch - CfU Cur ZUB(f(ﬂ), Cb)

Exponentials are given by functions on the underlying sets,
but we have to assign capabilities to the closure. We only
record those capabilities which are induced by the function,
for some value in the domain. That is, for a function closure
f: A — B,ifagiven valuea € A has weight assignment
C,. and if there is a weight assignment C;, for f(a), then the
weight of the closure f is given by the all the capabilities it
had access to its environment.

We verify that our definition satisfies the currying isomor-
phism in lemma C.2 in the appendix, where we name the
currying/uncurrying and evaluation maps.

This cartesian closed structure on C suffices to interpret
the simply-typed lambda calculus.

4.3 Monad

Our language supports printing strings along a channel, and
to model this effect we will structure our semantics monadi-
cally, in the style of Moggi [22]. To model the print effect, we
define a strong monad T on C as follows, taking the monoid
(X*; ¢, @) to be the set of strings £* with the empty string ¢
and string concatenation e.

Definition 4.5 (T : ¢ — C).
IT(A)| = |A]x (C - £7)
wreay = { (@0),C,U{c|o(@) # e} [wata Cy) }

This monad is essentially the writer monad: it adds an out-
put function which records the output produced in each chan-
nel. The weight of a monadic computation is taken to be the
weight of the returned value, unioned with all the channels
that anything was written to. This corresponds to the intu-
ition that a computation which performs I/O on a channel
must possess the capability to do so.

Definition 4.6 (T is a monad). The unit and multiplication
of the monad are defined below. We check that they are mor-
phisms, and state and verify the monad laws in lemma C.3.

aw (a,Ace) ((a,01),0p) = (a,Ac.05(c) ®01(c))

Definition 4.7 (T is a strong monad). T is strong with re-
spectto products, with anatural family ofleft and right strength-
ening maps.

Top:AxTB - T(AxB) 0,5:TAxB - T(AxB)

(a/ (b,O)) - ((a,b),o) ((ﬂ,O),b) = ((a,b),o)

We use this to define the natural map 8 4 p, which evaluates
a pair of effects, as follows. Notice that it evaluates the effect
on the right before the one on the left; we expand more on
that in lemma C.4 in the appendix, and verify the appropriate
coherences.

JBA,B TAXTB—)T(AXB)

Bag = Trap: T0ap Haxs
4.4 Comonad

To model the [[] type constructor, we define an endofunc-
tor O on € below; it filters out values that do not possess any
capabilities, i.e., values that are pure.

Definition 4.8 (0 : C — C).
I0A| := {a €|A|| VC4,wp(a,C,) = C, =0}
Wpa ¢ {(a,@)}

On objects, we simply restrict the set to the subset of val-
ues that only have the empty set @ of capabilities. O acts on
morphisms by restricting the domain of the function to |[TJA|.

This type constructor is especially useful at function type
O(A — B), since in general the environment can hold capa-
bilities, and the O constructor lets us rule those out. We fur-
ther claim that O is an idempotent strong monoidal comonad.

Definition 4.9 (O is an idempotent comonad). The counit ¢
and comultiplication § of the comonad are the natural fami-
lies of maps given by the inclusion and the identity maps on

Vikraman Choudhury and Neel Krishnaswami

the underlying set. § is a natural isomorphism making it idem-
potent. We state and verify the comonad laws in lemma C.5
in the appendix.

Definition 4.10 (O is a strong monoidal functor). The func-
tor is strong monoidal, in that it preserves the monoidal struc-
ture of products (and tensors, see the sequel in subsection 4.6).
The identity element is preserved, and we have natural iso-
morphisms given by pairing on the underlying sets.

We remark that O is not a strong comonad, i.e., it does
not possess a tensorial strength. This makes it impossible to
evaluate an arbitrary function under the comonad, as we saw
in section 2.

4.5 The Comonad cancels the Monad

We make the following observation. There is an isomor-
phism ¢ 4, natural in A, where the comonad O cancels the
monad T. In programming terms, this says that an effectful
computation with no capabilities can perform no effects — i.e.,
itis pure. Note that this definition works because of the partic-
ular definition of the monad T we chose, in which the weight
of a computation includes all the channels it printed on. Con-
sequently a computation of weight zero cannot print on any
channel, and so must be pure! We verify this fact in lemma C.6
in the appendix.

Definition 4.11 (¢ : OT = 0O).
¢, :0TA — OA
(a,0) » a

This property is crucial and we will exploit it to manage
our syntax: we use it to justify treating terms in pure con-
texts as pure, without needing a second grammar for pure
expressions.

4.6 Other remarks

While the monad and comonad, together with the carte-
sian closed structure, suffice to interpret our language, it is
worth noting that the category C also admits a monoidal closed
structure, which we give in appendix C.1in the appendix. This
supports an interpretation of a linear (actually, affine) type
theory. The disjointness conditions in the interpretation of
tensor product and linear implication are essentially the same
as the disjointness conditions in the definition of the separat-
ing conjunction A * B and magic wand A — B in separation
logic [31].

Our model reassuringly suggests that operating systems
researchers and program verification researchers both identi-
fied the same notion of capability. However, it seems that the
fact that these are exactly the same idea was overlooked be-
cause operating systems researchers focused on the cartesian
closed structure, and semanticists focused on the monoidal
closed structure!

Besides the writer monad for print, we can also define other
useful monads using the capability space model which can be
used to interpret a language with other effects. For example,
we define a state monad with a global heap, and an exception
monad which allows raising a single exception (in appen-
dices C.1.1 and C.1.2). For each of these monads, we choose
a suitable weight assignment, which can be cancelled by our
brutal purity comonad!

5 Interpretation

We now interpret the syntax of our language. An important
point to note here is that we only use the algebraic structure
of the category, i.e., we use the cartesian closed structure, the
monoidal idempotent comonad, the strong monad, and the can-
cellation isomorphism ¢; the proofs of our theorems use the
universal property for each categorical construction. Our re-
sults will still hold if we switched to another category with
this structure, we say more about that in section 8. We only
need to use the definition of the monad in the interpretation
of print.

We adopt some standard notation to work with our categor-
ical combinators. 4 The sequential composition of two arrows,
in the diagrammatic order, is f ; g. The product of morphisms

fand gis (f, g) (also called a fork operation in the algebra
of programming community [8]), and [f x g] is parallel com-
position with products. We define these using the universal
property of products and composition (as shown in figure 14).

5.1 Types and Contexts

We interpret types as objects in €, as shown in figure 5a. Note
that we use the monad in the interpretation of functions, fol-
lowing the call-by-value computational lambda-calculus in-
terpretation in [21]. We use the comonad to interpret the []
modality. We pick particular sets 2" and C to interpret strings
and capabilities respectively.

We interpret contexts as finite products of objects, in fig-
ure 5b. The comonad is used to interpret the pure variables
in the context, while the impure variables are just arbitrary
objectsin C.

The judgement x : A7 € T is interpreted as a morphism in
Home ([T], [A]) (figure 16b in the appendix). It projects
out the appropriately typed and annotated variable from the
product in the context. For pure variables, we need to use the
counit ¢ to get out of the comonad. °

*We sometimes drop the denotation symbol for brevity, i.e., we write !
instead of ! [T]>©r Orp instead 0f5[[sk

T T

SWhen interpreting judgements and inference rules, we write | T 1

to mean the interpretation of], i.e., we recursively define [[Jﬂ under the

assumption that we have an interpretation for [, ie., LAhL . [Jul

5.2 Expressions

We now give an interpretation for expressionsI' - ¢ : A, and
pure expressions I' = e : A, in figure 6.

To interpret unitl, we use the unique ! map to simply get
to the terminal object 1, then lift it into the monad using 7,
without performing any effects.

For pair introduction xI, we evaluate both components of
the pair, and compose, then use the strength of the monad T
with the B combinator to form the product. ¢

We eliminate products using the xE; and xE, rules. These
are interpreted using the corresponding product projection
maps, under the functorial action of T.

Variables are introduced using the V AR rule, which is in-
terpreted by looking up in the context, for which we use the
interpretation of our context membership judgement. This is
followed by a trivial lifting into the monad.

To interpret functions using the = Irule, we simply use
the currying map, since our context extension is interpreted
as a product. Then we lift it into the monad using #.

To eliminate functions using the = E rule, we evaluate the
operator and operand in an application, followed by a use of
the monad strength S to turn it into a pair. Then we use the
evaluation map under the functor T to apply the argument.
Since the function is effectful, we have to collapse the effects
using a J.

To interpret the []I rule, we need to interpret the pure
judgement (defined later), which gives a value of type OA,
and then we lift it into the monad.

To eliminate a box-ed value using the [[]E rule, we first eval-
uate f, which gives a value of type O A, but under the monad T.
We can use it to introduce a pure variable in the context, but
we use the strength of the monad to shift the product under
the T and get an extended context. We evaluate g under this
extended context, and then use a y to collapse the effects.

Finally, to interpret the PRINT rule, we need to perform a
non-trivial effect. We define the function p which builds an
output function that records the output on channels. Given
any channel c and string s, it returns a value of type T'1 con-
taining the trivial value = ; the output function instantiates a
channel ¢’ and tests equality with ¢ — if it equals ¢, we record
the string s, otherwise we just choose the empty string e. We
interpret the arguments of print and apply them to p to eval-
uate it. ” The rest of the interpretation is similar to the one for
= E, with output type 1.

We used a different interpretation function for pure expres-
sions, which we define below.

We need to interpret the purify operation p on contexts, for
which we define the map p(T") (figure 15ain the appendix). We

®The vigilant reader will have noticed that 3 evaluates the pair from right
to left, so the action on the right will be performed first, like OCaml! This
is also useful when interpreting function application, because we evaluate
the argument first.

77s" : Home (1, £*) is the global element that picks the literal s in *.

Vikraman Choudhury and Neel Krishnaswami

[unit] :=1 [AxB] == [A] x[B] [-]:=1
[str] == X% [A= B]:=[A] - T[B] [T, x:AP] := [T] xO[A]
[cap] := C [@A] = o[A] [T, x:A'] = [T]x [A]
@ [A]: Obje () [T]: Obje
Figure 5. Interpretation of types and contexts
—] =1t = 1p 78" iy
[[l"l—():unitﬂ v Fl—s:strﬂ r =
THe:A Threp:B o | f = [The:4]
: ﬂ:: g = ﬂl“l—ez:Bﬂ
' (eg,e):AxB .
i (f, 8 Bag
I'e:AxB '-e:AxB
——— |:=[Tte:AxB]|;Tny [——] :=[TFe:AxB];Tmn,
' fste: A I'-snde:B
A earerli (A "8y (In x4 8D
= 5 ; = curr ,x: At e: MAs
I'x:A X € Ta TEFAx:A.e:A—=B Y 2L e Na-TB
TFe:A=>B Thre:A et | o= [Thea:A=B]
= g = [The:A]
rl_elez:B .
in (f,8);Ba~rpa Tevarp: ip
f o= [Tk e :cap]
g = [T'Fey:str]
I'ke;:cap T'Foep:str let p Cx¥L"->T1
I' + eq-print(ey) : unit ©5s) (*,/\c'.{s lfC:CA)
¢ otherwise

in (f,8);Bex+:Tp;

— | [THPe:A]J [[FPFE:A]] (T); MT); 0[P Fe:A]
TF box[e|: A & ¢ v/ .. a4 lp T ; ;0 e: ;
I+ box[e]:[JA pifloa lppoa =P N

I'te A [,x:A” e,:B ot f o= [The:0A]
= g = [[,x:AP -e,:B]

I letbox[x]=ejine, : B

in <1dr ,f> ; TF,DA ; Tgf B

Figure 6. Interpretation of expressions, [I' e : A[: Home ([T], T[A]), [T FP e: A, : Home ([T], OA])

also need another combinator M (I') (defined in figure 15b
in the appendix), which uses the monoidal action and the
idempotence of the comonad O to distribute the O over the
products in I'. Note that M (T") is an isomorphism because m
and J are.

Now, the interpretation function for pure expressions
I' =? ¢ : A usesthe cTx-PURE rule, and is defined as a mor-
phism in Home ([T],afA]). We purify the context to a
pure one, so that we can evaluate the expression. However,
we need a value in OA, but the expression interpretation

would produce something in TA. Now, we can only cancel
the monad under the comonad, so we use the M(I') map
which uses the idempotence of O to do areadjustment. We can
now evaluate the expression under the O in the pure context,
which gives a monadic value of type T A under the comonad
0. We can finally use ¢ to cancel the monad T under the O.

5.3 Weakening and Substitution

We now give semantics for the syntactic weakening and sub-
stitution operations.

5.3.1 Weakening

For contexts I and A, we interpret the weakening judgement
I' O Aasamorphismin Home ([T], [A]). as shown infig-
ure 16a. We also refer to it as the weakening map Wk(I' D A).
We prove a semantic weakening lemma, analogous to the syn-
tactic weakening lemma 3.1.

Lemma 5.1 Semantic weakening.
IT D AandA ‘- e: A, then

[THe:A]l=Wk(T2A);[AFe: Al

5.3.2 Substitution

We now interpret a substitution I' - 6 : A as a morphism in
Home ([T], [A]). as shown in figure 7b. However, this is
not a trivial iteration of the expression interpretation. The
reason is that the interpretation of contexts in figure 5b in-
terprets a variable x : A’ in the context as an element of the
type [A], and a variable x : A? as an element of the type
O[] A]. However, an expression I' - ¢ : A will be interpreted
as amorphism in Home ([T]], T[A]). Operationally, we re-
solve this mismatch by only substituting values for variables
in call-by-value languages, and indeed, our definition of sub-
stitutions in figure 11c restricts the definition of substitution
to range over values in the rule SUB-IMPURE.

Therefore, we mimic this syntactic restriction in the se-
mantics, by giving a separate interpretation only for values,
interpreting the judgement I' -+ ©v: A as a morphism in
Home ([T], [A]), in figure 7a. Note in particular that the
value interpretation yields an element of | A |, as the context
interpretation requires, rather than an element of T[[A |. This
value interpretation makes use of the expression interpreta-
tion in the interpretation of A-expressions, but the expression
relation does not directly refer to the value interpretation.
There are alternative presentations such as fine-grain call-by-
value [17], which have a separate syntactic class of values and
value judgements, and hence make the value and expression
interpretations mutually recursive. However, we choose not
to do that in order to remain close to the usual presentation.

Note that box |e | expressions are also values, and our pure
interpretation does the right thing for box values, since the
interpretation of [[] A uses the comonad, O[A |. With the in-
terpretation of values in hand, we can define the substitution
interpretation as follows.

We use the pure expression interpretation to interpret the
SUB-PURE rule, and the impure value interpretation for the
SUB-IMPURE rule.

Finally, we prove the semantic analogue of the syntactic
substitution theorem B.11. We prove two auxiliary lemmas 5.2
and 5.3, characterising the expression interpretation of pure
expressions and impure values. The lemmas show that the in-
terpretation for each ends in a trivial lifting into the monad T
using 1. This makes the proof of the semantic substitution the-
orem 5.4 possible.

Lemma 5.2 Pure interpretation.
IfT +Pe: A, then

[[rl—e:Aﬂ:[[rl—pe:Aﬂp;SA;UA.

Lemma 5.3 Value interpretation.
IfT' =v: A, then
[TEov:A]=[TFv:A],;n4.

Theorem 5.4 Semantic substitution.
ITHO:AandA - e: A, then
[THO():Al=[THO:A];[AFe:A]

6 Equational Theory

We have an extension of the call-by-value simply-typed
lambda calculus, so we want the usual By-equations to hold
in our theory. However, we also added new expression forms
forthe[] type. We want computation and extensionality rules
for the box form and the let box binding form. To handle the
commuting conversions [11], we use evaluation contexts.

We extend our grammar with two kinds of evaluation con-
texts — a pure evaluation context C, and an impure evalua-
tion context &, as shown in figure 8. The intuition is that £
allows safe reductions for impure expressions, i.e., it picks out
the contexts consistent with the evaluation order of the call-
by-value simply-typed lambda calculus. The pure evaluation
context C allows redexes in every sub-expression; but it is
restricted only to pure expressions. The hole [-] is the empty
evaluation context. We use the notation C {e)) or £ ((e)) to indi-
cate that we’re replacing the hole in the respective evaluation
context with e.

We define a judgement form for equality of terms, as shown
infigure 2c, and state the rules for the equational theory in fig-
ure 9. We also have the usual REFL, SYM, and TRANS rules
which give the reflexive, symmetric, and transitive closure,
so that the equality relation is an equivalence, and the coNG
rules for each term former, which make the relation a congru-
ence closure. We state these remaining rules in figure 17 in
the appendix.

We have the computation rules x; 8 and x, j for pairs; we
only allow values for these rules. The x7 rule is the extension-
ality rule for pairs, but again, restricted to values.

The = B rule is the usual call-by-value computation rule
for an application of a A-expression to an argument. ® Since
the calculus has effects, we only allow the operand to be a
value. For example, consider the function f := Ax : unit. x ; x.
We can safely S-reduce f () to () ; (), but allowing a -
reduction for f (¢ print(s)) would duplicate the effect!

We add 7 rules for functions, but we need to be careful be-
cause we have effects. For example, consider the expression
f = c-print(s) ; Ax. x. On 5-expansion, we get § := Ay. fv,
but now the print operation is suspended in the closure, and

8The notation [v/x]e is shorthand for ((T), ZJi/x)(e) where (T') is the
identity substitution I = (T) : T

[——— =1

Vikraman Choudhury and Neel Krishnaswami

' ():unit ¢
I'-v,:A I'-v,:B
I (vy,0,):AxB o= ([TFo: AL, [TFop:B],)
1,92/
x:A7eT [[- I : ﬂ '
THx:A 2 Sl TH():- T
ILx:A'e:B r'6:A IF'?e:A
’ i= xi Al ke = ([T 0:A],[THP e: A])
A casp e T At e D e e L= 11 I
THPe: A THO:A I'v:A
————— [, = [THFe:A], : - :=([TH0:A],[T+v:A],)
I' - box[e]: A T, 0" xy: A x: A’

@[T Fo:Al,:Home ([T], [A])

(b) [I'+6:A]: Home ([T, [A])

Figure 7. Interpretation of values and substitution

fst&snd& | (e, &)1 (E,v)
letbox[x] = £ine| letbox[x]=vin&

C =[]leC|CelAx:A.C

| fstC|sndC|(e,C)|(C,e)

| box||etbox:Cine|letbox:einC
E u=[]lel|Ew

|

|

Figure 8. Grammar extended with Evaluation Contexts

doesn’t evaluate when we apply . Hence, we add two forms
of 17 rules for functions — the = #-1MPURE rule only allows
n-expansion for values, and the = #-PURE rule allows #-
expansion also for expressions that are pure.

The computation rule [] 8 for the [type allows computa-
tion under the let box binder. If we bind a box-ed expression
under the let box binder, we can substitute the underlying
expression in the motive. This is safe because e; is forced to
be a pure expression.

Finally, we have the 77 expansion rules for the['] type, which
pushes an expression in an evaluation context under a let box
binder. The [157—pure rule uses the pure evaluation context C,
while the [[1—impure rule uses the impure evaluation con-
text £. The only difference in the rules is that the C evaluation
context can be plugged with pure expressions only.

We prove that our equality rules are sound with respect
to our categorical semantics. If two expressions are equal in
the equational theory, they have equal interpretations in the
semantics.

Theorem 6.1 Soundness of ~.
[THe :A]=[TFep:A].

IfT + e; ~ey: A, then

10

7 Embedding

Our language is an extension of the call-by-value simply-
typedlambda calculus. But how could we claim that it isreally
an extension? In this section, we show that we can embed the
simply-typed lambda calculus into our calculus, while still
preserving its nice properties. We state the full simply-typed
lambda calculus including its By-equational theory in fig-
ure 18 in the appendix.

We define an embedding function from the simply-typed
lambda calculus to our calculus. We use the notation X to

denote the embedding of a syntactic object X from STLC into
our calculus. We give the syntactic translation of types, con-
texts, and raw terms in figure 10.

To embed the function type, we embed the domain and
codomain, but we apply our comonadic type constructor []
to restrict the domain to a pure type. This embedding is quite
like the Godel-McKinsey-Tarski embedding of the intuitionis-
tic propositional calculus into classical S4 modal logic, as out-
lined in [19], but we do not need to apply the [[] type construc-
tor on the codomain, because our functions are capability-safe.
We remark that this is similar to the embedding of lax logic
into S4 modallogic described in [29], as well as the embedding
of intuitionistic logic into linear logic [10].

When embedding contexts, we mark the variables as pure
using the p annotation. To embed functions and applications,
we need to use the introduction and elimination forms for [].
When embedding a A-expression, the bound variable is em-
bedded as a term of [] type, so we eliminate the underlying
variable using the let box binding form before using it in the
body. To embed an application, we simply put the argument
in a box.

We show that this translation preserves typing, i.e., well-
typed expressions embed to well-typed expressions. Then,

I'F9,:A I'~v,:B I'v,:A I'v,:B I'-v:AxB
x1P x2p x1
I'fst(vy,v) ~v;: A I'tsnd(vq,v,) %0, : B I'-ov~(fstv,sndv): AxB
ILx:A'+e:B TFruo:A
=p
' (Ax:A.e)v~[v/x]e:B
T'v:A=B I'Pe:A=B
= I-IMPURE = }-PURE
I'ro~Ax:A.vx:A=>B I'FexAx:A.ex:A=B
IPe A ILx:A? Fey:B -
I+ letbox:boxinezz[el/x]ezzB P
F'Hfe:[1A I'Cle):B I' - letbox[x] = ein C(box[x])) : B
Cly-PURE

I' = C(e) =~ letbox[x]=einC(box[x]) : B

IT'e:[JA ' Ede):B

I' - letbox[x] = ein £(box[x]) : B

I'+ E(e) =~ letbox[x]=einE(box[x]) : B

[0y-1MPURE

Figure 9. Equational Theory

TyYPES unit := unit
A=B :=[]A=1B
CONTEXTS g = -
Ix:A = T,x: AP
TERMS O =0
X = X
Ax:A.e = Az:[JA.letbox[x]=zin e
elez = el bOX

Figure 10. Embedding STLC

we show that the f-equational theory of the pure call-by-
value simply-typed lambda calculus is preserved under the
translation. If two expressions are equal in the simply-typed
lambda calculus, they remain equal after embedding into our
imperative calculus.

Theorem 7.1 Preservation of typing,.
IfT-ye:AthenT F e : A.

Theorem 7.2 Preservation of equality.
I_fr |_/\ eq QfeziA,then I+ €1 ~ ey A.

= ~— —

11

Finally, we show that our imperative calculus is a conserva-
tive extension of the simply-typed lambda calculus. To do so,
we claim that if two embedded terms are equal in the extended
theory, then they must have been equal in the smaller theory.
This shows that the equational theory of the imperative cal-
culus does not introduce any extra equations that would de-
stroy the computational properties of the pure simply-typed
lambda calculus.

Theorem 7.3 Conservative Extension. IfI' -, ¢;: A,
F'Hyey:Ayand T F e ~ey: A thenl') e mey: A

8 Discussion and Future Work

There hasbeen a vastamount of work on integrating effects
into purely functional languages. Ironically though, even the
very definition of what a purely functional language is has
historically been a contested one. Sabry [32] proposed that a
functional language is pure when its behaviour under differ-
ent evaluation strategies is “morally” the same, in the sense
of Danielsson et al. [5]. That is, if changing the evaluation
strategy from call-by-value to (say) call-by-need could only
change the divergence/error behaviour of programs in a lan-
guage, then the language is pure. In contrast, the definition we
use in this paper is less sophisticated: we take purity to be the
preservation of the 87 equational theory of the simply-typed
lambda calculus. However, it lets us prove the correctness of
our embedding in an appealingly simple way, by translating
derivations of equality.

The use of substructural type systems to control access
to mutable data is also a long-running theme in the develop-
ment of programming languages. It is so long-running, in fact,
that it actually predates linear logic [10] by nearly a decade!
Reynolds’ Syntactic Control of Interference [30] proposed us-
ing a substructural type discipline to prevent aliased access
to data structures. The intuition that substructural logic cor-
responds to ownership of capabilities is also a very old one
— O’Hearn [27] uses it to explain his model of SCI, and Crary
et al. [3] compare their static capabilities to the capabilities
in the HYDRA system of Wulf et al. [37].

However, these comparisons remained informal, due to the
fact that semanticists tended to use capabilities in a substruc-
tural fashion (e.g., see [3, 34]), but from the very outset ([6]) to
modern day applications like capability-safe Javascript [18],
systems designers have tended to use capabilities non-linearly.
In particular, they thought it was desirable for a principal to
hand a capability to two different deputies, which is a design
principle obviously incompatible with linearity.

The idea that the linear implication and intuitionistic impli-
cation could coexist, without one reducing to the other, first
arose in the logic of bunched implications [25]. This led to sep-
aration logic [31], which has been very successful at verify-
ing programs with aliasable state. However, even though the
semantics of separation logic supports B, the bulk of the tool-
ing infrastructure for separation logic (such as Smallfoot [2])
have focused on the substructural fragment, often even omit-
ting anything not in the linear fragment.

However, one observation very important to our work did
arise from work on separation logic. Dodds et al. [7] made
the critical observation that in addition to being able to assert
ownership, it is extremely useful to be able to deny the owner-
ship of a capability. Basically, knowing that a client program
lacks any capabilities can make it safe to invoke it in a secure
context.

The comonadic structure behind denial was also known
informally: it arises in the work of Morrisett et al. [23], where
the exponential comonad in linear logic is modelled as the
lack of any heap ownership; and in an intuitionistic context,
the work on functional reactive programming [14] used a ca-
pability to create temporal values, and a comonad denying
ownership of it permitted writing space-leak-free reactive
programs. However, both of these papers used operational
unary logical relations models, and so did not prove anything
about the equational theory.

Equational theories are easier to get with denotational
models, and our model derives from the work of Hofmann
[12].In his work, he developed a denotational model of space-
bounded computation, by taking a naive set-theoretic seman-
tics, and then augmenting it with intensional information.
His sets were augmented with a length function saying how
much memory each value used, and in ours, we use a weight
function saying how many capabilities each value holds. (In
fact, he even notes that his category also forms a model of

12

Vikraman Choudhury and Neel Krishnaswami

bunched implications!) We think his approach has a high
power-to-weight ratio, and hope we have shown that it has
broad applicability as well.

However, this semantics is certainly not the last word: e.g.,
the semantics in this paper does not model the allocation of
new capabilities as a program executes. In the categorical
semantics of bunched logics, it is common to use functor cat-
egories, such as functors from the category of finite sets and
injections I, to Set, or presheaves over some other monoidal
category. The functor category forms a model of BI, inheriting
the cartesian closed structure where the limits are computed
Kripke-style in Set, and also a monoidal closed structure us-
ing the tensor product from the monoidal category and Day
convolution. In addition, the ability to move to a bigger set per-
mits modelling allocation of new names and channels (e.g.,
as is done in models of the v-calculus [33]).

Another natural question is how we might handle recur-
sion, as our explicit description of the category of capability
spaces C in section 4 seems quite tied to Set. By replaying
this in a category like CPO rather than Set, we may be able to
derive a domain-theoretic analogue of capability spaces.

Another direction for future work lies in the observation
that our O comonad in subsection 4.4 takes away all capa-
bilities, yielding a system with a syntax like that of Pfen-
ning and Davies [29] with an interpretation close to the ax-
iomatic categorical semantics proposed by Alechina et al. [1]
and Kobayashi [13]. However, we could consider a graded or
indexed version of the same, i.e., O, which only takes away a
set of capabilities C € (C) from a value. Our hope would be
that this could form a model of systems like bounded linear
logic [4, 26], or other systems of coeffects [28]. One issue we
foresee is that while this indexed comonad would still be a
strong monoidal functor, it loses the idempotence property,
which we used in our interpretation and proofs.

There has also been a great deal of work on using monads
and effect systems [9, 21, 24, 36] to control the usage of effects.
However, the general idea of using a static tag which broad-
casts that an effect may occur seems somewhat the reverse of
the idea of object capabilities, where access to a dynamically-
passed value determines whether an effect can occur. The key
feature of our system is that the comonad does not say what
effects are possible, but rather asserts that effects are absent.
This manifests in the cancellation law (in subsection 4.5) of
the comonad and the monad. Still, the very phrases “may per-
form” and “does not possess” hint that some sort of duality
ought to exist.

References

(1]

—
w
=

(10]

(11]

[12]

(13]

(14]

(15]

Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike
Ritter. 2001. Categorical and Kripke Semantics for Constructive
S4 Modal Logic. In Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris,
France, September 10-13, 2001, Proceedings (Lecture Notes in Com-
puter Science), Laurent Fribourg (Ed.), Vol. 2142. Springer, 292-307.
https://doi.org/10.1007/3-540-44802-0_21

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2006.
Smallfoot: Modular Automatic Assertion Checking with Separation
Logic. In Formal Methods for Components and Objects, Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 115-137.

Karl Crary, David Walker, and J. Gregory Morrisett. 1999. Typed
Memory Management in a Calculus of Capabilities. In POPL 99,
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, San Antonio, TX, USA, January
20-22, 1999, Andrew W. Appel and Alex Aiken (Eds.). ACM, 262-275.
https://doi.org/10.1145/292540.292564

Ugo Dal Lago and Martin Hofmann. 2009. Bounded Linear Logic,
Revisited. In Typed Lambda Calculi and Applications, Pierre-Louis
Curien (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80-94.
Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. 2006. Fast and Loose Reasoning is Morally Correct. In
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL *06). ACM, 206-217. https:
//doi.org/10.1145/1111037.1111056 Charleston, South Carolina, USA.
Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for
multiprogrammed computations. Commun. ACM 9, 3 (1966), 143-155.
https://doi.org/10.1145/365230.365252

Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis.
2009. Deny-Guarantee Reasoning. In Programming Languages and
Systems, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 363-377.

Jeremy Gibbons. 2000. Calculating Functional Programs. In Algebraic
and Coalgebraic Methods in the Mathematics of Program Construction,
International Summer School and Workshop, Oxford, UK, April 10-14,
2000, Revised Lectures (Lecture Notes in Computer Science), Roland Carl
Backhouse, Roy L. Crole, and Jeremy Gibbons (Eds.), Vol. 2297.
Springer, 149-202. https://doi.org/10.1007/3-540-47797-7_5

David K. Gifford and John M. Lucassen. 1986. Integrating Functional
and Imperative Programming. In Proceedings of the 1986 ACM Confer-
ence on LISP and Functional Programming (LFP °86). ACM, New York,
NY, USA, 28-38. https://doi.org/10.1145/319838.319848

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (Jan 1987), 1-101. https://doi.org/10.1016/0304-3975(87)90045-4
Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types.
Cambridge University Press, New York, NY, USA. 217-241 pages.
https://doi.org/10.1007/978-1-4612-2822-6_8

Martin Hofmann. 2003. Linear types and non-size-increasing poly-
nomial time computation. Information and Computation 183, 1 (may
2003), 57-85. https://doi.org/10.1016/s0890-5401(03)00009-9

Satoshi Kobayashi. 1997. Monad as modality. Theoretical Com-
puter Science 175, 1 (1997), 29 - 74. https://doi.org/10.1016/S0304-
3975(96)00169-7

Neelakantan R. Krishnaswami. 2013. Higher-Order Reactive Pro-
gramming without Spacetime Leaks. In International Conference on
Functional Programming (ICFP).

Hugh C. Lauer and Roger M. Needham. 1979. On the Duality of
Operating System Structures. ACM SIGOPS Operating Systems Review
13, 2 (apr 1979), 3-19. https://doi.org/10.1145/850657.850658

Henry M Levy. 1984. Capability-based computer systems. Digital Press.
Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Mod-
elling environments in call-by-value programming languages.

13

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Information and Computation 185, 2 (Sep 2003), 182-210.
https://doi.org/10.1016/S0890-5401(03)00088-9

S. Maffeis, J. C. Mitchell, and A. Taly. 2010. Object Capabilities and
Isolation of Untrusted Web Applications. In 2010 IEEE Symposium on
Security and Privacy. 125-140. https://doi.org/10.1109/SP.2010.16

J. C. C. McKinsey and Alfred Tarski. 1948. Some Theorems About the
Sentential Calculi of Lewis and Heyting. J. Symb. Log. 13, 1 (1948),
1-15. https://doi.org/10.2307/2268135

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. Ph.D. Dissertation.
USA. Advisor(s) Shapiro, Jonathan S. AAI3245526.

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads.
In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS °89), Pacific Grove, California, USA, June 5-8, 1989. IEEE
Computer Society, 14-23. https://doi.org/10.1109/LICS.1989.39155
Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Com-
put. 93,1(1991), 55-92. https://doi.org/10.1016/0890-5401(91)90052-4
Greg Morrisett, Amal Ahmed, and Matthew Fluet. 2005. L3: A Linear
Language with Locations. In Typed Lambda Calculi and Applications,
Pawel Urzyczyn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
293-307.

Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 114-136.
https://doi.org/10.1007/3-540-48092-7_6

Peter W. O’'Hearn and David J. Pym. 1999. The Logic of Bunched
Implications. Bulleting Symbolic Logic 5, 2 (06 1999), 215-244.
https://projecteuclid.org:443/euclid.bsl/ 1182353620

Dominic A. Orchard, Vilem Liepelt, and Harley Eades. 2019.
Quantitative program reasoning with graded modal types. Pro-
ceedings of the ACM on Programming Languages (June 2019).
https://kar.kent.ac.uk/74450/

P. W. O’'Hearn. 1993. A model for syntactic control of interference.
Mathematical Structures in Computer Science 3, 4 (Dec 1993), 435-465.
https://doi.org/10.1017/S0960129500000311

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2014.
Coeffects: a calculus of context-dependent computation. In Pro-
ceedings of the 19th ACM SIGPLAN international conference on
Functional programming, Gothenburg, Sweden, September 1-3, 2014,
Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 123-135.
https://doi.org/10.1145/2628136.2628160

Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction
of modal logic. Mathematical Structures in Computer Science 11, 4
(2001), 511-540. https://doi.org/10.1017/50960129501003322

John C. Reynolds. 1978. Syntactic Control of Interference. In
Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’78). ACM, 39-46.
https://doi.org/10.1145/512760.512766 event-place: Tucson, Arizona.
J. C. Reynolds. 2002. Separation logic: a logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science. 55—-74. https://doi.org/10.1109/LICS.2002.1029817
Amr Sabry. 1998. What is a purely functional language?
Journal of Functional Programming 8, 1 (Jan 1998), 1-22.
https://doi.org/10.1017/50956796897002943

Tan Stark. 1996. Categorical models for local names.
and Symbolic Computation 9, 1 (01 Feb 1996),
https://doi.org/10.1007/BF01806033

Tachio Terauchi and Alex Aiken. 2006. A Capability Calculus for
Concurrency and Determinism. In CONCUR 2006 - Concurrency Theory,
17th International Conference, CONCUR 2006, Bonn, Germany, August
27-30, 2006, Proceedings (Lecture Notes in Computer Science), Christel
Baier and Holger Hermanns (Eds.), Vol. 4137. Springer, 218-232.
https://doi.org/10.1007/11817949_15

Philip Wadler. 1990. Deforestation: transforming programs to
eliminate trees. Theoretical Computer Science 73, 2 (jun 1990), 231-248.

LISP
77-107.

https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1145/292540.292564
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/365230.365252
https://doi.org/10.1007/3-540-47797-7_5
https://doi.org/10.1145/319838.319848
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-1-4612-2822-6_8
https://doi.org/10.1016/s0890-5401(03)00009-9
https://doi.org/10.1016/S0304-3975(96)00169-7
https://doi.org/10.1016/S0304-3975(96)00169-7
https://doi.org/10.1145/850657.850658
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1109/SP.2010.16
https://doi.org/10.2307/2268135
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-48092-7_6
https://projecteuclid.org:443/euclid.bsl/1182353620
https://kar.kent.ac.uk/74450/
https://doi.org/10.1017/S0960129500000311
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1145/512760.512766
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1017/S0956796897002943
https://doi.org/10.1007/BF01806033
https://doi.org/10.1007/11817949_15

Vikraman Choudhury and Neel Krishnaswami

https://doi.org/10.1016/0304-3975(90)90147-a [37] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,

[36] Philip Wadler. 1998. The Marriage of Effects and Monads. In Pro- and F. Pollack. 1974. HYDRA: The Kernel of a Multiprocessor
ceedings of the Third ACM SIGPLAN International Conference on Operating System. Commun. ACM 17, 6 (Jun 1974), 337-345.
Functional Programming (ICFP *98). ACM, New York, NY, USA, 63-74. https://doi.org/10.1145/355616.364017

https://doi.org/10.1145/289423.289429

14

https://doi.org/10.1016/0304-3975(90)90147-a
https://doi.org/10.1145/289423.289429
https://doi.org/10.1145/355616.364017

A Supplementary material for Section 2 (Purity from Capabilities)
We can see how this notion of purity plays out with the following examples, where we try to give a type for an apply function,

which takes a function and an argument, applies the argument to the function, and returns the output, at varying levels of purity.
First, we consider a function that applies a pure argument to an unrestricted function:

apply : Yab. (a - b) - Purea - b

apply f box(x) = f x —— accepted

This example is accepted. The box (x) pattern tells us that x is a pure variable, but there are no restrictions on using pure
variables as impure terms (since a pure term is an impure term that happens to not perform side-effects).

Next, we consider a variant of this function which applies an arbitrary function to a pure argument, and tries to return a pure
result.

apply : Yab. (a - b) - Pure a —» Pure b
apply f box(x) = box(f x) —— REJECTED

This variant is rejected. Intuitively, the call to the function f could have side-effects. Syntactically, since f is an impure variable,
it is simply not allowed to occur in the pure expression box(f x). For similar reasons, it is not possible to write a polymor-
phicfmap : Y ab. (a - b) — Pure a — Pure b function for the Pure type constructor. However, Pure is a functor in
the semantic sense — the absence of a map action indicates that this functor lacks tensorial strength.

We can still make both the function and the argument to apply into boxed types.

apply : Pure (a — b) — Pure a — Pure b
apply box(f) box(x) = box(f x) —- accepted

In this case, box (f x) is accepted, since both the variables f and x are known to be pure, and so are permitted to occur inside
of a pure expression.

B Supplementary material for Section 3 (Typing)

LemmaB.1. The weakening relation is reflexive.

Proof.
W [T}
)
G| -2 2-1p
@ | |T=1,x:49
(5) ror induction hypothesis
(6) I'x:A72T',x: A1 D-conNg

7y T2T
]

Lemma B.2. The weakening relation is transitive.
Proof.

1 |[T2AADY

(2) r=-,A=- case D-ID

(3) Y= inversion

@ | -2 2-ID

(5) ’F:F’,x:Aq,A:A’,x:Aq case D-CONG

15

(6)
™)
®)
©)
(10)
(11)
(12)
(13)
(14)
(15)

Y=V x:AT,NDV¥ case D-CONG
I'o>vy induction hypothesis

I',x:A7 2%, x: A7 D-CONG

case D-WK

I'>v induction hypothesis
I'x:AT2% induction hypothesis
I'D>A case D-WK

I'>v induction hypothesis
I'x:AT2V%

r>vy

LemmaB.3. Ifx:A7 € AandT D A, thenx: A1 €T.

Proof. Assuming T’ D A, we do induction on x : A7 € A.
¢ € -1D

(1)

(2)
(3)

x: AT e (A, x: A7)

I'D>N
I',x:AT DN, x: A1

x: A7 e (I',x: A7)

¢ € -EX

x: AT e N (x#vy)

x: AT e (A,y:B")

I"' DA
I'y:B"DA,y:B"

x:ATeN

I'DAN

x:ATel’
x:ATe (I, y:B")

€-1D

J-CONG

E-1D

E-EX

J-CONG
inversion
inversion
induction hypothesis

E-EX

LemmaB.4. IfT DA, thenT? D AP

Proof. We do inductiononI’ D A.

16

Vikraman Choudhury and Neel Krishnaswami

1 n |-2- 2-1p
2 -2 2-1p
© 2D -CONG
I'2DA
1) |T',x:AT DA, x: A1 D-CONG
(2) I'DA inversion
(3) I'P D AP induction hypothesis
(4) q=p

(®)

I'P,x: AP D AP, x: AP D-CONG (3)

g=1i

I'? QAP

®)

(T, x: AT)Y D (A, x: AT)?

© 2D -WK

R
~

>
S

I'P, x: AP D AP
q=1i
['P D AP

(', x: AT)P D AP

J-WK

inversion

induction hypothesis

D-wk (3)

®)

Lemma 3.1 Syntactic weakening,.
IFT D AandA‘e: A thenl -e: A.

Proof. Assuming I’ D A, we do inductionon A F e : A.

17

©VAR

o unitl

(1)
)

o xI

(6)

4)

x: AT eA
AFx:A VAR
x:A7 €A inversion
x:A7€T lemmaB.3
I'-x:A VAR
m unitl
I't () : unit unitl
Are A Ate:B
AF (eq,e):AxB
Ale A
Ate:B
e : A
I'+e:B
I'(e;,e):AxB

xI

inversion
inversion
induction hypothesis
induction hypothesis

xI

AFe:AxB
AFfste: A xEq
AFe:AxB inversion
I'e:AxB induction hypothesis
'k fste: A XEl
AFe:AxB
At snde:B xE,

Vikraman Choudhury and Neel Krishnaswami

(2) Ak e:AxB inversion

(3) I'-e:AxB induction hypothesis

4) ThHsnde:B xE,
o[I
AFPe: A
(1) @I
(2) AFPe: A inversion
(3) AP e A inversion
(4) Ir'? D A? lemma B.4
(5) IPFe:A induction hypothesis
(6) Fr—e:A CTX-PURE
(7) T+ box[e]:[A 1

o[E
AtFe:[A A x:AP ey :B
1) A+ letbox[x]| = ejine, : B [E
(2) Ate:[A inversion
(3) A x:AP ey :B inversion
(4) I'-e :[C0A induction hypothesis (2)
(5) I,x:AP DA, x: AP D-CONG
(6) Ix:A? ey:B induction hypothesis (3) (5)
(7) Tk letbox[x|=ejine,: B CJE
o=1
A x:Al+e:B

(1) |AFAx:A.e:A=>B =1

(2) Ax:A'Fe:B inversion

(3) [x:A' DA x: Al D-CONG

(4) I[Lx:A'Fe:B induction hypothesis (3)
5) THAx.e:A=B =]

19

Vikraman Choudhury and Neel Krishnaswami

o= E
Are :A=>B Abey: A
(1) At eje;:B =E
(2) Ar-e :A=B inversion
(3) AlFe: A inversion
(4) e :A=>B induction hypothesis (2)
(5) e :A induction hypothesis (3)
6) T'ee:B =E
o strl

(1) |AFs:str strl

(2) THEs:str strl
©PRINT
At eq:cap At ey istr
(1) A+ eq-print(ey) : unit PRINT
(2) At eq:cap inversion
(3) At ey istr inversion
(4) I'-eq:cap induction hypothesis (2)
(5) I't ey :str induction hypothesis (3)
(6) Tk eq-print(ey) : unit PRINT

LemmaB.5. IfI D AandAtF 0:Y, thenT - 0: Y.
Proof. Assuming I’ D A, we do inductionon A+ 6: Y.

©SUB-ID
1) |AE{:- SUB-ID
2 TE:- SUB-ID

20

©SUB-PURE

A-6:Y¥ AFPe: A
(1) | A, eP/x): ¥, x: AP
@ | Ao :¥
AN e A
3 | Arfe:A
@ | APre:A
G) | THO: ¥
© | TP DAP
(7) I?e:A
(8) Fr—?e:A
9) TH(O, ellx)y: ¥, x: AP

OSUB-IMPURE

A+0:Y A+-v:A
(1) [AF (6,0 x): ¥, x: Al
@ | ArO:Y
B) | AFv:A
@4 | THO: ¥
G) | TFov:A
(6) TH(O, v /x)y: ¥, x: A

SUB-PURE

inversion

CTX-PURE
inversion
induction hypothesis (2)

lemma B.4

syntactic weakening lemma 3.1 (3)

CTX-PURE

SUB-PURE

SUB-IMPURE

inversion
inversion

induction hypothesis (2)

syntactic weakening lemma 3.1 (3)

SUB-IMPURE

LemmaB.6. IfT F 0:AthenT? - 67 : AP,
Proof. We do inductiononI F 0: A.

1) [THO:A
(2) 'k (:-
(3) TP {():-

THO:A IT'HPe: A
(4) F'=(0,ef[x): A x: AP
(5) T'H60:A

SUB-ID

SUB-ID

SUB-PURE

inversion
21

Vikraman Choudhury and Neel Krishnaswami

ITPe: A
(6) IF'Pe: A CTX-PURE
7 I’Fe:A inversion
7)
6) I? 6P : AP induction hypothesis
9) (TP e: A TPy =T?
(10) IPHPe: A CTX-PURE

(11) TP (07, eP[x)y: AP, x: AP SUB-PURE
T'—=6:A T'ov:A

(12) T (6, vi/x) (A, x: Al SUB-IMPURE
(13) I'H6:A inversion
(14) I? 6P : AP induction hypothesis

(15) TP 6P : AP

LemmaB.7. Forany contextT, we havel D T?.)
Proof. We do inductiononT.

M [T}

o)

(3) -2 2-1p

(4) T=A x:A?

(5) ADA induction hypothesis

(6) A x: AP DAP, x: AP D-coNG

(7) IF'=A,x:A*

(8) ADAP induction hypothesis

) | Ax:A'DAP D-WK

(100 T DOI?
O

LemmaB.8. IfT'+ 0:Aandx:A7 € A, thenT + 6[x] : A.
Proof. AssumingT' i 6 : A, we do induction on x : A7 € A.

© € -ID
1) | x:ATe (A, x:AT) €-1D
@ | |a=p

22

TH¢:A TrHPe:A
(3) THA(¢pel/x): N, x: AP
[PHe:A
() THPe: A
(5) I"He:A
(6) rOI?
(7) 'ke:A
®) | TH(peflx)x]:A
© | [a=1]
TH¢:AN Tro:A
(10) T (¢, 0'x): N, x: Al
(11) THo:A
(12) | TH (¢ v'[x)[x]: A
(13) THOx]:A
¢ € -EX
x: AT e (x#y)
1) x: AT e (A,y:B")
@ | x:ATen
® | [9=7]
TH¢:A THrPe:B
(4) THA(g, e?ly): N, y: B
(5) TH¢:A
(6) 't ¢[x]: A
(7) | THAp, e?ly)[x]: A
® | [9=1]
TH¢:A Tru:B
(9) T (¢ o'fyy:AN,y:B
(10) I'¢:A
(11) T ¢x]:A
(12) | T o' /p[x]:A
(13) T+ 6[x]: A

SUB-PURE

CTX-PURE
inversion

lemma B.7

syntactic weakening lemma 3.1

definition

SUB-IMPURE
inversion

definition

E-EX

inversion

SUB-PURE
inversion
induction hypothesis

definition

SUB-IMPURE
inversion
induction hypothesis

definition

23

Vikraman Choudhury and Neel Krishnaswami

Theorem 3.3 Syntactic substitution.
IfTH60:AandAe: A, thenT - 6(e) : A.

Proof. AssumingI' - 6 : A, we do inductiononA ¢ : A.
©VAR

x:ATeA
(1) AFx:A VAR

(2) x: AT e inversion

(3) I'-0[x]:A lemmaB.8
(4) THOx):A definition

< unitl

(1) |AF():unit unitl

2) I'E():unit unitl

(3) THO(()):unit definition

o xI
Abe A Ate,:B
(1) At (eg,e5):AxB x1
(2) Abe A inversion
(3) At ey:B inversion
4) I'6(e;): A induction hypothesis
(5) I'6(e,):B induction hypothesis
(6) I'(6(eq),0(e5)) : AxB XI
(7) THO((eg,ep)):AxB definition
o xE;
Are:AxB
1) | AF fste: A xE,
(2) ArFe:AxB inversion
(3) I'+6(e): AxB induction hypothesis

24

(4) I'fstf(e): B xEq

(5) Tk O(fste):B definition
AFe:AxB
(1) |AFsnde:B xE,

Ar-e:AxB inversion

I'+6(e): AxB induction hypothesis

()

3)

(4) I'+sndf(e): B xE,

(5) T+ O(snde):B definition

o= 1
Ax:A'Fe:B
(1) |AFAx:A.e:A=>B =1
(2) Ax:A'bFe:B inversion
(3) F,y:Ai T D-WK
(4) [y:A'F6:A lemma B.5
G) | T,y:Al-y:A VAR
(6) T,y: A" -6,y /x): A, x: A" suB-1mpURE (4) (5)
(7) T,y:A" (6, y'[x)(e): B induction hypothesis (6) (2)
8 | THAy.(0,y'/x)(e):A=B =1
(9 THOAy.e):A=B definition
o= E

AFe :A=B AbFe: A
(1) At eje;:B =E
(2) Ar-e :A=B inversion
(3) Abrey: A inversion
(4) I'+6(e;):A=>B induction hypothesis (2)
(5) I'6(ey): A induction hypothesis (3)
(6) ' 6(eq)0(e,): B =>E

25

Vikraman Choudhury and Neel Krishnaswami

(7) T+ 6(eyey):B definition

o strl

(1) |AFs:str strl

(2) 'k s:str strl

(3) TH O(s):str definition

OPRINT
A eq:cap A ey str
(1) A+ eq-print(ey) : unit PRINT
(2) At eq:cap inversion
(3) At ey istr inversion
(4) I'6(ey):cap induction hypothesis (2)
(5) 'k 6(ey) : str induction hypothesis (3)
(6) I'+ 6(ey)-print(6(ey)) s unit PRINT
(7) T+ 6(eq-print(ep)) : unit definition
o[I
AFPe: A
(1))|
APEe:A
(2) m CTX-PURE
(3) AP e A inversion
(4) I[P 67 : AP lemma B.6
(5) I’ 6P(e): A induction hypothesis (3) (4)
(6) TP oP(e): A CTX-PURE
(7) | T+ box|6F(e)|: DA [II
(8) T+ O(box[e]) :[1A definition
o[JE

26

Ar-e :[JA A x:APFey:B

(1) A+ letbox[x]|=ejine, : B [E

(2) Ale:[A inversion

(3) A x:AP ey B inversion

(4) [,y:A? DT D-WK

(5) ILy:A? =6:A lemma B.5 (4)

(6) y:AP €T?,y: AP D-1D

(7) I[P, y:AP y:A VAR

(8) T,y:A? = (60, yP/x): A, x: AP SUB-PURE

9) I,y:A? =<0, y?/x)(ey) : B induction hypothesis (8) (3)
(10) I'6(e): A induction hypothesis (2)
(11) I let box =0(e;)in{(0, y*/x)(ey) : B [IE (9)(10)
(12) T+ 6(letbox[x]|=e;ine,): B definition

B.0.1 Weakening

We give the standard rules for the context membership judgement in figure 11a, following Barendregt’s variable convention.
The only difference is that variables now have an extra purity annotation.

B.0.2 Weakening

The context weakening relation follows the usual rules, as shown in figure 11b, with the extra purity annotation on free variables
in contexts. The rule D -wx allows us to drop a hypothesis to weaken the context, and we add the rules D -1band D -coNG
to get the smallest congruence closure.

We show that weakening is sound by proving a syntactic weakening lemma.

B.0.3 Substitution

Substitution requires an extra bit of work, as we can see in figure 11c. Since our language is effectful, we have the usual rule
suB-1MP URE which allows substituting values for impure variables, as in the call-by-value lambda calculus. We also add another
rule SUB-PURE, which allows one to substitute pure expressions for pure variables.

At this point, we can define the syntactic substitution function on raw terms. This is mostly standard, except for the cases
involving the box constructors. We give the full definition.

Definition B.9 (Syntactic substitution on variables).

7 0=
O[x] = {e 0=(¢p, ellx)
plx] O=(¢,elfy),x+y

27

Definition B.10 (Syntactic substitution on raw terms).
0(x)

0(0))

0(s)

0((e1 . €2))

Vikraman Choudhury and Neel Krishnaswami

= 0lx]
=0
=5

= (6(e1) , 6(e2)

O(fste) :

O(snde) :

O(Ax.e) :

O(ejep) :

f(box[e]) :

O(letbox[x] =e; ine,) :

6(eq - print(ey)) :

fst 6(e)

snd 0(e)

Ay (6, y'[x)(e)

0(eq) 6(e2)

boxm

let box =0(eq)in{O, y*[x)(ey)
0(eq) - print(6(e2))

When substituting under a binder, we do a renaming of the bound variable by extending the substitution with an appropriately
annotated variable. To substitute inside a box-ed expression, we have to purify the substitution when using it. We extend the
purify operation to substitutions as well; it simply drops the impure substitutions, as shown in figure 4b.

Finally, we show the soundness of substitution by proving a syntactic substitution theorem.

Theorem B.11 Syntactic substitution.
ITH0O:AandA+e: A, thenT - 6(e) : A.

Proof. AssumingI' = 0 : A, we do inductiononA e : A.

©VAR

x:ATeA
1) | AFx:A VAR

2) x:ATeA inversion

(3) I'+6[x]:A lemmaB.8

—
™
=

I'+6(x):A definition

< unitl

(1) |AF():unit unitl

2) 't ():unit unitl

(3) THO(()):unit definition

o xI
Abre A Ate:B
(1) AF (eq,e;):AxB x1
(2) Abre A inversion

28

o= 1

At ey:B inversion

I'06(ep):A induction hypothesis

I'-6(e,):B induction hypothesis

I'(6(eq),0(e5)) : AxB XI

I'6((e;,e5)):AxB definition
AFe:AxB
Al—fStE:A XEl
AFe:AxB inversion

I'—6(e): AxB induction hypothesis
I fst 9(6) :B XEl

I'+ 6(fste) : B definition
AFe:AxB
Al snde:B xE,
At+e:AxB inversion

I'+6(e): AxB induction hypothesis
I'sndf(e): B xE,

'+ 6O(snde) : B definition

Ax:A'+e:B
A-Ax:A.e:A=>B =I
A x:Al+e:B inversion
Iy: A DT D-WK
LLy:A"F60:A lemma B.5
[Ly:A'Fy:A VAR
F,y:Ai (0, yi/x) ‘A, x: AY suB-1MPURE (4) (5)
T,y: A" (6,y'/x)(e):B induction hypothesis (6) (2)

29

Vikraman Choudhury and Neel Krishnaswami

8 | THAy.(6,y'/x)(e):A=B =1
(9 THOANy.e):A=B definition

o= E

AFe :A=B AbFe: A

(1) At eje,:B =E

(2) Ar-e :A=B inversion

(3) Abey: A inversion

(4) I'+6(e):A=>B induction hypothesis (2)
(5) ' 6(ey): A induction hypothesis (3)
(6) ' 6(eq)0(e,): B =E

(7) TH 6(eqey):B definition

o strl

strl

(2) ' s:str strl

(3) Tk O(s):str definition

OPRINT

AFeq:cap AF ey str
(1) A & eq-print(ey) : unit PRINT
(2) At eq:cap inversion
(3) At ey istr inversion
(4) I'6(eq):cap induction hypothesis (2)
(5) I' 6(e,) : str induction hypothesis (3)
(6) I'+ 6(ey)-print(6(ey)) s unit PRINT

(7) T+ 6(eq-print(ep)) : unit definition

30

ArPe:A
(1) | A+ box[e]: 1A)
APHe:A
(2) ArPe:A CTX-PURE
(3) AP e A inversion
(4) I'? - 6P : AP lemma B.6
(5) I’ 6P(e): A induction hypothesis (3) (4)
(6) TP 0P(e): A CTX-PURE
(7) | T+ box|0(e)|: A [
(8) T+ O(box[e]) :[1A definition
o[JE
Ate A A x:AP ey :B
(1) A letbox[x]| =ejine, : B [E
(2) Ate:[A inversion
(3) A x:AP ey :B inversion
4 | Ty:A? DT D-wK
(5) Iy:A? - 6:A lemma B.5 (4)
(6) y:AP €T?,y: AP D-ID
(7) I?,y:AP Fy:A VAR
(8) Iy:A? = (0, yP/x): A x: AP SUB-PURE
9) T,y:A? =(0,y?/x)(ey) : B induction hypothesis (8) (3)
(10) I'6(ey): A induction hypothesis (2)
(11) T+ let box =0(e;)in(8, yP/x)(ey) : B [IE(9)(10)
(12) T+ 6(letbox[x]|=eqine,): B definition

C Supplementary material for Section 4 (Semantics)
Lemma C.1.

Home (C, A xB) = Home (C,A) x Home (C, B)

Proof. Givenf: Home (C,A) and g : Home (C, B), we define
<f/g> : Home(C,AXB)
¢ = (f(e),8(c))

31

Vikraman Choudhury and Neel Krishnaswami

Assume there exists a C, such that w(c, C,). Then there exist weights C, C C,and C, C C, such that w,(f(c),C,) and
wg(g(c),Cp).Let C = C, U Gy, then C C C, as well. This gives a weighting for (f, g).
Givenh : Home (C, A x B), we define
f:,}'lom@ (A,C) I:h;ﬂl
gIHOme (B,C) I:h;nz

Lemma C.2.
eVA,B : %me ((A—’B)XA,B)
curry : Home (Cx A, B) = Home (C,A - B)

Proof. We define,
evA,B : Home ((A d B) XA,B)
(f,a) = f(a)
Assume there exists a weight C such that w(4_,p).a ((f, @), C). Then, there exist weights Crand C, such that C = CfU C,,
wa_p(f,Cr) andwy (4, C,). Hence, there exists a weighting C;, such that wp (f(a), Cy).
Givenf: Home (C x A, B), we define
curry (f) : Home (C,A - B)
¢ — Aafl(c,a)
Assume there exists a C, such that w(c, C,.). We claim that w4 _ g (curry (f), C,). Assume a and C,, such that w4 (a, C,). Then,
wg(f(c,a),C, U C,).Choosing, C;, = C, U C,, we have wg(f(c,a), Cp).
Givenf: Home (C, A — B) we define
uncurry (f) : Home (C x A, B)
(c,a) = f(c)(a)
Assume there exist weights C.. and C, such that wc, 4 ((c,4), C. U C;), we(c, C.) and wy (4, C,). So, there exists Cr C C,
such that w4_,g(f(c), Cy). Thus, there exists C;, C Cr U C, such that wp(f(c)(a), Cp). It follows that C;, € C, U C,, and
wg(f(c)(a), Cp). o

Ha:A - TA
a— (a,Ac.e)

Assume there exists C, such that w, (a,C,). With 0 = Ac.¢, we have that for all¢ € C, 0(c) = e. Using C, = @, we have,
wray((a,0),C,UC,).

up :TTA - TA
((a,01),02) = (a,Ac.05(c) @ 01(c))
LetC, = {C ’ 0:(c) # ¢ }andCo2 = { c | 0,(c) # ¢ }.Assumethere exists C, suchthatwr, ((a,01), C,UC,,), andw 4 (a,C,U
Co, UGC,,).Forallc € C, ,01(c) # ¢, andforallc € C,,,05(c) # € So, forallc € C, UC,,,05(c) ®0y(c) # & Using
C, = C,, UC,, wehave, wr(4)((a,Ac.05(c) ® 01(c)),C, UC,).
Lemma C.3. The following diagrams commute.

T— " srre T 7 T — " S TT
T T —— 3 T

32

Proof.

#(nT(a,0)) #(T1(a,0))
= u((a,Ac.g),0) = u((a,0),Ac.e)
= (a,Ac.o(c) e¢) = (a,Ac.e ®0(c))
= (a,Ac.0(c)) = (a,Ac.0(c))
= (a,0) = (a,0)
u(uT(((a,01),02),03)) #(Tu(((a,01),05),03))
= p((a,Ac.05(c) @ 01(c)),03) = p((a,01),Ac.05(c) ® 05(c))

(a,Ac.03(c) @ (05(c) ®01(c)))
(a,Ac.03(c) @ 05(c) ®01(c))

Lemma C.4. Strengthening with 1 is irrelevant.

IxTA— S TA

" ” \I/

T(1xA)

(a,Ac.(03(c) ®05(c)) ®01(c))
(a,Ac.03(c) @ 05(c) ® 01(c))

Consecutive applications of strength commute.

(AxB)x TC b S T((A x B) x C)
Ax (BxTC) T(Ax (BxC))
Am Ac
AxT(BxC)
Strength commutes with monad unit and multiplication.
AxB
Axig " AxB
AxTB a S T(A x B)
T
AxT2B ATh S T(A x TB) ak S T2(A x B)

Left are right strengths are compatible.
AxTB — % S T(AxB)

Ba,rs J/TBA,B

Proof. All monads on Set are strong, and Set is symmetric monoidal for products. Note that, T is not a commutative monad,
because the following natural transformations are not equal.

«: TAxTB —A™ s T(A x TB) ——22 % T2(A x B) —4"® 3 T(A x B)
B TAxTB — 2§ T(TA x B) — "5 T2(Ax B) — 3 T(Ax B)
oa,r8((a,01),(b,02)) Tra,p((a,01),(b,05))
= Ttap((a,(b02)),01) = Toup((((a,01),0)),0,)
= yAxB(((a/ b)/OZ)/Ol) = ,quB(((ar b)rol)/OZ)

= ((a,b),Ac.01(c) ®0,5(c))
33

((a,b),Ac.05(c) ®01(c))

Vikraman Choudhury and Neel Krishnaswami
This means that the order of evaluation matters depending on whether we choose « or for evaluating products. O
Epqt OA - A

a
ODA

a
5A3DA
a

IR

!
Q

Lemma C.5. The following diagrams commute.

m—— oo 2 v o ooo <2 og
6 oo 1
O 0o % O
Proof. Since 6 and ¢ are identities, it follows trivially. Each arrow is weight-preserving because the weight is not altered by O,
0,0r&. O
m':1 = o1
* = *
m* ,: (OAx OB) — O(A x B)
(a,b) — (a,b)
m% ,:(0A®0OB) — O(A®B)
(a,b) — (a,b)
Lemma C.6.

OTA ~ DA

Proof. Leta € |A]suchthat (a,0) € [OTA|. Assume C, such that, w4 ((a,0),C). Then, C = (. Also, there exist C, and C, such
that® = C = C, U C, and w4 (a,C,). Hence, w 4 (a, D). This gives the map ¢, : OTA — DA, which is natural in A. We also
have 07,4 : OA - OTA sending a € |A| to (a, Ac.€). This gives an isomorphism. |

C.1 Monoidal Closed Structure

Definition C.7 (Tensor product).
|A ® B| := |A| x|B|

Ca#Cb
Wagp =1 ((,0),C,UC,) | A wa(a,Cp)
N wB(b,Cb)

The tensor product is given by pairing, with unit 1, but it only restricts to pairs whose sets of capabilities are disjoint. However,
this tensor product also enjoys a right adjoint.

Definition C.8 (Linear exponential).
|A — B| := |A| - |B|
Va,C,, ,C CHC
wap = | (f,Cp) @ Cor (8 Co) 1 CAC, =
3C, C CrU G, wp(f(a), Cy)

The linear exponential works the same way as the exponential, except that we have to restrict it to satisfy the disjointness
condition for the tensor product. We verify that this definition satisfies the tensor-hom adjunction in lemma C.9.

Lemma C.9.
%me (r®A,B) = Home (F,A —0 B)
34

Proof. We define,
eVA,B . %me ((A —0 B) ®A,B)
(f,a) — fa)
Assume there exists a weight C such that w(4_p)g4((f, @), C). Then, there exist weights Crand C, such that C#C, and
C=CruUC, withwy_p(f, Cp) andwu (a, C4). Hence, there exists a weighting C;, such that wg(f(a),).
Givenf: Home (C ® A, B), we define
curry (f) : Home (C,A — B)
c — Aaf(c,a)
Assume there exists a C, such that w(c, C,). We claim that w4 _,g(curry (f), C..). Assume a and C,, such that w, (4, C,). Then,
C.#C, and wg(f(c,a),C, U C,). Choosing, C, = C, U C,, we have wg(f(c,a), Cp).
Givenf: Home (C, A — B) we define
uncurry (f) : Home (C® A, B)
(c,a) = fle)(a)
Assume there exist weights C. and C, such that C.#C, and wcg4((c,a),C, U C,), withw(c,C.) and w4 (a,C,). So, there
exists Cr C C, such thatw4_,5(f(c), Cy). Since C.#C,, it is also the case that C4#C,. Thus, there exists C, C C¢U C, such that

wg(f(c)(a), Cp). It follows that C,, € C. U C,, and wg(f(c)(a), Cp). |

C.1.1 Exception monad
Definition C.10 (T: C — @). LetE = {fail } be the set of exceptions. We define the monad T as follows.
T(A)] = |A]+1
Wray = { (inl(a),C,) | wa(a,C,) } U { (inr(tt),E) }
It is not hard to see that the maps are weight preserving.
na:A - TA paTTA - TA
a — inl(a) inl(inl(a)) — inl(a)
inl(inr(*)) — inr(x)
inr(*) = inr(x)
OTA restricts the weight to only the pure values of A, ie, values that cannot throw any exceptions, hence is isomorphic to
OA, giving the cancellation law.

C.1.2 State monad

Definition C.11 (T : € — C€). We use H = Loc — Val to denote a naive model of a heap, where Loc is a fixed set of global
locations. Two heaps are equal if the functions are extensionally equal. We choose the capabilities to be sets in 9 (Loc), and the
weight of a computation is given exactly by the heap locations it writes to.

[T(A)] = H - |A|xH
Vh,3C" C Cwy(a, T (f(h),C"))
wra)(f,C) & {Vhy, hy, (V1€ C (1) = hy(1)) = 711 (f(hy)) = 711 (f(hy))
Vh, V1 & C,my(f(h)) (1) = h(l)
Ha + A>TA u, : TTA-TA
let "WYY =
a4 = Ah(a,h) fe AL { ¢y = s
in f'(H)
OTA restricts the only writable locations to the empty set, making the set of values pure.
D Supplementary material for Section 5 (Interpretation)
LemmaD.1. IfT D A, then
p(I); M(T); aWk(T? 2 A?) = Wk(T 2 A); p(A) ; M(A)

Proof. We do inductiononI’ D A.
35

Vikraman Choudhury and Neel Krishnaswami

o D-ID
.D-
p(); M), OWk(-F 2 -F)
=(definition)
idy ;idq ; Did,
=(DO preservesid)
idy ;idy ;idq
=(definition)
Wk(-2) p(-) s M(-)
rosA
o D-CONG
Ix:AT DA x: A7
When g = p,
p(L,x: AP), M(T, x: AP) ;0 Wk(T?, x : AP D AP, x: A?)
=(definition)
[p(I) xidga]; [M(T) x 6] mp, o, O[WK(I? 2 AP) xidp 4]
=(monoidal actionof O)
[p(F) xidpa]; [M(I) x 4] [BWK(I? 2 AP) x Qidgal;my, o4
=(exchangelaw)
[p(T); M(T); OWK(I? D AP) xidgy ;64 ; Oidga] ;mZP/DA
=(identity law)
[p(T) : M(T) : DWK(T? 2 AF) x 4] 0%, s
=(induction hypothesis)
[WK(T 2 A);p(A); M(A) x 4] ;mZ",DA
=(identity law)
[Wk(r 2 A) ; P(A) ;M(A) x idI:IA ’ idDA ’ 5A] ?mZp,DA
=(exchangelaw)
(Wk(T' 2 A) xidgal; [p(A) xidga]; [M(B) x 6415 my, 4
=(definition)
WK(T, x: AP DA, x: AP); p(A, x: AP) ; M(A, x : AP)
Wheng = i,

p(T, x: A ; M(T, x: AY) ; OWK((T, x : AP D (A, x: ANP)
=(definition)

p(T, x: A" M(T, x: AY) ; OWK(I'? D AP)
=(definition)

ry; p(T) ; M(T) ; O WK(I'? 2 AP)
=(induction hypothesis)

36

O ———— D
Ix:ATDA

(

(

(

7Ty Wk(I' 2 4) ; p(A) ; M(B)
definition of 71y)

(111 ; WK(T D A), 11y 5id4) ; 71y 5 p(A) ; M(A)
universal property of product)

[WK(T 2 &) xidy] 7 p(A) ; M(A)
definition)

WK(T, x: A" DA, x: A p(A, x = AV M(A, x: A)

oA

-WK

Wheng = p,

(

p(T, x: AP); M(T, x: AP) ;O Wk(T?, x : AP D AP)
definition)

[p(T) xidga]: [M(T) x 4] m, o, O Wk(I? 2 A))
O preserves composition)

[p() xidga] [M(I) x 84]mp, o, Oy BWK(IT? 2 AF)
exchange law)

[p(T) M(T) X idgya 04] 5%, 0 Oy - DWK(IP 2 AP)
identity law)

[p(I); M(I') x 84];m
definition of m™*)

[p(T) , M(T) 4] 71 - OWK(I? 2 A7)
universal property of product)

(rty;p(T); M(T) , 715 ;8 4) ; 71y ; OWK(T? D AP)
definitionof 7ty)

ry; p(T) ; M(T) ; OWkK(I'? D AP)
induction hypothesis)

1, Wk(I' 2 A) ; p(A) ; M(D)
definition)

WkK(T, x: A? D A); p(A) ; M(AD)

;P,DA ;0rq DWk(FP 2 AP)

Wheng = i,

p(T, x: AN, M(T, x: AY) ; OWk((T, x : AT)? D AP)
definition)

711 ; p(T) ; M(T) ; OWkK(T? D AP)
induction hypothesis)

711 ; Wk(T' 2 A) ; p(A) ; M(A)
definition)

WK(T, x : A" D A); p(A) ; M(A)

37

LemmaD.2. Ifx: A9 € AandT D A, then
[x:ATeT]=WKk(T'2A);[x:A1 €Al

Proof. Assume T’ D A. We do induction on x : A7 € Afollowed by inversiononT D A.

o €-1D
x: AT e (T,x: A7)
When g = i,

[x:Al e (T,x:Ai)ﬂ

=(definition)
T
=(identity law)
Ty ;id 4
=(definitionof 7,)
(111 ; WK(T D A), 711y 5id4) ; 7T
=(universal property of products)
[WK(T D A) xid]; m,
=(definition)
Wk, x: A" DA x: AN [x: Al € (A, x: AD]
Wheng = p,
[x:AP € (T, x: AP)]
=(definition)
Tly; €4
=(identity law)
Ty s idga i €a
=(definitionof 1,)
(1t ; WK(T 2 A), 1y ;idgp) 75 5 €4
=(universal property of products)
[WK(T 2 A) xidgal;msi€em
=(definition)
Wk(T, x: AP DA, x:AP);[x: AP € (A, x: AP)]
x:ATeT (x#vy)
E-EX
x:A1e((T,y:B")
Whenr = i,
[x:A% € (T,y:B")]
=(definition)

7T1;[JCZA‘7 Erﬂ

38

Vikraman Choudhury and Neel Krishnaswami

=(induction hypothesis)
1 Wk(F2A) [x: AT € A]
=(definitionof 1,)
(1 ; Wk(T D A), 71y ;idg) sty [x: AT € A
=(universal property of products)
[WK(T D A) xidg];m;[x: AT € Al
=(definition)
Wk, y:B" 2A,y:B");[x:ATe (A y:B")]

Whenr = p,

[x:AT € (T, y:B")]
=(definition)
i [x: A1 eT]
=(induction hypothesis)
T WK(TDA); [x: A1 € A
=(definitionof 1,)
(1t ; WK(T' 2 A) , 715 5idgB) sty 5 [x: A1 € A
=(universal property of products)
[Wk(T 2 A) xidB] 7y [x: AT € A]
=(definition)
Wk(T,y:B" DA, y:B");[x: AT € (A, y:B")]

Lemma 5.1 Semantic weakening.
T D AandA ‘- e: A, then
[THe:Al=Wk(T2A);[AFe:A].

Proof. We proceed by inductionon A ¢ : A.
x:A1eT

O —_—
I'Fx:A

VAR

[THx:A]
=(definition)

[x:Af eT]
=(lemmaD.2)

WK(T DA);[+: A €Al
=(definition)

Wk(T 2 A);[AFx:A]

39

Vikraman Choudhury and Neel Krishnaswami

o —F F () unit unitl
[T+ () : unit]
=(definition)
'rim
=(universal property of 1)
Wk(I' 2 A) ; 1a;m
=(definition)
Wk(T' 2 A); [AF () : unit]

o
TF (e,0,): AxB

xI

[T+ (eq,e):AxB]
=(definition)
([THe:A],[THey:B]);Basp
=(induction hypothesis)
(WKk(T2A);[TEe Al ,Wk(T2A);[T-ey:B]);Bap
=(universal property of products)
Wk(I'2A); ([Ate A, [Atey:B]);Bap
=(definition)
WK(IT' 2 A);[A+ (e;,ep): AxB]

I'e:AxB

6 XF,
I'-fste: A

[T fste: AxB]
=(definition)
[THe:AxB];Tm
=(induction hypothesis)
Wk(IT'DA);[Ake:AxB];Tm
=(definition)
Wk(T' D A); [AF fste: A

'e:AxB

6 ————— xE,
I'-snde: B

[T snde:AxB]J
=(definition)
[THe:AxB];Tm,
40

=(induction hypothesis)
WK(T'DA);[Ake:AxB];Tm,
=(definition)
Wk(I' D A);[A+ snde: B]

I[Lx:A'+e:B

o =1
I'FAx:A.e:A=B

[THAx.e: A= B
=(definition)

curry ([T, x: A" = e:B]) : aTs
=(induction hypothesis)

curry (Wk(T, x : A" DA, x: AY);[A, x: AP+ e:B]) i fauTs
=(definition)

curry ([Wk(I' 2 A) xids]; [A, x: A"+ e:B]) i nasTs
=(universal property of exponential)

Wk(I' 2 A) s curry ([A, x: A" = e:Bl) : a~Ts
=(definition)

WK(T' D A);[A+ Ax.e: A= B]

I'+e;:A=>B e : A
o
I'eje,:B

=E

[T+ eje,:Bj

=(definition)
([THe :A=B],[TFe: Al
iBastBa Tevars M

=(induction hypothesis)
(WK(TD2A);[AFe:A=B],Wk(T 2A);[AF e, :Al)
iBastBa Tevarpitip

=(universal property of products)
WK(TDA);([Are :A=B],[AFe:A])
iBastBa Tevars Mg

=(definition)
Wk(I' D A);[AF eje,: B]

I'-eq:cap ' ey:str
o PrINT

I' e -print(ey) : unit

41

Vikraman Choudhury and Neel Krishnaswami

[T & eq-print(ey) : unit]

=(definition)

([TEey:cap], [T ep:str]); Bese: Tp:py

=(induction hypothesis)

(WK(T' 2 A);[AFeg:cap], Wk(T' D A);[AF ey :str]) Bese i Tp ;g

=(universal property of products)

WK(T' 2 A); ([AFey:cap],[AFey:str]); Bes:: Tp;py
=(definition)

Wk(T' D A); [AF eq-print(ey) : unit]

THPe: A
o ——[1
I' - box[e]:[IA

[T+ box[e]:[[1A]

=(definition)

[r "PE:A]]pFWDA

=(definition)

p(); M), B[I? = e: Al dpa i 1ga

=(induction hypothesis)

p(I); M(T) ; D(WK(T? 2 AP) [AF F e A]) : ba Hoa
=([preserves composition)

p(T); M), oWk(I? 2 A?);O[AP Fe:All; ¢pa;:lga
=(lemmaD.1)

Wk(I' 2 A);p(A); M(A) ;D[AP e Al dpaitiga

=(definition)

Wk(I 2A); [AFPe:Al, 11na

=(definition)
Wk(I' 2 A); [A+ box[e]:[IA]

I'e A Ix:A? e,:B
O

[E
I' - letbox[x]|=eine, : B

[T letbox[x]|=e;ine, : B]

=(definition)

(idp, [T F ey :[JA]) ; trga TIT, x: AP e, : B] s pp
=(induction hypothesis)

(idp , Wk(I' 2 A); [A e :[IA]) ; Trga

s T(WK(L, x: AP 2 A, x: AP) [A, x: AP - e, : B]) ;g
=(definition)

42

(idp , Wk(I' 2 A); [AF e :A]) ;T ga
ST(IWK(T 2 8) xidga] [A, x: AP - ey BI) g
T preserves composition)
(idp , Wk(I' 2 A); [AF ey :IA]) ; Trga
STIWK(T 2 8) x idga]; T[A, x: AP - ¢y : B] ; iy
tensorial strength of T)
(idp , Wk(I' 2 A); [AF e :IA]) ; [WK(T 2 A) xidrgal: Tapa
;TIA, x: AP e, : B ; up
composition of products)
(idp ; Wk(T' 2 A) , Wk(T' 2 A); [AF e :LIA] idrga) : Tapga
;TIA, x: AP e, : B]; up
identity law)
(WK(T 2 A) ;idy , Wk(T 2 A); [AFeq :TIA]) ; Taga
;TIA, x: AP ey : B]; up
universal property of products)
Wk(T 2 A); (idy, [Areg :CA]) ; Taga: T[A, x: AP ey : B pip
definition)
WK(T' 2 A); [A+ letbox[x]=eqine, : B]

LemmaD.3. I[fT DAand AFPe: A,then

Proof.

[THEPe:Al,=Wk(T 2A);[AFPe:A],.

[THPe:A],
definition)

p(M) ;M) D[I? Fe: Al ¢pa
semantic weakening lemma 5.1)

p(T): M(T) : O(WK(T? DAP) . [AP e: A]): ¢4
O preserves composition)

p(T): M(T); OWK(T? D AP); Q[AP Fe: Al p4
lemmaD.1)

Wk(T' 2 A); p(A); M(A) ; [AP e Al pa
definition)

WK(T 2A);[AFPe:A],

LemmaD.4. IfT' D AandA‘ v: A, then

[To:A], =Wk(T2A); [AFv:A],
43

Proof. Assuming I' D A, we do inductionon A v : A.
x:ATeT
O —_—
I'kx:A

VAR

[ITHv:A],
=(definition)
[x:A7 €T]
=(lemmaD.2)
WK(T'2A); [x: A1 € A]
=(definition)
Wk(T'DA);[AFx:A],

o m unitl
IT = () : unit],
=(definition)
'r
=(universal property of 1)
Wk(T D A) ;!5
=(definition)
Wk(T' 2 A); [T+ () : unit],

e :A I'e,:B
o
' (eg,e5):AxB

xI

[T+ (vy,v): AxB],
=(definition)

([TFv:A],, [T Fov,:B],)

=(induction hypothesis)

(WK(T2A);[AF v A]l,, Wk(T 2A);[AF v,:B],)
=(universal property of products)

Wk(T' D A);([AF v :A],, [AFvy:B],)
=(definition)

WK(T D A);[A+ (vq,0v,): AxB],

v/

[Lx:A'+e:B

o =1
I'FAx:A.e:A=B

[T HAx.e: A= B],
=(definition)
44

Vikraman Choudhury and Neel Krishnaswami

curry ([T, x: A* e :BJ)
=(semantic weakening lemma5.1)
curry(Wk(F,x:Ai QA,x:Ai);[[A,x;A" ~e:BJ)
=(definition)
curry ([Wk(I' 2 A) xidyJ; [A, x: A" - e: B])
=(universal property of exponential)
Wk(T D A);curry ([A, x: A" +e:B])
=(definition)
Wk(T' D A);[A+ Ax.e: A= B],

IT'HPe: A

6 ——[1
I' - box[e]: A

[T + box[e] : DA],
=(definition)
[THPe:A],
=(lemmaD3)
Wk(I'2A);[AFFe:A],
=(definition)
Wk(T D A); [AF box[e]: [1A],

LemmaD.5. Ifl D AandAt 6:Y, then
[THO:¥Y]=Wk(T'D2A);[AF0:Y]

Proof. Assume I' D A. We proceed by inductionon A - 6: Y.

< W SUB-ID
[THEO:-]
=(definition)
I
=(universal property of 1)
Wk(T' D A) ;!5
=(definition)
Wk(T DA);[AF (-]

THO:A IF'HPe: A
Lo
(B, ef[x): A, x: AP

SUB-PURE

45

Vikraman Choudhury and Neel Krishnaswami

[T (B, ef/xy: ¥, x:AP]
=(definition)

([TE6:9], [THPe:A],)
=(induction hypothesis)

(WK(T 2A); [AF60: 9], [THe:A],)
=(lemmaD3)

(WK(IF'2A);[AE6: 9], Wk(I' 24);[AFPe:A],)
=(universal property of products)

Wk(I'24);([A=0:9], [A-Pe:A],)
=(definition)

Wk(IT' D A);[AF(6,ef[x): ¥, x: AP]

T'6:A 'v:A
(o " -
I'=<6,0'x): A x: At

SUB-IMPURE

[T+ (8, v'fx): ¥, x: A']
=(definition)
([TH6:¥],[TFov:A],)
=(induction hypothesis)
(WK(T2A);[AF6:Y¥],[TFv:A],)
=(lemmaD4)
(WK(TD2A);[AFO:¥Y],WKk(T2A);[AFv:A],)
=(universal property of products)
Wk(TD2A) ([AF6:Y],[AFv:A],)
=(definition)
Wk(T 2 A);[AF (8,0 /xy: ¥, x:A"]

LemmaD.6. IfT?F e: A?, then
p(T); M(T) ;O T? I—Pe:Aﬂp =T I—"e:Aﬂp;éA

Proof.

p(I); M(T);O[TP FPe:A],
=(definition)

p(I); M(T); O(p(I?) ; M(I?); 0[TP Fe: Al da)
=(O preserves composition)

p(T); M) p?);aMI?);00[T? Fe:A];Opy
=(definition)

46

p(T); M(T); Qidry ; Spp 0p, s O[TP b= e: A ¢p 504
=(simplification)

p(I); M) O[I? Fe: A ¢pa:da
=(definition)

[THPe:A], ;64

LemmaD.7. IfT' - 0:A, then
p(T), M(T), O[T - 67 : AP] = [T+ 0: A] p(A) ; M(4)

Proof. We do inductiononT' - 6: A.

¢ ————— SUB-ID
TH():-
p(0); M(T); B[I? = ()= -]
=(definition)
p(T); M(T) ; Ol
=(definition)
p(T): M(T) g
=(universal property of 1)
't
=(identity law)
I idy ;idy
=(definition)
[TEO[p(); M)

T'6:A IF'fe: A
o
FH(0,eP[x): A, x: AP

SUB-PURE

p(T); M(T); O[T? - (67, eP [x) : AP, x : AP]
=(definition)
p(I); M(T); O([IP = 67 : AP] [TP P e: A],)
=(monoidal actionof O)
p(I); M(T) (D[P = 67 :AP], O[TP HPe:A],) mZP,DA
=(universal property of products)
(p(M); M) O[T? = 67 : AP], p(T); M(T) ; D[T?P FPe: A],) ;my, o4
=(induction hypothesis)
([TE6:A];p(A); M), p(T); M(T); O[TP HPe:A],) ;mZP,DA
=(lemmaD.6)

(ITH6:A];p(A); M(D), [T P e:Al, ;84 my, (4

47

Vikraman Choudhury and Neel Krishnaswami

=(identity law)

([T 8:A];p(A); M(A), [T P e:Aﬂp;idDA;(SA);mZ,,lDA
=(universal property of products)

([TEO:A], [THEPe:A],); [p(A); M(A) xidns ;4] my, o4
=(exchangelaw)

(IT=0:A], [THEPe: A, [p(A) xidgal; [M(A) x84] 5 my, 4
=(definition)

ITH <6, eP[x): A x: AP ; p(A, x: AP); M(A, x: A?)

THO:A I'v:A
< - -
IT'=<6,0'x): A x: A?

SUB-IMPURE

p(T); M(T);0[T? (0, v [x)P : (A, x: AD)P]
=(definition)
p(T); M(T); O[T? 67 : AP]
=(induction hypothesis)
ITH6:A]p(A): M(A)
=(definitionof 7r;)
([THO:A],[THv:A],;m;p(A); M(A)
=(definition)
[T (O, 0 x): A x: Al p(A, x: AY); M(A, x: AY)

Lemma D.8. Forany contextT,
WK(T 2T?) = p(T)

Proof. We do inductiononT.
ol =.

Wk(- D .P)
=(definition)
Wk(-2 ")
=(definition)
idq
=(definition)

p(+)

oT =A, x: AT
Wheng = p,

48

Wk(A, x: AP D AP, x: A?)
=(definition)
[Wk(A D AP) xid,]
=(induction hypothesis)
[p(A) x idpy]
=(definition)
p(B, x: AP)

Wheng = i,

Wk(A, x: AT D AP)
=(definition)
11 ; Wk(A D AP)
=(induction hypothesis)
7y p(A)
=(definition)
p(B, x: AY)

Lemma 5.2 Pure interpretation.
IfT +Pe: A, then
[THe:A]=]T l—pe:A]]p;sA;UA.

Proof. Assume I' -7 ¢ : A. By inversion, we have I'” - e : A.

[THe:A]
=(semantic weakening lemma5.1)
Wk(T DTI?);[TPe:A]
=(lemmaD.8)
p(I); TP e:A]
=(definition)
p(T): M(T) :O[T” - e: A] ery
=(definition)
p(M); M) O[T Fe: Al paieaina
=(definition)
[THPe: A, eq:1a

Lemma 5.3 Value interpretation.
IfT +v: A, then
[TEov:A]=[TFv:A],; 54

Proof. We proceed by inductiononI F v : A.
49

Vikraman Choudhury and Neel Krishnaswami

& —————— unitl
I'k () :unit
[T+ () : unit]
=(definition)
rim
=(definition)
ITH () unit],

'-v,:A I'-v,:B
o
'+ (vy,vy):AxB

xI

[T+ (vy,v5): AXxB]
=(definition)
([T=o:A],[TEvy:B);Bap
=(induction hypothesis)
([TEv:Af,ina, [TEv2: B, np): Bap
=(tensorial strengthof T)
([T=o:A],, [T Fv:B],;1p):0ap
=(tensorial strength of T)
([T=o:A],, [T Fv:B[,) faxp
=(definition)
[TF (v1,02) : AX B, naxp

x:A1eTl
<>—
T'Hx:A

VAR

[TEx:A]
=(definition)
[x:A1€T]:1a
=(definition)
[TEx:A], ;14

Ix:A'+e:B
<o =
IT'HFAx:A.e:A=B

I

[T =Ax.e: A= B]
=(definition)

curry ([T, x: A" +e:B]) i a_18
=(definition)

50

‘ [[FI—/\x.e:A:B]]U;UA_,TB

I'HPe: A

o — X [1
I' - box[e]:[[1A

[T + box[e]: OA]

=(definition)
[THEPe:Al, 104

=(definition)

[T+ box[e]: [IA], ; 7ga

LemmaD.9. IfT'+ 0:Aandx: A7 € A, then
[TEOx]:A]=[TF0:A];[x:AT €Al :na

Proof. We proceed by induction on x : A7 € A.

<o €-I1D
x: AT e ([T, x: A7)
Wheng = p,

‘ [T F (¢, e fx)[x] : A] ‘
=(definition)
\ [THe:A] \

=(pure interpretation lemma 5.2)

[[FFPE:AHP;SA?WA

=(definitionof 7,)

([TE¢:A], [THEPe:A],) myiea:14

=(definition)
[THA(p,el/x): A x:AP];[x: AP € (A, x: AP)] ;14

Wheng = i,

\ [T+ (@, 0'/x)[x] : A] \
=(definition)

\ [TFo:A] \
=(value interpretation lemma 5.3)

‘[[r'—viAﬂv;UA ‘
=(definitionof 7t,)

TH @A) [T o:AL) 1 |
=(definition)

51

[T (¢, o' fx): A, x: A] [x: AT € (A, x: AD] 14

x:A1el (x#vy)
<

x:A1e ([, y:B")
Whenr = p

[T F (¢, ePly)x] - A]
=(definition)
T+ glx]: A]
=(induction hypothesis)
[TH¢:A]:[x:A7 €Alina
=(definitionof 7t;)
(IT=¢:A],[THPe:B]);my;[x:A7 € Al :1a
=(definition)
[T, ely): B, y:BP |y [x: AT € Alina
=(definition)
[T =LA ePly):A,y:BP];[x: AT € (A y:BP)];na

Whenr = i,

[T (g, o' fy)[x] - Al
=(definition)
[T ¢lx]:A]
=(induction hypothesis)
[TH¢:A]:[x:A7 €Alina
=(definitionof 7r;)
(ITE@¢:A],[TFv:B]);m;[x:AT €Alina
=(definition)
[THA(p, o' fyy:A,y:B]y [x: AT € Al i1a
=(definition)
[T+ (¢, 0'fy)y:A,y:B];[x:AT € (A, y:B)]:1a

Theorem 5.4 Semantic substitution.

ITHO:AandA - e: A, then

[TH6(e):A]=[TF6:A];[Are:A]

Proof. AssumeI' - 0 : A. We proceed by inductionon A F ¢ : A.
x:ATeT

o —
I'Ex:A

VAR

52

Vikraman Choudhury and Neel Krishnaswami

\ ITH 6(x): A \
=(definition)

\ [T+ 6[x]: A] \
=(lemmaD.9)

([TH6:A]; [x: 47 €A |
=(definition)

‘[[FI—Q:A]];[[AI—x:A]} \

unitl

S —
I't () :unit

‘ [T = 6(()) : unit] ‘
=(definition)

‘ [T+ () :unit] ‘
=(definition)

‘ v ‘
=(universal property of1)

[T 0:A] |
=(definition)

[TF0:8]:[AF () unit] |

e :A I'e,:B
o
' (eg,e):AxB

xI

[T+ 6((e;,e5)):AxB]

=(definition)

[TH (6(e1),0(ep)) : AxB]

=(definition)

(IT+=6(eq) : A], [T = 6(ez) : B[) : Bag

=(induction hypothesis)

(ITH6:A];[AFe :A],[TH6:A];[AFey:B]);:Bag

=(universal property of products)

[TH6:A];([Ate :A],[Arey:B]);Bag

=(definition)

[TEO:A];[AF (e1,e5): AxB]

I'e:AxB

6 xE,
I'fste: A

IT - O(fste) : A]

53

Vikraman Choudhury and Neel Krishnaswami

=(definition)
\ [T+ fst6(e) : A] \
=(definition)
[T+ 6(e): AxB]; Ty \
=(induction hypothesis)
[TH6:A];[AFe:AxB];Tm |
=(definition)
‘[[FI—G:A]],-[[AI—fste:A]] \

THe:AxB

6 ————— xE,
I'~snde: B

[T+ 8(snde) : B]
=(definition)
[T+ snd6(e) : B]
=(definition)
[T+#6(e):AxB];Tm,
=(induction hypothesis)
‘[[FI—Q:A]];[[AI—e:AxB]];Tnz \
=(definition)
‘[[I"I—G:A]];[[Al—snde:B}] \

IT'HPe: A

O — —[11
I' - box[e]: A

[T+ O(box[e]) : OA]
=(definition)

[T - box[67(e)|: DA]

=(definition)

[TEP6P(e): A, naa

=(definition)

p(I); M(T); B[T? = 67(e) : Al dpa: 11ga

=(induction hypothesis)

p(I); M@); a([TP = 6P : AP [AP Fe:A]); ¢pa:ga
=(O preserves composition)

p(I); M(T); 0[T? = 07 : AP, B[AP e Al pa10a
=(lemmaD.7)

[TH0:A];p(A); M(A);D[A = e: Al ¢paitga

=(definition)

54

‘[[FI—Q:A]];[[AI—PE:A]]p;qDA ‘
=(definition)
‘[[I’I—():A]],-[[Al—box:DAﬂ \

I'+e A Ix:AP e,:B
o
I' - letbox[x]|=e;ine, : B

[JE

[T = 6(let box[x] = eqine,) : B

=(definition)

[T F let box =0(e;)in(0, y?[x)(ep) : B]

=(definition)

(idp , [T+ 0(e) : A} trpa T[T, y - AP =46, yP[x)(e;) : B] s pp

=(induction hypothesis)

(idp, [THO:A]; [AF et A]); trga
S T([T, y: AP - (0, yP[x) : A, x: AP]; [A, x: AP e, : B]) ; g

=(T preserves composition)

<ld1—~,[[r|— 9!AH;[A|—€13AH>}T]"'DA
T[T, y: AP =0, yP[x) : A, x: AP], T[A, x: AP e, : B] ; up

=(definition)

dp, [TF 0:A];[AF ey :Al); Troa
T[T,y AP = 6:A], [T, y: AP HPy: A],)
;T[A, x: AP ey : B] ; up

=(lemmaD.5)

<ldr,[[r|_ QZAH?[AFQ:AH)?TF,DA
(T(WK(T,y: AP DT) [T+ 0:A], [T, y: AP 1P y: A],)
;T[A, x: AP ey : B] ; up

=(definition)

<1dr,[[r|_ Q:AH;[Akel:AH>;Tr,DA
;T ; [T 0:A], mp) ; T[A, x: AP e, : B pp

=(universal property of products)

(idp , [T 60:A];[Ae1:Al); Trpa
,T[[[FI—QA]]deDA],T[A,xAP FeZ:BH;]’lB

=(tensorial strengthof T)

<[[r|_9Aﬂ,ldA,[[r|_9A]],[[A}_€1A]]),TAIDA
;TIA, x: AP e, : B]; up

=(universal property of products)

[THO:A];(dy, [Arey:A]); Taga T[A, x: AP e, : B]; up

55

Vikraman Choudhury and Neel Krishnaswami

=(definition)
[TH6:A];[AtF letbox[x]=ejine,: B]

I[Lx:A'+e:B
< =
I'FAx:A.e:A=B

I

[T+ 6(Ax.e): A= BJ

=(definition)

[T+ Ay. (6, y'/x)(e): A= B]

=(definition)

curry ([T, y: A" =<6, y'/x)(e) : B]) 1am1B

=(induction hypothesis)

curry ([T, y: A* =40,y fx) : A, x : A']; [A, x : Al + e : B])

i MA-TB

=(definition)

curry ([T, y: A* = 0:A], [T,y: A" y:A],); [A, x: A' e: B])
‘NA-TB

=(lemmaD.5)

curry ((Wk(T, y: A" 2T); [T+ 60:A], 715) ; [A, x: A' - e: B])
i MA-TB

=(definition)

curry ((7tq ; [T+ 6: Al 7m0) 5 [A, x: A" = e: B]) i asts

=(universal property of products)

curry ([[T'F 0:A] xidy]; [A, x: A* = e: B])iasts

=(universal property of exponential)

[T 0:A];curry ([A, x: A" = e:Bl) : a-s

=(definition)

[THO:A];[AF Ax.e: A= B]

rkelﬁAﬁB r|_€2:A
<&
r|_€1€21B

=E

[T+ 6(e;ep): BJ

=(definition)

[T+ 6(eq) 6(e) : B]

=(definition)

([TH6(e1): A= B[, [T+ 0(ex) : A} Barpa:Tevars: i
=(induction hypothesis)

56

([THO:A];[Ae:A=>B],[TEO:A];[AFe:A])
iBastBa Tevarpitip
=(universal property of products)
[THO:A];([A-e:A=B|,[AFex:Al);Batpa Tevarp: g
=(definition)
[TEO:A];[AFeje,: B]

[T & 6(s) :str]
=(definition)
[T s:str]
=(definition)
[TEQ:-];[Fs:str]
=(universal property of 1)
[THEO:A];[AFE -] [-Fs:str]
=(definition)
[THE@:A];[AF s:str]

I'-e;:cap I' e, :str
o PRINT

I+ e -print(ey) : unit

[T + 6(e; - print(ey)) : unit]
=(definition)
[T + 6(eqy)-print(6(ey)) : unit]
=(definition)
(LT 0ey) s cap], [T b= 0(eg) :strl) - Bz - Tp iy
=(induction hypothesis)
([T 6:A];[AFeq:cap], [T+ G:Aﬂ;[[Al—ezzstrﬂ%ﬁc,D;Tp;yl
=(universal property of products)
[THO:A];([AFeg:cap|, [AFey:str]); Bese:Tp: g
=(definition)
[T H6:A];[AF e-print(ey) : unit]

E Supplementary material for Section 6 (Equational Theory)
Theorem 6.1Soundnessof ~. IfI' e ~ey: A then[I'Fe A =[T'Fey: Al

Proof. We proceed by inductiononI' F e; ~ ¢, : A.
57

Vikraman Choudhury and Neel Krishnaswami

IT'He:A

o —— — REFL
IT'Fexe:A

[THe:A]
=(reflexivity)
[THe:A]

O—————— SYM
Hr [ez Aﬂ

=(induction hypothesis)
Hr [el Aﬂ

F'kej~e:A I'Fey;~e3: A
o TRANS

[THe :AJ

=(induction hypothesis)
[TEey:Af

=(induction hypothesis)
[THe3:A]

I'He; ~e: AxB

o fst-conNG
F = fstel ~ fStez :A

[Tk fsteg : A]
=(definition)

[THe :AxB];Tm
=(induction hypothesis)

[THe,:AxB];Tm
=(definition)

[Tk fstey : A]

I'-e; ~e: AxB

o snd-CONG
I'snde; = snde, : B

[Tk sndeq : B]
=(definition)

[THe :AxB];Tm,
=(induction hypothesis)

58

[T+e,: AxB|;Tm,
=(definition)
[T+ snde, : B

ey ~e:A I'e3~ey :B
Tk (e;,e3)~ (ey,e4): AXB

PAIR-CONG

[T+ (eq,e3):AxB]J
=(definition)

([THe A}, [TFez:B]);Bag
=(induction hypothesis)

([Te:A],[THey:Bl);Bap
=(definition)

[T (ey,e4) : AxB]

[,x:A' e ~e,:B
o
I'FAx:A.ey=Ax:A.ep: A= B

A-CONG

[T = Ax.eq: A= B]
=(definition)

curry ([T, x: A" ey : B]) i aTB
=(induction hypothesis)

curry ([T, x: A" e, : B]) i amTs
=(definition)

[T Ax.ep: A= B]

F|_€1%€2:A=>B F|_€3%E4:A
o

I'Fejeg~eye B ArpTeons

[T+ eje;:B]
=(definition)

([T+-e:A=B],[Te:Al);Ba.rpa:Tevarp:tp
=(induction hypothesis)

([T=e:A=B], [Te :Al);Barpa:Tevarp:ip
=(definition)

[Tk eyeq:B]

o
l"l—boxz box:DA

box-coNG

59

[T+ box :OA]
=(definition)

[THPe A, nga
=(definition)

p(I); M) D[I? ey : Al dpa i tna
=(induction hypothesis)

p(I); M) D[I? ey : Al Ppa i tna
=(definition)

[THPey: A, nga
=(definition)

[[F ~ box :DAH

I'tey~e:[A I[,x:A? Fe3~ey :B
o
'+ (letbox[x] = e;ine3) ~ (letbox[x] = ey iney) : B

[T + letbox[x]=e;ine; : B
=(definition)

(idp , [T ey :A]) ; tp g T[T, x: AP = e5: B] ; g
=(induction hypothesis)

(idp, [T & ey :[OA]) s tp ga T[T, x: AP ey : B] s pip
=(definition)

[Tt letbox[x]|=e,ine, : B

I'kej=~ep:cap I'te3=~ey:str

° I' = eq -print(e3) = e, - print(ey) : unit print-con

[T & eq-print(es) : unit]
=(definition)

([T Feq:cap|, [T eg:str]);Bess:Tp:
=(induction hypothesis)

([THey:cap|, [T Feg:str]);Bess«: Tp;pq
=(definition)

[T & e,-print(ey) : unit]

I-‘|_011A r|_vle
<&
Fl—fst(vl,vz)zvle

X1

[T+ fst(vy,0,): A

=(definition)
60

let box-coNG

Vikraman Choudhury and Neel Krishnaswami

[[F [('01 ,'02) IAXBH ;T7T1
=(value interpretation lemma 5.3)
[T (v1,05) : AxBl, i faxp: Ty
=(monadlaws)
Hrl— (vllvz) :AXBHW;NI;UA
=(definition)
<[[F o 01 IAHZ, , [[1-‘ = Uyt Bﬂz,> ;70 ;1’]A
=(definitionof 7r;)
Hr H U1 :AHU;UA
=(value interpretation lemma 5.3)

[THov:A]

F'-v,:A I'-v,:B

o
I'tsnd(vq,vp) ~vy: B

X2

[T & snd (vq,0,) : B]
=(definition)
Hr ~ (Ul ,Uz) :AXBH ;T7T2
=(value interpretation lemma 5.3)
[T+ (v1,05) : Ax B[, naxp: To
=(monadlaws)
[T+ (v1,05) : Ax B[, ;751
=(definition)
([THov:A],, [T Foy:B],);mnp
=(definitionof 1,)
Hr = (% Bﬂv?qB
=(value interpretation lemma 5.3)

[T+ ov,:B]J

'v:AxB
< X
I'-ov~(fstv,sndv): AxB

U

[T+ (fstv,sndv) : Ax B]
=(definition)
([T +fsto: A, [I'=sndv:B[);Bap
=(definition)
([TFv:AxB];Tmy,[TFv:AxB];Tm,);Bap
=(value interpretation lemma 5.3)
(ITEv:AxB],;naxg: Ty, [T Ev:AXB], ;i 7axp: T7) ; Bas

61

Vikraman Choudhury and Neel Krishnaswami

=(monadlaws)
([TEv:AxB],;m:n4,[TFEv:AxB],; 1) Bap

=(universal property of products)
[TH©v:AxB]|,;(my ;14,7 1B); Bas
=(universal property of products)
[T=o:AxB,;[a x1pl:Pas
=(diagram)

‘ [THv:AxB],;7axB

=(value interpretation lemma 5.3)
\ [THo:AxB]

[Lx:Alre:B TFro:A
<o
't (Ax:A.e)v~[v/x]e: B

=p

[T+ (Ax.e)v:B]

=(definition)
([[Tl—Ax.e:A:B]},[[l"l—v:Aﬂ);,BA_,TB,A;TevA,TB;yB
=(definition)

(curry ([T, x: A" = e:Bl) : amtp, [T Fv: A])

;BastBA Teva e g

=(value interpretation lemma 5.3)
(curry ([T, x: A" +e:B]) iasrs [T E v A], ina)

;BastBA Tevarp:ip

=(universal property of products)
(curry ([T, x: A +e:B]), [T Fov:A],)

Mmasre *1al i Bast A Tevarp:ip

=(diagram)
(curry ([T, x: A +e:B]), [T Fv:A],)

S M(A-TB)xA T €va 1B JiB

=(monadlaws)

(curry ([T, x: A" +e:B]), [T =v:A],) evap

=(universal property of exponential)

(dp, [TFv:A],); [T, x: A’ e:B]

=(definition)
([T=@:T],[TFov:Al); [T, x: A" +e:B]
=(definition)

[T+ (), vifx)y:T,x: A]; [T, x: A' - e: B]

=(semantic substitution theorem 5.4)

62

\ [T = (), o' [x)(e) : B
=(definition)
\ IT - [v/x]e : B]

I'-v:A=B
o
I'ro~Ax:A.vx:A=>B

= 1-IMPURE

[THAx.vx: A= B]

=(definition)

curry ([T, x: A" - ox:B]) ;a8

=(definition)

let h = Ba,ra Tevarp:ip
in curry ((IT, x: A' —v:A=B], T, x: At = x:Al);h): asrs

=(semantic weakening lemma5.1)

f Wk(T, x: A' D T)
let g = [x:A'eTl,x:Al]
h = Ba.tpa:Tevarpiip
in curry ((f; [T=v:A=B[,g:n4):h): 1a_7B

=(definition)

let 'h = Ba.rpa Tevarg:tp
in curry ((mty; [T=v:A=B]|,m;04):h); 1a TR

=(value interpretation lemma 5.3)

let h = ,BA_,TB,A?TeVA,TB;I’lB
in curry ((rty ;[T =0:A= B[, ;5a15, T Na) h) i aTB

=(strength diagram and monad laws)

curry ((7ty ; [T =v: A= B[, m5) ;eva rg) i a-TB

=(universal property of products)

curry ([[T=v:A =B, xids];evarg) i NasTB

=(universal property of exponential)

([THo:A= Bl s

=(value interpretation lemma 5.3)

[T+o:A=B]

THPe: A= B
(o
I'ex~Ax:A.ex:A=B

= 1J-PURE

\ [T+ Ax.ex:A = B]

=(definition)

curry ([T, x: A" —ex:B]):7asTB

63

Vikraman Choudhury and Neel Krishnaswami

=(definition)

let h = Barpa Tevarp:ip
in curry(([I,x: A" e:A= B[, [[,x: A" =x: A h) a7

=(semantic weakening lemma 5.1)
f Wk(T, x: A" DT)
let ¢ = [x:A'eTl,x:A']
h = Ba.rpa Tevarp:tp
in curry ((f; [THe:A=B],g:14) 1) 1a.TB
=(definition)

let 'h = Ba.rpa Tevarp:tip
in curry ((ry; [T =e: A= B, ;14 :h): as7s

=(pure interpretation lemma 5.2)

let h = Ba.rpa Tevars:ip
in curry (11 ; [T =P e: A= B[, ea g amts T2 1a) i 1) i asTs

=(diagram and monad laws)

CUrry((Tfl,'[[r |—p€:A = BHP;EA_)TB,7T2>;€VA’TB);17A_,TB

=(universal property of products)

curry ([[TFPe: A= B, earp xidal;evarp): a-TB

=(universal property of exponential)

[T |—P€:A=>Bﬂp2€A—>TB;17A—>TB

=(pure interpretation lemma 5.2)

([Tre:A=B]

IPhe:A Ix:A? ey:B
o
I' = let box[x] = box|[e |ine; ~ [e1/x]e, : B

g

[T = letbox[x] = box[e; |ine; : B]

=(definition)

(idy , [T+ box[ey|: [IA]) ; 7p n o s T[T, x: AP ey : B ; pip
=(definition)

(idp, [T HP e Al 115a) Trpa: T[T, x: AP ey : B] ;g

=(strength commutes with unit)

(idp , [T FPe Al i irepa: TIT, x - AP ey : B] s g

=(monadlaws)

(idr,[[l—'l—Pel:A]]p>;[[r,x:AP |—€2:BH;T7TB,’]/IB

=(monadlaws)
<idr,[[r|_pel :A]];,);IIF,XZAP = eZ:Bﬂ
=(definition)

64

([T :T], [T P e :A],); [T, x: AP e, : B]

=(definition)

[T+ (), e2/x):T,x: AP [T, x: AP b ¢, : B

=(semantic substitution theorem 5.4)

[T+ (1), e;7/x)(ey) : B]

=(definition)

T+ [e/x]e,:B

T'HPe:[1A T'C(e):B I' = letbox[x] = einC{(box[x]) : B

<&

I'+ Ce) ~ letbox[x]=einC(box[x]) : B

We first make the following observation.

Observation.

[T = letbox[x]| = ein C{(box[x]) : B]

=(definition)

f [THe:[A]
g = [I,x:A? C((box» :
in <ldr ,_f> ; TF,DA ; Tg;‘uB

let

B]

=(pure interpretation lemma 5.2)

f o= [[rkpe:DA]]p;EDA;”DA

let g = [T, x:A? + C{box[x]) : B]
in (idr,f); Trga T8 ip
=(simplification)
W o= [THP DAl eo
g = [T, x:A? I C{box[x]) : B]
in (idy ,f:Mga) Troa: TS ve
=(strength commutes with unit)
et f = [THPe:00A], eqa
g = [T, x:A? + C{box[x]) : B]
in (idr,f); frepa: TS MB
=(monadlaws)
et f = [TFPe:00A], eqna
g = [T, x:AP I C{box[x]) : B]
in (idy,f) ;g Thg ; pp
=(monadlaws)
let f = [TFPe:00A], eqa
g = [T, x:A? \ C{box[x]) : B]
in (idr,f) ;g

65

[ly-PURE

Fixing f, we proceed by cases on C.

oC =[]

[T F letbox[x] = einbox[x]: [1A]
=(observation)
(idp , f); [T, x: AP + box[x]: [IA]
=(definition)
(idp , fy; [T, x: AP HP x: A, ga
=(definition)

‘ {idy , f): 025 1lna ‘
=(applying 7,)

‘f;UDA ‘
=(definition)
\ [T e:DA] \
oC=¢e; C

[T + letbox[x] = eine; C,(box[x]) : B]

=(observation)

(idp , f; [T, x : AP - e; C,(box[x]) : B]

=(definition)

hy = [[,x:AP e :C= B]
hy, = [T, x:AP I C (box[x]):C]
in (dy,f); (hy hy) Beore,ciTeve s ip

let

=(semantic weakening lemma5.1)

hq [Te :C= B]j
hy = [T, x:AP I C(box[x]):C]
in (idp,f); (7t hy ho) i Beore,ciTeve s i

let

=(simplification)

hy = [ITke:C=B]

let
€ hy, = [I,x:CP F C(box[x]):C]

in ((dy,f);my hy, Gdp, f) i hy) s Beors,ci Tevers i e

=(simplification)

hq [THe :C=B]j
hy = [I,x:AP I C(box[x]):C]
in (hy,dy,f);hy); Beore,ciTevers: ia

let

=(observation)

66

Vikraman Choudhury and Neel Krishnaswami

let

in

hq [THe:C=B]J
hy [T F letbox[x] = einC, (box[x]) : C]
(hy, hy) i Beore,c:Teverp: e

=(induction hypothesis)

let

in

h, = [Tre:C=BJ
b, = [TFCe):C]
(hy , hy); Beorp,ciTeve s Hp

=(definition)

[T+ e Cie):B]

<>C=Cl el

[T + letbox[x] = ein C,(box[x]) e; : B]

=(observation)

(idp , fy; [T, x: AP = C (box[x]) e : B]

=(definition)

let

in

hy = [T, x:AP I C(box[x]):C = B]
hy = [T,x:A? e, :C]
(idp , f) i (hy hy) i Beore,c: Teve,r i Hp

=(semantic weakening lemma 5.1)

let

in

hy = [T, x: AP+ C (box[x]): C = B]
hy = [CFe:C]

(idp, f) i <hy, 7ty hy) s Bers,ci Teverp B

=(simplification)

let

in

hy = [T, x:AP I C(box[x]):C = B]
by = [TFe:C]
(ldy , f) ;hy, Gdp , f) ;70 he) s Beor,c i Tevers : Be

=(simplification)

let

in

hy = [T, x:AP I C/(box[x]):C = B]
hy = [TFe:C]
(idy , f) i hy hy) s Beor,ci Teverp: Mp

=(observation)

let

in

hy = [T+ letbox[x]=einC, (box[x]) : C = B]
b, = [TFe:C]
(hy , hy); Beorp,ci Teverp i Hp

=(induction hypothesis)

let

in

h, = [TFC(e):C= B
hy = [[Fe :C]
(hy , hy); Beorp,ciTeverp: Hp

67

=(definition)

[TEC,(eyeq :B]

oC=Az:C.C,

[T F letbox[x] = einAz : C. C;(box[x]) : C = B]

=(observation)

(idp ,fy; [T, x: AP & Az: C. C,(box[x]) : C = B]

=(definition)

let. h = [T,x:AP,z:C"+ C (box[x]) : B]
in (idp,f); curry (h) ; icTB

=(semantic substitution theorem 5.4 and semantic weakening lemma 5.1

s = [T,x:AP,z:C*+0:T,z:Ct x: AP]
h = s;[T,z:Cx: AP C(box[x]) : B]
in (idyp ,f);curry (h) ; e TR

let

=(simplification)

let. h = [T,z:C x:AP - C (box[x]) : B]
in <ldr ,ﬂ;curry((ﬂ.’l;7‘[1,7‘[2,7‘[1;7‘[2);]’1);17(:_,TB

=(universal property of exponential)

let. b = [T[,z:Ci x:AP + C (box[x]) : B]
in curry ((dpyc, 7 0 h) s ieors

=(observation)

in curry (h) ;e

lett b = [T,z:C" letbox[x] = einC,(box[x]) : B]

=(induction hypothesis)

let h = [I,z:C'F C(e):B]
in curry (h); 1corB

=(definition)

[T+ Az Ci(e) : C = B]

oC =fstC,

[T F letbox[x] = einfst C, (box[x]) : B]

=(observation)

(idp , f); [T, x: AP + fstC,(box[x]) : B]

=(definition)

(idp , f); [T, x: AP = C,(box[x]) : Bx C]; Ty

=(observation)
68

)

Vikraman Choudhury and Neel Krishnaswami

[T+ letbox[x] = einC,(box[x]) : Bx C]; Tm;
=(induction hypothesis)

‘ [T Ce):BxC];Tm
=(definition)

\ [T - fstC, (e : B

oC =snd(C,

[Tk letbox[x] = einsnd C, (box[x]) : B
=(observation)
(idp , f); [T, x: AP + snd C, (box[x])) : B]
=(definition)
(idp ,f) ; [T, x: AP + C,(box[x]) : C x B] ; T,
=(observation)
[T F letbox[x] = einC,(box[x]) : C x B] ; T,
=(induction hypothesis)
\ [T+ C(e): CxB]; T,
=(definition)
\ [T+ sndC,(e) : B]

oC = (ellcl)

[T + letbox[x] = ein (e; , C;(box[x])) : Bx C]

=(observation)

(idp , f); [T, x: AP & (eq,C (box[x])) : Bx C]

=(definition)

(idp ,f); ([T, x: AP teq : B], [T, x: AP = C;(box[x]) : C]) ; Bg,c

=(semantic weakening lemma 5.1)

(idp ,f); (5 [T & e = B], [T, x: AP = Cy(box[x])) : C]) s Bp,c

=(universal property of products)

<<ldr ,f> ; 7T1 ; [[F l_ 61 BH , <ldr ,f> ; [[r, D AP = Cl«bOX» S C]]>’IBB,C

=(definitionof 7;)

([Tt ey :B], (idp, f); [T, x: AP = C (box[x]) : C]); B,c

=(observation)

([T + ey :B], [Tk letbox[x] = einC,(box[x]) : C]); Bp c

=(induction hypothesis)

([T ey : B, [T F Cye) : C]y; Bac

69

(

definition)

[T+ (e1,Ci¢e)) : BxC]

oC = (Clrel)

[T + letbox[x] = ein (C,(box[x]) ,e;) : C x B]

observation)

(idp , f); [T, x: AP = (C,(box[x]) ,e1) : C x B]

definition)

(idp) ([T, x: AP+ C,(box[E]) : C], [T, x: AP - 1 : B]) ; B

semantic weakening lemma 5.1)

(idp , f); ([T, x: AP = C(box[x]) : C], 7y ; [T ey : B]); Bc s

universal property of products)

<<ldl" ,ﬁ ; Hr, 205 AP = Cl«box)) o C]] , <ldr ,f> ; 7T1 ; [[F = el 5 B]]>’JBC,B

definitionof 7;)

((idp , fy; [T, x: AP = C (box[x]) : C], [T ey : B]); Bc g

observation)

([T + let box[x] = einC, (box[x])) : C| , [T €3 : B]); Bc 5

induction hypothesis)

<[r e Cl«e» : CH , [[r = el B]]>/‘BC,B

definition)

[TH (Ciey,eq):CxB]

<>C=box

[T - let box] = ein box|C, (box [X]) | : C1B]
observation)

(dp [T, x: AP box :0B]
definition)

(idp , fy; [T, x: AP =P C (box[x]) : B]]p Moy
observation)

[T E? letbox[x] = einC,(box[x]) : B I, 1oy
induction hypothesis)

[T =P Ci(e): B, 1oy

definition)

[T - box[C,(e)]: O1B]

70

Vikraman Choudhury and Neel Krishnaswami

oC =letbox[z] = C,ine;

[T F letbox[x] = ein (let box[z] = C, (box[x]) ine;) : B]
=(observation)
(idp , fy; [T, x : AP + letbox[z] = C;(box[x])) ine; : B]
=(definition)
g = [I,x: AP+ C(box[x]):OC]
h = [T,x:AP,z:CP I ¢;:B]
in (idr,f); (idrypa &) Trxnaoc: Th: ip
=(semantic substitution theorem 5.4 and semantic weakening lemma 5.1)
g = [T, x:AP I C (box[x]) :OC]
h (rty ;701 ,705) ; [T,2:CP e : B]
in (idy, f); (idrega &) Trxpaoc Th pp
=(simplification)
g = [I,x: AP+ C(box[x]):OC]
h [T,z:CP + e :B]
in ((dy,f), (dp,f) ;&) Trxqa,nc: Tt iy, 700) s Th; g
=(simplification)
et g [T, x: AP = C,(box[x]) : OC]
h [T,z:CP e :B]
in (idp, (dy,f) ;&) Troc: Th pp

let

let

let

=(observation)

g = [T letbox[x]=einC, (box[x]) : CIC]
h = [[,z:CP e :B]

in (idr,8); Troc: Th; ug

=(induction hypothesis)

g = [TECey:0OC]

h = [I,z:CP e :B]

in (idr,&); trac: Th pg

=(definition)

[T letbox[z] = C,(e) iney : B]

let

let

oC =letbox[z] = ey inC,

‘ [T+ letbox[x] = ein (let box[z] = e; in C, (box[x]))) : B] ‘

=(observation)
‘ (idp , f); [T, x : AP + letbox[z] = e; inC, (box[x])) : B] ‘
=(definition)

71

Vikraman Choudhury and Neel Krishnaswami

hy = [I,x:AP ke :[C]

hy = [I,x:A?,z:CP + C (box[x]) : B]
in (idp, f); (idrega 1) Trega,oc Tha s ip

=(semantic weakening lemma5.1)

hq [THe :CIC]

hy = [T,x:A?P,z:CP \ C (box[x]) : B]
in (idy,f); (druga, T 11) 5 Tregaoc Thy o pp
=(simplification)

hy [Tke :CC]

hy = [T,x:AP,z:CP \ C (box[x]) : B]
in ((dp,f), ") Trepaoc Tha s ig

=(semantic substitution theorem 5.4 and semantic weakening lemma 5.1)
hy = [Tke :[0C]

hy = [T,z:CP,x:A? \ C,(box[x]) : B]

in ((dy,f), h); Tragapc: T4 1y, 7, 71y 5 103) Thy s g

let

let

let

let

=(simplification)

hl = [[F = 61 DCH

hy = [T,z:CP, x:AP + C (box[x]) : B]

in (idr, hy); Tr e Tlidrge , 710 f) Thy s pp

=(observation)

hy = [Tre :[C]

hy = |[T,z:CP letbox[x]=einC,(box[x]) : B]
in (idp, hy); rac’ Th, ; Up

let

let

=(induction hypothesis)

hy [TF e :CC]

hy = [T,z:CPF C,(e):B]
in (idy, hy); Trgc Thy pg

=(definition)

[T + letbox[z] = e, inC;(e) : B]

let

T'ke:[1A THEWe):B I' - let box[x]| = ein £(box[x]) : B
o [I#-IMPURE
I' E(e) ~ letbox|[x]|=ein&(box|[x]) : B
We proceed by cases on £.

o & =[]

‘ [T = letbox[x] = einbox[x]: [JA] ‘
=(definition)
‘ (idp, [T+ e:TAD : T TIT, x: AP - box[E]: DAL ; Hoa ‘

=(definition)

72

(idp, [TFe:CA]) ; trpga T[T, x: AP HP x: A, Thga i Hoa

=(definition)

(idp, [TEe:LA] trga: T Thga s Boa

=(monadlaws)
<ldr , [[F Fe: DAH> ; TT,EIA ; TnZ;idTEIA

=(tensorial actionof T)
‘(idr,[[l"l—e:DA]]%ﬂz ‘

=(applying,)
\ [T+ e:DA] \

<>5=€1 (‘:1

[T F letbox[x] = eine; & (box[x]) : B]

=(definition)

f = [Tre:[A]
g [T, x: AP - e; & (box[x]) : B]
i {dr,f);troa: T8 Hp

let

=(definition)

F o= [TFe:DA]
g1 = [[Lx:AP e :C= B]
8 = [T, x:AP & (box[x]):C]

g = (81,82 BcotciTevery g
in (idy,f);troa TS pp

let

=(functoriality of T)

f [THe:[A]
let g = [[,x:AP e, :C= B]
g = [T, x:AP k & (box[x]):C]
i (idy , f); troa T, 82 TBeots,c: T>every : Thg Hp

=(semantic weakening lemma 5.1)

f = [TFe:0A]
let ¢ = m;[Tke:C=BJ
8 = [T, x:AP I & (box[x]):C]
in ldp, f) Trpa s T(@1,82) TBerr,c TP every : Thp g

=(simplification)

f = [[Fe:@A4]
let ¢ = [THe:C=B]
8 = [T, x:A? & (box[x]):C]
in (dp, f); Trpa Tt 81,82 TBeots,c s T2 every : Tig Hp

=(simplification)

73

f o= [Tre:MA]
let ¢ = [THe:C=B]
8 = [T, x:AP + £ (box[x]):C]

in (g1, dr, f);trpa: T8 Mz) i Beor,ci Teve,ry : Hp

=(definition)

Zet gl [[r|_€1CﬁB]]
D [T F letbox[x] = ein & (box[x]) : C]
in (81,8 Bcore,.ciTevery: i

=(induction hypothesis)

g = [THE&e):C]
in (g1,82)Bcotrc:Tevery M

let

=(definition)

[T e E(e): B]

o&=& v

[T F letbox[x] = ein & (box[x]) v : B]

=(definition)

F o= [TFe:MA]
let

g = [I,x: AP+ & (box[x])v:B]
in (dr,f); Trpa T8 MB

=(definition)

f [THe:[A]
o 81 = [D/x:AP = E(box[x]): C = BJ
g = [[Lx:A? +v:C]
§ = (81,82 :Pc-t)ciTevery e
in (idr, f); Troa T8 Mg

=(functoriality of T)

f = [[Fe:DA]
let g, = [T, x:AP & (box[x]):C = B]
g = [[Lx:A? +v:C]
in (dr, f); TroA’ T@Q1,82): TﬁC—»TB,C . T? eve Ty Tug ; ug

=(semantic weakening lemma5.1)

f o= [Tre:MA]
let g = [[,x:AP & (box[x]):C = B]
g = m;[ITFov:C]
in (dp, f); Trpa T, 82) TBears,c: Toevery : Thp g

=(simplification)

74

Vikraman Choudhury and Neel Krishnaswami

f = [Tre:0A]
let g = [[,x:AP &(box[x]):C = B]
g = [[FFUCH

in (dp) Troa: T M1 :82) : TBeors,c: T>every s Ty : i

=(simplification)

f [THe:0A]
let g = [T,x:AP - & (box[x]): C = B]
& = [TFv:(C]

in ((dy ,f); troa: T8 et 82) i BeotB,ci Tevery i te

=(definition)

o 81T [T F letbox[x] = ein & (box[x]) : C = B]
g = [THo:C]

in (g1,82):Bcotrc:Tevery i M

=(induction hypothesis)

g1 = [THE&e):C=B]
g2 = H].—"_U:Cﬂ

in (g1,8):Bcote,c:Tevery M

let

=(definition)

[T+ &eyv: B]

o0& =fst&;

[T F letbox[x] = einfst & (box[x]) : B]
=(definition)
Wy [= [Tre:Ba]
g = [I,x:AP | fst& (box[x]) : B]
in (dp,f); troa: T8 ip
=(definition)
f = [TFe:DA]
g = [I,x: AP+ & (box[x]) : BxC]
in (dr,f); Troa: T8 T?my ;g
=(monadlaws)
f = [Trke:OA]
g = [T, x:AP I & (box[x]):BxC]
in (dp,f); Troa: T8 up: Ty
=(definition)
[T F letbox[x] = ein & (box[x]) : Bx C]; Tmy

let

let

=(induction hypothesis)
[T &«ey:BxC];Tmy

75

Vikraman Choudhury and Neel Krishnaswami

=(definition)
[T+ fst& ey : B]

o€ =snd&

[Tt letbox[x] = einsnd & (box[x]) : B]
=(definition)
f o= [TFe:DA]
g = [I,x: AP+ snd& (box[x]) : B]
in (idy,f); troa TS pg
=(definition)
et f [THe:[A]
g = [T, x:AP I & (box[x]): CxB]

in (dp, f);Troa:Tg: T2y up
=(monadlaws)
f o= [TFe:DA]
g = [I,x: AP+ & (box[x]): CxB]
in (dr,f);trga: TS pp: Ty
=(definition)
[T+ letbox[x] = ein & (box[x]) : Cx B ; T,
=(induction hypothesis)

‘ [T+ &(e):CxB];Tn,
=(definition)

‘ [T - snd &, (e)) : B

let

let

o&=(e1,&)

[T+ letbox[x] = ein (e; , £ (box[x])) : Bx C]
=(definition)
f = [TFe:0A4]
g = [[,x:AP F (eq, & (box[x])): BxC]
in (dp,f); Trpa T8 Pexc
=(definition)
f = [TFe:0A]
g1 = [T,x:AP e :B]
let
8 = [T, x:AP I & (box[x]): C]
g = (81,82):BBc
in (dp,f); Trpa T8 Pexc

=(semantic weakening lemma 5.1)

let

76

f = [Tre:0A4]
et g1 = mp;[I'+e:B]
8 = [T, x:AP + £ (box[x]):C]

g = (81.8):Bsc
in (idy,f); Trga: TS exc

=(simplification)

F o= [TFe:0A]
let ¢ = [TFe :B]
8 = [T, x:A? & (box[x]):C]
in (idp , f); Tr,ga T 81,820 TBB,c i BBxC

=(simplification)

f [THe:[A]
let ¢ = [Tke :B]
g = [T, x:AP k & (box[x]):C]
in (g1, (dy ., f) Troa T8 Me) i Ba,c

=(definition)

let 81 = HF = €1 Bﬂ
g = [Tk letbox[x]=ein& (box[x]) : C]
in (g1,82):Ps,c

=(induction hypothesis)

g = [TE&e):C]
in (g1,8):Bac

let

=(definition)

[TH (e1,E(eN) : BxC]

o&=(&,0)

[T + letbox[x] = ein (& (box[x]) ,v) : C x B]

=(definition)

o [= [Tre:mA]
g = [T, x:AP I (&(box[x]),v): CxB]
in (idp ,f); Troa: T8 Hexs

=(definition)

f = [Tre:MA]
g1 = [T, x:A? + & (box[x]):C]
g = [T,x:AP - v:B]

8 (81,82):Bcp

in (dy ,f); Troa T8 Hexs

let

=(semantic weakening lemma5.1)

77

f [THe:OA]
g1 = [Tk & box[x]):C]
I [T, x: A? - v: B]
g (81.82)Bc,p
in (idr,f); troa T8 foxs
=(simplification)
f [THe:[A]
let g, = [I,x:A? - & (box[x]):C]
% = [THo:B|
in (dp,f); Troa 11,71 :82) : Thc,p i Hexp
=(simplification)
f [TrHe:[A]
let g = [I,x:A? & (box[x]):C]
g = [T'Fov:B]
in ((dr , f); Troa T8 e, 82) : Pe
=(definition)
et g1 = [Tk letbox[x]=ein& (box[x]) : C|
g = [I'Fov:B]
in (81,82 BcB
=(induction hypothesis)
g1 = [TFE&ey:C]
3 = [I'Fv:B]
in (81,82 Bcp
=(definition)
[T+ (& ey ,v): CxB]

let

let

o & =letbox[z] = & ine;

[T + letbox[x] = ein (let box[z] = £, (box[x])) ine;) : B]

=(definition)

F o= [TFe:DA]
g = [T, x:A?P |- letbox[z] = £ (box[x]) ine; : B]
in (dr,f); Troa T8 M

let

=(definition)

f [THe:[A]
o St = [Tx:AP = & (box[x]) :OC]
g = [[,x:AP,z:CP e, :B]
g = (idrypa 81 Trxoaoc: 182 iB
in (dr,f); trpa: T8 ip

=(functoriality of T)

78

Vikraman Choudhury and Neel Krishnaswami

f o= [Tre:MA]
let g1 = [T,x:AP F &(box[x]):EC]
8 = [[,x:AP,z:CP e :B]
in (idr,f); Tr,oA T(idryoa 81) TTrepa,oc: T2g2 ;Tug ; up

=(semantic substitution theorem 5.4 and semantic weakening lemma 5.1

f = [Tre:OA]
let g = [T, x:AP + & (box[x]):EC]
& = (my;my, M) [T,2:CP + e :B]
in (idr,f); Trpa Tdraga 81) TTreaanc 1282 Tip ip

=(simplification)

f = [Tre:[A]
let g = [T, x:AP & (box[E]):EC]
g = [I[,z:CP e :B]
<idF rf> JTr,oA T<ierDA ,81) TTFXDA,DC

in 2 2
;T 1y,) T80 T s v

=(simplification)

f = [Tre:[A]
let g = [T, x:AP & (box[E]):EC]

g2 = [[,z:CP ke :B]
in (idp, Gdr ,f); Tr,0a T81: Mac) Troc: TS2 He

=(definition)

PR | [T F letbox[x] = ein & (box[x]) : IC]
8 = [I[,z:CP e :B]
in (idr, 81); Trac 1827 B

=(induction hypothesis)

et St [TF & (e :OC]
8‘2 = [[I‘,z:cpl—eliB]]
in (idr,81); Troc: TS 1p

=(definition)

[T F letbox[z] = & (e) iney : B]

o & =letbox[z]=viné&,

‘ [T F let box [X] = ein (let box[Z] = vin &, (box [E])) : B]

f o= [TFe:MA]
g = [I,x:AP letbox[z] = vin& (box[x]) : B]
in iy, f); troa T8 pp

let

=(definition)

79

Vikraman Choudhury and Neel Krishnaswami

f [THe:OA]
g1 = [T,x:A? +9:0C]
o [T,x:AP,z:CP + & (box[x]) : B]
§ = (idryga.81) Trxpanoc: T82 B
in (dy,f); troa TS pg
functoriality of T)
f [THe:OA]
let ¢ = [T,x:AP +o:[C]|
8 = [[,x:AP,z:CP & (box[x]) :B]
in (idp ,f); Trga; Tldrega , 81) TTrvganc T°82 Tig i g
semantic weakening lemma 5.1)
f [THe:[A]
let ¢ = m;[THv:0C]
g = [I,x:AP,z:CP + & (box[x]) : B]
in (dy ,f); Troa Tidrega 81 TTreoaoc T°82 Thp s tp
simplification)
f [THe:[A]
let ¢ = [THo:[C]
g = [T,x:AP,z:CP I+ & (box[x]) : B]
in iy, f); Trga; Tldreaa , 711581 TTrxganc T282 Tip i g
semantic substitution theorem 5.4 and semantic weakening lemma 5.1)
f = [Tre:04]
let ¢ = [THov:LC]
8§ = (my;my, My, 1y ;M) [T,2:CP,x: AP = £ (box[x]) : B
in (idp , f); troa Tlidrga 70580 TTrxoanc T°82 Tip i i
functoriality of T)
f = [Tre:0OA4]
let ¢ = [THov:[0C]
g = [I,z:CP,x:AP + & (box[x]) : B]
Gy, f) ; Tr,oA T(idrypa 715 81) TTrypa,oc
Ty sy, 70y, 5 70) 5 T2y s T s i

let

in

semantic weakening lemma 5.1)
f = [T,z:CP e:[0A]
let ¢, = [[+o:[C]
g = [I,z:CP,x:AP + & (box[x]) : B]
(idp , 7013 f) 5 Tr,oa s Tldrega , 115 81) TTrxpa,nc

,-T2<7r1;7'(1,7'(2,7'(1;7T2>;T2g2;T}13;l43

in

simplification)

80

f [T,z:CP e:OA]
let ¢, [T +o:00C]
g = [I[,z:CP,x:AP &£ (box[x]) : B]
in (idr,81); Tr,oc s Tidreae) TTrxoc,oa 282 Tip i g
=(definition)
g1 = [Tro:0C]
g = [I,z:CP t letbox[x]=ein& (box[x]) : B
in (idr,81); Troc: 182 M
=(induction hypothesis)
9 [T+o:0C]
g2 = [I,z2:CP I E(e):B]
in (idr,&1): Tr,ac T82 ip
=(definition)
[T = letbox[z] =vin& (e)) : B]

let

let

F Supplementary material for Section 7 (Embedding)

We give the grammar and judgements in figures 18a and 18b, typing rules in figure 18c, and the S17-equational theory in figure 18d,
for the pure call-by-value simply-typed lambda calculus. Note that we choose to use the base type unit, and we leave out products
because their embedding is trivial and uninteresting for our purpose.

LemmaF.1. Forany contextl’, wehave I'? = T .

Proof. We do induction on the context I’.
 [T]
2 r=-
(3) PP == by definition
@ | [T=ax:A
(5) Ax:AP = (A, x: AP)P by definition
(6) (A, x: AP)? = A?,x: AP by definition
(7) AP, x: AP = A, x: A? induction hypothesis
(8) Ax:AP = A, x: AP

(9 TP=T

~— =~

LemmaF.2. [¢/x]e=[¢ [x]e.

81

Proof. We proceed by cases on e.

(1)
@)
®)

©
®)

(6)

™)
®)

)
(10)
(11)
(12)
(13)
(14)

(15)
(16)

(17)
(18)
(19)

(20)

(21)

(22)

(23)

(24)

[fy]x

(€ /y]

X
~—

e:/\y.el,(yqéx)‘

[¢'/x] Ay eq

Ay. [€'/x] e

Az. let box =zin [¢'/x]e;

[e' /x] Az. letbox[x] = zin e;

[e [x] Ax. e;

N———

Az. let box =[e' /x]zin[e [x] e

by definition

by definition

by definition

by definition

by definition

by definition
by definition

by definition

by definition

by definition

by definition

by definition

by definition

by definition
by definition
by definition
by definition
by definition
by definition

82

Vikraman Choudhury and Neel Krishnaswami

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

e=eq6p

[e'/x] e ey

| —

[¢'/x] e [€'/x]e;

—_—

[¢'/x]e; (box|[¢'/x] e |)

[¢'/x] e ([¢'/x] box[ez])

(¢ (boxfez)
[i/x] €16
[e'/x] e

LemmaF.3. Ifx:A €T, thenx: AP €T.

Proof. We do inductiononx: A € T.

(10)

x:AeTl

x:Ae (([,x:A)

x: AP e T,x: AP

x: AP eT,x: A

x:AeTl (x#vy)

x:Ae((T,y:B)

x:AeT

x: AP €T

x:A? € T,y: BP

x:A? €T,y:B

————

x: AP €T

by definition
by definition
by definition
by definition
by definition
by definition

€-1D

€-1D

by definition

E-EX

inversion

induction hypothesis

E-EX

by definition

Theorem 7.1 Preservation of typing.
IfT-ye:AthenT F e : A.

~— —

83

Proof. We do inductiononl) e: A.

(1)

@)
®)
)

®)

(6)
™)

®)
©)

(10)

(11)
(12)

(13)
(14)
(15)
(16)
(17)
(18)
(19)

(20)

(21)
(22)

(23)

F'ye:A

'y () : unit

T = ():unit

I+~ () : unit

——

x:AeT
FFAXZA

x:AeTl

x:A? €T

~—

IF'Fx: A

~— ~—

T'x:A

~— —

IN'x:AkF,e:B
F'yAx:A.e:A=B

Ix:AtF,e:B
I x:AF e : B

~— —

I',z:[JA,x: AP |-

I'HAx:A.e: A= B

(T,z:[A,x: AP)D(T,x: A?)

I',z:[A F letbox[x|]=zine : B

I' EAz:[JA. letbox[x|=zine :[1A =

F|_/\€1:A$B r}—/\eZ:A
F}—/\ele2:B

Ty e :A=B

Fl_/\EZ:A

84

unitl

unitl

by definition

VAR

inversion

lemma F.3
VAR

by definition

=]

inversion

induction hypothesis
by definition

Var

D-WK

J-CONG

lemma 3.1 (16) (13)
[IE (14) (17)

=]

by definition

=E

inversion

inversion

Vikraman Choudhury and Neel Krishnaswami

(24) \lll— eq:A=>B

(25) EF elzﬂéﬁg
(26) El— ezzé

(27) \rf’l—ezzé

(28) \I:/F—Pez:é

(29) El—box:Dé
(30) 1 F eq (box) :E
(31) £F elez:g

6 Lreca

Theorem 7.2 Preservation of equality.
IfTye;~e,:AthenT Feg =ey: A.

[N

Proof. We do inductiononI) e; ~ e, : A.

(1)

@)

®)
©

®)

(6)
™)

®)

©)

FI—/\elzeZ:A‘

F,xiAl_/\eliB r|_)L62:A

T |_/\ (/\x P A. 61)62 ~ [EZ/x]el :B

r,x:Al_/\eliB
I'x:AkFe :B

~— =

I'x:AP e : B

~— =

F|_A€21A

~—

rl_ezlA

I?ke: A

~— —

I' + letbox[x] = boxin e ~[ey/x]e : B

85

induction hypothesis
by definition
induction hypothesis
lemmaF.1
CTX-PURE

LI

=E (25) (29)

by definition

=B
inversion

theorem 7.1
by definition

inversion

theorem 7.1
lemmaF.1

g

(10)

(11)

(12)

(13)
(14)

(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

(26)

(27)

(28)

~
~

let box [X] = box| e, |in e;

(Az:[JA. letbox[x] = zin el)(box)

~

[e1/x]es

~— =

(Az: [A. letbox[x]=zine;) (box)

r (= ()LxA 61)62 ~ [ez/x]el : B

I'+,e:A=>B

'HyexAx:A.ex:A=B

r+

I+

I'+ye:A=>B

e :A=B

~—

e :[1A =B

A F e

~—

A e

:[JA =B

z: B

~— N~

A, x: AP Hx: A

(OA, x: AP + box[x]: [T A

:[0A,x: AP = e (box[x]): B

:[JA F letbox[x]=zin e (box[x]): B

e z
~—~—

~
~

let box[x] = zin e (box[x])

Az. letbox[x] = zin e (box[x])

Az. e z

~—

: B

(@

(@

~ :[J]A =B

~—

86

~—

Vikraman Choudhury and Neel Krishnaswami

TRANS

by definition

=1
inversion

theorem 7.1
by definition
lemma F.1
CTX-PURE
= #]-PURE
VAR

lemma 3.1 (16)
=E

VAR

)

=E

CJE

[Iy-impureon e &

A-CONG

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

e

~—

T+ N
Az. letbox[x] = zin e (box[x])

:[1JA =B

e
~—

Az. letbox[x|=zin e (box)

I''e~Ax.ex:A=B

————

F|_A65A
'Hyexe:A

Fl_AeiA
'e:A

F'Hye~e: A F'Hyey,~e3: A
I'Hye ~e3: A

FHyep=e: A
I'Frey~e3: A

I'ke~e3: A

ILx:AbFj ey ~e,:B
F'yAx:A.eqmAx:A.ep: A= B

ILx:AbFj ey ~e,:B

I[Lx:AFe ~e,: B

~—

[

I,x: A’ -e; ~e,: B

~— ~— —

87

TRANS

by definition

by definition

REFL

inversion

theorem 7.1

REFL

SYM

inversion

induction hypothesis

SYM

TRANS

inversion
inversion

induction hypothesis
induction hypothesis

TRANS

A-CONG

inversion

induction hypothesis

by definition

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(=
N

(A, x: AP e ~e: B

,z:OAFz:[OA

(= (-

2 [JA R zrz:[A

(letbox[x]=zine;)

- Ax.e; ~Ax.e, : A= B

—— N— ,/

I'ye;~e,:A=B I'bpez~ey: A

1—‘|_/\€1€3%62€41B

I'yeg~e:A=B

I'e~ep:A=B

~—

I'e ~e:[JA=>B

N

~— - - -

IPFe;~e: A

~—

I+ boxz box:DA
Ik e (box)z es (box): B

EI— €16y ~ e3ey :E

—— N—

65) T'He ~e:A

~— =

I,z:A + ~ : B
(letbox[x] =zine,)
(Az. letbox[x] = zine;)
T + ~ :[J]A =B
(Az. letbox[x] =zine,)

Vikraman Choudhury and Neel Krishnaswami

lemma 3.1

Var

REFL

let box-coNG

A-CONG

by definition

APP-CONG

inversion

induction hypothesis
by definition
induction hypothesis
lemmaF.1

box-coNG

APP-CONG

by definition

We can define a reverse translation which forgets the purity annotations, in figure 19.

~~

We use the notation X to denote the unembedding of a syntactic object X from our calculus to STLC. We use b to mean base
types, i.e., unit, str and cap.

We prove some properties of the unembedding of an embedded term.

~—~

LemmaF.4. ForanySTLCtypeA, A = A.

Proof. We do induction on A.

LemmaF.5. ForanySTLC contextl’, I' =T.

A
g
b
b
A=B
a=8
52-1
-3
A=B
&-

definition

definition

definition

definition

definition

induction hypothesis

Proof. We do induction on T

r

definition

definition

definition

definition

lemma F.4

induction hypothesis

—

89

LemmaF.6. IfT',e:A thenl' -, e : A.

—

Proof. We do inductiononI -, e: A.

(1)

@)
®)

©

®)
(6)

™)
®)
©

(10)

(11)
(12)
(13)

(14)

F'ye:A

T, () unit

T, () unit
x:AeT
FFAXZA

x:AeTl

r|_/\x3A
IN'x:Ak+,e:B

I'HyAx:A.e:A=B

Ix:AtF,e:B

') Ax:A.e:A=B

Iﬁ'_/\el:AﬁB r|_/\eziA

r|_/\€1€2!B

F|_/\€11A=>B

Fl_/\ezlA
F|_/\ eq ey :B

N——

—

].—‘|_/\ e 1A

unitl

unitl

Var

inversion

Var

=]

inversion

=E

inversion

inversion

Vikraman Choudhury and Neel Krishnaswami

We observe that an embedding followed by an unembedding gives a #-equal term.

LemmaF.7. Ifl') e: A thenl' Fye~ e :A.

Proof. We do inductiononI) e: A.

(1)

@)
®)
4

FFAEZA
x:AeTl
FFAXIA

X =X =X

Fl_/\ x A

90

VAR

definition

]

(5) F'Hyx~ x :A REFL

IN'x:AkF,e:B
(6) 'HyAx:A.e:A=B =1
(7) F'FyAx:Ae~Az:A. (Ax:A.e)z:B =7
(8) Az:A . (Ax:Ae)z=Az: A. (Ax:A.e)z lemma F.4
9) Az: A.(Ax:A.e)z=Az:[1A. letbox[x|=2zin e definition
(10) Az:[JA. letbox[x]|=zin e = Az:[]A.letbox[x]|=zin e definition
(11) Az:[JA.letbox[x]=zine = Ax:A.e definition

(12) | THyAx:A.e~ Ax:Ae:A=B

I'ye;:A=B I'kye:A
(14) 'ye;:A=B inversion
(15) IF'pe: A inversion
(16) I'yeg~e :A=B induction hypothesis
(17) F'Hyey,~e t A induction hypothesis
(18) I'yeie = 61 62 :B APP-CONG
(19) el 62 = e boxH = ey box 62 =e16 definition

(20) FI—/\elez~elez :B

b

~—

(21) THyex~ e :A

]

At this point, we could setup a syntactic logical relation to show a conservative extension result. Instead, we will use an
abstract trick.

Note that there is a forgetful functor from € to Set, which forgets the weight assignments. It is easy to see from our definition
of C in section 4 that this functor preserves the cartesian closed structure, and is hence a cartesian closed functor. Forgetting the
extra structure of Set, we could instead choose CCC[1], the free cartesian closed category on one generator 1. We consider the
forgetful functor & from C to CCC[1], which forgets the capability annotations.

F(unit) := 1
F(E*) = 1
F(A x B) := F(A) x F(B)

F(A = B) := F(A) = F(B)
91

We note that it maps the monad and comonad to identity.

F(OA) = F(A)
F(TA) = F(A)

Vikraman Choudhury and Neel Krishnaswami

We observe that the action of this functor F on embedded terms gives back the original term.

LemmaF.8. IfTH,e:A, the”ffr(ﬂi}_ ¢

—

Proof. We proceed by inductiononI'), e: A.
x:AeTl

& —— VAR
FFAXZA

FUILF 24D

=(definition)
FIX A€],

=(functoriality of &)
FIXAE L)) F(0)

=(definition)

[x:AeT]
=(definition)
[ITHye:AJ
IN'x:AkF,e:B

I

<o =
I'HyAx:A.e:A=B

g(HEFAx:A.e:A:BH)

=(definition)

D=ITkye: Al

g(HE/I—AZ:Dé. Ietbox:zini:DéﬁEﬂ)

=(definition)

g(curry(HE,z:Déi let box[x] :Zinf,:f,ﬂ);’?A—»TB)

=(functoriality of F)

g(curry(ﬂzjz:[}éi F let box | x| :Zinf/:gﬂ))??(ﬂAaTB)

=(definition)

f o= HF,Z:DAiI—z:DAH

let

g = [F,Z:DAi,x:API—

e:Bﬂ

in F(curry ((idrypa) Trega,na T8 1B))

=(simplification)

92

let g - [[,z:0A"x: APk e:B]

in F(curry ((idrypa , 7 i oa) Trxoa,na 1S HB))

=(strength law and monad laws)

let g = [E/’Z:Déi/x:épl_e:Bﬂ

in F(curry ((idryqa , T2) §))

=(JF preserves exponentials)

. P .
curry (F([L,x: A" = e : B]y)

=(definition)

curry (F([T2 AF 2 By

~— —

=(induction hypothesis)

‘ curry ([I,x: A, e:B])

=(definition)

\ [Ty Ax:A.e: A= BJ

F|_)L€12A$B f}—/\eZ:A
o =E
r}_/\elele

gL ae: B

=(definition)

I'He b es|: B
sqlra °X 3n

=(definition)

f=-1LraBa=8
let g - FI—box:DA

in F(f, 8 PoastBoa: Tevoa,e: Hp)

=(functoriality of F)

f-Tra@a=B

~—

¢ = [[EF box:Déﬂ

in F(f,8): F(Baastna) F(Tevgars) F(pp)

let

=(actionof F)

f — 9([[\1:/}_ eq :A:BH)
let -

g = (L4

in (f,g);evA,B

=(induction hypothesis)

93

Vikraman Choudhury and Neel Krishnaswami

f = [Tk e :A=B]
§ = [Thye:A]

in (f, g evap
=(definition)

[T+, eie,:B]

let

O
Theorem 7.3 Conservative Extension. IfI'F, e : AT) e : A, and£ Fe ~e: é, thenI') e; ~ ey : A.
Proof. - =
(1) [Thye AT e:A]
2 F'te~e: A
(3) £ = i : éﬂ = [[E = iZ/ : éﬂ soundness of ~ theorem 6.1
@ | | saLraiAp =gl 2 4] congruence
(5) [THyep:A]=[THye,:A] lemma F.8
6) ThHyeg=e:A completeness of STLC
]

94

x:A1eTl (x#vy)

€-1D -EX
x:A1e ([,x:A7) x:ATe((T,y:B")
(a) Context Membership Rules
| DAY rosaA
— D-ID D-CONG — D-WK
- D I,x:AT DA, x: A7 Ix:ATDA
(b) Weakening Rules
—————— SUB-ID
I'E(:-
r=6:A IF'?e: A F'=0:A IT'v:A
SUB-PURE - - SUB-IMPURE
TH(0,el/x)y: A, x: AP (0,0 xy: A x: A*
(c) Substitution Rules
Figure 11. Membership, Weakening and Substitution Rules
fig
A @ C
A A Aaxc—" s
f .8) 8 f\[/[ﬂg]y‘ \Lg
Figure 14. Composition operations
p(+) := idy M(+) = idy
p(T,x: AP) = [p(T) x idgy] M, x: AP) = [M(T) x 64 mp, o4
p(, x: A') = 11y p(T) M(T, x: AT) == M(T)
@ p(I') : Home ([T], [T?]) (b) M(T') : Home ([T7], O[T?])

Figure 15. p(T') and M (")

95

Vikraman Choudhury and Neel Krishnaswami

— | :=id
[1= i
(2 = (T 4] [)
_— =70 ; 2 - - = 7T
Tx:AT2A x:Ale (T,x:Al) "
[| = [T 28] xidga)
= D) X 1 =705 €
T,x:AP DA, x: AP = oA Hx:APe(l",x:AP)ﬂ 2
[—— =22 jeqroaxidg (EAEL_CEDy o earer]
- - || = 2 A X1 =T x A r
T,x:Ai DA x: Al 4 x:ATe(T,y:B) 1 (A
@ WK(T' 2 8) = [T 2 8] : Home ([T, [A]) (®) [x: A7 €] Home (1T, [A])
Figure 16. Interpretation of Membership and Weakening
I'e:A I'teg=e: A
—— REFL —_— SYM
I'e~xe:A I'tey,=e : A
e ~e: A I'Fe,~e3: A ey ~e,:AxB ey ~e:AxB
TRANS fst-cong snd-coNG
I'Fe ~e3: A I' fsteg =~ fste, : A I'-snde; = snde, : B
T'Hej~e:A They~e :B [Lx:A'be ~ey:B
PAIR-CONG A-coNG
Tk (e;,e3)~(ey,e4): AxB IT'FAx:A.eg~Ax:A.ep: A= B
APP-CONG box-coNG
THejes~eye,:B I' = box|e; | ~ box|ey|: [[A
I'ke; ~ep,:[A Ix:A? Fe3~ey :B I'-ey~ep:cap I'ke3~ey:str
let box-conG print-coNG
I' - (letbox[x] =ej ine3) =~ (letbox[x]|=e,iney) : B I' I ey -print(es) = e, -print(ey) : unit

Figure 17. Equivalence and Congruence rules for the Equational Theory

96

TYPES A,B = unit|A=B
TERMS e = ()lx|Ax:A.eleje
VALUES v == ()lx|Ax:Ae
ConTEXxTs [LA¥Y == -|T,x:A

(a) Grammar for STLC

x:A €Tl xisavariable of type A in context I'
I'~,e:A eisanexpression of type A in context I
'), e; =ey,: A e ande, are equal expressions of type A in context I'

(b) Judgements for STLC
x:AeTl
——— unitl — VAR
FI—A():unit FFAXIA
INx:AkF,e:B 'ye;:A=B F'Hye: A
=] =
'yAx:A.e:A=B I'~,ee,:B
(c) Typing rules for STLC
rl_/\eZA I—"_/\elzez:A rl—/\eler:A rl_/\62%633A
————— REFL — sYM TRANS
Fl—/\eze:A I-"_/\ez’&’el:A r|_/\el’&’e3:A
r,x:Al_/\elz€2:B rkAeleZ:A:B rl—Aesze4:A
A-CONG APP-CONG
FHyAx:Aeg~Ax:A.ey: A= B I'H)eje3~eye : B
INx:AbF,e:B I'Hye: A I'ye:A=B

= p i

=
I', (Ax:A.eq)ep ~ [ey/x]e : B I'Hye~Ax:A. ex:A=B
(d) Equational Theory for STLC

Figure 18. The pure call-by-value simply-typed lambda calculus

97

TYPES b

A=B

CONTEXTS

TERMS

let box[x] = e ine,

eq -print(ey)

Vikraman Choudhury and Neel Krishnaswami

(Ax.) ey

0

Figure 19. Reverse Translation to STLC

98

	Abstract
	1 Introduction
	2 Purity from Capabilities
	3 Typing
	3.1 Typing Judgements
	3.2 Weakening and Substitution

	4 Semantics
	4.1 Capability Spaces
	4.2 Cartesian Closed Structure
	4.3 Monad
	4.4 Comonad
	4.5 The Comonad cancels the Monad
	4.6 Other remarks

	5 Interpretation
	5.1 Types and Contexts
	5.2 Expressions
	5.3 Weakening and Substitution

	6 Equational Theory
	7 Embedding
	8 Discussion and Future Work
	References
	A Supplementary material for Section 2 (Purity from Capabilities)
	B Supplementary material for Section 3 (Typing)
	C Supplementary material for Section 4 (Semantics)
	C.1 Monoidal Closed Structure

	D Supplementary material for Section 5 (Interpretation)
	E Supplementary material for Section 6 (Equational Theory)
	F Supplementary material for Section 7 (Embedding)

