Choice of Effective Messaging Protocols for IoT
Systems: MQTT, CoAP, AMQP and HTTP

Nitin Naik
Defence School of Communications and Information Systems
Ministry of Defence, United Kingdom
Email: nitin.naik100@mod.gov.uk

Abstract—The standard and real-time communication tech-
nology is an unalloyed inevitability for the development of
Internet of Things (IoT) applications. However, the selection of
a standard and effective messaging protocol is a challenging and
daunting task for any organisation because it depends on the
nature of the IoT system and its messaging requirements. Copious
messaging protocols have been developed and employed by
various organisations based on their requirements in the last two
decades. Though, none of them is able to support all messaging
requirements of all types of IoT systems. Messaging protocol
is an ongoing dilemma for the IoT industry; consequently, it
is important to understand the pros and cons of the widely
accepted and emerging messaging protocols for IoT systems to
determine their best-fit scenarios. Therefore, this paper presents
an evaluation of the four established messaging protocols MQTT,
CoAP, AMQP and HTTP for IoT systems. Firstly, it presents the
broad comparison among these messaging protocols to introduce
their characteristics comparatively. Afterwards, it performs a
further in-depth and relative analysis based on some interrelated
criteria to gain insight into their strengths and limitations. Thus,
based on this detailed evaluation, the user can decide their
appropriate usage in various IoT systems according to their
requirements and suitability.

Keywords—IoT Systems; M2M Communication; Messaging
Protocol; MQTT; CoAP; AMQP; HTTP; Quality of Services;
Interoperability

I. INTRODUCTION

In the Internet of Things (IoT), everyday things and
machines are in the lead role and communicate with each
other. These IoT networks employ various radio technologies
such as Radio-Frequency Identification (RFID), WLAN (IEEE
802.11), WPAN (IEEE 802.15) and WMAN (IEEE 802.16)
for communications at the lower level [1]. Irrespective of
the specific radio technology used to deploy the Machine-to-
Machine (M2M) network, all end-devices should make their
data available to the industrial Internet [2]. Industrial Internet
can be considered as the connection of industrial machine
sensors and actuators to the Internet that can independently
generate value [3]. One of the major factors that determine
the performance of this M2M communication is the messaging
protocol specially designed for M2M communications within
the IoT applications. The selection of a standard and effective
messaging protocol is a challenging and daunting task for
any organisation [4]. While selecting an appropriate messaging
protocol for IoT systems, the pre-requisite is the better under-
standing of a target IoT system and its message/data sharing
requirements.

Unlike the Web, which uses a single standard messaging
protocol HTTP, IoT cannot rely on a single protocol for all
its need [5]. Consequently, hundreds of messaging protocols
are available to choose for various types of requirements of
the IoT system. Some of them have been designed to address
applications requiring fast and reliable business transactions
such as AMQP and JMS [3], [6]. A numerous have been
designed to address applications requiring data collection (e.g.
sensor updates) in constrained network such as MQTT and
CoAP [7], [8], [9]. Many of them have been designed to
address applications requiring instant messaging (IM) and
online presence detection such as XMPP and SIP [3]. A few of
them have been designed to address web applications requiring
communicating over the Internet such as RESTful client/server
protocols HTTP and CoAP [7], [10]. This clearly shows that
the future of the IoT lies on several messaging protocols and
any one protocol cannot deal with all possible IoT use cases.
Consequently, it is necessary to investigate the pros and cons of
the widely accepted and emerging messaging protocols for IoT
systems to determine their best-fit scenarios. Therefore, this
paper presents an evaluation of the four messaging protocols
MQTT, CoAP, AMQP and HTTP. Firstly, it presents the
general comparison among these protocols to introduce their
characteristics comparatively. Subsequently, it performs a fur-
ther in-depth and relative analysis based on some interrelated
criteria to gain insight into their strengths and limitations.
For making this relative analysis easy, it is illustrated using
simple graphs to render a nimble and broader view of each
protocol with respect to other protocols for an ordinary user.
Accordingly, the user can decide their relevant usage in IoT
systems based on their requirements and suitability.

The remainder of this paper is organised as follows: Section
IT elucidates the theoretical background of the four widely
accepted and emerging messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP; Section III demonstrates
a comparative analysis of these four messaging protocols for
providing their general information; Section IV presents an
in-depth and relative analysis of these messaging protocols for
revealing their relative strengths and limitations; Section V
concludes the paper and suggests some future work.

II. MESSAGING PROTOCOLS FOR 10T SYSTEMS

This section presents the four widely accepted and emerg-
ing messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP, which are shown at the top of the protocol
stack for IoT systems in Fig. 1.

= T I G

TCP

Fig. 1: Protocol Stack for IoT Systems

A. MQTT (Message Queuing Telemetry Transport Protocol)

MQTT is one of the oldest M2M communication protocols,
which was introduced in 1999. It was developed by Andy
Stanford-Clark of IBM and Arlen Nipper of Arcom Control
Systems Ltd (Eurotech). It is a publish/subscribe messaging
protocol designed for lightweight M2M communications in
constrained networks [7]. MQTT client publishes messages to
an MQTT broker, which are subscribed by other clients or
may be retained for the future subscription. Every message
is published to an address, known as a topic [11]. Clients
can subscribe to multiple topics and receives every message
published to the each topic. MQTT is a binary protocol
and normally requires fixed header of 2-bytes with small
message payloads up to maximum size of 256 MB [9]. It uses
TCP as a transport protocol and TLS/SSL for security. Thus,
communication between client and broker is a connection-
oriented. Another great feature of MQTT is its three levels of
Quality of Service (QoS) for reliable delivery of messages [7].
MQTT is most suitable for large networks of small devices that
need to be monitored or controlled from a back-end server on
the Internet. It is neither designed for device-to-device transfer
nor for multicast data to many receivers [11]. It is a very basic
messaging protocol offering only a few control options.

B. CoAP (Constrained Application Protocol)

CoAP is a lightweight M2M protocol from the IETF
CoRE (Constrained RESTful Environments) Working Group.
CoAP supports both request/response and resource/observe (a
variant of publish/subscribe) architecture [7]. CoAP is mainly
developed to interoperate with HTTP and the RESTful Web
through simple proxies. Unlike MQTT, CoAP uses Universal
Resource Identifier (URI) instead of topics [9]. Publisher
publishes data to the URI and subscriber subscribes to a
particular resource indicated by the URI. When a publisher
publishes new data to the URI, then all the subscribers are
notified about the new value as indicated by the URIL. CoAP
is a binary protocol and normally requires fixed header of
4-bytes with small message payloads up to maximum size
dependent on the web server or the programming technology
[9]. CoAP uses UDP as a transport protocol and DTLS for
security [12]. Thus, clients and servers communicate through
connectionless datagrams with less reliability. However, it uses
“confirmable” or “non-confirmable” messages to provide two
different levels of QoS. Where, confirmable messages must be
acknowledged by the receiver with an ACK packet and non-
confirmable messages are not. CoAP offers more functionality
than MQTT such as it supports content negotiation to express

a preferred representation of a resource; this allows client and
server to evolve independently, adding new representations
without affecting each other.

C. AMQP (Advanced Message Queuing Protocol)

AMQP is a lightweight M2M protocol, which was de-
veloped by John O’Hara at JPMorgan Chase in London,
UK in 2003. It is a corporate messaging protocol designed
for reliability, security, provisioning and interoperability [3].
AMQP supports both request/response and publish/subscribe
architecture [13]. It offers a wide range of features related
to messaging such as a reliable queuing, topic-based publish-
and-subscribe messaging, flexible routing and transactions [3].
AMQP communication system requires that either the pub-
lisher or consumer creates an “exchange” with a given name
and then broadcasts that name. Publishers and consumers use
the name of this exchange to discover each other. Subsequently,
a consumer creates a “queue” and attaches it to the exchange at
the same time. Messages received by the exchange have to be
matched to the queue via a process called “binding”. AMQP
exchanges messages in various ways: directly, in fanout form,
by topic, or based on headers. AMQP is a binary protocol and
normally requires fixed header of 8-bytes with small message
payloads up to maximum size dependent on the broker/server
or the programming technology [14], [15]. AMQP uses TCP
as a default transport protocol and TLS/SSL and SASL for
security [13]. Thus, the communication between client and
broker is a connection-oriented. Reliability is one of the core
features of AMQP, and it offers two preliminary levels of
Quality of Service (QoS) for delivery of messages: Unsettle
Format (not reliable) and Settle Format (reliable) [3].

D. HTTP (Hyper Text Transport Protocol)

HTTP is predominantly a web messaging protocol, which
was originally developed by Tim Berners-Lee. Later, it was de-
veloped by IETF and W3C jointly and first published as a stan-
dard protocol in 1997 [13]. HTTP supports request/response
RESTful Web architecture. Analogous to CoAP, HTTP uses
Universal Resource Identifier (URI) instead of topics. Server
sends data through the URI and client receives data through
particular URI. HTTP is a text-based protocol and it does
not define the size of header and message payloads rather it
depend on the web server or the programming technology.
HTTP uses TCP as a default transport protocol and TLS/SSL
for security [10]. Thus, communication between client and
server is a connection-oriented. It does not explicitly define
QoS and requires additional support for it. HTTP is a globally
accepted web messaging standard offers several features such
as persistent connections, request pipelining, and chunked
transfer encoding [4], [5], [10].

III. COMPARATIVE ANALYSIS OF MESSAGING
PROTOCOLS FOR IOT SYSTEMS: HTTP, COAP, AMQP AND
MQTT

This section presents a comparative analysis of the four
widely accepted and emerging messaging protocols for IoT
systems MQTT, CoAP, AMQP and HTTP based on several
criteria to introduce their characteristics comparatively. This
complete comparative study is shown in Table I.

TABLE I: Comparative Analysis of Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP

Criteria ‘ MQTT CoAP AMQP ‘ HTTP
1. Year 1999 2010 2003 1997
2. Architecture Client/Broker Client/Server or | Client/Broker or | Client/Server
Client/Broker Client/Server
3. Abstraction Publish/Subscribe Request/Response or | Publish/Subscribe or | Request/Response
Publish/Subscribe Request/Response
4. Header Size 2 Byte 4 Byte 8 Byte Undefined
5. Message Size |Small and Undefined (up|Small and Undefined | Negotiable and Undefined |[Large and Undefined
to 256 MB maximum |(normally small to fit in (depends on the
size) single IP datagram) web server or the
programming technology)
6. Semantics/ Connect, Disconnect, | Get, Post, Put, Delete Consume, Deliver, Pub-|Get, Post, Head, Put,
Methods Publish, Subscribe, lish, Get, Select, Ack,|Patch, Options, Connect,

Unsubscribe, Close

Delete, Nack, Recover,
Reject, Open, Close

Delete

Service (QoS)/
Reliability

(Fire-and-Forget),
QoS 1 - At least once,
QoS 2 - Exactly once

(similar to At most once)
or Non-confirmable
Message (similar to At
least once)

At most once) or
Unsettle Format (similar
to At least once)

7. Cache and Proxy | Partial Yes Yes Yes
Support
8. Quality of QoS 0 - At most once|Confirmable Message | Settle Format (similar to|Limited (via Transport

Protocol - TCP)

9. Standards

OASIS, Eclipse Founda-
tions

IETF, Eclipse Foundation

OASIS, ISO/IEC

IETF and W3C

10. Transport TCP (MQTT-SN can use | UDP, SCTP TCP, SCTP TCP
Protocol UDP)
11. Security TLS/SSL DTLS, IPSec TLS/SSL, IPSec, SASL | TLS/SSL

12. Default Port 1883/ 8883 (TLS/SSL)

5683 (UDP Port)/ 5684

5671 (TLS/SSL), 5672 |80/ 443 (TLS/SSL)

Web Services
InduSoft, Fiorano

(AWS),

(DLTS)

13. Encoding Binary Binary Binary Text
Format
14. Licensing Open Source Open Source Open Source Free
Model
15. Organisational | IBM, Facebook, |[Large Web Community |Microsoft , JP Morgan, |Global Web Protocol
Support Eurotech, Cisco, Red|Support, Cisco, Contiki,|Bank of America, Bar-|Standard

Hat, Software AG, Tibco, | Erika, IoTivity clays, Goldman Sachs,

ITSO, M2Mi, Amazon Credit Suisse

IV. RELATIVE ANALYSIS OF MESSAGING PROTOCOLS
FOR IOT SYSTEMS: MQTT, COAP, AMQP AND HTTP

This section presents a further in-depth and relative analysis
of these four messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. It critically analyses the two closely
associated criteria to provide corresponding strengths and limi-
tations of each messaging protocol. These messaging protocols
are very extensive and different from each other because they
have been evolved through different processes and needs. Also,
their precise and relative comparisons depend on the types
of IoT systems, devices, resources, applications, and specific
conditions and requirements of the system. However, this
relative comparison is based on a linguistic range “Lower” and
“Higher” to render a nimble and broader view of each protocol

with respect to other protocols. There is one caveat here that
this relative comparison may vary in some circumstances due
to the above IoT components and may reflect different compar-
ative results than shown here. Additionally, this evaluation is
based on static components and some empirical evidence from
the literature. Nonetheless, it does not consider the dynamic
network conditions and overheads incur in the retransmission
of packets, which may also change comparison results.

A. Message Size vs. Message Overhead

Fig. 2 shows the relative comparison of these messaging
protocols based on their common message size and message
overhead. The graph illustrates that HTTP incurs the highest
message size and overhead, and then it decreases for the other

oA
@
) HTTP
T
0 m
N
=
a
oo
]
g MQrT
]
2
e
;
o
-
>
Lower Message Overhead Higher

Fig. 2: Message Size vs. Message Overhead

protocols with CoAP incurring the lowest message size and
overhead [7], [8], [9], [16], [17]. MQTT, AMQP and HTTP run
on TCP; therefore, they incur all TCP connection overheads
for connection establishment and closing. However, MQTT
is lightweight and has the least header size of 2-byte per
message but its requirement of TCP connection increases the
overall overhead, and thus the whole message size. CoAP
runs on UDP; consequently, it does not incur connection
overheads as UDP works in fire and forget basis [7], [9],
[17], [18]. This reduces the overall overhead considerably, and
thus the whole message size. AMQP is also a lightweight
binary protocol; however, its support for security, reliability,
provisioning and interoperability increases the overhead and
message size [14], [19]. Finally, HTTP among all four is the
most verbose and heavyweight protocol [17]. It was originally
designed for the Web and not for the IoT; therefore, it requires
maximum overhead and message size among all. As previously
mentioned, this comparison does not consider retransmission
scenario that can completely change overall overheads and
amount of transmitted data and, thus, comparison results.

B. Power Consumption vs. Resource Requirement

Fig. 3 exhibits the relative comparison of these messaging
protocols based on their normal power consumption and re-
source requirement. The graph highlights the similar patterns
as the first one, where HTTP requires highest power and
resource than any other protocols, and then it decreases for
the other protocols with CoAP requires lowest power and
resource [7], [8], [9], [16], [17], [20], [21], [22]. Both CoAP
and MQTT are designed for low bandwidth and resource-
constrained devices and can be used on an 8-bit controller
and 100s bytes of memory. Various experimental studies found
that CoAP consumes slightly less power and resources in
similar circumstances: unreliable scenario (MQTT QoS 0 vs.
CoAP NON), and reliable scenario (MQTT QoS 1 or 2
vs. CoAP CON), while assuming that no packet losses are
happened [7], [8], [9], [17], [18]. AMQP requires slightly
higher power and resources due to performing other necessary
operations for provisioning and reliability [14], [19]. Finally,
HTTP is a bigger than all and needs greater processing power

-
r

]
) HTTP
I
c
2
‘5- m
£
=
Wi
c
=]
E
M)
2
[=]
o
. CoAP
Qv
z
=] ~
- rd

Lower Resource Requirement Higher

Fig. 3: Power Consumption vs. Resource Requirement

and resources for the same operation [17], [20]. Again, this
comparison does not consider dynamic network conditions and
overheads incur in the retransmission of packets.

C. Bandwidth vs. Latency

Fig. 4 elicits the relative comparison of these messaging
protocols based on their average bandwidth and latency. The
graph reveals the very similar patterns as the first two, where
HTTP involves largest bandwidth and latency than any other
protocols, and then it decreases for the other protocols with
CoAP involves lowest bandwidth and latency [7], [8], [9],
[16], [17], [21], [22]. The use of TCP in MQTT, AMQP
and HTTP is a major factor in determining the latency and
bandwidth requirement. Unfortunately, TCP does not help
in improving latency. It does not fully utilize the available
network bandwidth for the first few roundtrips of a connection
because of its slow start approach to avoid network congestion
[23]. Where, TCP sender gradually opens the congestion
window and doubling the number of packets in each round-
trip time (RTT). In CoAP, a UDP transaction requires only
two UDP datagrams, one in each direction; this reduces the
network load response times. Various experimental studies
found that MQTT consumes higher bandwidth than CoAP
for transferring same payload under same network condition
(MQTT QoS 1 or 2 vs. CoAP CON) [7], [8], [9], [17], [18].
Moreover, when comparing MQTT QoS 2 with CoAP CON,
the bandwidth usage of MQTT was approximately double than
CoAP. This is because of the four-way handshake mechanism
of QoS 2. AMQP’s extra services demand moderately higher
bandwidth and latency [14], [19]. HTTP takes significantly
larger bandwidth and latency time [4], [5], [17], [20].

D. Reliability/QoS vs. Interoperability

Fig. 5 displays the relative comparison of these messaging
protocols based on their Quality of Services (QoSs) and inter-
operability. The graph divulges that MQTT offers the highest
level of quality of services with least interoperability among
four, whereas HTTP was designed for greatest interoperability
on the Web and did not include reliability as a core feature

L A
(]
) HTTP
T
-= “
=]
S
=
©
s
m
o CoAP
;
S
>
Lower Latency Higher

Fig. 4: Bandwidth vs. Latency

[31, [13], [14], [15], [19]. One of the biggest benefits of using
TCP as a transport protocol by MQTT, AMQP and HTTP is
the guaranteed delivery of a packet. MQTT, AMQP and CoAP
protocols have different levels of QoS support. MQTT defines
three QoS levels: 0- at most once (only TCP guarantee), 1- at
least once (MQTT guarantee with confirmation), 2- exactly
once (MQTT guarantee with handshake) [7]. Additionally,
it also provides “last will and testament” message facilities
(guarantee after disconnect). AMQP defines two QoS lev-
els: Settle Format (similar to MQTT QoS 0) and Unsettle
Format (similar to MQTT QoS 1). CoAP, which deprived
of the reliability of TCP, compensates for the unreliability
of UDP protocol by defining a retransmission mechanism
and providing resource discovery mechanism with resource
description [18]. Though CoAP does not provide explicit
QoS, it facilitates the use of non-confirmable messages (NON)
and confirmable messages (CON), which is very similar to
MQTT QoS 0 and QoS 1 [21]. The QoS is not a default
service of HTTP; therefore, its default reliability is the TCP
guarantee [13]. Interoperability is the biggest issue among
all IoT protocols. MQTT only supports the publish/subscribe
pattern of communication, which barely covers all use cases
within the IoT. In AMQP, it is common to use serialization
formats such as Protocol Buffers, MessagePack, Thrift, and
JSON to serialize structured data in order to publish it as the
message payload [3]. CoAP is a part of the Web architecture
and best suited for devices that support UDP or a UDP
analogue, however, making it limited to a few special kinds
of 10T devices [12]. HTTP-based RESTful clients and servers
are the most interoperable because all that is needed to support
message exchanges, is an HTTP stack (either on the client or
the server) [4], [5], [10].

E. Security vs. Provisioning

Fig. 6 demonstrates the relative comparison of these
messaging protocols based on the security and provisioning
support provided by them. The graph discloses that AMQP
has the highest level of support for security and additional
services, while MQTT is barely a messaging protocol and
supports the lowest level of security and additional services

= N

]

® mQTT

&

m m

o]

4

2

B

o

(-4

a
z

s >

Lower Interoperability Higher

Fig. 5: Reliability/QoS vs. Interoperability

[31, [6], [11], [13], [14], [15], [19]. Except TLS/SSL, MQTT
has minimal authentication features and only rely on simple
username and password [6], [11]. The CoAP uses two methods
DTLS and IPsec for authentication, integrity and encryption.
HTTP facilitates two authentication approaches: HTTP Basic
and HTTP Digest [10]. HTTP basic authentication uses unen-
crypted Base64-encoding username and password to authenti-
cate a service client over TLS/SSL. HTTP digest authentication
uses an encrypted username and password to authenticate over
on non-TLS/SSL connection. AMQP provides the strongest
security with different approaches to TLS negotiation: Single-
port TLS Model, Pure TLS and WebSockets Tunnel TLS
Model. It has explicitly facilitated the integration of TLS (e.g.
TLS virtual server extensions, known as SNI) and SASL [3],
[6]. MQTT does not offer any extra services even message
labelling; consequently, messages can be used for any purpose;
therefore, all clients must know the message formats up-front
to allow communication [11]. In CoAP, there are several ex-
tensions for enhanced services depending on the requirements
of the IoT system such as support for observers, multicast
group communications, resource discovery and block-wise
transfers [9]. HTTP is a full web standard and offers several
services such as multiplexing and concurrency, stream depen-
dencies/prioritization, header compression and server push [4],
[5], [10]. AMQP is the preferred choice for businesses because
of its wide range of services related to messaging such as
reliable queuing, topic-based publish-and-subscribe messaging,
flexible routing and transactions [15]. It provides various ways
to exchange route messages: directly, in fanout form, by topic,
and based on headers [3]. For enhancing the security of IoT
systems across multiple clouds, these messaging protocols can
be combined with identity and access management protocols
[24], [25], [26], [27], [28], [29]. Similarly, for the better
provisioning of IoT systems, the Docker-based design may be
an alternative option for users [30], [31], [32].

FE M2M/IoT Usage vs. Standardisation

Fig. 7 expresses the relative comparison of these messaging
protocols based on their usage in M2M/IoT and accreditation
from standard organisations. The graph indicates that MQTT

Higher

Security

Lower

Provisioning

Fig. 6: Security vs. Provisioning

has been employed by the large number of organisations but
it is still not a global standard, while, HTTP is a global web
standard but mostly not suitable and used in the IoT industry
[31, [6], [71, [8], [9], [10], [11]. MQTT is an established M2M
protocol and has been used and supported by the large number
of organisations such as IBM, Facebook, Eurotech, Cisco,
Red Hat, M2Mi, Amazon Web Services (AWS), InduSoft and
Fiorano [7], [8], [9]. Besides, AMQP is the most successful IoT
protocol that has been employed in the worlds biggest projects
such as Oceanography’s monitoring of the Mid-Atlantic Ridge,
NASA’s Nebula Cloud Computing and Indias Aadhar Project
[3], [6], [11]. CoAP has been swiftly gaining momentum and
supported by many large companies such as Cisco (Field Area
Network), Contiki, Erika and IoTivity [7], [8], [9]. Finally, the
usage of HTTP in the IoT is limited due to its heavyweight
size and slow performance. MQTT is an emerging as a de facto
protocol for the IoT and hosted by OASIS open standards
consortium and Eclipse Foundation [11], [33]. AMQP is an
OASIS adopted international standard ISO/IEC 19464:2014
[3]. CoAP is an IETF standard specially designed to integrate
the IoT and Web and supported by Eclipse Foundation [11].
Finally, HTTP is an IETF and W3C standard and already
established as a global standard for the Web [4], [5], [10].

V. CONCLUSION

This paper has presented an evaluation of the four widely
accepted and emerging messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP. Firstly, it has presented the
overall comparison among these protocols to introduce their
characteristics comparatively. Subsequently, it has performed
a further in-depth and relative analysis based on some interre-
lated criteria to gain insight into their strengths and limitations.
For making this relative analysis easy, it was illustrated using
simple graphs to render a nimble and broader view of each
protocol with respect to other protocols for an ordinary user.
Accordingly, the user can decide their relevant usage in IoT
systems based on their requirements and suitability. This
critical evaluation has demonstrated a bigger and comparative
picture of messaging protocols; which was based on the static
components and some empirical evidence from the literature.

= A

£

‘En

I

g m

o

M

%]

=

=

=]

=

E

o

=

a
3

= >

Standardisation

Fig. 7: M2M/IoT Usage vs. Standardisation

Lower Higher

Nonetheless, it did not consider dynamic network conditions
and overheads incur in the retransmission of packets, which
may produce the different results from the comparison shown
here. Additionally, this is the rapidly growing and changing
area that might change the presented scenario in the future. In
the future, it may be interesting to practically evaluate these
protocols in the same IoT system.

REFERENCES

[11 V. Gazis, M. Gortz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wies-
maier, F. Zeiger, and E. Vasilomanolakis, “A survey of technologies for
the internet of things,” in 2015 IEEE International Wireless Communi-
cations and Mobile Computing Conference, 2015, pp. 1090-1095.

[2] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud Computing, vol. 3, no. 1, pp.
11-17, 2015.

[3] A. Foster, “Messaging technologies for the industrial internet and the
internet of things whitepaper,” PrismTech, 2015.

[4] N. Naik, P. Jenkins, P. Davies, and D. Newell, “Native web communi-
cation protocols and their effects on the performance of web services
and systems,” in 16th IEEE International Conference on Computer and
Information Technology (CIT). 1EEE, 2016, pp. 219-225.

[5] N. Naik and P. Jenkins, “Web protocols and challenges of web latency
in the web of things,” in 2016 Eighth International Conference on
Ubiquitous and Future Networks (ICUFN). 1EEE, 2016, pp. 845-850.

[6] R.S. Cohn, “A comparison of AMQP and MQTT,” 2011.

[7]1 S. Bandyopadhyay and A. Bhattacharyya, “Lightweight internet proto-
cols for web enablement of sensors using constrained gateway devices,”
in Computing, Networking and Communications (ICNC), 2013 Interna-
tional Conference on. 1EEE, 2013, pp. 334-340.

[8] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Com-
parison of two lightweight protocols for smartphone-based sensing,”
in Communications and Vehicular Technology in the Benelux (SCVT),
2013 IEEE 20th Symposium on. 1EEE, 2013, pp. 1-6.

[9] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Perfor-
mance evaluation of MQTT and CoAP via a common middleware,” in
Intelligent Sensors, Sensor Networks and Information Processing, 2014
IEEE Ninth International Conference on. 1EEE, 2014, pp. 1-6.

[10] 1. Grigorik, “Making the web faster with HTTP 2.0,” Communications
of the ACM, vol. 56, no. 12, pp. 42-49, 2013.

[11] T. Jaffey. (2014, February) MQTT and CoAP, IoT protocols.
[Online]. Available: https://eclipse.org/community/eclipse_newsletter/
2014/february/article2.php

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

A. Ludovici, P. Moreno, and A. Calveras, “TinyCoAP: a novel con-
strained application protocol (CoAP) implementation for embedding
RESTful web services in wireless sensor networks based on tinyos,”
Journal of Sensor and Actuator Networks, vol. 2, no. 2, pp. 288-315,
2013.

N. S. Han, “Semantic service provisioning for 6LoWPAN: powering
internet of things applications on web,” Ph.D. dissertation, Institut
National des Télécommunications, 2015.

J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and
P. Manzoni, “A comparative evaluation of AMQP and MQTT protocols
over unstable and mobile networks,” in 12th Annual IEEE Consumer
Communications and Networking Conference, 2015, pp. 931-936.

G. Marsh, A. P. Sampat, S. Potluri, and D. K. Panda, “Scaling advanced
message queuing protocol (AMQP) architecture with broker federation
and infiniband,” Ohio State University, Tech. Rep. OSU-CISRC-5/09-
TR17, 2008.

K. Kuladinithi, O. Bergmann, T. Potsch, M. Becker, and C. Gorg,
“Implementation of coap and its application in transport logistics,” Proc.
IP+ SN, Chicago, IL, USA, 2011.

S. S. Ngo Manh Khoi, K. Mitra, and C. Ahlund, “Irehmo: An efficient
IoT-based remote health monitoring system for smart regions,” 2015.

J. Stansberry. (2015, October 7) MQTT and CoAP: Underlying
protocols for the IoT. [Online]. Available: http://electronicdesign.com/
iot/mqtt-and-coap-underlying-protocols-iot

J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate,
and P. Manzoni, “Testing AMQP protocol on unstable and mobile

networks,” in Internet and Distributed Computing Systems. Springer,
2014, pp. 250-260.

S. Nicholas. (2012, May 31) Power profiling: HTTPS long
polling vs. MQTT with SSL, on android. [Online]. Available:
http://stephendnicholas.com/posts/power-profiling- mqtt- vs-https

W. Colitti, “Communication stacks: Constrained Application Protocol,”
ISN Interoperable Sensor Networks Deliverable, 2011.

W. Colitti, K. Steenhaut, and N. De Caro, “Integrating wireless sensor
networks with the web,” Extending the Internet to Low power and Lossy
Networks (IP+ SN 2011), 2011.

M. Mellia, M. Meo, and C. Casetti, “TCP smart framing: a segmentation
algorithm to reduce TCP latency,” Networking, IEEE/ACM Transactions
on, vol. 13, no. 2, pp. 316-329, 2005.

N. Naik and P. Jenkins, “Securing digital identities in the cloud
by selecting an apposite federated identity management from saml,
oauth and openid connect,” in 2017 11th International Conference on
Research Challenges in Information Science (RCIS). 1EEE, 2017, pp.
163-174.

N. Naik, P. Jenkins, and D. Newell, “Choice of suitable identity and ac-
cess management standards for mobile computing and communication,”
in 2017 24th International Conference on Telecommunications (ICT).
IEEE, 2017, pp. 1-6.

N. Naik, “Connecting Google cloud system with organizational systems
for effortless data analysis by anyone, anytime, anywhere,” in /[EEE
International Symposium on Systems Engineering (ISSE). 1EEE, 2016.

N. Naik and P. Jenkins, “An analysis of open standard identity protocols
in cloud computing security paradigm,” in /4th IEEE International
Conference on Dependable, Autonomic and Secure Computing (DASC
2016). IEEE, 2016.

——, “A secure mobile cloud identity: Criteria for effective identity
and access management standards,” in 2016 4th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud). 1EEE, 2016, pp. 89-90.

N. Naik, P. Jenkins, N. Savage, and V. Katos, “Big data security analysis
approach using computational intelligence techniques in R for desk-
top users,” in IEEE Symposium Series on Computational Intelligence
(SSCI). 1EEE, 2016.

N. Naik, “Migrating from Virtualization to Dockerization in the cloud:
Simulation and evaluation of distributed systems,” in IEEE 10th In-
ternational Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Environments, MESOCA 2016. 1EEE, 2016.

——, “Building a virtual system of systems using Docker Swarm

in multiple clouds,” in IEEE International Symposium on Systems
Engineering (ISSE). 1EEE, 2016.

[32]

[33]

——, “Applying computational intelligence for enhancing the de-
pendability of multi-cloud systems using Docker Swarm,” in /EEE
Symposium Series on Computational Intelligence (SSCI), 2016.

OASIS.org. (2015, December 10) MQTT 3.1. 1. edited by Andrew

Banks and Rahul Gupta. 29 october 2014. OASIS Standard. [Online].
Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

