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The study of stronger-than-quantum effects is a fruitful line of research that provides valuable insight into
quantum theory. Unfortunately, traditional bipartite steering scenarios can always be explained by quantum
theory. Here we show that, by relaxing this traditional setup, bipartite steering incompatible with quantum
theory is possible. The two scenarios we describe, which still feature Alice remotely steering Bob’s system, are:
(i) one where Bob also has an input and operates on his subsystem, and (ii) the ‘instrumental steering’ scenario.
We show that such bipartite post-quantum steering is a genuinely new type of post-quantum nonlocality, which

does not follow from post-quantum Bell nonlocality.

Introduction.— Einstein-Podolsky-Rosen steering is a strik-
ing nonlocal feature of quantum theory [1, 2]. First discussed
by Schrodinger [1], it refers to the phenomenon where Alice,
by performing measurements on half of a shared system, re-
motely ‘steers’ the state of a distant Bob, in a way which has
no classical explanation. From a modern quantum informa-
tion perspective [2] steering certifies entanglement in situa-
tions where Alice’s devices are uncharacterised or untrusted,
allowing for “one-sided device independent” implementations
of information-theoretic tasks, such as quantum key distribu-
tion [3], randomness certification [4, 5], measurement incom-
patibility certification [6—8], and self-testing [9, 10].

Given the usefulness of quantum steering as a resource
for information processing, a comprehensive understanding
of this non-classical phenomenon as a resource is highly de-
sirable. A fruitful way to approach this, pursued in the study
of other non-classical phenomena, e.g. Bell nonlocality [11]
and contextuality [12], is to investigate it ‘from the outside’:
namely, to study it operationally from the perspective of a
more general theory — which may supersede quantum the-
ory — and then understand which aspects are purely quantum.
Studying phenomena beyond what quantum theory predicts is
relevant not only from the hypothetical perspective of a post-
quantum theory, but also — and above all — because it allows
for a deeper understanding of the foundations of quantum the-
ory and the limitations it has for information processing [13].
The main question studied here is how to properly understand
steering from this more general perspective, on which we re-
port substantial progress in this Letter.

Abstractly, we may view the steering scenario as one where
Alice has a device that accepts a classical input, x, usually
thought of as labelling the choice of measurement, and pro-
duces a classical outcome, a, usually thought of as the mea-
surement result, while Bob has a device without an input, that
produces a quantum system, which is correlated with the input
and outcome of Alice, and usually thought of as the steered
system. Here we are interested in the possibility that the lo-
cal structure of quantum theory is maintained, while consider-
ing more general global structure — for instance more general

types of correlations or global dynamics.

In this setting, we would like to re-examine the phe-
nomenon of steering. A natural question that arises is whether
a more general theory may allow for steering beyond what
quantum theory predicts. That is, could it be possible to find a
pair of devices for Alice and Bob which could not be produced
within quantum theory, by Alice and Bob sharing a quantum
state, upon which Alice performs measurements labelled by x
and with outcomes a? The only requirement that we maintain
in this generalised setting is that of relativistic causality: Alice
should not be able to use steering to signal to Bob, i.e., to send
information to him instantaneously.

A celebrated theorem by Gisin [14] and Hughston, Josza
and Wootters [15] (GHIJW) shows that post-quantum steer-
ing cannot occur in the traditional setting. Namely, any pair
of devices that do not allow signalling from Alice to Bob
can always be realised by some carefully chosen set of mea-
surements and quantum state. The traditional setting is how-
ever not the only interesting scenario where one can see the
steering phenomena. In Ref. [16], post-quantum multi-partite
steering was discovered: in a tri-partite scenario, Alice and
Bob are able to jointly steer the state of a third party, Char-
lie in a way which cannot arise from measurements an any
quantum state. Subsequently, unified frameworks for studying
quantum and post-quantum steering in the multipartite setting
have been developed, providing a playground for exploring
this fascinating effect [18, 19].

A key question that nevertheless remained unanswered is
whether it is possible to have post-quantum steering in a suit-
able generalised bipartite scenario, or whether post-quantum
steering is a purely multipartite phenomenon. In this Letter
we answer this question in the positive. We discover two nat-
ural bipartite generalisations of steering that allow for post-
quantum effects (see Fig. 1 cases (c) and (d) respectively): one
where Bob also has an input that allows him to additionally in-
fluence his quantum state, and another where this additional
influence is instead conditioned on Alice’s outcome. This
second generalisation corresponds to a specific type of setup
known as the ‘instrumental causal network’, that is ubiqui-
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FIG. 1. Different generalised bipartite steering setups (a) The tra-
ditional scenario: Alice makes a measurement, steering the state of
Bob. (b) The sequential-measurement scenario: Alice now performs
a sequence of measurements, steering the state of Bob multiple times
(c) The Bob-with-input (BWI) scenario: Bob now also has an in-
put, allowing him to also influence his state, but performing some
operation on it (d) The instrumental steering scenario: is similar to
BWI except that Bob’s input now depends on Alice’s outcome. The
top two scenarios ((a) and (b)) do not admit post-quantum steering.
‘We show here that the bottom two scenarios ((c) and (d)) have post-
quantum steering.

tous in causal inference [20, 21]. Furthermore, we show, cru-
cially, that in both cases the post-quantum steering uncovered
genuinely constitute new effects, that are distinct from post-
quantum nonlocality in the associated generalised setups. We
do this by finding explicit examples of post-quantum steering
where if Bob performs measurements on his quantum system,
then the resulting outcome statistics are never post-quantum
nonlocal.

Preliminaries.— In the traditional bipartite quantum steer-
ing scenario (see Fig. 1(a)) Alice and Bob share a sys-
tem in a possibly entangled quantum state p. Alice is al-
lowed to perform generalised measurements on her share
of the system, which correspond to positive-operator val-
ued measures (POVM). Alice chooses one such measure-
ment {M,|,}q, labelled by z, from a set of measure-
ments, and obtains an outcome a with probability p(a|z) =
tr {(M,, @ Ip)p}. After the measurement, Bob’s steered
state is po; = tra {(My, ®Ip)p} /p(alz). It is conve-
nient to work with the unnormalised steered states o4, =
plalz) pajz = tra{(M,, ®1p)p}, which contain both
the information about both Alice’s conditional probabilities
plalx) = tr {aakﬂ}, and Bob’s conditional states pg|,. The
collection {743 }a,» Of unnormalised states Bob is steered
into is called an assemblage. Due to the completeness rela-
tion for Alice’s measurements, Za Ma‘z = 1 for all z, it fol-
lows that ) 0,4, = tra{p} = pp, independent of x. This
can be seen as a no-signalling condition from Alice to Bob,
since Bob, without knowledge of the outcome of Alice, has
no information about the choice of measurement she made.

One natural generalisation of the traditional steering sce-
nario is to allow Alice to make a sequence of measurements on

her share of the system, such that each measurement has the
potential to steer the state of Bob. This situation is depicted in
Fig. 1 (b). In the supplemental material [22], we show that this
generalisation in fact does not feature post-quantum steering
either; this can be seen as an extension of the GHIW theorem
[14, 15] to the sequential scenario.

Bipartite steering when Bob has an input (Fig. 1c).— We
consider now the generalisation where Bob’s device also ac-
cepts an input before producing a quantum state. Intuitively,
we can think that this input may determine the preparation of
some quantum system, which could come about from a trans-
formation on a quantum system inside Bob’s device. This sit-
uation is depicted in Fig. 1 (c), where y denotes the input. In
this generalised scenario, the members of the assemblage will
be {04)zy }a,z,y- Note that when the variable y takes only one
possible value, this scenario reduces to the traditional bipartite
steering setup of Fig. 1(a).

In the context of quantum theory, we assume that Alice and
Bob share a quantum state p and that Alice performs mea-
surements labelled by z, as in the standard scenario. Given
that Bob now has an input, the most general operation that
he could apply is a Completely-Positive and Trace-Preserving
(CPTP) channel onto his part of the quantum system. Thus,
the quantum assemblages that can be generated are:

Definition 1. Quantum Bob-with-input assemblages.

An assemblage {0q)yy}a,c,y has a has a quantum realisa-
tion in the Bob-with-input steering scenario iff there exists a
Hilbert space H o and POVMs { My }a .o for Alice, a state p
in Ha ® Hp, and a collection of CPTP maps {€,}, in Hp
for Bob, such that

Talay = Ey [tra {(Maje @ 1)p}] - (1)
We denote this set of assemblages as Qpw .

Note that this definition of Quantum Bob-with-input (BWI)
assemblages does not require that the operations take place
in a particular order. That is, the same assemblage can be
obtained if the map &, is applied to Bob’s subsystem before
Alice measures hers.

To go beyond quantum theory, we have to identify the most
general constraints that apply here. Not only must we now
ensure no-signalling from Alice to Bob, but since Bob has an
input, we must also ensure no-signalling from Bob to Alice.
These constraints are captured by the following definition:

Definition 2. Non-signalling Bob-with-input assemblages.

An assemblage {0,|py}a,c,y is non-signalling in the Bob-
with-input steering scenario iff 04|z, > 0 for all a, x,y, and

Zo—ah:y = Zaa\:c’y Vm,x',y, (2
a a

tr {oaay} = plalz) Va,z,y, 3)
thJa\myzl Vz,y, 4)



where p(a|x) is the probability that Alice obtains outcome a
when performing measurement x on her share of the system.
We denote the set of such assemblages as Gy 1.

We can now return to our central question of whether there
can exist post-quantum steering in this scenario. Here we find
that this is indeed the case:

Theorem 1. The set of all non-signalling Bob-with-input as-
semblages is strictly larger than the set of quantum Bob-with-
input assemblages, Qpwi Z Gpwi. Hence, there is post-
quantum steering in the Bob-with-input steering scenario.

Proof. We construct an explicit example of a assemblage in
Gpw 1 which cannot be realised in quantum theory.

Consider the specific scenario where Alice has binary in-
puts and outcomes, z € {0,1} and a € {0,1}, Bob has a
binary input y € {0, 1}, and the dimension of Bob’s Hilbert
space is 2. Consider the following assemblage:

—_

O’:|xy =g (la) {a] 6zy=0 +|a® 1) (a @ 1] dzy=1) (5)

Note that (i) UZI

%(5%:0 + Ozy=1)I = %]I, which is independent of x and y;

I
(iii) tr {U;\xy} = %(5%:0 +0py=1) = % is independent of y
and (iv) tr ), o7, = 1. This shows that {7} } is a valid
no-signalling assemblage, i.e., {07, } € Gpw1.

Now we show that this assemblage cannot arise in quantum
theory, i.e., {O':Iwy} ¢ Qpwi. We do so by first noting that
for a quantum-realisable assemblage, since (I4 ® EY)[p] is
a bipartite quantum state when £Y is a CPTP channel, Alice
and Bob can only produce quantum Bell correlations, should
Bob choose to measure his system. Namely, let Bob make
an arbitrary measurement { N}, on his state in a quantum

assemblage {042y }a,x,y- Then, the correlations obtained are

ey = 0 for all a,z,y; (i) ), Uzlx,y =

p(a, b‘(II, y) = tr{Nbaa\zy}v
= trp{No&y [tra {(M,, @ I)p}]},
= e {(Mypy © E}(N))o}

Since &;(+) is a CPTP channel , the dual map SJ() is unital,
and hence £ (V) is always valid POVM. This provides an ex-
plicit quantum realisation of the correlations p(a, b|x, y). We
will thus prove that (5) is not quantum-realisable by demon-
strating that it can generate correlations p(a, b|z, y) which are
known to be impossible within quantum theory.

Let N, = |b) (b| be the computational basis measurement.
The correlations that Alice and Bob obtain are

1 .
s if a®b==xy
a,blz,y) = (blo’ . |b) = { 2
p( ‘ y) < | a\»Ly| > {O otherwise
These are the correlations of the ”Popescu-Rohrlich” box [23],
which are not achievable within quantum theory. Hence,

ey & QBwr andso Qpwr # Gpwi- O

We see then that post-quantum steering can arise in a gen-
eralised bipartite steering scenario. This example given how-
ever relies on post-quantum nonlocality and hence the post-
quantum steering found may be argued to be just another guise
of the former effect. In the following theorem, we prove that
the two phenomena are genuinely different:

Theorem 2. Post-quantum steering in the Bob-with-input
steering scenario is independent of post-quantum nonlocal-
ity. Namely, there exist non-signalling assemblages {O’a‘wy}
that are not quantum realisable, but which can only lead to
quantum correlations p(a, b|x,y) in the Bell scenario.

The proof of this theorem is given in the Supplemental Ma-
terial [22]. The main idea is to show that the following assem-
blage has the desired properties, i.e., that it is post-quantum
and that whenever Bob performs a measurement { NV, } on it,

the observed outcome statistics p(ablzy) = tr { Ny oqjuy }
have always a quantum realisation:
1 .
Oafy = 7 (1 + (=) 0201 0,) (©)

where ¢ € {1,2,3} and (01,092,03) = (X,Y,Z) are the
Pauli operators.

The method to show that this assemblage can only yield
quantum correlations is to notice that one may mathemat-
ically represent this assemblage as Alice performing Pauli
measurements on the maximally entangled state, and Bob ap-
plying either the identity or transpose map (which crucially
is positive but not completely positive) depending on y [17].
Then, following Ref. [18], the assemblage Eq. (6) can only
yield quantum correlations. In the Supplemental Material we
further provide two alternative proofs that the assemblage is
postquantum [22]: one using an argument based around self-
testing, and the second by constructing an explicit steering in-
equality that is (robustly) violated beyond the quantum bound
by the assemblage (6). While doing this, in the Supplemental
Material, we present a method to bound the quantum bound
of a steering inequality in this scenario.

Hence, just as for multipartite post-quantum steering [16],
the effect here is independent of the existence of post-quantum
Bell nonlocality.

Instrumental steering (Fig. 1d).— We now consider the in-
strumental steering scenario [24]. In this case, Bob still has
an input that can inform the preparation of a quantum system,
however now this input can depend on Alice’s measurement
outcome (see Fig. 1 (d)). For example, Bob’s input could just
decide a transformation upon a quantum system. To recover
the traditional steering scenario, we again enforce the con-
straint that Bob only has one input, and thus we trivially have
no dependence on Alice’s output. This scenario is closely re-
lated to the so-called ‘instrumental setup’ [20, 21], only now
one of the variables has become a quantum system. Indeed,
this close relation between instrumental steering and the in-
strumental setup, will enable us to identify a connection be-
tween the instrumental steering scenario and the Bob-with-
input scenario further below.



In the instrumental steering scenario, an assemblage is
given by the collection of subnormalised states {0, }, where
x denotes the choice of measurement by Alice, and a denotes
both Alice’s outcome and Bob’s input. Within quantum the-
ory, the assemblages they can generate are the following:

Definition 3. Quantum Instrumental assemblages.

An assemblage {04|y }a,» has a has a quantum realisation in
the instrumental steering scenario iff there exists a Hilbert
space Ha and POVMs { M|, }a,c for Alice, a state p in
Ha ® Hp, and a collection of CPTP maps {€,}. in Hp for
Bob, such that

Oalaz = & [tI‘A {(Ma\m ® H)p}] . (7N
We denote this set of assemblages by Q.

The instrumental steering scenario has no straightforward
non-signalling constraints. Hence, in order to define gen-
eral assemblages here, we adopt the relation between non-
signalling Bell correlations and generic instrumental correla-
tions in the black-box scenario found in Ref. [25] (see also
Supplementary Material of Ref. [26]). In the instrumental
setup, where the so-called device-independent instrumental
correlations are studied, it was recently found that these corre-
lations are indeed a post-selection of the correlations found in
a Bell scenario: the post-selection procedure consists on keep-
ing the events where y = a [25]. This inspires the following
definition:

Definition 4. General instrumental assemblages.

An assemblage {043 }a,c is a general instrumental assem-
blage iff there exists a non-signalling Bob-with-input assem-
blage {wq|2y} € Gpwr such that 0,4, = Walz,y=a fOr all a
and x. We denote the set of such general assemblages by Gy.

This definition allows us to adopt the viewpoint of
Refs. [25, 26], and hence understand the assemblages in the
instrumental steering scenario as being a post-selection of
those in a Bob-with-input scenario.

Note that this connection between the Bob-with-input sce-
nario and the instrumental steering scenario allows us to in-
terpret the latter beyond the traditional way that the instru-
mental setup is presented. Usually, the instrumental setup is
such that there is signalling from Alice to Bob, since he needs
to learn her outcome in order to implement the operation on
his system. However, the particular perspective brought in by
Ref. [25], and which we adopt here, highlights that, ultimately,
this communication plays no distinct role in how resourceful
the assemblages are, since the Bob-with-Input scenario does
not allow for signalling and can simulate them.

Returning to our central question, we now show that there
is post-quantum steering in the instrumental steering sce-
nario. Moreover, we show that this does not follow from post-
quantum instrumental black-box correlations, and it is hence
another independent form of post-quantumness.

Theorem 3. The set of general instrumental assemblages
strictly contains the set of quantum instrumental assemblages,
Q1 # Gy. Hence, post-quantum instrumental steering exists.

Theorem 4. Post-quantum steering in the instrumental steer-
ing scenario is independent of post-quantum instrumental cor-
relations. Namely, there exist general assemblages {04}
that are not quantum realisable, but which can only lead to
quantum correlations p(a, b|x) in the instrumental scenario.

These two theorems are proven together in the Supplemen-
tary Material, but their proof is very similar to that of Theorem
2. The general assemblage that is used here as an example is
that which derives from (6) by setting y = a, which is both
provably post-quantum in the instrumental scenario, and can
only lead to quantum instrumental black-box correlations.

Thus, post-quantum steering is also possible within the in-
strumental scenario, and this is independent of the existence of
correlations with no quantum explanation in the fully device-
independent instrumental scenario. Hence, post-quantum in-
strumental steering is another genuinely new effect. Finally,
in terms of number of variables (inputs and outputs), the in-
strumental scenario is the simplest one where post-quantum
steering can exist.

Discussion.— Exploring plausible effects beyond quantum
theory that are nevertheless consistent with relativistic causal-
ity [23], is important from various perspectives: on the one
hand, it allows possible extensions of quantum theory to be
explored, in the light of quantum gravity [27]. On the other, it
allows us to develop a deeper understanding of quantum the-
ory itself, by identifying those properties of it that are truly
quantum [28-31]. Here, we have shown that for the important
form of nonlocality known as steering, it is possible in prin-
ciple to go beyond what quantum theory allows even when
considering only two parties, if suitable generalisations of the
traditional scenario are considered. Crucially, we showed that
our examples of post-quantum steering are genuinely new, and
are not related to other post-quantum nonlocal effects.

In addition, on the way, we also showed that post-quantum
steering is impossible in the sequential-measurement general-
isation of steering, schematically depicted in Fig. 1 (b). As
such, we have extended the GHJW no-go theorem [14, 15] to
this setting, with detailed provided in the Supplemental Mate-
rial [22].

The ‘instrumental setup’ [20, 21] is known to be the one
with the fewest number of variables able to admit a classical-
quantum gap [32]. This is closely related to the setup of
Fig. 1(d), except that Bob’s system is a classical variable.
Previously, classical-quantum gaps had been found in Bell-
type [25, 26, 33] and steering [24] scenarios. Furthermore,
quantum-post-quantum gaps have also been found in Bell-
type scenarios [25, 26]; but the existence of post-quantum in-
strumental steering remained an open question. The discovery
of the latter here thus also resolves this open question.

Going forward, the most interesting question now is to un-
derstand the power of post-quantum steering. For instance, are
there information-theoretic or physical principles that are vio-
lated by the newly-discovered forms of post-quantum steering
found here? In addition, it would be interesting to explore in-
formation processing tasks exploiting post-quantum steering



as a resource. For example, one task where traditional steer-
ing is a resource is subchannel discrimination [34]. It would
be interesting to study whether post-quantum steering gives
an advantage in tasks related to this. More generally, now that
we have uncovered post-quantum steering in a bipartite set-
ting, it paves the way for analysing a broad range of bipartite
tasks from this new direction. Indeed, we note that our newly
introduced Bob-with-input steering scenario has already been
investigated within the context of resource theories [35].

Our overarching hope is that studying quantum theory
‘from the outside’, whether from the perspective of steering,
or other nonlocal and nonclassical effects, will lead to novel
insights into the very structure of quantum theory and the pos-
sibilities and limitations of quantum theory for information
processing. We expect our results and new insights to con-
tribute to this rapidly developing and exciting field.
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