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 20 

Abstract 21 

Total Hip Arthroplasty (THA) is currently a very successful operation but continues to evolve, 22 

as we try to perfect the techniques and improve outcomes for our patients. Robotic Hip 23 

Surgery (RHS) began with the ‘active’ ROBODOC system in the 1980’s. There were drawbacks 24 

associated with the original ROBODOC and most recently, the MAKO robot was introduced 25 

with early promising results. One of the limiting factors of conventional THA currently is the 26 

human factor in surgery. RHS aims to tackle this by promising a reproducible and reliable 27 

method of component positioning. We have reviewed the literature surrounding the 28 

technology and discuss the pros and cons of these systems. 29 

  30 

 31 

Introduction 32 

 33 

Total Hip Arthroplasty (THA) has been a successful operation since its introduction half a 34 

century ago (1, 2). Each decade has its own area of focus for improving outcomes for THR. In 35 

the 1970’s, it was the bearing surfaces. The 1980’s it was the cemented versus uncemented 36 

debate, which continues to this day. The 1990’s introduced newer bearing surfaces including 37 

metal-on-metal, ceramic-on-ceramic and resurfacing arthroplasties with the preservation of 38 

bone stock. At the start of the new millennium, two major topics developed in THA. Firstly, 39 

the early failure of large bearing metal-on-metal hip implants and secondly, the role of 40 

minimally invasive hip arthroplasty and alternative approaches to the hip. As we come 41 

towards the second decade of this millennium, robotic assisted surgery has become the new 42 

hot topic.  43 

 44 

Jacofsky and Allen in their review quote Roger Bohn that every industry; from aviation to 45 

manufacturing to financial services to firearm safety to military activity has followed 5 phases 46 

of development (3). These phases are i) consideration of the industry as an ‘’art’’ by experts 47 

in the field ii) development of ‘’rules plus instruments’’ iii) development of ‘’standardized 48 

procedures and templates’’ iv) automation v) computer integration. At present, surgery is at 49 
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the third stage. It could only be a matter of time before we enter the fourth stage, and the 50 

use of robots is routine in surgery. Paraphrasing Moors Law from the 1970s, computing power 51 

will double every two years and it is now hard to imagine that robotics will not play an 52 

increasing role in healthcare in the near future. 53 

 54 

However, important questions remain as to whether this new technology at present will lead 55 

to improved outcomes in patients undergoing hip arthroplasty surgery. This review will 56 

discuss the history of robotic hip surgery and the evidence currently available surrounding 57 

this area. 58 

 59 

Methods 60 

 61 

We performed a literature review searching Medline, Embase, Ovidsp, Cochrane library, 62 

pubmed database and google scholar pertaining to adults using the following keywords: 63 

‘Robotic hip surgery’, ‘Robotic orthopaedic surgery’, ‘Computer assisted hip surgery’, ‘Robotic 64 

arthroplasty’, ‘Computer assisted Orthopaedic Surgery’.  65 

 66 

 67 

 68 

Types of Robot 69 

 70 

In the field of hip surgery, robotic surgery can be passive, active or semi-active. Passive robots 71 

complete a task that is continuously under the control of the surgeon with no feedback loops. 72 

An example of this, is the Da Vinci robot, which is a passive remote telemanipulator. Active 73 

robotic hip surgery systems perform the bony preparation for implantation of the 74 

components based on pre-determined programming. Semi-active robots require the 75 

surgeon’s involvement but has haptic feedback loops present i.e. it is able to communicate 76 

with the surgeon in real-time.  77 

 78 

Haptics provide tactile feedback that facilitates the pre-operative plan to be implemented in 79 

the operating room. It can be auditory, tactile and visual or a combination of all. Historically, 80 

the active robot only had applications for the femur and the semi-active options for the 81 
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acetabulum. However, with improved technology and developments, some now offer 82 

guidance for both femoral and acetabular preparations. 83 

 84 

On review of the literature, 4 major systems for robotic hip surgery were found. These include 85 

Robodoc (THINK surgical, Inc., Fremont, CA, USA), CASPAR (Universal Robot Systems Ortho, 86 

Germany), ACROBOT (COMPANY), and the RIO MAKO ROBOT (Stryker, FL, USA). Only the 87 

ROBODOC and the RIO MAKO robot remain in widespread clinical use. 88 

 89 

 90 

ROBODOC – The first active surgical robot assistant  91 

 92 

Computer Assisted Orthopaedic Surgery (CAOS) and Robotic Hip Surgery (RHS) entered into 93 

clinical practice in the early 1990’s in the form of ‘Robodoc’(4, 5). William Bargar in the 1980’s 94 

started making custom implants using computer-assisted design/computer-assisted 95 

manufacturing (CAD/CAM) technology based on computer tomography (CT) imaging. In the 96 

same campus, Howard Paul was investigating joint replacements on canines. It was the joint 97 

collaboration of Bargar and Paul that resulted in the first active robotic surgical system called 98 

the ROBODOC (incidentally named after the then popular film Robocop)(6).  99 

 100 

ROBODOC (THINK surgical, Inc., Fremont, CA, USA) was the first surgical robot in hip 101 

arthroplasty that had widespread use. It was originally produced by Integrated Surgical 102 

Systems. A class-action lawsuit was filed in 2004 in Germany against ROBODOC following 103 

some patients who developed complications. The company was then acquired by Curexo 104 

technology which later became Think surgical Inc. The company now has FDA approval for its 105 

next generation active ROBODOC system called TSolution One(7). 106 

 107 

It has been used worldwide for over 17,000 THAs since 1994(8). It is a system that assists 108 

surgeons to pre-operatively plan the type of femoral implant, as well as machine mill the 109 

femoral canal to press-fit the chosen uncemented implant. This is an ‘active’ system in that it 110 

performs actions, based on pre-operative planning instructions. It has an ORTHODOC 111 

workstation (the ‘brains’) with a ROBODOC surgical robot arm with a high-speed milling 112 

device (the ‘effector’) (9).  113 
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 114 

To function, the ROBODOC needs calibration markers on the patient to map the anatomical 115 

co-ordinates which are fed back to a computer then looped back to the robotic arm. This 116 

process, known as calibration involved placing fiducials (radiographic markers) on patients. 117 

The original ROBODOC system used a pin based system. Originally these fiducials were 118 

titanium screws that were inserted into the greater trochanter and into the femoral condyles 119 

before a CT scan is taken under local anaesthetic. This was an additional procedure for the 120 

patient associated with complications including fractures, knee pain, nerve injury, and broken 121 

metalwork (10, 11). During the hip replacement surgery, the surgeon has to expose and 122 

identify these pins to the ROBODOC. It then recognizes the position of these fiducials and 123 

places them in context of the patients bony anatomy (12).  124 

 125 

Due to the drawbacks, in 1999 Robodoc introduced surface marking calibration techniques 126 

using optical sensors placed in the operating room and probes placed on bony landmarks on 127 

the patient known as the DigiMatch Technique. This eliminated the need for the surgical pins. 128 

Nakamura et al compared their results with the conventional locator pin based registration 129 

to the DigiMatch technique and concluded the DigiMatch technique was safe and effective 130 

though they noted the DigiMatch group had a longer duration of surgery compared to the pin 131 

based system of 146 and 121 minutes respectively (13). Their group also validated the 132 

accuracy of the DigiMatch technique with post-operative CT scanning and component 133 

positioning. After registration the femur was rigidly fixed to the ROBODOC with a clamp 134 

placed at the level of the lesser trochanter making it ready to mill the femoral canal actively.  135 

 136 

The landmark paper for Robodoc published by its co-inventor Bargar et al produced promising 137 

results (14).  This paper introduced the results of the FDA approved multicentre randomized 138 

controlled trial of 136 hip replacements in the USA between 1994 and 1995. The results 139 

showed comparable Harris hip scores (HHS) for patients having a hip replacement using the 140 

Robodoc and the control group. Complications were not different, except that in the control 141 

group there were three femoral fractures and zero in the Robodoc group. There was also 142 

greater surgical time and increased blood loss in patients undergoing the Robodoc hip. 143 

However, the ROBODOC achieved more accurate alignment and fixation of the femoral stem. 144 
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The additional German study of 900 hip replacements also corroborated well with the initial 145 

FDA approved trial (14).  146 

 147 

Recently, Bargar et al has published his single-surgeon fourteen-year follow-up results of the 148 

randomized clinical trials showing that there were no failures for stem loosening and a small 149 

(but clinically not significant) improvement in functional scores (8). The authors attribute the 150 

improved functional scores to more accurate component positioning, however accept this is 151 

less than the minimal clinically important difference (MCID). This conclusion however is 152 

debatable and open to criticism of inventor bias. 153 

 154 

Other studies have demonstrated that ROBODOC leads to improved component positioning 155 

and reduced leg length discrepancies (15, 16). Hananouchi et al have carried out DEXA studies 156 

comparing ROBODOC hip replacements to conventional hip replacements. The results 157 

suggest that robotic milling is effective in facilitating proximal load transfer and minimizing 158 

bone loss with uncemented stems (17). This could have the potential benefit of reducing 159 

stress shielding in the future though long-term studies are required to confirm this. 160 

Furthermore, Robodoc has also been quoted to be useful in revision arthroplasty, particularly 161 

in removal of the distal cement plug (18).  A prospective randomized controlled trial using 162 

short uncemented femoral stems, concluded that RAS using the ROBODOC lead to increased 163 

accuracy of stem alignment and leg length equalities but also reduced intraoperative femoral 164 

fracture risk compared to standard THA’s (19). 165 

 166 

Opponents of the Robodoc raised concerns with potential thermo-necrosis caused by the 167 

robotic milling arm despite the irrigation systems that were in place. Nogler et al have 168 

demonstrated in-vitro studies that the temperature could get up to 172oC without irrigation 169 

so note that care needs to be taken when using the robotic mill (20). However, there were no 170 

clinical studies demonstrating these concerns.  171 

 172 

Honl et al performed a prospective randomized controlled trial and demonstrated 173 

unfavourable results for the ROBODOC. They showed in their 154-patient trial, the ROBODOC 174 

had higher dislocation rates. They attributed this to intra-operative muscle damage caused 175 

by the robotic mill. There was also a higher revision rate and longer duration of surgery with 176 
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Robodoc. Furthermore, 18% of the patients had failed attempts of robotic implantations due 177 

to the failure of the computer system (15). The complication of registration failure has been 178 

noted and has been quoted to occur as high as 10% of the time (11, 21).  179 

 180 

In addition to the above, other disadvantages of RHS include increased radiation to the 181 

patient (for the CT scan). The pre-operative planning CT subjects the patient to three times 182 

the radiation of a usual plain hip radiograph series (22).   183 

 184 

Another factor limiting the widespread use currently are the costs involved. The costs of 185 

robotic arthroplasty have a varied range but initial purchase costs of Robodoc include 186 

$635,000 with $130,000 annual service costs (23, 24). Finally the literature suggest a surgical 187 

learning curve with the Robodoc. Sugano et al note this is particularly relevant to an active 188 

surgical robot which is not under the direct control of the surgeon, even though there is  a 189 

‘kill switch’ (9). 190 

 191 

 192 

CASPAR 193 

 194 

Another example of an active surgical robot includes CASPAR (Universal Robot Systems Ortho, 195 

Germany). The literature on Caspar is mainly restricted to articles in German. One often 196 

quoted paper by Siebel et al compared 36 CASPAR robotic assisted and 35 conventional total 197 

hip arthroplasties with an 18-month follow-up. They noted that with CASPAR the average 198 

duration of surgery and blood loss was greater. The Caspar robotic system is no longer 199 

available in clinical use. 200 

 201 

 202 

ACROBOT 203 

 204 

Due to the disadvantages associated with the active robotics, more accepting devices such as 205 

the ACROBOT (Acrobot ltd, London, UK) were developed. The surgical arm is moved by the 206 

surgeon which is limited to stay within a pre-determined surgical field by pre-operative CT 207 

planning. In the literature, there is only one clinical study involving ACROBOT that noted the 208 
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use in hip resurfacings (25). The Acrobot was sold to Stanmore Implants Worldwide and 209 

subsequently, some of the technology was acquired by Mako. 210 

 211 

 212 

Mako – A semi-active robot 213 

 214 

Disadvantages of the active robot lent itself to the rise of the semi-active robot - the Mako 215 

robot (Stryker, FL, USA). The Mako robot uses a Robotic Arm Interactive Orthopaedic (RIO) 216 

system. FDA approval was given in 2008 for knee arthroplasty and hip arthroplasty in 2010. 217 

By the start of 2017, Stryker sales data indicate that 20,000 Mako THA’s were performed (26). 218 

 219 

The Mako system has a planning stage whereby the patient undergoes a pre-operative CT 220 

scan to generate a 3-D model of the pelvis and proximal femur. The surgeon then templates 221 

the components in the optimal position virtually. The Surgeon proceeds to perform the 222 

surgery with the robotic arm (RIO) system using standard surgical tools. During the surgery, 223 

three pins are inserted into the thickest portion of the iliac crest. A further pin is inserted into 224 

the intertrochanteric ridge as well as a checkpoint smaller screw into the greater trochanter. 225 

Femoral registration is completed by touching 32 required points on the proximal femur with 226 

a probe (similar to the DigiMatch technique of the Robodoc).  Being able to template the 227 

centre of rotation of the femoral head and the hip joint, including other para-meters pre-228 

operatively, the robot can guide the surgeon to perform the neck osteotomy at the pre-229 

templated level. The femur is prepared with broaches and the anteversion is measured of the 230 

final broach in place. 231 

 232 

Acetabular registration occurs using a pelvic checkpoint screw inserted outside the 233 

acetabulum. 32 registration points are also taken here. When performing the acetabular 234 

reaming, the robotic arm is constrained by a conical virtual haptic tunnel. The Mako system 235 

works on a principle of ‘active constraint’. It prevents the surgeon from straying from the 236 

desired pre-operative templated components by haptic feedback (auditory beep, visual 237 

colour changes on the screen and tactile vibrations). The computer screen shows in real-time 238 

the cup anteversion and inclination as well additional useful information such as distance to 239 

the centre of rotation (COR) templated and the real-time COR. A single acetabular reamer is 240 
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used, sized pre-operatively. The real cup is also inserted through the haptic tunnel with the 241 

monitor displaying real-time information.  242 

 243 

Nawabi et al performed a cadaveric study and validated the accuracy of the Mako robot and 244 

confirmed the robotic system provided superior accuracy compared to manual implantation 245 

in terms of desired component positioning (27). This group also noted that the leg lengths 246 

were reconstructed to within 1mm using the robot.  247 

 248 

Kamara et al performed a retrospective cohort review and compared 3 groups of patients 249 

(28): The first 100 patients fluoroscopic assisted anterior approach THAs, the first 100 robotic 250 

assisted THAs and a control group of the last 100 standard THAs. The results showed that 251 

component positioning in the target zone was achieved in 76% of the standard THAs, 84% in 252 

the fluoroscopic assisted anterior approach but 97% in robotic assisted THAs. This paper also 253 

notes the learning curve associated with the Mako robot is minimal. The authors conclude 254 

that robotic techniques deliver significant and immediate improvement in the precision of 255 

the acetabular component.   256 

 257 

In contrast, a prospective collected data series of 105 consecutive RHS, Redmond et al 258 

concluded that there is a significant learning curve with the Mako robot (29). They noted 259 

there was a significant decrease in acetabular component mal-positioning and operative time 260 

with increasing experience (p<0.05). The group also noted that in five percent of the cases, 261 

there were technical problems associated with the fixation of the femoral screw for 262 

navigation. The screw that was inserted into the posterior border of the greater trochanter 263 

loosened in osteoporotic bone. This affected the intra-operative feedback on leg length and 264 

offset (29). This was picked up by the surgeon but emphasised the fact that the he or she 265 

cannot ‘switch off’ during robotic surgery. 266 

 267 

The increased duration of surgery associated with RHS increases the risk to patient of 268 

periprosthetic joint infections as well as anaesthetic risks. It also places a burden on theatre 269 

utilization. As above noted, with increasing experience, the surgical time can be reduced from 270 

80 minutes for the surgeons first 35 cases to 69 minutes after 70 cases (29).  271 

 272 
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Similar to the ROBODOC, RAS with the Mako RIO system has significant costs associated with 273 

the technology. Reported costs for the platform include $793,000 which does not include the 274 

annual servicing and maintenance costs (30). Supporters of Mako point out that this 275 

technology does not expose the surgeon to have to learn new techniques of exposure nor 276 

alter his surgical technique significantly. It does not expose the surgeon to radiation like 277 

fluoroscopic assisted THAs. Furthermore, although there is a small increased radiation to the 278 

patient for the pre-operative CT scan, it could be argued that the patient does not require an 279 

early post-operative radiograph as the surgeon has intraoperative imaging of final component 280 

positioning. This could help mitigate the difference in radiation doses to the patients 281 

associated with RHS. 282 

 283 

The Mako robot can provide a ‘virtual safety barrier’ for the surgeon to prevent errors in 284 

component positioning. The haptic feedback allows the pre-operative plan to be 285 

implemented in the operating room. The Mako robot has been validated in Domb et al’s 286 

matched-pair controlled study. They showed 100% of the RHS were within the Lewinnek’s 287 

safe zone compared to 80% of conventional hip surgeries (31). This has been corroborated 288 

with Malchau’s et al series (32). 289 

 290 

In a multi-centre trial, 119 patients underwent robotic hip surgeries. The results showed that 291 

the inclination and version of the acetabular components were within the commonly 292 

accepted limits in 100% of the cases (33). The same group published their data showing that 293 

in RHS with Mako, acetabular component positioning was within 4 degrees of the planned 294 

position in 95% of the cases (32).  295 

 296 

Intra-operative data on RHS for the acetabular position produced accurate and reliable data 297 

when compared to postoperative radiograph analysis of component positioning (34, 35).  298 

 299 

Tsai et al carried out a CT based study postoperatively of RHS patients,  with unilateral 300 

arthroplasties who underwent hip arthroplasty with RHS and compared these models to 301 

patients who had conventional hip surgery (36). They conclude that there was significantly 302 

less variation in the orientations of components in the RHS group compared to the non RHS 303 

group and demonstrated reproducibility with RHS. Another recent CT based study conclude 304 
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that the post-operative Mako THR component positioning accurately correlated with the pre-305 

operative template (for length, offset, anteversion and inclination) (37).  306 

 307 

 308 

 309 

Is there a Problem that needs addressing? 310 

 311 

Hip arthroplasty is already a one of the most successful surgical procedures available 312 

throughout healthcare. Success of hip arthroplasty can broadly be divided into three factors. 313 

These are patient factors, surgeon factors and implant factors. One of the surgeon factors 314 

affecting success includes component positioning.  Based on the UK registry data, the most 315 

common reason for revision hip surgery within the first year following the primary 316 

arthroplasty remains dislocation (38). Bozic et al confirm that the most common indication of 317 

revision hip surgery is dislocation giving rise to nearly one quarter of all revision hip surgeries 318 

(39). An important cause of dislocations remains component positioning.  319 

 320 

Component malalignment can lead to not just hip dislocation but also hip impingement, early 321 

wear, edge loading, periprosthetic fractures and revision surgery (40, 41).  Revision surgery 322 

has a cost most importantly to the patient but also gives rise to a significant financial burden 323 

to the healthcare economy (42). Therefore, technology which helps reduce the burden of 324 

revision hip surgery and promotes better outcomes is warranted. 325 

 326 

There is widespread data in the literature suggesting that experience and surgical volume 327 

improve component positioning accuracy (43-45). However, even in experienced hands, there 328 

is a range of component positioning. In one study by Padgett et al, the results of a single hip 329 

surgeon over 40 consecutive hip arthroplasty cases revealed a mean cup abduction angle of 330 

42.1o but with a range of 23o to 57 o with an intra-observer and inter-observer variability less 331 

than 0.3o (46). A similar variability has been demonstrated in anteversion of the femoral 332 

component (47).  Other studies confirm that even in high volume arthroplasty units, there is 333 

a significant number of mal-positioned components radiographically (48, 49).  334 

 335 
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The early results with the Mako robot seems to promise more consistent component 336 

positioning in total hip arthroplasty. However, care must be taken in reaching conclusions 337 

that this would automatically lad to better outcomes and function. There is a need for more 338 

robust studies with longer term follow up of patients with a focus on patient reported 339 

outcome measures and other functional assessments. Currently the data does confirm that 340 

robotic hip surgery adds to the operative time and there is a significant cost implication factor. 341 

It is important not to rush into the next ‘orthopaedic fad’. New technology needs to be 342 

assessed thoroughly to prevent repeating history with examples such as the large metal on 343 

metal THRs.   344 

 345 

Ultimately, uptake especially initially depends on costs and health-care economics. In today’s 346 

healthcare economics with austerity measures, this will be a significant factor limiting its 347 

widespread use. Proponents of robotic surgery however argue that although there are 348 

relatively high initial set up costs involved, there may be an overall cost saving element to the 349 

healthcare economy if the predictions of reduced revisions with RHS are true (50).  350 

 351 

Finally, the role of RHS could be expanded providing a more controlled training opportunity 352 

for the junior surgeons who will learn and practice inserting the component in the correct 353 

place. Furthermore, it could be used in conjunction with simulation tools in the university as 354 

a training opportunity with virtual reality technology.  355 

 356 

 357 

 358 

Conclusion 359 

 360 

As Redmond notes in their results, though the surgeon relies on the computer generated 361 

information on hip measurements, the surgeon should still pay close attention to the 362 

anatomic landmarks to ensure the robotic system is providing accurate information (29). 363 

 364 

The Mako system can be equated to the release of the first iPhone (Apple Inc, Cupertino, 365 

California, USA). It is revolutionary change to everything that has been around so far. 366 

Analogous to the current iPhone X that has facial recognition and Siri, the Mako robot will 367 
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continue to develop and may one day become semi-autonomous. This has already been 368 

shown to be possible in other systems when in 2016, the Smart Tissue Autonomous Robot 369 

(STAR) has sown two pieces of pig’s intestine together (51). Ultimately however, we still 370 

require the surgeon to be in control analogous to the current situation where we would not 371 

yet be comfortable travelling in a non-piloted aeroplane. A wider more philosophical question 372 

raised would be whether robotic surgery could one day replace surgeon involvement 373 

completely.  374 

 375 

In the current era, the greatest weakness of arthroplasty surgery is the human factor which 376 

includes human error. Trying to implant perfectly positioned components, one hundred 377 

percent of the time, in every patient, in a biological environment, where there is diversity in 378 

anatomy and pathology seems only attainable with the innovation of robots.  As Dorr et al 379 

quotes ‘Improving human performance in surgery will be done by machines in the operating 380 

room just as it is in every other human endeavour outside surgery’ (52). 381 

 382 

In one of the few level 1 studies, a recent meta-analysis of the first 30 years’ experience of 383 

robotic surgery across different surgical specialities, the authors from Imperial college 384 

conclude that robotic surgery contributed positively to some perioperative outcomes but 385 

longer operative times and costs remained a downfall (53).  386 

 387 

Finally, it is worth noting that current robotic platforms do not allow for the assessment of 388 

spino-pelvic plane dynamics. As discussed, RHS allows us to consistently place the acetabular 389 

component at the ‘40/20’ position, however, this may not be applicable to all patients and 390 

data is emerging that this ‘one rule fits all’ may not apply to hip surgery(54). 391 

 392 

In conclusion, as orthopaedic surgeons, we must critically appraise all new technology and 393 

support the use providing there is sound robust evidence backing it. 394 

 395 

 396 

 397 

 398 

 399 
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