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Abstract
We investigate a variant of the fuel-based approach to modeling diverging computation in type
theories and use it to abstractly capture the essence of oracle Turing machines. The resulting objects
we call continuous machines. We prove that it is possible to translate back and forth between such
machines and names in the standard function encoding used in computable analysis. Put differently,
among the operators on Baire space, exactly the partial continuous ones are implementable by
continuous machines and the data that such a machine provides is a description of the operator as a
sequentially realizable functional. Continuous machines are naturally formulated in type theories and
we have formalized our findings in Coq as part of Incone, a Coq library for computable analysis.

The correctness proofs use a classical meta-theory with countable choice. Along the way we
formally prove some known results such as the existence of a self-modulating modulus of continuity
for partial continuous operators on Baire space. To illustrate their versatility we use continuous
machines to specify some algorithms that operate on objects that cannot be fully described by finite
means, such as real numbers and functions. We present particularly simple algorithms for finding
the multiplicative inverse of a real number and for composition of partial continuous operators on
Baire space. Some of the simplicity is achieved by utilizing the fact that continuous machines are
compatible with multivalued semantics.
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1 Introduction

The main goal of this paper is to add to the tools available for producing correct and
efficient software with strict specifications that involve high-level mathematical concepts.
Such methods are required, for example, for reliable simulations of safety-critical physical
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systems, and the number of applications is steadily growing. Computable analysis is a
formal model for reliable computation involving real numbers and other spaces of interest in
analysis. It extends classical computability theory from discrete structures to continuous
ones, replacing natural numbers as codes for abstract objects by elements of Baire space.
Computable analysis originated with Turing’s fundamental work [27] and was later extended
to a theory of computation on real numbers and functions [9, 17], and to more general spaces
by Kreitz and Weihrauch [16, 29]. The current work arose as part of our effort to contribute
to the development of a framework for conveniently formulating algorithms from computable
analysis in a setting that is both fully computational and features formal correctness proofs.
Our work has meanwhile been used to extend Incone [26], a computable analysis library
based on the proof assistant Coq. Formalizing known results may not be particularly creative,
but difficulties encountered in such an endeavour often lead to new developments. In the
present case, attempts to avoid overly heavy use of Coq’s dependent type system, and to
maintain executability within Coq in the presence of non-computational axioms have lead
us to concepts that we believe to be of theoretical interest.

We introduce “continuous machines” as an encoding of partial continuous operators
derived from the fuel-based approach to modeling diverging computation in intuitionistic
type theories [1]. Continuous machines can be understood as an abstraction of oracle machines
as used to introduce the model of computation central to computable analysis. There are
two main points that support this analogy and distinguish our approach from uses in type
theory: The first is the presence of a functional parameter that is considered an input and
that takes the role of the oracle in an oracle machine. Machines are type-two objects, which
is crucial as it makes continuity and information theoretic arguments applicable. The second
particularity is a curried discrete input, meaning that for fixed functional input we get a
function that we consider the return value if it is total, if it is not total the return value is
undefined. As a consequence, the natural domains need not be open but only Gδ sets.

These two features reflect that we really encode continuous operators, i.e. partial functions
from Baire space to Baire space, as opposed to partial continuous functionals. We consider
operator composition a natural operation, while for functionals the same operation would be
called functional substitution and is less important [5]. The emphasis on operators is in tune
with the principle of computable analysis to almost consistently replace the natural numbers
by Baire space as the base type. The reason this works is that partial continuous operators
can be encoded as elements of Baire space via the application of a partial combinatory
algebra [12, 15]. A partial operator is computable by an oracle machine if and only if there
is a computable code. Computability as a functional is also equivalent [22].

Working directly with codes from Baire space is tedious and our main result, Theorem
6, shows that continuous machines are completely equivalent: It provides a full translation
from a continuous machine to a code from Baire space and back that preserves computability.
As type-two objects continuous machines are a high-level concept and more convenient for
defining partial operators. We illustrate just how concisely algorithms on continuous data
can be formulated using continuous machines at the example of inversion of a real number in
Section 3.1. As another example we describe a simple and fairly efficient implementation
of the composition of partial operators encoded as continuous machines in Section 4.2. We
have fully automated the translations between continuous machines and Baire-space codes in
that we have defined them in Coq and provide complete formal proofs of correctness. In
fact, also the two main examples, all other important points made in this paper, and further
examples whose description we omit for space reasons, have been formalized. This should be
kept in mind as it justifies cutting down on some details for the sake of communicating the
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important ideas. Instructions on how to access our formal development and relate it to the
contents of the paper can be found on the project homepage (see supplement material listed
on the first page).

The topics of this paper can be viewed from a number of different perspectives. Clearly
there are links to type theory. In particular, the results have been formalized in the type
theory based proof assistant Coq. The main object of investigation can be understood as
a variant of the fuel-based approach to modeling divergent computations in constructive
type theories. A survey of such methods presented in type-theoretic language and many
relevant references can be found in [1]. However, here we avoid a type-theory-like presentation
and prefer mathematical notation consisting of a mix of conventions commonly found in
computable analysis and game-centered parts of higher-order computability and programming
language theory [21]. In particular we choose to illustrate the use of fuel with Turing machines
and oracle machines directly to avoid pointers to type theory in the body of the paper.

The connection of our work to higher-order computability theory is reflected in a possible
interpretation of the main result: we provide yet another characterization of the sequentially
realizable functionals [20]. The connection to computable analysis is also evident and it
is our main source of examples. Some of these examples nicely illustrate connections to
precompleteness, constructions forcing precompleteness and completions [16, 24]. These
concepts have quite some history but have recently been rediscovered for their applications in
the theory of Weihrauch reductions and in complexity theory for computable analysis [7, 2].

Partial operators on Baire space can also be captured in Coq’s type theory, where
partiality is reflected in the use of sigma-types as inputs, i.e. by taking as input a dependent
pair of the actual input and a proof that this input is from its domain. While continuous
machines provide additional information over a direct definition in Coq, we believe that on
the computability level this difference is irrelevant as the information can be read off from
each respective Coq term. For an equivalent of a fragment of the Coq terms, an extraction
of the additional information a continuous machine provides has been formalized in Agda
[30]. We know that an internal formulation of such a result that covers all definable functions
in Coq is impossible. It involves extracting a modulus of continuity and there are known
obstructions to extracting this information extensionally [10]. The support of tactics and
Coq’s formalization of Coq, i.e. the MetaCoq project [25] should allow to adapt the work
in Agda and extend the extraction to cover all or at least the majority of relevant Coq
terms [8].

We give a quite detailed sketch of the proof of our main theorem (Theorem 6) but for
space reasons did not include most of the other proofs. Some of them can be found in
the appendix. Note that fully formal versions of all proofs are also contained in our Coq
development and that a longer and more exhaustive version of this paper that also contains
some additional results is available [14].

2 Computable analysis revisited

Let Q and A be two sets that we understand to consist of questions and answers. We
always assume these sets to be countable, and in all concrete examples considered specifying
explicit bijections with the natural numbers is straightforward. In the following we restate
standard definitions from computable analysis where we insert Q and A for the appropriate
copies of N. A representation of a set X is a partial surjective function δ : ⊆ AQ → X.
For x ∈ X, each ϕ : Q→ A with δ(ϕ) = x is called a name of x and should be understood
to provide on-demand information about x. I.e. if ϕ is a name of x then given a question
q ∈ Q about x the value ϕ(q) ∈ A is a valid answer to the question. Call B := AQ the space
of names of the representation, B due to the case Q = N = A where it is the Baire space.

MFCS 2020
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A represented space is a pair X := (X, δX) where δX is a representation of X. The
representation induces topological and computability structures on the set X. Namely, X
can be made a topological space by considering the final topology of the representation and
an element of a represented space is called computable if it has a computable name. The
latter of course presumes that Q and A are such that it is clear what computability of a
function from Q to A means; which is in particular the case when Q and A come with
explicit bijections to N. More generally, Q and A can be thought of as being equipped with
a numbering. If a topological space is given and a representation is to be constructed, then
the candidates are expected to reproduce the given topology.

I Example 1 (RQ: Reals via rational approximations). One possible way to represent real
numbers is via rational approximations. The rational representation of the real numbers
is the unique partial function δRQ : ⊆ QQ → R that satisfies the specification

δRQ(ϕ) = x ⇐⇒ ∀ε > 0: |x− ϕ(ε)| ≤ ε.

We denote the corresponding represented space by RQ and use it as one of the running
examples. The represented space RQ is widely considered to provide the “correct” computab-
ility structure on the real numbers and sometimes even used as a benchmark representation
in work that reasons about complexity in the setting of computable analysis [13, 18]. The
rational representation is fairly convenient: It provides a simple question and answer structure
and an intuitive interface for accessing information about real numbers. It only uses a single
additional type, namely Q, which has a well-developed theory in Coq’s standard library.

2.1 Continuous and computable functions
Fix some represented spaces X and X′. Let B := AQ be the space of names of the
representation δX of X and B′ := A′Q′ that of δX′ . As Q, A, Q′ and A′ are countable, we
may think of them as discrete spaces and it makes sense to talk about continuity of operators
F : ⊆ B → B′. Such an operator is continuous if its return values are determined by a finite
number of values of its input function. That is, if for all ϕ ∈ dom(F ) and each q′ ∈ Q′ there
exists a finite list of questions q ∈ seq Q such that

∀ψ ∈ dom(F ) : ϕ|q = ψ|q =⇒ F (ϕ)(q′) = F (ψ)(q′)

where ϕ|q denotes the restriction of ϕ to q. Since Q and Q′ are countable, equivalent
definitions can be obtained by introducing metric structures on B and B′ or by requiring a
continuous function to preserve limits of sequences. These equivalences are useful for abstract
reasoning about continuity and formal versions are available in the Incone library [26]. In
the case where all question and answer sets coincide with the natural numbers, computability
of operators can be introduced by means of oracle machines. An oracle machine is a machine
with a marked oracle query and answer states and a marked oracle tape. The run of such a
machine on oracle ϕ ∈ B is defined as the run of a regular machine but any time the oracle
query state is entered, the content q of the oracle tape is replaced by ϕ(q) and the state is
changed to the answer state. For some background and more details we point the reader to
[11]. It should be kept in mind that the oracle is considered an input to the computation and
despite the name and other applications of the same concept with fixed oracle, this makes
oracle machines a realistic model of computation.

An operator F : ⊆ B → B′ is said to realize a function f : X→ X′ if for each name ϕ of
some x ∈ X the value F (ϕ) is a name of f(x) ∈ X′. A function between represented spaces
is called continuous or computable if it has a realizer with that property. In all cases we
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are interested in, this notion of continuity coincides with topological continuity w.r.t. the
final topology of the representations and the natural topology on the spaces. Without going
into detail, this is because we only consider admissible representations [24].

Continuity is a prerequisite for computability. The real numbers are connected, discrete
spaces are totally disconnected and images of connected sets under continuous functions are
connected. For this reason each non-constant function from the reals to the Booleans fails to
be computable. This argument covers equality checks, comparisons and other operations
that are routinely used and seem indispensable for applications. Often, computability can be
recovered by replacing a discrete target space by an appropriate non-discrete finite space.

I Example 2 (Sign function and Kleeneans). The sign function is discontinuous as a function
from the reals to a discrete space (e.g. its image as a subspace of the reals ). A computable
version can be recovered by replacing its three possible values with elements of the following
space: For any set Q, denote by opt Q be the union of Q with a new element None and
use Some q for the element of opt Q corresponding to q ∈ Q. Consider the three-point set
{trueK, falseK,⊥K} and equip it with a representation δK on names of type N→ optB by

δK(ϕ) =
{
bK if ∃n, ϕ(n) = Some b and ∀m < n,ϕ(m) = None
⊥K otherwise.

That is, the constant None sequence is a name of ⊥K and for any other sequence the first
element that is not None determines which of trueK and falseK is named.

We refer to K := ({trueK, falseK,⊥K}, δK) as the Kleeneans as it models the behavior
of three-valued logics considered by Kleene. Note that the representation is total, i.e. all
sequences are valid names, which makes it convenient to define realizers of functions into
the space. When defining functions that use the Kleeneans as an argument, it is often more
convenient to require names to be monotone in the sense that if the sequence contains true
or false, the subsequent values remain the same. The use of this restriction does not change
the space, as an arbitrary name can be computably transformed into a monotone name. The
sign function as a function from the reals to the Kleeneans can be defined from the Boolean
comparison on the reals as

signK(x) :=
{

(0 < x)K if x 6= 0
⊥K otherwise.

Where the strict inequality could as well have been replaced by non-strict inequality as the
case x = 0 is treated separately anyway. A continuous realizer of the sign as a function of
type RQ → K can be specified from the Boolean comparisons on the rational numbers as

F (ϕ)(n) :=
{

Some(0 < ϕ(2−n)) if |ϕ(2−n)| > 3 · 2−n

None otherwise.

As comparison of rational numbers is decidable, this realizer is computable. To verify its
correctness note that if ϕ is a name of 0, then |ϕ(2−n) − 0| ≤ 2−n implies that F returns
the constant None sequence. If ϕ is a name of some x 6= 0 then there exists some n such
that 2−(n−2) < |x| and thus |ϕ(2−n)| > 3 · 2−n by a use of the reverse triangle inequality.
Whenever we are in the first case it follows that as Booleans 0 < ϕ(2−n) = 0 < x. In
combination of these we conclude that F returns a name of the correct value.

The requirement to be greater than 3 · 2−n in the definition of F can be replaced by
just demanding the same value to be greater or equal 2−n while maintaining correctness.
However, the former forces that the realizer always returns names that are monotone in
the sense discussed above. To verify this note that as |ϕ(2−n)− ϕ(2−(n+1))| ≤ 3 · 2−(n+1),
whenever |ϕ(2−n)| > 3 · 2−n it follows that |ϕ(2−(n+1))| > 3 · 2−(n+1).

MFCS 2020



56:6 Continuous and Monotone Machines

3 Multifunctions and abstract machines

In computable analysis it is often the case that continuity fails for extensionality reasons and
dropping extensionality by using multivalued functions is a popular and powerful tool to work
around such problems. A multivalued function from a set X to another set Y assigns to each
element x ∈ X a set of eligible return values F (x) ⊆ Y . This set may be empty and those
x for which it is non-empty are considered to constitute the domain dom(F ) ⊆ X. The
multifunction is called total if its domain is all of X and single-valued if it only returns
sub-singletons, i.e. each value set has at most one element. Each partial function can be
considered a single-valued multifunction; this multifunction uniquely specifies the partial
function and is total if and only if the partial function is.

A partial function f is said to choose through a multifunction F if for each x ∈ dom(F )
it returns an eligible return value, i.e. f(x) is defined and an element of F (x). Note that the
domain of the partial function can be bigger than that of the multifunction. A multifunction
should be considered a specification of all partial functions that choose through it. This
defines an important ordering on the multifunctions: A multifunction F is said to tighten
another multifunction G, in symbols F ≺ G, if any partial function that is a choice for F is
also a choice for G or equivalently F ≺ G if and only if

dom(G) ⊆ dom(F ) and ∀x ∈ dom(G), F (x) ⊆ G(x).

For partial functions f ≺ g if and only if f is an extension of g. A partial function f chooses
through a multivalued F if and only if f ≺ F . Multivalued functions from X to Y are in one
to one correspondence with relations, i.e. subsets of X × Y . However, multivalued functions
should be understood as directed and thus the natural operations such as composition differ.

Recall that a function f : X → Y between represented spaces is realized by some
F : ⊆ B → B if F translates names of x ∈ X to names of f(x). An alternate way to
express this is that δY ◦ F is an extension of f ◦ δX. This suggests a lift to multivalued
functions: a multifunction g : X ⇒ Y is realized by another multifunction G : B ⇒ B if
δY ◦ G ≺ g ◦ δX. This definition behaves as expected, in particular for partial functions:
An operator realizes a partial function if and only if it is a realizer w.r.t. the subspace
representation on the argument space. For multifunctions, being a realizer is preserved
under tightening the realizer and “loosening” the realized function. As continuity and
computability are preserved under composition and multifunction composition is compatible
with tightenings, the notions of continuous and computable realizability compose well. While
any multivalued function is uniquely determined by its partial choice functions, the same
need not be true for continuous partial functions: A continuously realizable multifunction
need not have any partial continuous choice functions at all.

As we are mostly interested in continuous and computable realizers, one may argue that
allowing multivalued realizers is not necessary. Continuity makes sense only for functions, or
at least is known to be problematic in the presence of multivaluedness [23]. However, we
shall use a notion of algorithms that can a priori give multivalued results. Although it is
possible to force single-valuedness, it can be convenient to not always do this right away
and the notion of multivalued realizers turns out to be useful. Another consequence that is
useful in other parts of computable analysis is that when multivalued realizers are allowed,
any multifunction g between represented spaces has a unique realizer that is maximal with
respect to tightenings, namely δ−1

Y ◦ g ◦ δX [3].
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3.1 Algorithmic content and machines
Now that we discussed the tools we need for specification, the next step is to see how to
produce computational objects that can fulfill these specifications. In particular, we are
interested in devising operators, that is, partial functions on Baire space or Baire-space-like
spaces of functions. We take the fuel-based approach for capturing divergence in type theories
and adapt it to the operator and oracle machine setting of computable analysis. As before,
fix some countable sets Q, A, Q′ and A′ and abbreviate B := AQ and B′ := A′Q′ . To each
function M : B → opt(A′)N×Q′ assign a multifunction FM : B ⇒ B′ whose return value on
input ϕ is the set {ψ ∈ B′ | ∀q′,∃n,M(ϕ)(n, q′) = Some(ψ(q′))}. This set can be empty or
contain more than one element but for each ϕ ∈ B the set FM (ϕ) is a closed subset of B′.

Whenever an operator F can be computed by an oracle machine, M can be chosen to be
the function that on inputs ϕ, n and q′ runs the oracle machine for up to n time steps on
input q′ and oracle ϕ, in case of termination returns Some a′ where a′ is what the machine
returned and otherwise returns None. Then FM is single-valued and the corresponding
partial function extends F . The values of F can be recovered from those of M by searching
through increasing values of n, and for a general M this gives a choice function of FM . Coq’s
standard library proves a restricted choice principle called constructive epsilon that can be
used to recover a choice function of FM as a dependently typed function when given an
arbitrary function M . Internally this leads to a linear search through the values.

Motivated by the oracle machine example, we call a function M a machine for F if FM
tightens F . This analogy should be taken with a grain of salt, and, in particular, it does not
appropriately reflect the role played by the natural number input n. We refer to n as the
effort parameter, and while higher values do usually indicate a higher time consumption
of the computation, it need not be directly related to the running time. In particular, we
refrain from interpreting the effort parameter as ordering a computation into a sequence of
steps and instead embrace the view that it is a functional input.

For illustration, let us discuss the task of finding a multiplicative inverse in the rational
representation. Consider x 7→ 1/x as a partial function on the represented space RQ from
Example 1. The function is partial as it is undefined in 0. We define a function M : B →
optQN×Q of which we claim that FM : B ⇒ B is a realizer of inversion: Let

M(ϕ)(n, ε) =

Some 1
ϕ(min{δ, εδ2}/2) if δ := |ϕ(2−n)| − 2−n > 0

None otherwise.

Or in words: Use n as a guess for how precise one has to know x to bound it away from zero
and return an approximation to the inverse that can be straight forwardly computed once
x is bounded away from zero. Unfolding of the definitions reveals that to demonstrate the
correctness of our assertion we have to prove that for all x 6= 0

δ−1
RQ

(x) ⊆ dom(FM ) ∧ ∀ϕ ∈ δ−1
RQ

(x) : FM (ϕ) ⊆ δ−1
RQ

(1/x).

This should be understood as two statements: Firstly that the domain of FM includes all
names of real numbers from the domain of the inversion function, and secondly that on valid
arguments it only returns correct values.

To prove the first of these statements, let ϕ be a name of some x 6= 0. It suffices to pick
n larger than log2(|1/x|) to avoid the second case and thus the domain of FM is big enough.
To check the second condition, i.e. that FM only returns correct values, let ϕ be a name of x.
It suffices to check for each ε > 0 that M(ϕ)(n, ε) = Some r implies that |r − 1/x| ≤ ε. If the
assumption of this implication is true, then we have δ := |ϕ(2−n)| − 2−n > 0 and we know

MFCS 2020
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the value of r. First note that |x| ≥ δ as can be seen using the inverse triangle inequality and
that δ is positive. This, together with another application of the inverse triangle inequality,
leads to

|ϕ(min{δ, εδ2}/2)| ≥
∣∣∣|x| − min{δ, εδ2}

2

∣∣∣ ≥ δ

2

and allows us to conclude that∣∣∣ 1
ϕ(min{δ, εδ2}/2) −

1
x

∣∣∣ = |ϕ(min{δ, εδ2}/2)− x|
|ϕ(min{δ, εδ2}/2)x|

≤ min{δ, εδ2}
δ2 ≤ ε.

As the left-hand side is the value of r this proves the correctness of return values.
The function M is computable as all operations it uses on the rational numbers are

computable. Note that FM is properly multivalued. In general, computability should imply
continuity, but this does not make sense here as continuity only makes sense for single-valued
functions. This can be resolved by removing the multivaluedness of FM via picking its value
on the smallest n for which it returns something. Realizability is preserved under tightening,
thus the function obtained in this way is a realizer again. As searching is a computable
operation, this realizer is still computable, which is reflected in the fact that it can be defined
as a dependently typed function in Coq from the definition of M as above.

4 Machines as names of functions

It is true that for every partial operator F there exists some machine M such that FM
extends F . This means that we can understand M as a description of F in a similar way
to how representations work. Nevertheless, as the candidates for question and answer sets
are full function spaces and thus uncountable, this does not formally define a representation.
Access to M alone is an inconvenient set of information in the sense that it is difficult to
maintain. For instance, given such information for two operators F and G, it can not be
easily found for the operator F ◦ G. This is because G(ϕ) and thus the input for F can
only be approximated from access to a machine for G. Only when restricting to continuous
operators, can one hope to succeed by extending some finite sub-function in an arbitrary
way. To guarantee that this does not interfere with the correctness of the return values, one
needs explicit continuity information about F .

Fix some Q, A, Q′ and A′ and use the abbreviations B := AQ and B′ := A′Q′ . A set of
continuity information about a continuous function that is often used in constructive analysis
is a modulus function. A function µ : ⊆ B → (seq Q)Q′ is called a modulus of an operator
F : ⊆ B → B′ if it is a Skolem function of the continuity statement from Section 2.1 in the
sense that for all ϕ,ψ ∈ dom(F ) and q′ ∈ Q′

ϕ|µ(ϕ)(q′) = ψ|µ(ϕ)(q′) =⇒ F (ϕ)(q′) = F (ψ)(q′). (1)

In particular dom(F ) ⊆ dom(µ) as otherwise the premise of the implication does not make
sense. A modulus µ may itself be considered an operator and the type of a modulus of µ
coincides with the type of µ itself. It thus makes sense to call a modulus self-modulating
if it is its own modulus.

I Proposition 3. Any continuous partial operator has a self-modulating modulus of continuity.
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Call a pair (M,µ) a continuous machine if M is of type B → opt A′N×Q′ and µ is a self-
modulating modulus of M . Say that a continuous machine (M,µ) implements an operator
F : ⊆ B → B′ if FM tightens F . Let us emphasize that the function µ above is a modulus
of continuity of the machine M itself and not of a potential operator F that it computes.
In particular, just like M itself, the modulus µ is always a total function. Proposition 5
below implies that from µ one can obtain a modulus of continuity of any operator that
is tightened by FM . However, it is not difficult to construct a discontinuous M such that
FM is a continuous partial function and thus a modulus of FM is not enough information
to recover one of M . Thus, a modulus of the computed operator should be considered to
provide strictly less information than µ.

If M is constructed from an oracle machine, a computable self-modulating modulus µ
for M can be readily read off the oracle machine by following the queries that the machine
writes to its oracle tape. The resulting pair (M,µ) is a continuous machine that implements
F . More generally, every continuous operator can be implemented by a continuous machine.

I Proposition 4. If F : ⊆ B → B′ is continuous then there exists some continuous machine
that implements it.

Just like it is possible to reconstruct the values of F from M , a modulus for F can be
reconstructed using the additional information that a continuous machine provides.

I Proposition 5. A machine that computes a modulus for F : ⊆ B → B can be obtained in a
fully uniform way from a continuous machine that implements F . The construction can be
done in such a way that it preserves being self-modulating.

Here and in the following results by “fully uniformly” we mean that the transformation can
be defined in a fragment of Coq’s type theory small enough to not go beyond definability
in system T when all the question and answer types are the natural numbers. Adding a
self-modulating modulus µ to a machine completes the set of information about F in the sense
that a continuous machine implementing a realizer of some function between represented
spaces contains exactly the amount of information that one would expect to be specified
about such a function in computable analysis. To understand this in more detail let us first
recall how computable analysis treats spaces of functions.

4.1 Function spaces and continuous machines
In this part we make the additional assumption that the question type Q features decidable
equality to allow encoding finite functions as lists over seq(Q×A). The decidable equality
on Q is needed to make evaluation and checking for inclusion of a finite list in the domain of
the finite function definable. In Incone each question type of a represented space comes
with a default question qd ∈ Q. For convenience this section also assumes a default answer
to be available. This can be avoided by using the answer for the default question instead.

Fix some represented spaces X and X′ whose spaces of names are B = AQ and B′ = A′Q′

respectively. In the following use ? as notation for the right inclusion into A′ + seq Q and !
for the left inclusion, i.e. a question mark for a list of questions and an exclamation mark
for an answer. For a fixed function ψ : seq(Q×A)×Q′ → A′ + seq Q and fixed ϕ ∈ B and
q′ ∈ Q′ inductively define a sequence of finite functions φn ∈ seq(Q×A) by φ0 := ε and

φn+1 :=
{
φn ++ ϕ|q if ψ(φn, q′) = ?q
φn otherwise.
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FMψ

φ := ε

(φ, q′)

ψ

d
d = ? q

d = ! a′

q1, . . . , q|q|

ϕ

ϕ(q1) . . . ϕ(q|q|)

append to φ

q′
a′

Figure 1 Some ψ is a name of a function f : X→ X′ iff FMψ realizes f . The box with pointy
corners represents a realistically implementable algorithm while ϕ and ψ may be computable or
non-computable and are therefore depicted with rounded corners. Whenever ψ is computable and
has pointy corners, also FMψ will be computable and can be depicted with pointy corners.

From this sequence define a machine Mψ as follows:

Mψ(ϕ)(n, q′) :=
{

Some a′ if ψ(φn, q′) = !a′

None otherwise.

The function-space representation δX′X assigns ψ as name to a function f : X → X′
if and only if FMψ

realizes f (see Figure 1). That is, the space of names is given by
BX′X = (A′ + seq Q)seq(Q×A)×Q′ . In particular the questions and answers are countable.
While our presentation is different, the central idea coincides with that behind Weihrauch’s η
[29]. Straightforward computations show that µψ(ϕ)(n, q′) := dom(φn) is a self-modulating
modulus of Mψ and thus (Mψ, µψ) is a continuous machine and that FMψ

is single-valued
and therefore also continuous by Proposition 5. The set underlying the represented space
XX′ are exactly the continuous functions. Call ψ an associate of F : B ⇒ B′ if FMψ

tightens
F . Then ψ is a name of f if and only if it is an associate of a realizer of f and any associate
of F can be used to obtain a continuous machine that implements F .

Let us argue that the converse also holds, i.e. that from a continuous machine (M,µ) one
can obtain an associate ψM,µ of FM . To get an intuition for what an associate of FM should
be doing, first consider the computable case where an actual oracle machine is available.
The main obstacle in this case is that the associate is required to be total and divergences
of the oracle machine need to be taken care of. Define an associate ψ of the operator as
follows: given a finite function φ and some question q′ run the oracle machine for at most
|φ| steps while looking up the answers to the questions that the oracle machine asks in the
finite function. If the lookup fails for a question q ∈ Q, then return ?(q). If all lookups are
successful and the machine terminates with return value a′ return !a′. In case that |φ| steps
are exceeded without either happening, return ?(qd) where qd is the default question of X.

Next, let us discuss how to supplement full inspection capabilities into how an operator
is computed with access to a self-modulating modulus. For illustration, we consider only the
special case where F is total and let µ be a self-modulating modulus of F itself. That is, we
drop the effort parameter and remark that this simplification is partially justified by the last



M. Konečný, F. Steinberg, and H. Thies 56:11

Fig. 1

(φ, q′)

ϕφ

µ

(i, q′) q
?
⊆ domφ

ϕφ

M

(i, q′) o
?= None

7

3

 ?(q \ domφ)
7

3

o = Some(a′)  !a′

i
?
< |φ|

7

3

 ?(qd)

increase i
i := 0

Figure 2 Constructing an associate ψM,µ from a continuous machine (M,µ). Here, ϕφ is the
total function that extends φ with a default value. If M and µ come with algorithms to compute
them, we obtain an algorithm for ψM,µ.

paragraph, which argues that divergences can be taken care of. Thus, for fixed inputs ϕ, q′,
an associate should attempt to get hold of µ(ϕ)(q′), as this is the set of arguments whose
return-values its final answer should depend on. However, the associate does not have access
to ϕ but only to a finite sub-function φ. Let ϕφ denote the constant extension of φ with some
default answer ad. The associate may on input of φ and q′ use ϕφ as a replacement for ϕ.
However, ϕ and ϕφ can only be expected to coincide on dom(φ) and so µ(ϕ)(q′) and µ(ϕφ)(q′)
could be different. This is where µ being self-modulating comes in: the values of the modulus
coincide whenever µ(ϕφ)(q′) ⊆ dom(φ), and this condition can be checked by the associate.
Thus, let the associate on input of φ and q′ check whether µ(ϕφ)(q′) ⊆ dom(φ). If this test
fails ask for the difference, i.e. return ?(µ(ϕφ)(q′) \ dom(φ)). If the test is successful, then
µ(ϕφ)(q′) = µ(ϕ)(q′) and the associate can safely return !F (ϕφ)(q′) as µ is a modulus of F .

By construction, the candidate for an associate that we implicitly defined in the last
paragraph is an associate of a restriction of F . However, as the modulus is evaluated on
functional inputs different from the actual input in relevant places, an argument is needed to
see that the iteration is always finite. First argue that the sequence ϕn := ϕφn converges to
some limit ψ ∈ BX. This is because for some fixed q ∈ Q either there exists some n such that
q ∈ dom(φn), in which case ϕk(q) = ϕ(q) for all k bigger than n, or there does not exist such
an n and ϕk(q) = ad for all k. As µ is self-modulating, it is continuous, and since all question
and answer types are countable, also sequentially continuous. Thus µ(ϕn) converges to µ(ψ)
and there exists some k such that µ(ϕm)(q′) = µ(ψ)(q′) for any m ≥ k. In particular k + 1
is a sufficiently large effort to lead the evaluation of the associate to return a value. Figure 2
shows the behaviour of the associate we used for the proof of the following theorem.

I Theorem 6. There exists a fully uniform way to construct from a continuous machine
(M,µ) and default elements qd ∈ Q and ad ∈ A an associate of FM .

4.2 Continuous machines and monotonicity
Continuous machines and associates theoretically contain the same information about a
continuous operator. However, in practice continuous machines are vastly superior to
associates if the task is to directly implement and formally prove the correctness of an
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algorithm. The skeptical reader may revisit the example of inversion from Section 3.1,
supplement a self-modulating modulus and extract an associate. Totality of the associate and
encoding finite functions by lists introduces irrelevant default values and correctness proofs
tedious due to complicated induction recursion arguments. Translating from continuous
machines takes part of these burdens off the user.

As the concept of an associate is linked to partial combinatory algebras (c.f. for instance
[28]), many operations on continuous operators are in principle implementable for associates
and thus also for continuous machines. For implementation of operations on continuous
operators, both working with associates and working with machines is unhandy but for
somewhat different reasons. While associates are difficult to construct, a continuous machine
as input makes some important information not readily available. One way of reflecting the
difference in rigidity of the concepts is to translate back and forth between them. While any
continuous machine can be translated to an associate, the machines that are obtained from
an associate have very special properties some of which can be maintained separately. Strictly
speaking, that the modulus is self-modulating is already an example of such a property as,
so far, all arguments still work if it is only required to be sequentially continuous.

A property of continuous machines that can be propagated with relatively low effort and
vastly simplifies implementation of operations such as composition is monotonicity in the
following sense: Call a machine M monotone if M(ϕ)(n, q′) = Some a′ implies that for any
m ≥ n it holds that M(ϕ)(m, q′) = Some a′. Call a continuous machine (M,µ) a monotone
machine if M is monotone and µ terminates with M in the sense that once M returns a
value, further increasing the effort on the same inputs does not lead µ to return bigger lists.

For a monotone machine M , the operator FM is single-valued. The machine we used to
implement inversion in Section 3.1 is not monotone. A continuous machine constructed from
an oracle machine as outlined previously and those constructed from associates as outlined in
the previous subsection are monotone. Thus, if equality on Q is decidable, translating from
a continuous machine to an associate and back allows to force monotonicity. There is also a
direct method that works without additional assumptions about question and answer sets.

I Proposition 7. From a continuous machine (M,µ) a monotone machine that implements
a choice function of FM can be obtained. This construction can be done fully uniformly.

Monotone machines are easier to operate on as it is not necessary to keep track of the
exact value of an effort that leads to a return value but an upper bound is sufficient.

I Theorem 8. From monotone machines (M,µ) and (M ′, µ′) another monotone machine
(M ′ ◦µ′ M,µ ◦M µ′) such that FM ′◦µ′M = FM ′ ◦ FM can be obtained in a fully uniform way.

Similar results hold for other basic operations. Continuous machines can be composed by
first making them monotone and then composing them. There is also a more direct way of
composing continuous machines but we failed to produce a simple description, the proofs of
correctness are complicated and in experiments it did not perform well.

5 Conclusion

This paper is formulated from a point of view of computable analysis. Computable analysis
traditionally investigates known theorems from analysis and functional analysis concerning
their computational content. The mathematical background is developed over a classical
meta-theory as are correctness proofs of algorithms. An important part of computable analysis
is that incomputable and discontinuous functions are not excluded and the classification
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of problems according to their degree of incomputability or discontinuity via Weihrauch
reducibility is frequently studied [3]. Our work and the Incone library follow the traditions
of computable analysis in the Coq development and as mathematicians we found working
over a strong meta-theory convenient. A clear drawback is that providing computational
content often means refining classical proofs and leads to some redundancy. However, starting
with a classical proof and effectivize step by step is often instructive.

Represented spaces relate to concepts popular in constructive analysis: A representation
defines a partial equivalence relation on its names by ϕ ∼ ψ ⇐⇒ δ(ϕ) = δ(ψ). Conversely,
given a partial equivalence relation on Baire space one can consider the quotient space
and consider the quotient mapping a representation. Formulating everything using the
equivalence relations, mentioning X can be avoided completely. This approach is for instance
followed by developments like C-CoRn [6]. A function is called a morphism if it respects
the equivalence relations and each such function induces a corresponding function on the
equivalence classes that it realizes with respect to the quotient mapping as representation.
Coq does not support quotient types and a direct description of the set of equivalence classes
is additional information. Definability of a function on abstract description need no longer
correspond to computability. Variations of this approach exist in Coq and other proof
assistants under the name “refinements” [4, 19], but the objectives and with them which
concepts are considered basic or useful differ significantly from our setting.

In our presentation we completely skipped the discussion of dialogue trees and jumped to
associates directly. In work about total functionals and mathematical work, dialogue trees
play a central role. Partial functions can be captured using a coinductive type of such trees.
We decided against this due to negative experiences with coinduction in Coq, but we may
try in the future. It may also be worth looking into sequentiality concerns closer: While
continuous machines characterize a sequential model of computation, they are seemingly
non-sequential as the computations for different efforts may take distinct paths and need not
be increasing in any way.
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A Proofs

Proposition 3

Fix an enumeration of Q. Let µ be the function that returns the minimal initial segment
with respect to this enumeration such that the implication (1) is fulfilled. Since F is
continuous, µ is well defined. It is a modulus by definition and it can be checked that it is
also self-modulating.

Proposition 4

Let d : seq(Q ×A) → opt(B) be a function that, if the input list is the graph of a finite
function φ, returns some ϕ ∈ dom(F ) such that φ = ϕ|dom(φ) if such a ϕ exists and otherwise
returns None. Let µ a self-modulating modulus of F that exists by Proposition 3 and (qn)n∈N
an enumeration of Q. Let M(ϕ)(n, q′) be given by

Some(F (ϕ′)(q′)) if d(ϕ|(q1,...,qn)) = Someϕ′

and µ(ϕ′)(q′) ⊆ (q1, . . . , qn)
None otherwise.

If M returns something, the return value is correct because µ is self-modulating. On the
other hand, whenever ϕ ∈ dom(F ), there exists some n such that µ(ϕ)(q′) ⊆ (q1, . . . , qn) and
for this n the machine reproduces the value of F . Clearly, the values of M depend only on
the values of ϕ on (q1, . . . , qn), where n is such that µ(ϕ′)(q′) ⊆ (q1, . . . , qn). Just returning
(q1, . . . , qn) is a modulus of M that is independent of ϕ and thus self-modulating.

Proposition 7

Consider the monotone machine uf(M) (for “use first”) defined as follows: on input of ϕ, n
and q′ search for the smallest m ≤ n such that a return-value is produced and return this
value, if no such m exists return None. As uf(M) is monotone, Fuf(M) is a partial function
and it respects the interpretation of M in the sense that Fuf(M) is a choice function for the
multivalued function FM .

A version uf(µ) of the modulus such that (uf(M),uf(µ)) is a monotone machine can be
defined by

uf(µ)(ϕ)(n, q′) :=
⋃

{i|i≤n∧∀j<i : M(ϕ)(j,q′)=None}

µ(ϕ)(i, q′).

We omit the straight forward computation that this modulus is appropriate.
The modulus takes a union over all previous values, which leads to an undesirable

overestimation. As a consequence, the modulus is monotone in the sense that the lists it
returns grow with increasing effort and, while this can be a useful property, it is not required
for the modulus of a monotone machine. One may be tempted to improve the construction
by omitting the values of the modulus where M returns None. Unfortunately, the function
obtained in this way is in general neither a modulus of uf(M) nor self-modulating.

Theorem 8

Let (M,µ) and (M ′, µ′) be monotone machines such that FM : AQ ⇒ A′Q′ and FM ′ : A′Q′
⇒

A′′Q′′ . Define the monotone machine composition as follows: First fix some default
element a′d∈A′ and for each function ϕ : Q→A define a sequence of functions ϕ′n : Q′→A′ by

ϕ′n(q′) :=
{
a′ if M(ϕ)(n, q′) = Some a′

a′d otherwise.
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Use domn as shorthand for the set of elements q′ ∈ Q′ such that there exists an a′ with
M(ϕ)(n, q′) = Some a′. Note that whenever ϕ ∈ dom(FM ), then ϕ′n and FM (ϕ) coincide on
domn by these definitions. Let (M ′ ◦µ′ M)(ϕ)(n, q′′) be{

M ′(ϕ′n)(n, q′′) if µ′(ϕ′n)(n, q′′) ⊆ domn

None otherwise.

Here, we put the index µ′ at the composition as the outcome may be different for different
valid moduli µ′ of M ′. Define the composition of the moduli by

(µ ◦M µ′)(ϕ)(n, q′′) :=
⋃

q′∈µ′(ϕ′
n)(n,q′′)

µ(ϕ)(n, q′).

Just like the composition of machines depends on µ′, the composition of moduli depends on
M via the definition ϕ′n.

The above correctly implements composition. To see this, Let us first argue that
the composition is monotone again. For this fix some inputs ϕ and q′′ and assume that
(M ′ ◦µ′ M)(ϕ)(n, q′′) = Some a′′. This can only be the case if µ′(ϕ′n)(n, q′′) ⊆ domn and
M ′(ϕ′n)(n, q′′) = Some a′′. To prove monotonicity we need to show that the same is true
if n is replaced by n + 1. Since M ′ is monotone it is sufficient to prove the list returned
by the modulus to be included in domn+1. Since M is monotone, ϕ′n and ϕ′n+1 coincide
on domn. As µ′ is a modulus of M ′, it holds that M ′(ϕ′n+1)(n, q′′) = Some a′′. Since µ′
terminates with M ′, we get µ′(ϕ′n+1)(n+ 1, q′′) = µ′(ϕ′n+1)(n, q′′). Finally, using that µ is
self-modulating, we conclude

µ′(ϕ′n+1)(n+ 1, q′′) = µ′(ϕ′n+1)(n, q′′)
= µ′(ϕ′n)(n, q′′) ⊆ domn ⊆ domn+1 .

We omit the details of how to verify that the modulus is appropriate, and only outline
how to prove the more important half of the equality, namely that the left-hand of the
equation extends the right-hand side. For this assume that the right-hand side is defined in ϕ.
This means that ϕ ∈ dom(FM ) and FM (ϕ) ∈ dom(FM ′). Consider the sequence of functions
ϕ′n as defined above and note that since M is monotone and ϕ ∈ dom(FM ), this sequence
converges to FM (ϕ). Since µ′ is self-modulating, it is in particular sequentially continuous
and therefore the sequence µ′(ϕ′n) converges to µ′(FM (ϕ)). This means that for any fixed q′′
we can first pick n big enough for M ′(FM (ϕ))(n, q′′) to take a value, then increase it further
so that for all k ≥ n it holds that µ′(ϕ′k)(n, q′′) = µ′(FM (ϕ))(n, q′′). As µ′ terminates with
M ′, further increasing n will no longer change the list it returns and we can use this to make
sure that it is contained in domn as domn eventually contains every element of Q′. As q′′
was arbitrary, the left-hand side is defined and equal FM ′(FM (ϕ)).
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