Docker Container-Based Big Data Processing
System in Multiple Clouds for Everyone

Nitin Naik
Defence School of Communications and Information Systems
Ministry of Defence, United Kingdom
Email: nitin.naik100@mod.gov.uk

Abstract—Big data processing is progressively becoming es-
sential for everyone to extract the meaningful information from
their large volume of data irrespective of types of users and
their application areas. Big data processing is a broad term
and includes several operations such as the storage, cleaning,
organization, modelling, analysis and presentation of data at a
scale and efficiency. For ordinary users, the significant challenges
are the requirement of the powerful data processing system and
its provisioning, installation of complex big data analytics and
difficulty in their usage. Docker is a container-based virtualization
technology and it has recently introduced Docker Swarm for
the development of various types of multi-cloud distributed
systems, which can be helpful in solving all above problems
for ordinary users. However, Docker is predominantly used in
the software development industry, and less focus is given to
the data processing aspect of this container-based technology.
Therefore, this paper proposes the Docker container-based big
data processing system in multiple clouds for everyone, which
explores another potential dimension of Docker for big data
analysis. This Docker container-based system is an inexpensive
and user-friendly framework for everyone who has the knowledge
of basic IT skills. Additionally, it can be easily developed on a
single machine, multiple machines or multiple clouds. This paper
demonstrates the architectural design and simulated development
of the proposed Docker container-based big data processing sys-
tem in multiple clouds. Subsequently, it illustrates the automated
provisioning of big data clusters using two popular big data
analytics, Hadoop and Pachyderm (without Hadoop) including
the Web-based GUI interface Hue for easy data processing in
Hadoop.

Keywords—Docker Container; Docker Swarm; Big Data Pro-
cessing System; Cloud; Hadoop; Hue; Pachyderm

I. INTRODUCTION

Big data is high-volume, high-velocity and/or high-variety
information assets that cannot be handled and processed by
using the traditional IT infrastructure and tools [1]. Earlier, it
was the requirement of major businesses and organisations but
due to the rapid growth of data, ordinary users are looking
to use big data processing options for their large volume
of data, which cannot be processed by using traditional IT
infrastructure [2]. For ordinary users, the significant challenges
are the requirement of the powerful data processing system and
its provisioning, installation of complex big data analytics and
difficulty in their usage. Therefore, they require an economical,
user-friendly, easy to design and develop data processing
system.

Cloud-based big data processing systems are the most
efficient and established infrastructure to fulfil the big data

analysis requirements. Now, most businesses and users are
shifting towards multi-cloud infrastructure for reducing their
vendor dependent risk and achieving best services and re-
sources for performance optimisation [3], [4]. Virtualization
is one of the key technologies of cloud computing, and most
cloud-based systems are based on virtualization. However, the
requirement of significant and redundant resources, issues of
interoperability and deployment, load balancing and migration
complexities make it unattractive for various types of big
data analyses for ordinary users [5]. Docker is a container-
based virtualization technology and it has recently introduced
Docker Swarm for the development of various types of multi-
cloud distributed systems, which can be helpful in solving all
above problems related to big data analysis for ordinary users
[51, [6], [7]. However, Docker is predominantly used in the
software development industry, and less focus is given to the
data processing aspect of this container-based technology.

This paper proposes the Docker container-based big data
processing system in multiple clouds for everyone, which
explores another potential dimension of Docker for big data
analysis. This Docker container-based system is an inexpensive
and user-friendly framework for everyone who has knowledge
of basic IT skills. Additionally, it can be easily developed
on a single machine, multiple machines or multiple clouds.
This paper demonstrates the architectural design and simulated
development of the proposed Docker-based big data processing
system in multiple clouds. This simulation of the big data
processing system is based on a single machine consisting
of Docker Swarm, VirtualBox and Mac OS X. However,
the same big data processing system can be easily created
on any of the Docker supported cloud by just selecting the
appropriate driver name (see Fig. 6) such as Amazon Web
Services, Microsoft Azure, Digital Ocean, Google Compute
Engine, Exoscale, Generic, OpenStack, Rackspace, IBM Soft-
layer, VMware vCloud Air [8]. Before developing this system
on the above clouds, it must require a valid subscription
on those clouds. Subsequently, this paper illustrates the easy
and automated provisioning of big data clusters using two
popular big data analytics, Hadoop and Pachyderm (without
Hadoop) including the Web-based GUI interface Hue for easy
data processing in Hadoop. The automated provisioning of
Hadoop cluster is demonstrated using Apache Ambari and
SequencelQ Ambari Shell. Whereas, the complete installation
of Pachyderm requires four components: Docker, Kubectl
(Kubernetes CLI), Pachyderm Command Line Interface and
FUSE (optional). This proposed Docker-based system is also a
dependable system due to the implicit support of dependability
in Docker Swarm [9].

The remainder of this paper is organised as follows: Section
IT explains the theoretical background of big data analysis,
Docker Container and Docker Swarm; Section III illustrates
the architectural design of a Docker-based big data processing
system in multiple clouds; Section IV presents the simulated
development of this Docker-based big data processing system;
Section V illustrates the provisioning of two popular big data
analytics for the Docker platform, Hadoop and Pachyderm
(without Hadoop); Section VI concludes the paper and sug-
gests some future areas of extension.

II. THEORETICAL BACKGROUND
A. Big Data Analysis

Big data analysis is the process of mining and extracting
meaningful patterns from massive input data for decision
making, prediction, and other inferencing [2], [10]. Traditional
data analysis is the process of applying standard statistical
methods such as factor analysis, cluster analysis, correlation
analysis, and regression analysis to explore the cleaned first-
hand data of limited amount [11]. This analysis is usually
limited to testing a small number of hypotheses that we
define well before the data collection [12]. However, big
data analysis can be based on traditional statistical methods
or enhanced computational models and is used to analyse
unstructured and unclean data of massive amount. A big
data analytic is not a single tool/technology but a combi-
nation of multiple tools/technologies that are combined as
a system/platform/framework and used to perform various
operations in the entire big data analysis process such as data
collection, data cleaning, data modelling and visual interpre-
tation of data [13].

B. Docker Container and Docker Swarm

Containerization or container-based virtualization is moder-
ately different technique from virtualization, where an isolated
environment (container) is created similar to a virtual machine
(VM) but without virtual hardware emulation [3]. A container
is a very old technique in Unix and Linux but now it is rein-
troduced at commercial level due to its benefits as compared
to a VM. Containerization can be considered as an OS-level
virtualization because containers are created in the user space
above the OS kernel [14]. Multiple containers can be created
in multiple user spaces on a single host but with very fewer
resources than VMs [14].

Docker container is an instance of containerization. Docker
is a container-based technology for an easy and automated
creation, deployment and execution of applications by em-
ploying containers [14]. It facilitates an isolated environment
(container) similar to a VM but without having its own OS,
therefore all containers share the same OS kernel via Docker
Engine as shown in Fig. 1. However, a container consists of
all the binary and library files required to run an application.
If Docker container is used on Linux then Linux OS act as
a default Docker Host, but when it is used on a non-Linux
machine then this Docker Host needs to be installed separately
as shown in Fig. 2. This Docker Host is a lightweight VM
and needs minimum resources as compared to the actual VM
in Virtualization. Docker has given the name default to this
Docker Host because it comes with the default installation and
requires to run the Docker Engine.

Container 1 | | Container 2 || Container 3
App1 App 2 App 3
Bins/Libs Bins/Libs Bins/Libs

Host Operating System

Infrastructure

Fig. 1. Docker Containers on Linux Host

Docker Swarm is a cluster management and orchestration
tool that connects and controls several Docker nodes to form
a single virtual system [15]. It is an enhancement of Docker
container technology for designing distributed systems in mul-
tiple clouds. It offers several unique features to the Swarm
cluster such as availability, reliability, security, maintainability
and scalability, which is an added advantage to the standard
container technology and makes the container-based system a
dependable system.

III. ARCHITECTURAL DESIGN OF A DOCKER
CONTAINER-BASED BIG DATA PROCESSING SYSTEM

Fig. 4 shows the architectural design of Docker container-
based big data processing system (including 3 Managers and 2
Workers) on multiple Docker supported clouds [8]. In Docker
Swarm, the manager is responsible for the entire cluster and
manages the resources of multiple Docker hosts at scale [16].
Managers are responsible for orchestrating the cluster, serving
the Service API, scheduling tasks (containers) and addressing
containers that have failed health checks [17]. A primary
manager (leader) is the main point of contact within the
Docker Swarm cluster. In Docker Swarm, there could be one
primary manager (leader) and multiple secondary managers
(reachable managers) in case the primary manager fails [16].
Primary manager works as a leader of the system and all
the secondary managers contact with it regarding services and
information. It is also possible to talk to secondary managers
(replica instances) that will act as backups. However, all
requests issued on a secondary manager are automatically
proxied to the primary manager. If the primary manager fails, a
secondary manager takes away the lead. Therefore, it facilitates
a highly available and reliable cluster [16]. Worker nodes
serve only simpler functions such as executing the tasks to
spawn containers and routing data traffic intended for specific
containers [17]. The complete breakdown and workflow are

Container1 | | Container 2 | | Container 3
App1l App 2
Bins/Libs Bins/Libs

Host Operating System

Infrastructure

Fig. 2. Docker Containers on Non-Linux Host require an additional Docker
Host (lightweight Virtual Machine) component

(@06

IR,

New Settings Discard Show

Oracle VM VirtualBox Manager

= General

Eiﬂ default
ihRuoicg Name: default
Operating System: Linux 2.6 / 3.x
/ 4.x (64-Dit)
Fig. 3. Docker Host “default” (lightweight Virtual Machine) in VirtualBox

shown in Fig. 5. Secure connectivity of Docker Swarm nodes
across multiple clouds can be provided using identity and
access management protocols [18], [19], [20], [21], which is
not covered in this paper.

IV. SIMULATED DEVELOPMENT OF A DOCKER
CONTAINER-BASED BIG DATA PROCESSING SYSTEM

This section demonstrates the simulated development of a
Docker container-based big data processing system into two
steps: building a Docker cluster for the processing of data and
building data volume containers for the management of data.

A. Building a Docker Cluster for the Processing of Data

This experimental simulation of the big data processing
system is based on Docker Swarm, VirtualBox and Mac OS
X. Here, the big data system is developed as a cluster of
five Swarm Nodes (3 Managers and 2 Workers) by creating
five lightweight VMs in VirtualBox on the same host com-
puter (Mac OS X) as shown in Fig. 6. However, all these
lightweight VMs and, subsequently, Docker Swarm Nodes

e o Microsoft Coogl

“zi"amazon | Compute

BF webservices™ uW Azure Engine
A

Data Volume Data Volume
Container Container

«>

Swarm.
Worker

(s

= ="
DigitalOcean

Cexoscale

Fig. 4. Architectural Design of Docker Container-based Big Data Processing
System in Multiple Clouds

h 4

docker service create

API Accepts command from client and creates service object
R Orchestrator Reconciliation loop for service objects and creates tasks
Manager A C
Node E Allocator Allocates IP addresses to tasks
Scheduler Assigns nodes to tasks
Dispatcher O| Checks in on workers
4 T
[
Worker Connects to dispatcher to check on assigned tasks
Worker
Node Executor Executes the tasks assigned to worker node
Fig. 5. Docker Swarm Node Breakdown and Workflow [17]

can be created on different clouds (shown in Fig. 4) by just
changing the driver name from —driver virtualbox to —driver
amazonec2/azure/google/digitalocean/exoscale in Fig. 6. The
only requirement for doing this is to have a valid subscription
account on the desired cloud. Fig. 6 shows the process of
creation of five Docker Machines (lightweight VMs) with
different private IP addresses and standard Docker Port 2376
using the most recent version v/.13.1 of Docker at the time of
this experiment.

Subsequently, these Docker Machines (lightweight VMs)
are used to create a cluster of five Docker Swarm Nodes,

nitinnaik$ docker-machine create ——driver virtualbox managerl
nitinnaik$ docker-machine create —-driver virtualbox manager2
nitinnaik$ docker-machine create ——driver virtualbox manager3
nitinnaik$ docker-machine create ——driver virtualbox workerl
nitinnaik$ docker-machine create --driver virtualbox worker2
nitinnaik$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER

default x virtualbox Running tcp://192.168.99.100:2376 v1.13.1
managerl - virtualbox Running tcp://192.168.99.101:2376 v1.13.1
manager2 - virtualbox Running tcp://192.168.99.102:2376 v1.13.1
manager3 - virtualbox Running tcp://192.168.99.103:2376 v1.13.1
workerl - virtualbox Running tcp://192.168.99.104:2376 v1.13.1
worker2 - virtualbox Running tcp://192.168.99.105:2376 v1.13.1
Fig. 6. Creating Docker lightweight Virtual Machines (VMs) for building a

Swarm Cluster

docker@managerl:~$ docker swarm init —-advertise-addr 192.168.99.101
Swarm initialized: current node (tiahfp169ss6oywSiurxf4fha) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join \
——token SWMTKN-1-2txjo4abuvipojbf@abv65ebmd1x2t1099yw3bljwipkfzz5uc-9t20ps5015qr6sy4keaf7ichx \
192.168.99.101:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

docker@managerl:~$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

docker swarm join \
—-token SWMTKN-1-2txjodabuvipojbf@abv65ebmd1x2t1099yw3bljwipkfzz5uc-2luzbej7aocm@hfg7dlbo8kvw \
192.168.99.101:2377

docker@managerl:~$ docker node ls

I

HOSTNAME STATUS AVAILABILITY MANAGER STATUS

hualylpacggsiym73dcj rémdf workerl Ready Active

Tthbvphjnhr52jx1x66047ro3 worker2 Ready Active
n6f27k@tmrmyws6dkk4xf49pe manager2 Ready Active Reachable
rgpkn43gx9mladusouwlékgji manager3 Ready Active Reachable
tiahfp169ss6oywsiurxfafha % managerl Ready Active Leader

Fig. 7. Creating Docker Swarm cluster with 3 Manager and 2 Worker Nodes
on above Docker lightweight VMs

where 3 Swarm Managers are created on managerl, manager2
and manager3 Docker Machines; and 2 Swarm Workers are
created on workerl and worker2 Docker Machines as shown
in Fig. 7. The manager] is the primary manager (leader) as it
is created first but this can be easily changed and reassigned.
When the node is assigned the responsibility of a manager,
it joins a RAFT Consensus group to share information and
perform leadership election. The leader is the primary manager
that maintains the state, which includes lists of nodes, services
and tasks across the swarm in addition to making scheduling
decisions [17]. This state is circulated across the each manager
node through a built-in RAFT store. Consequently, managers
have no dependency on an external key-value store such as
etcd or Consul. Non-leader managers function as hot spares
and forward API requests to the current elected leader [17]. In
a Docker Swarm cluster, all the commands should be run on
the manager’s node.

B. Building Data Volume Containers for the Management of
Data

This subsection presents the process of creation of data
volumes/data volume containers to manage data inside and
between Docker containers. A data volume is a specially-
designated directory within one or more containers that by-
passes the Union File System (UFS). Data volumes are de-
signed to persist data, independent of the container’s life cycle.
Therefore, Docker never automatically deletes these volumes
when the user removes a container, nor the garbage collector
removes volumes that are no longer referenced by a container
[22]. Here, two data volume containers are created for the
previous Docker Swarm cluster, which can be shared among
all the nodes of the cluster. There are two different ways to
create data volume containers, which are demonstrated in Figs.
8 and 9.

V. BIG DATA ANALYTICS (WITH AND WITHOUT HADOOP)
ON DOCKER-BASED BIG DATA PROCESSING PLATEFORM
FOR EVERYONE

This section illustrates the automated provisioning of big
data clusters using two popular big data analytics, Hadoop
and Pachyderm (without Hadoop). The automatic provisioning
of Hadoop cluster is demonstrated using Apache Ambari and
SequencelQ Ambari Shell. Whereas, the complete installation
of Pachyderm requires four components: Docker, Kubectl

$ docker run -d -P ——name data-containerl -v /data-repositoryl ubuntu /bin/bash
20ce8e797950151db5d7de610a315b4b6094daclfc6c762dabbf@6b562c2d82a

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS ~ NAMES

20ceBe797950 ubuntu "/bin/bash" 54 seconds ago Exited (@) 54 seconds ago data-containerl

$ docker inspect 20ce8e797950
"Mounts": [

"Name": "81ce598f6e892e5ce3c9d20057ef1564e398344194ebd606720fab0d7eb84b74",

"Source": "/mnt/sdal/var/lib/docker/volumes/
81ce598f6e892e5ce3c9d20057ef1564e398344194ebd606720fab0d7eb84b74/_data",

"Destination": "/data-repositoryl",

"Drivi "local",

,
"RW": true,
"Propagation": ""

1,

Fig. 8. Creating Data Volumel with Containerl and their descriptions

$ docker volume create —name data-repository2
data-repository2

$ docker volume inspect data-repository2

[

{
"Driver": "local",
“Labels": {},
“Mountpoint": "/mnt/sdal/var/lib/docker/volumes/data-repository2/_data",
"Name": "data-repository2",
"Options": null,
"Scope": "local"
}

1

$ docker run -v /data-repository2 -—name data-container2 training/postgres /bin/true
$ docker inspect data-container2

“"Mounts": [

"Name": "8c900d973b3abe@905175d796ce2027addab9310b84df9125665e7057174cb3b",

"Source": "/mnt/sdal/var/lib/docker/volumes/
8c900d973b3abe@905175d796ce2027addab9310b84df9125665e7057174cb3b/_data",

"Destination": "/data-repository2",

“Driver": "local",

"Mode": ",

“RW": true,

"Propagation": ""

Fig. 9. Creating Data Volume2 and later linking with Container2

(Kubernetes CLI), Pachyderm Command Line Interface and
FUSE (optional).

A. Hadoop on Docker for Everyone: Automated Provisioning
of a Hadoop Cluster using Apache Ambari and SequencelQ
Ambari Shell

This subsection illustrates the easy provisioning of a
Hadoop cluster on Docker, which avoids the tedious installa-
tion of every single component from the Hadoop Ecosystem.
Once it is created, it can be used any number of times and
anywhere; additionally, it offers consistent data processing, de-
velopment, testing, integration and deployment functionalities.
The Apache Ambari project is developed for making Hadoop
management simpler by developing software for provisioning,
managing, and monitoring of Apache Hadoop clusters. Ambari
provides an intuitive, easy-to-use Hadoop management Web Ul
backed by its RESTful APIs [23].

For the easy provisioning of Hadoop cluster, Ambari image
and function can be downloaded from the SequencelQ cloud
repository as shown in Fig. 10. After obtaining the Ambari
image for Docker, an Ambari cluster can be created as shown
in Fig. 11. Here, a 5 node Ambari cluster is created in which
all the containers are preconfigured and the Ambari agents are
running. SequencelQ has made Hadoop provisioning process
relatively simple by introducing Ambari Shell (Apache Ambari
+ Spring Shell) [24], which can be started as shown in Fig.
11.

In this Ambari shell, Hadoop (HDP) cluster (see Fig. 12)

$ docker pull sequenceiq/ambari:1.7.0

1.7.0: Pulling from sequenceiq/ambari

Digest: sha256:68f148c306f37bb95e6b057b3chfc9ab80a565d5778050c40fc51f0chd25142¢
Status: Downloaded newer image for sequenceiq/ambari:1.7.0

$ curl -Lo .amb j.mp/docker-ambari-170 && . .amb

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 168 100 168 0 0 96 0 0:00:01 0:00:01 — 96
100 4676 100 4676 0 0 1855 0 0:00:02 0:00:02 —: 1855

Fig. 10. Downloading Ambari Image and Function from Cloud Repository

$ amb-start-cluster 5

starting an ambari cluster with: 5 nodes
$ docker ps

CONTAINER 1D INAGE COMMAND CREATED STATUS PORTS NAMES
6514a609ede5 sequenceiq/ambariil.7.0 w/ysr/iocal/serf/b..." 2 minutes ago Up 53 seconds 7373/tcp, 7946/tcp, 8080/tcp ambd
ffe9lfeccdbc sequenceiq/ambari; wusr/local/serf/b

f62bbe3824ef sequenceiq/anbari. uar/localysert/b
21742¢24233b sequenceiq/anbari. uar/localyeertrb
b576829b3e9e sequenceiq/ambariil.7.0 wyucr/local/serf/b

2 minutes ago Up 53 seconds 7373/tcp, 7946/tcp, 8080/tcp amb3
2 minutes ago Up 53 seconds 7373/tcp, 7946/tcp, 8080/tcp amb2
2 minutes ago Up 54 seconds 7373/tcp, 7946/tcp, 8080/tcp ambl
2 minutes ago Up 54 seconds 7373/tcp, 7946/tcp, 8080/tcp ambe

$ amb-shell
[DEBUG] docker run -it —rm -e EXPECTED_HOST_COUNT=5 —e BLUEPRINT= —Link amb@:ambariserver

EART_HOST=172.17.8.2 —entrypoint /bin/sh sequenceiq/ambari:1.7.8 -c /tmp/ambari-shell.sh

[DEBUG] waits for ambari server: 172.17.0.2 RUNNING ...

[DEBUG] waits until 5 hosts connected to server ...
[DEBUG] connected hosts:

Welcome to Ambari Shell. For command and param completion press TAB, for assistance type 'hint'.

Fig. 11. Creating Ambari Cluster of 5 Nodes and Starting Ambari Shell

can be easily created by anyone. Here Hadoop cluster is created
in the easiest way by using Blueprint as shown in Fig. 12 [25].
Finally, Hadoop cluster of 5 nodes is created as shown in Fig.
13, where the master and slaves are assigned automatically.
After the installation of Hadoop Cluster, it can be monitored
by using Ganglia and Nagios.

B. GUI Hadoop on Docker for Everyone: Big Data Processing
in Hadoop from the Browser by using Hue (Hadoop User
Experience) Web Interface

Hue is an open-source Web interface (lightweight Web
server) that supports Apache Hadoop and its ecosystem, and
offers user-friendly Hadoop big data processing facility di-
rectly from the Web browser to a non-technical user [26]. Hue
is simply a view on top of any Hadoop distribution and can
be installed on any machine. The easiest way to install and
use Hue is by using Docker, which offers several benefits to

L1>blueprint add —url https://gist.githubusercuntent.com/matyix/aeb8837012ESfaZSBfaS/
raw/3476b538c8badc16363dbfd9634f0b9fe88cb36e/multi-node-hdfs—yarn
Blueprint: 'multi-node-hdfs-yarn' has been added
ari- cluster build —blueprint multi-node-hdfs-yarn
HOSTNAME STATE

ambl.mycorp.kom ambl.mycorp.kom
amb@.mycorp.kom amb@.mycorp.kom
amb4.mycorp.kom amb4.mycorp.kom
amb3.mycorp.kom amb3.mycorp.kom
amb2.mycorp.kom amb2.mycorp.kom

HOSTGROUP ~ COMPONENT

slave_1 YARN_CLIENT
slave_1 NODEMANAGER
slave_1 HDFS_CLIENT
slave_1 SLIDER

slave_1 KAFKA_BROKER
slave_1 ZOOKEEPER_CLIENT
slave_1 GANGLIA_MONITOR
slave_1 DATANODE

slave_1 MAPREDUCE2_CLIENT
master NAMENODE

master GANGLIA_SERVER
master APP_TIMELINE_SERVER
master HISTORYSERVER
master ZOOKEEPER_SERVER
master RESOURCEMANAGER
master SECONDARY_NAMENODE
master NAGIOS_SERVER
master HDFS_CLIENT
master MAPREDUCE2_CLIENT
master YARN_CLIENT
master GANGLIA_MONITOR

Fig. 12. Using Blueprint for the Creation of Hadoop Cluster

CLUSTER_BUILD:multi-node-hdfs—yarn>cluster autoAssign
HOSTGROUP HOST
master amb@.mycorp.kom
slave_1 ambl.mycorp.kom
slave_1 amb2.mycorp.kom
slave_1 amb3.mycorp.kom
slave_1 amb4.mycorp.kom

CLUSTER

‘n>cluster create

_BUILD:multi-node-hdfs
Successfully created the cluster

CLUSTER:multi-nod s—yarn=hello
A .
~ Y/ (0 a\
/ (\,_ \
/| "\ =]
N\ /.~ /|
| 77N\ N\ _\
-1 1]\

R:multi-n hdfs

Fig. 13. Creating Hadoop Cluster of 5 Nodes and automatically assigning a
Master and Slaves

$ docker pull gethue/hue:latest

Digest: sha256:2fde855c595a04427276aa8c1203d6c6d212a0bbbd85cbab4eb3a95595a1630e
Status: Downloaded newer image for gethue/hue:latest

$ docker images
REPOSITORY TAG
gethue/hue latest

IMAGE ID
ee97b33a23ee

CREATED SIZE
2 months ago 1.98 GB

$ docker run -it —-p 8888:8888 gethue/hue:latest bash
root@3f3dbld5ace4: /hue# ./build/env/bin/hue runserver_plus 0.0.0.0:8888

Fig. 14. Downloading Hue Image from Cloud Repository and starting its
development version in Docker Container as an administrator

users such as a lighter and more robust system than a VM,
gives administrative permissions and quick starting of data
processing with much faster execution.

Hue can be easily configured in Docker container by
pulling the latest Hue image from the Hue repository as shown
in Fig. 14. It can be started in Docker container as a bash to
the root of the project as shown in Fig. 14. The last command
in Fig. 14 will start the development version of Hue.

Hue graphical experience can be started in the browser by
using localhost (http://192.168.99.100:8888), which is usually
the default Docker IP 192.168.99.100 on the port 8888. Hue
offers all the most important big data processing tool related
to Hadoop as shown in Fig. 15. Here, an ordinary user can
start big data processing without knowing the complexities of
all these tools.

eove < ocabost =

UG A OQueryEdtorsv Notebooks DataBrowsersv Workflows v Search Securlty
A My docu ‘&> Hive
w dmm.g e Q30 L2 @
Job Designer
Fig. 15. Web-based GUI Dashboard of Hue and its available Hadoop Big

Data Processing Tools

The Hadoop Stack The Pachyderm Stack

} Distributed processing
“ } Distributed storage
} Cluster management

Fig. 16.

Comparison between Hadoop Stack and Pachyderm Stack [27]

$ wget https://storage.googleapis.com/kubernetes-release/release/v1.4.0/bin/darwin/amd64/kubectl

$ chmod +x kubectl

$ mv kubectl /usr/local/bin/

$ /usr/bin/ruby -e "$(curl —fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ brew tap pachyderm/tap &% brew install pachctl

$ ssh Nitins-MacBook-Pro.local -fTNL 8080:localhost:8080 -L 30650: localhost:30650

$ export ADDRESS=192.168.1.5:30650

$ pachctl create-repo data-repositoryl

$ pachctl create-repo data-repository2

$ git clone git@github.com:pachyderm/pachyderm

Fig. 17. Installation procedure of Pachyderm and Kubernetes on Docker

C. Non-Hadoop Data Analytic on Docker for Everyone:
Pachyderm - A Docker Container-based Data Analytic

Pachyderm is another elephant in the room when it comes
to big data analytics due to the weaknesses of Hadoop. In
Hadoop, MapReduce jobs are specified as Java classes, which
requires specialist Java programmers who write MapReduce
jobs or hiring a third party such as Cloudera but this is
difficult for ordinary users [27]. This typically means that
big data initiatives require a lot of coordination internally
and require resources that are beyond the reach of even large
enterprises who do not have that kind of expertise. Therefore,
most ordinary users want big data processing without incurring
the complexity of Hadoop and MapReduce, and one of the
solutions is a Pachyderm data analytic tool. Pachyderm allows
programmers to implement an HTTP server inside a Docker
container, then use Pachyderm to distribute the job [28],
[29]. This has the potential to allow sysadmins to run large
scale MapReduce jobs swiftly and easily to make product
level decisions, without the knowledge of MapReduce [30].
The Pachyderm stack uses Docker containers, CoreOS and
Kubernetes for cluster management. It replaces Hadoop file
system HDFS with its file system called PFS (Pachyderm
File System) and Hadoop processing framework MapReduce
with its processing framework called Pachyderm Pipelines
as shown in Fig. 16 [31]. The core features of Pachyderm
are reproducibility, data provenance and, most importantly,
collaboration, which has been missing from the big data
world (Hadoop). Pachyderm is a promising big data analytic
and has an intention of replacing Hadoop completely. The
complete installation of Pachyderm requires four components:
Docker, Kubectl (Kubernetes CLI), Pachyderm Command Line
Interface and FUSE (optional). This installation procedure is
also dependent on the operating system employed, therefore,
this installation procedure is based on OS X, which is shown
in Fig. 17.

VI. CONCLUSION

This paper proposed the Docker container-based big data
processing system in multiple clouds for everyone, which ex-
plored another potential dimension of Docker. It demonstrated
the architectural design and simulated development of the
proposed Docker container-based big data processing system
in multiple clouds. Subsequently, it illustrated the automated
provisioning of big data clusters using two popular big data
analytics, Hadoop and Pachyderm (without Hadoop) including
the Web-based GUI interface Hue for easy data processing
in Hadoop. This Docker container-based big data processing
system is an inexpensive and user-friendly framework for ev-
eryone who has the knowledge of basic IT skills. Additionally,
it can be easily developed on a single machine, multiple
machines or multiple clouds. This proposed framework showed
that Docker has a potential to develop a big data processing
system for everyone. However, it is a new approach and still
in the early stage of development with the support of only a
few selected cloud service providers. Thus, it requires further
testing and refinement to become a mature technique and wider
acceptance in the cloud industry. In the future, it may be
worthwhile to develop and evaluate this simulated big data
processing system in multiple clouds.

REFERENCES

[1] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” Interactions, vol. 19, no. 3, pp. 50-59, 2012.

[2] N. Naik, P. Jenkins, N. Savage, and V. Katos, “Big data security analysis
approach using computational intelligence techniques in R for desk-

top users,” in IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 2016.

[3] N. Naik, “Building a virtual system of systems using Docker Swarm
in multiple clouds,” in IEEE International Symposium on Systems
Engineering (ISSE). 1EEE, 2016.

[4] ——, “Connecting Google cloud system with organizational systems
for effortless data analysis by anyone, anytime, anywhere,” in IEEE
International Symposium on Systems Engineering (ISSE). 1EEE, 2016.

, “Migrating from Virtualization to Dockerization in the cloud:
Simulation and evaluation of distributed systems,” in IEEE 10th In-
ternational Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Environments, MESOCA 2016. IEEE, 2016.

[6] C. Anderson, “Docker [Software Engineering],” IEEE Software, no. 3,
pp- 102—3, 2015.

[71 D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[8] Docker.com. (2016) Supported drivers. [Online]. Available: https:
/ldocs.docker.com/machine/drivers/

(5]

[9] N. Naik, “Applying computational intelligence for enhancing the de-
pendability of multi-cloud systems using Docker Swarm,” in /EEE
Symposium Series on Computational Intelligence (SSCI), 2016.

[10] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, pp.
1-21, 2015.

[11] M. Chen, S. Mao, Y. Zhang, and V. C. M. Leung, “Big data analysis,”
in Big Data. Springer, 2014, pp. 51-58.

[12] V. Mayer-Schonberger and K. Cukier, Big data: A revolution that will
transform how we live, work, and think. Houghton Mifflin Harcourt,
2013.

[13] A. Trnka, “Big data analysis,” European Journal of Science and
Theology, vol. 10, no. 1, pp. 143-148, 2014.

[14] J. Turnbull, The Docker Book: Containerization is the new Virtualiza-
tion. James Turnbull, 2014.

[15] Docker.com. (2016) Docker swarm. [Online].
/Iwww.docker.com/products/docker-swarm

Available: https:

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

——. (2016) High availability in docker swarm. [Online]. Available:
https://docs.docker.com/swarm/multi-manager-setup/

——. (2016, July 28) Docker built-in orchestration ready
for production: Docker 1.12 goes ga. [Online]. Avail-
able: https://blog.docker.com/2016/07/docker-built-in-orchestration-
ready-for-production-docker- 1-12- goes-ga/

N. Naik and P. Jenkins, “Securing digital identities in the cloud
by selecting an apposite federated identity management from saml,
oauth and openid connect,” in 2017 11th International Conference on
Research Challenges in Information Science (RCIS). 1EEE, 2017, pp.
163-174.

N. Naik, P. Jenkins, and D. Newell, “Choice of suitable identity and ac-
cess management standards for mobile computing and communication,”
in 2017 24th International Conference on Telecommunications (ICT).
IEEE, 2017, pp. 1-6.

N. Naik and P. Jenkins, “An analysis of open standard identity protocols
in cloud computing security paradigm,” in I4th IEEE International
Conference on Dependable, Autonomic and Secure Computing (DASC
2016). IEEE, 2016.

——, “A secure mobile cloud identity: Criteria for effective identity
and access management standards,” in 2016 4th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud). 1EEE, 2016, pp. 89-90.

Docker.com. (2017) Manage data in containers. [Online]. Available:
https://docs.docker.com/engine/tutorials/dockervolumes/

Apache. (2017, February 9) Apache Ambari. [Online]. Available:
https://ambari.apache.org/

K. Horvath. (2014, May 26) Ambari Shell. [Online]. Available:
http://blog.sequenceiq.com/blog/2014/05/26/ambari- shell/

J. Matyas. (2014, December 4) Multinode cluster with ambari 1.7.0
- in docker. [Online]. Available: http://blog.sequenceiq.com/blog/2014/
12/04/multinode-ambari- 1-7-0/

Gethue.com. (2017) How to configure hue for your hadoop cluster.
[Online]. Available: http://gethue.com/how-to-configure-hue-in-your-
hadoop-cluster/

J. Zwicker. (2015, February 10) Let's build a modern hadoop.
[Online]. Available: https://medium.com/pachyderm-data/lets-build-a-
modern-hadoop-4fc160f8d74f#.1txyi7mvu

N. Naik, P. Jenkins, P. Davies, and D. Newell, “Native web communi-
cation protocols and their effects on the performance of web services
and systems,” in 16th IEEE International Conference on Computer and
Information Technology (CIT). 1EEE, 2016, pp. 219-225.

N. Naik and P. Jenkins, “Web protocols and challenges of web latency
in the web of things,” in 2016 Eighth International Conference on
Ubiquitous and Future Networks (ICUFN). 1EEE, 2016, pp. 845-850.

D. Sayers. (2015, June 15) 5 Must-see Docker big data use
cases that show Docker’s processing power. [Online]. Avail-
able: http://www.midvision.com/blog/5-must-see-docker-big-data-use-
cases-that-show-dockers-processing-power

S. Hall. (2016, May 10) Pachyderm chal-
lenges hadoop with containerized data lakes. [On-
line]. Available: http://thenewstack.io/pachyderm-aims-displace-
hadoop-container-based-collaborative-data-analysis-platform/

