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Abstract
Increasing concerns about adulteratedmeat encouraged industry looking for newnon-invasive
methods for rapid accuratemeat quality assessment.Mainmeat chromophores (myoglobin, oxy-
myoglobin, fat, water, collagen) are characterized by close comparable absorption in visible to near-
infrared (NIR) spectral region. Therefore, structural and compositional variations inmeatmay lead
to relative differences in the absorption of light. Utilizing typicalfiber-optic probes and integrating
sphere, a degradation of pork samples freshness was observed at room temperature referring to the
relative changes in absorbance ofmainmeat chromophores. The application of principal component
analysis (PCA) used for examination ofmeasured absorbance spectra revealedmore detailed sub-
stages of freshness, which are not observed by the conventional analysis of the reflectance spectra.
The results show a great potential of the combined application of optical-NIR spectroscopywith
complementary use of PCA approach for assessingmeat quality andmonitoring relative absorbance
alternation of oxymyoglobin andmyoglobin in visible, and fat, water, collagen inNIR spectral ranges.

1. Introduction

In recent years, there has been an increasing demand for animal-based protein in the livestock sector and
specifically for pork as themost widely consumed type ofmeat in theworld [1]. Alongwith this, annually spoiled
meat andmeat products comprise considerable amount [2]. The increasing concerns about contaminated and
adulteratedmeat and the associated health risks have encouraged themeat industry to come upwith a newnon-
invasivemethod suitable for rapid and accuratemeat quality assessment [3].

Presently, there are a number ofmethods available for evaluation of various quantities ofmeat quality,
including chemical andmicrobiological analysis [3], ultrasound techniques, andmicroscopy approaches [4].
Compared to afore-mentioned techniques, photonics-basedmeat screeningmodalities are highly promising
because of their non-contact, fast, real-time, ability of onlinemonitoring, economic and environment-friendly
features [5]. Infrared spectroscopy, Raman spectroscopy, Hyperspectral Imaging (HIS) and Fluorescence
spectroscopy aremost frequently used optical techniques inmeat quality assessment [4, 6–8]. In the current
studywe utilize conventional optical/near-infrared (NIR) spectroscopy, that is used extensively for non-
invasive in vivo characterization of human skin and other biological tissues [9]. Typically, portable and cost-
effective light sources (e.g. tungsten lamps) and detectors (e.g. silicon diode arrays) are used in the visible and
NIR (750–1800 nm) spectral range [10, 11].

At the consumer levelmeat quality and freshness can be defined in terms of tenderness, color, juiciness and
flavor. In a scientific context these parameters required to be classified as the chemical,microbiological, sensory
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and technological attributes [12]. In fact, themeat freshness can be assessed by various factors, such as the
presence ofmicroorganisms, bacteria, and gases [13] considering the slaughter day of the animal and the period
of cooling/freezing [14].

The quality ofmeat products can be assessed by these following factors:

■ nutritional content including fat, protein, vitamins andminerals (mainly iron),

■ safety,

■ functional characteristics such as sensory properties of taste and appearance including color characteristics
and surface texturewhich can be traditionally assessed, both by consumers and experts [4, 14].

Lipid oxidation, protein degradation and the loss of other valuablemolecules are the consequences of
freshness deterioration ofmeat during storage [2]. Temperature is another important parameter that influences
meat safety [15]. Specifically, for pork, the quality of fresh product varies greatly and is traditionally classified
into different categories based on color, a determining factor for customers to evaluate freshness [5, 10]. In the
visible region of spectra, themyoglobin (Mb)—a dominant chromophore—is primarily responsible for the
visual appearance ofmeat [16, 17].

The capabilities of the existing spectroscopicmethodswhich have been applied to detect differentmeat
freshness identifiers are listed in table 1 [18–28].

Previous studies clearly show thatNIR spectroscopy (800–2500 nm) is sensitive to the presence of fat (C–H),
water (O–H), and proteins (N–H) chemical bonds [29, 30]. Visible-light spectroscopy (400–800 nm) is widely
used for detecting color and collagen content, that is often performedwith polarized light [4]. Therefore, it can
replace currently used the costly and time-consuming chemical analysis ofmeat composition and quality [5, 31].

Meat color ismainly referred to the amount ofMb that comprises several types:

■ Carboxymyoglobin (COMb)with a bright cherry-red color;

■ Oxymyoglobin (OxyMb) as a result of Oxygen reaction withMb after exposure of fresh-cut meat to air within
30–60 min resulting in a cherry-red color typical for freshmeat found in shops;

■ Deoxymyoglobin (DeoxyMb)with a purplish-red color, a characteristic of recently sliced freshmeat;

■ Metmyoglobin (MetMb) appears brownish-red in color resulting fromoxidation of the three othermyoglobin
forms to a ferric state and is associatedwithmeat discoloration [32, 33].

Pigments such as hemoglobin and cytochrome also contribute tomeat color, but only to a lesser extent
compared toMb. Furthermore, if an animal is slaughtered via cutting off the throat, thenmost of its blood is
naturally pumped out of the animal’s body, thus significantly, remaining blood contents will reduce. This
ensures higher quality ofmeat.

Keeping a rawpork sample at room temperature, as performed in the frame of the current study, the forms
ofMb interconvert and degrade through oxygenation, oxidation and reduction reactions, influencing themeat
color. The succeeding changes can be detected non-destructively and sensitively by analyzing reflectance within
the visible spectral range [16, 17].

Table 1.Meat parameters assessedwith different spectroscopic techniques.

Parameter Spectroscopy technique Type ofmeat References

Taste Near-infrared (NIR)Reflectance beef [18]
Color Visible Reflectance beef [19]
Fat NIRTransmittance ground beef [20]
pH Visible/NIRReflectance beef [21]
Tenderness Visible/NIRReflectance beef [22]
Moisture Visible/NIR pork [23]
Protein and dry content NIRReflectance beef [24]
Texture NIRReflectance beef [18]
Sensory characteristics NIRReflectance beef [25]
Structural properties Visible andNIRReflectance beef and lamb [22]
Spoilage parameters NIR pork [26]
Contamination Hyperspectral Imaging SystemVisible/NIR poultry [27]
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Table 2 presents themajormeat chromophores, includingwater, fat, protein,Mb and its four forms, as well
as their referred absorbancewavelengths for various types ofmeat obtainedwith different spectroscopic-based
techniques [12–14, 26–41].

Figure 1 demonstrates optical density ofmain chromophores ofmuscle tissue includingmyoglobin,
oxymyoglobin, water, collagen and fat [45–47]. As one can see, in the visible part of spectrum (up to 900 nm) a
domination of absorption of oxy- and deoxy-myoglobin is observed (see figure 1(a)), whereas in theNIR range
(950–1050 nm)water becomes themost prominent contributor (see figure 1(b)).While, in theNIRpart of
spectrum (1050–1100 nm, seefigure 1(b) and 1300–1650 nm, see figure 1(c)) the spectra of water, fat and
collagen are comparable. Therefore, in these parts of the spectrum, the structural and compositional variations
within these natural compounds lead to relative changes.

In current paper, we consider if the relative spectral changes of absorbance in visible andNIRparts of the
spectrum,measured by typical fiber-optic probes or an integrating sphere, can be associatedwith the freshness
stages ofmeat samples. As a complementary analysis, we applied principal component analysis (PCA)method

Table 2.Chromophores in various types ofmeat observed at different wavelengths with different spectroscopic-basedmethods.

Chromophores Type ofmeat Wavelength (nm) Method, References

chicken 970, 1908 Near infrared reflectance spectroscopy (NIRS), [29]
Water (O–Hbonds) lamb 890 NIRS, [41]

ham 980, 1450 NIRS using a fiber optic probe, [34]
beef 970 NIRS, [11]

980 NIRS, [35]
1450, 1940 NIRS, [25]
760, 970, 1440 Time series hyperspectral imaging (TS-HIS), [36]

pork 960, 1440, 1450 NIRS, [37]
980, 1456 NIRS, [38]

Fat (C–Hbonds) 902, 1052, 1378–1386, 1656, 1695 NIRS, [29]
880 NIRS, [39]

chicken 930, 1040 NIRS, [11]
1195 Time series hyperspectral imaging (TS-HSI), [36]

beef 1200 NIRS, [21]
1200, 1400 NIRS, [20]
1715, 1750 NIRS, [11]

Protein (N–Hbonds) beef 1500 NIRS, [25]
lamb 540, 580 Visible spectroscopy, [5]

Myoglobin 1525 NIRS, [29]
chicken 425–550 NIRS, [40]

Deoxymyoglobin beef 430 Visible/NIR spectroscopy, [42]
530 Visible spectroscopy, [21]

chicken 540, 580 Visible spectroscopy, [5]
Metmyoglobin 475 Visible/NIR spectroscopy, [42]

beef 780 Visible spectroscopy, [21]
chicken 440–445, 485–500, 560 Visible/NIR spectroscopy, [43]

Oxymyoglobin lamb 424, 550 Visible/NIR spectroscopy, [44]
580 Visible spectroscopy, [5]

pork 540, 580 Visible spectroscopy, [5]
Sulfmyoglobin chicken 635 Visible/NIR spectroscopy, [42]

Figure 1.Optical density spectra ofmain chromophores ofmuscle tissues, including: (a)myoglobin, oxymyoglobin (400–700 nm);
(b)water,myoglobin, oxymyoglobin, collagen, fat (700–1100 nm); (c)water, collagen, fat (1100–2400 nm). Adapted from [45–47].

3

J. Phys. Commun. 4 (2020) 095011 MPeyvasteh et al



[48] on the absorbance dataset tofind sub-stages of freshness decaywhichmight be not revealed in spectroscopic
analysis. In brief, the novelty of this work includes the type of sample, which is unprocessed, the storage
condition during themeasurements (at room temperature) and the short time duration of themeasurements
(on average 6 h) to investigate early changes in absorbance spectra of different chromophores.

2.Materials andmethods

2.1. Spectroscopic setup
Twodifferent detecting configurations capable to sensemeat samples with different probing depths are
utilized. In the first (table-top) configuration theOL 400-LCS lamp source (Optronic Laboratories, USA), a
monochromator (OL series 750-M), an integrating sphere reflectance attachment (OL740-70), highly sensitive
detectors (OL series 750) and a controller (OL750-C) connected to a computer, as shown infigure 2(a), are used.
The detectors operatedwithin twowavelength ranges: 400–1100 nm (Si detector) and 1100–1800 nm (Ge
detector). The attached integrating sphere enables acquisition of scattered light from the sample through
measuring spectral diffuse reflectance over a very broadwavelength region (200–2500 nm) (see the closeup view
infigure 2(a)) to properly account for sample absorption. The innermaterial of the integrating sphere is PTFE,
with high (99%) reflectance all over thewavelength range used in the experiments. The spot of light on the
surface of themeat sample provided by this setupwas 10 mm in diameter.

In another configuration, presented infigure 2(b), a standard portable spectrophotometer operatedwithin
the 400–1100 nm spectral range, is utilized. The spectrophotometer is equippedwith afiber- optic probe (for
illumination and detection of light) Since the distance between the centers of the fibers is 530μm, the distance
between the 1st (illuminating) and 11th (collecting)fiber would be 5.3 mmwhile theminimal source-detector
fiber separation is 0.53 mm (see the closeup view infigure 2(b)). This experimental setup comprises a light
source Illuminator EK-1 FiberOptic Light Source LE.5210-110 (EUROMEX, TheNetherlands)with a halogen
lamp and a compact CCS200 spectrometer (Thorlabs, USA), both connected to thefiber-optic probe.

For each configuration, porcinemusclemeat samples were purchased from the local supermarkets on the
first day after butchery. Three samples for visible and two samples forNIR spectra with integrating sphere
configuration and thirteen samples with optical fibers configuration for eachmeasurement were placed in a
plastic Petri dish (5 cm in diameter, 1 cmhigh)with a rectangular hole to provide direct access of light to the
sample. For all of themeasurements, the samples were covered by plastic foil in order to delaymoisture

Figure 2. Schematic presentation of the experimental setupwith an integrating sphere and a closer view ofmultiple reflections effects
occurring in the integrating sphere (a) and an array of optical fibers, shown in a closer view in contact with themeat sample as well as
banana-shape trajectories of photons emitted by 1stfiber and collected by 11-thfiber and a schematic of thefibers distance (b).
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evaporation from the surface and prevent drying.Humidity in the laboratory roomwas controlled (at 80% level)
and remained constant during all themeasurements. Controlling relative humidity of the air duringmeat
aging process needed to be controlled since high humidity will ease the spoilage bacteria growth and cause an
unpleasant sticky surface while low humidity restricts bacterial growth but increases water evaporation causing
dryness and less juiciness ofmeat. However, since in this work, we aremeasuring the early stages ofmeat loss of
freshness for a small area of the sample and evaporation of water from the sample surfacewas suppressed by
covering themeat surface with plastic films, the small changes of humidity cannot affect the results strongly [49].

By adjustment of the integration time and calibration, reflectance spectra (R)were obtained and converted

to absorbance spectra ( )=A log
R

1 [20]. The reflectance spectra were recorded every half an hour during on

average six hours at room temperature (23 °C). The Savitzky–Golay fitting algorithmwas applied to remove
randomvariations in themeasured spectra. This technique clearly improves the visual appearance of the spectra
[50]. Finally, the area between isosbestic points within the absorption bands responsible for the associatedmeat
chromophores has been integrated and termed as ‘integrated absorbance’ and then, plotted their values over
time. Eventually, we introduced a new term called ‘degradation kinetics’ for each of themeat chromophores,
defined by the dependence of the ‘integrated absorbance’ over time to track their changes during freshness
decay.

2.2.MonteCarlo simulations
MonteCarlo (MC) simulations are awell-established and effective approach tomodel light propagation in
turbidmedia such as biological tissues [51]which can keep the track of photon transportation [52].MC
simulation consists of a sequential generation of trajectories of so-called photon packets from the source (the
entrance to themedium) to the detector (the area where the photon leaves themedium [53].

Here, we used a free online simulation platform [54] implementing theMCmethod to estimate a sampling
volume [53, 55] and a probing depth in eachmeasurement configuration. The optical parameters used in the
simulations corresponded tomuscle tissue at 632.8 nm [52, 56] (for the illustrative purpose) are shown in table 3
[57]. Although the specific light distribution pattern depends on thewavelength, qualitatively the discussed
difference between the configurations (integrating sphere and fiber-optic)will remain.

The integrating sphere configuration comprised a collimated light beam (size: 10 mm)normally incident on
a rectangularmeat sample (20×20×5mm3). Light reflected from the sample (from the surface and deeper
regions)was collected from all directions within a 20 mmsize area coincident with the incident beam. Thefiber-
optic configuration (see figure 2(b), inset)with 300 μmsource and detecting fibers for two separation distances
was also simulated. In this configuration, the sample size was either 2.5×2×2mm3 (source-detector
distance: 0.53 mm) or 6×2×2mm3 (source-detector distance: 5.3 mm).

2.3. Principal component analysis (PCA)
To identify themost important directions of variability in amultivariate datamatrix and to present the results in
a graphical plot,multivariate statisticalmethods such as principal component analysis (PCA) can be applied
[48]. Principal Components Analysis (PCA) is a data analysis tool which ismostly used to reduce the
dimensionality (number of variables) ofmany interrelated variables, while retaining asmuch of the information
(variation) as possible [58]. The calculated factors or pc’s that are an uncorrelated set of variables are ordered in a
way that the first few keepmost of the variation present in all of the original variables.

There are awide variety of PCA applications in different fields to classify large scattered datasets. Specifically,
it has been an effective promisingmethod utilized inmeat quality assessment [58–64] such as beef
characterization [48], Classification of Beef and PorkAroma [59], classification of hairtail fish and pork
freshness [60] or freshness assessment of cooked beef during storage [61]. Here, we performed PCAon thewhole
processed and smoothed absorbance dataset for eachmeasurement time points for both configurations to detect
and discriminate sub-stages of freshness levels correlated to chromophores changes over timewhichmight be
not recognizable in spectroscopic analysis.

Table 3.Optical properties ofmeat (muscle tissue).

λ, nm μa,mm−1 μs,mm−1 g n

632.8 0.059 17.9 0.858 1.381
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3. Results and discussion

3.1. Spectroscopicmeasurements
The absorbance spectra showedmain peaks associatedwith differentmeat chromophores (oxymyoglobin,
water, fat, and protein) in the pork samples and furthermore, the height decrease of those curves related to later
times ofmeasurement was easily observable. In addition, therewas a noticeable decrease of themagnitudes of
absorbance in both visible andNIR spectral regions caused by changes in the chemical composition in pork
during freshness decay.

Figure 3 shows absorbance spectra for the integrating sphere configuration over 6 h. The curves refer to
data obtained 0 (solid), 3 (dash), and 6 (dot)hours after keeping the sample at room temperature. The local
absorbance peaks in the visible range (seefigure 3(a)) at around 540 nmand 575 nmwavelengths are attributed
to oxymyoglobin content in the sample responsible for themeat color [40]. In theNIR region (see figures 3(b)
and (c)) themain peaks in the absorbance spectra appear between 1100 nmand 1600. The peak around 1200 nm
infigure 3(b) arises from the second overtone of C–Hstretching vibrations associatedmainlywith fat in the
samples [10]. The absorbance peak around 1450 nm (see figure 3(c)) is related to the firstO–Hovertone that
arises fromwater andwater-bonded groups [10]. These results indicate that water is themajor domain
component, which affects themean spectrumof the pork samples. The local peak around 1525 nm (see
figure 3(c)) is attributed to theN–Hbond that arises fromprotein content [29].

Then, we integrated the area between isosbestic points under the absorbance spectra (termed ‘integrated
absorbance’)within absorption bands responsible for the associatedmeat chromophores: oxymyoglobin
(515–600 nm for the integrating sphere setup), fat (1175–1290 nm), water (1414–1490 nm), proteins
(1490–1567 nm) and plotted themover time. Eventually, we introduced a new term called ‘degradation kinetics’
for each of themeat chromophores, defined by the dependence of the ‘integrated absorbance’ over time.

Decrease of the absorbance caused bywater loss and degradation of oxymyoglobin affects negatively sample
freshness. Changes of absorbance over time for the integrating sphere configuration are shown in the visible (see
figure 3(d)) andNIR (seefigures 3(e) and(f)) spectral ranges for the indicated specificwavelengths attributed to
themeat components. It was observed that for the both visible andNIR spectral regions, integrated absorbance
for different wavelengths experienced a decreasing trend showingmeat chromophores degradation, which
could affect pork freshness [5, 10]. Specifically, degradation of oxymyoglobin indicating color changes started
from the beginning (seefigure 3(d)), while in theNIR region (see figures 3(e) and (f)), integrated absorbance
decreased slower starting fromapproximately 2.5 h, that could be interpreted as a beginning stage of freshness
deterioration process. Aswe can see infigure 3(e), the integrated absorbance for fat did not show a sharp

Figure 3.Absorbance spectra in the pork samplemeasured in the integrating sphere configuration (a)–(c) at 0 (solid), 4 (dash) and
6 (dot) hours after keeping the sample at room temperature (23 °C). The absorbance peaks indicate presence of (a) oxymyoglobin
(540 nmand 570 nm, (b) fat (1200 nm, and (c)water (1450 nm) and proteins (1525 nm) [10, 29, 47]. Degradation kinetics of
(d) oxymyoglobin, (e) fat and (f)water (1450; square/black) and proteins (1520 nm; circle/red)measured in the integrating sphere
configuration. The dashed vertical lines in (e) and (f) indicate the transition time between the fresh and non-fresh pork sample.
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reduction in contrast to thewater and proteins curves. This is caused by fat degradation occurring at a slower
rate than these other considered components.

Similar experiments were performed in thefiber-optic configuration. Figure 4(a) shows significant peaks
associatedwith oxymyoglobin absorbancemeasured at three different time points (0, 3, and 6 h after keeping the
sample at room temperature) and the integrated absorbance selected regionwithin 527–587 nm.

The decreasing trend for the integrated absorbance over timewas detectable in this case aswell (see
figure 4(b)), although the data points deviatedmore from the fitting curve and the drop in the absorbance
happened after about 4.5 h. Comparison of the curves infigures 3(d) and 4(b) (both referred to oxymyoglobin
changes over time) reveals the difference between the decreasing trends. Since the pork samples were covered
with a plastic film from all sides andwere under stable and similar physiological conditions, we assume that in
both configurations freshness decay started at about the same time. The explanation of the observed discrepancy
is elucidated further on.

3.2.MonteCarlo simulations
MCsimulationswere capable to elucidate the reasons of different degradation kinetics of oxymyoglobin and
other chromophores. The difference between the two setups fromoptical point of view is the sensing depth: in
the case of the integrating sphere setup, it was shallower due to higher contribution of the surface and subsurface
reflected photons. In the second (fiber-optic) configuration, the probing depthwasmanaged through changing
the source-detector separation, i.e. by choosing the proper detecting fiber (since the illuminating fiberwas kept
the same). Results of theMC simulations (figure 5) illustrate this aspect. These results clarify the difference
observed infigures 3(d) and 4(b). Despite detecting the same substance (oxymyoglobin), the indicated plots
showed completely different trends: in the case of integrating sphere (see figure 3(d)), the degradation happened
immediately from the beginning, while in the case offiber-optic setup (see figure 4(b)) the degradationwas
significantly (4.5 h) delayed. Therefore, the delaywas caused by larger depths achieved by detected photons in
the latter case.

3.3. Principal component analysis (PCA)
Multivariate statistical analysis is frequently applied to spectral data due to its potential to deal with large
complex co-linear information, reducing this original data to a lower dimensionwithout overlooking useful
information. Thus, PCAwas applied to the processed and smoothed absorbance dataset obtained from the
samples to correlate scattering alignments of data respect to each component axis with different freshness stages
ofmeat.

Figure 6 displays the corresponding scores plot of the rawpork samples and their spectrameasuredwith two
configurations and different spectral ranges (Vis/NIR) for thefirst and the second principal components.
Figure 6(a) shows the scores plot of the visible spectrameasuredwith the integrating sphere (seefigure 3(a))with
86.4% and 9.3%of the total variance in the dataset. Four distinct separations can be observed to classify different
level of freshness according to PC1 and PC 2. PC 1makes the clear distinction between stages of freshness with
negative values for fresh sample and positive values for non-fresh sample. Furthermore, PC 2 provides
information about aging and spoilage revealing the separation between the fresh sample (0 h; green) and the
non-fresh sample (5.5 h and 6 h; red cluster). Clearly, compared to the simply spectral analysis (seefigure 3(d)),

Figure 4. (a)Evolution of absorbance spectra in a pork samplemeasured in thefiber-optic configuration at 0 (solid), 3 (dash), and
6 (dot) hours after keeping the sample at room temperature (23 °C). The 540 nmand 575 nmabsorbance peaks indicate presence of
oxymyoglobin. The shadowed areawas used for calculating integrated absorbance and (b)Kinetics of oxymyoglobin degradation. The
dashed vertical line in (b) indicates the transition time between the fresh and non-fresh pork sample.
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PCAmethod provides complementary information and distinguishes the level of freshness between totally fresh
sample in the beginning of themeasurement (0 h; green) and less fresh sample (0.5 h–2 h; yellow cluster) in
addition to another classification between 2.5 h–5 h (orange cluster) and 5.5 h–6 h (red cluster) for non-fresh
sample.

For of theNIR spectrameasuredwith the integrating sphere (see figure 6(b)), thefirst three principal
components were responsible for 98.7%of variability of the data; the first, second and third principal
components variability were 72.6%, 23.1% and 3%, respectively. Similar to visible spectra, PC 1 is the separator
reference axis with negative values for fresh sample and positive value for non-fresh sample. According to the
plot, the transition to non-fresh stage happens after 3.5 hwhich is the same as spectral analysis for fat absorption
(see figure 3(e)), while for water and protein, spectral changes are detected earlier and after around 2.5 h (see
figure 3(f)). The stages of freshness have been divided as the following:

■ 0 h–1 h; fresh (green/solid cluster);

■ 1.5 h–3.5 h; less fresh (yellow/dash luster);

■ 4 h–4.5 h; almost non-fresh (orange/dash dot cluster);

■ 5 h–8 h; totally non-fresh (red/dot cluster).

Figure 6(c) shows the scores plot for of the visible spectrameasuredwith the opticalfibers configuration (see
figure 4(b))with 47.9% and 16.8%of the total variance in the dataset which clearly caused bymore scattered data
compared to two previous spectra and therefore, leads to difficulty in distinction between freshness sub-stages.

Figure 5. Spatial distributions of the optical detected signal in the pork sample (a), (b) for thefiber-optic and (c) the integrating sphere
configurations assessed byMC simulations. The distance between the illuminating and the detecting fibers is 0.53 mm (a) and
5.3 mm (b).

Figure 6.Representation of the score plots of PCA conducted on the spectral data for a pork samplemeasuredwith the integrating
sphere configuration in visible (a) andNIR range (b), andwith thefiber-optic configuration in visible range (c)which in each of them,
the clustered represented as: fresh (green/solid cluster), less fresh (yellow/dash cluster), almost non-fresh (orange/dash dot cluster)
and non-fresh (red/dot cluster).
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Here again, classification between stages of freshness is defined by PC 1with negative values correlated to fresh
sample (green cluster) and positive values for less fresh and non-fresh samples (orange and red clusters). But
similar to spectral analysis infigure 4(b), the beginning of decay happens after 4.5 h although the presence of data
referred to 3.5 h and 4 h in red cluster is questionable.

Briefly, for all themeasurements in both visible andNIR ranges, discrimination between fresh and non-fresh
pork samples is clearly observed according to the changes in absorbance of different chromophores through
using PCmethod applied to the absorbance spectra. The PCA results presented here are just based on the
experimental data but as the next stage of thework, simulationwill be added [8, 61, 65–67].

4. Conclusion

The study presents amethodology to detect earlier stages of pork freshness loss at room temperature with the
aimof decreasing the costs ofmeat qualitymonitoring. According to the obtained results, it is possible to observe
the decreasing trend in the light absorbance for different pork chromophores in both visible andNIR spectral
ranges showing loss of freshness over time. The compact fiber-optic linear array allows for retrieval of freshness
decay depth simply by changing the detecting fiber (keeping the illuminating fiber the same).We believe this
configuration can serve as a future base for development of a portable low-costmeat freshness sensor. The PCA
methodwas used as a complementary analysis tool to classify the different stages of freshness and it succeeded to
reveal sub-stages, whichwere not detectable by conventional reflectance spectroscopy. Further researchwith
other types ofmeat of different age could help to build a comprehensivemodel ofmeat and its composition
depending on freshness.
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