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Tumour subregion analysis of colorectal liver metastases using semi-automated 

clustering based on DCE-MRI: comparison with histological subregions and impact 

on pharmacokinetic parameter analysis 

 

Abstract 

Purpose 

To use a novel segmentation methodology based on dynamic contrast-enhanced 

magnetic resonance imaging (DCE-MRI) to define tumour subregions of liver metas-

tases from colorectal cancer (CRC), to compare these with histology, and to use 

these to compare extracted pharmacokinetic (PK) parameters between tumour sub-

regions. 

 

Materials and Methods 

This ethically-approved prospective study recruited patients with CRC and ≥1 hepatic 

metastases scheduled for hepatic resection. Patients underwent DCE-MRI pre-

metastasectomy. Histological sections of resection specimens were spatially 

matched to DCE-MRI acquisitions and used to define histological subregions of viable 

and non-viable tumour. A semi-automated voxel-wise image segmentation algorithm 

based on the DCE-MRI contrast-uptake curves was used to define imaging subre-

gions of viable and non-viable tumour. Overlap of histologically-defined and imaging 

subregions was compared using the Dice similarity coefficient (DSC). DCE-MRI PK pa-

rameters were compared for the whole tumour and histology-defined and imaging-

derived subregions.  
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Results: 

Fourteen patients were included in the analysis. Direct histological comparison with 

imaging was possible in nine patients. Mean DSC for viable tumour subregions de-

fined by imaging and histology was 0.738 (range 0.540-0.930). There were significant 

differences between Ktrans and kep for viable and non-viable subregions (p<0.001) and 

between whole lesions and viable subregions (p<0.001).  

 

Conclusion:  

We demonstrate good concordance of viable tumour segmentation based on pre-

operative DCE-MRI with a post-operative histological gold-standard. This can be used 

to extract viable tumour-specific values from quantitative image analysis, and could 

improve treatment response assessment in clinical practice. 
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Abbreviations 

CRC – colorectal cancer 

CRLM – colorectal liver metastases 

DCE-MRI – dynamic contrast enhanced MRI 

IB – imaging biomarkers 

PK – pharmacokinetic  

RECIST – response evaluation criteria in solid tumours 

ROI – region of interest 

VOI – volume of interest 
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Introduction 

Colorectal cancer (CRC) is the fourth most common cancer in the UK1 and US2. Colo-

rectal liver metastases (CRLM) complicate approximately 25% of cases of CRC, either 

at the time of presentation or during follow-up.3,4 CRLM are pathologically hetero-

geneous, comprising regions of viable, cellular tumour as well as areas of predomi-

nantly acellular fibrosis and necrosis. For patients with CRC, primary and metastatic 

lesions may also contain mucinous regions and areas of calcification.5  

 

Cellular regions of tumour have different MRI characteristics from other compo-

nents,6 and could be used as the basis for tumour subsegmentation. Segmenting vi-

able tumour regions using in vivo imaging could have substantial clinical utility. First-

ly, it may assist in assessing response to treatment: conventional size-based re-

sponse criteria such as RECIST 1.17 assume that all treatment response is associated 

with changes in tumour size; incorporating morphological response criteria can im-

prove response assessment in some settings.8 Secondly, in patients with CRLM, 

pathological assessment of viable tumour9,10 and the composition of the metastasis11 

are prognostically relevant. However, there is no reliable methodology to quantify 

this in vivo, where it could be used to influence clinical decision-making.  

  

Segmentation of viable tumour regions by imaging also has the potential to improve 

analysis of quantitative imaging data. Extraction of quantitative imaging biomarkers 

(IB) has typically been based on analysis of the whole lesion, which includes acellular 

regions, as well as the regions of viable tumour. When analysing pharmacokinetic 

(PK) data derived from, for example, dynamic contrast-enhanced MRI (DCE-MRI), it 
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may be preferable to focus on regions of viable tumour. This could improve on the 

variable associations found between perfusion imaging and histological parameters 

observed to date,12,13 and improve tumour phenotyping by imaging. Finally, manual 

delineation of tumour subregions for pharmacokinetic (PK) analysis introduces intra-

observer variability,14,15 and may be impractical in clinical practice, and therefore au-

tomated or semi-automated segmentation is preferred.  

 

We developed a methodology to semi-automatically segment tumour and non-

tumour regions based on DCE-MRI characteristics. This study has two aims: firstly, to 

compare these subregions with a reference standard of histological subregions from 

spatially matched resected CRLM and, secondly, to analyse the impact of using these 

tumour subregions to examine DCE-MRI-derived PK data. 
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Methods and Materials 

Patients 

Patients were eligible for this ethically approved prospective observational study if 

they had a diagnosis of CRC, at least one hepatic metastasis ≥8mm not previously 

treated with systematic chemotherapy and were scheduled for surgical liver metas-

tasectomy. All patients provided written informed consent to the study procedures. 

DCE-MRI of the liver was performed at baseline and then patients either proceeded 

directly to surgery, or were treated with neoadjuvant chemotherapy as part of their 

routine clinical care. To minimise changes to tumour morphology between pre-

operative imaging and histopathological assessment, patients were excluded from 

the imaging-histopathology correlation analysis if the interval between DCE-MRI and 

surgery exceeded 28 days.   

 

DCE-MRI technique 

MRI studies were performed at 1.5T (GE HDX Twinspeed MR scanner; GE, Milk-

waukee, WI) with an 8-channel torso coil. All DCE-MRI imaging was performed in the 

axial plane. A multiparametric MRI incorporating T2 weighted (T2W), T1 weighted 

(T1W), diffusion weighted (DWI) and DCE-MRI was performed. DCE-MRI was per-

formed using multiple flip-angle (15°,9° and 3°) sequences to calculate voxel T10 val-

ues followed by T1W imaging (axial 3D multiphase LAVA (imaging options: Fast, ZIP2 

Asset), acceleration factor = 1.00, field of view = 42, phase FOV = 0.8, matrix 320 x 

192, slice thickness = 5.0 mm, pixel size = 1.31 x 1.75 x 5 mm, location per slab = 22, 

overlap = 0, TR  = 4.46 s, TE = 2.128 s) of a predefined volume centered on the larg-

est liver metastasis before and after the injection of a 15 mL bolus of gadolinium 



7 

chelate (Gadoteridol; ProHance, Bracco Diagnostics, Princeton, USA), with a 15 mL 

saline flush. Volumes were acquired over a 7s breath-hold during end-expiration for 

at least 7 minutes after contrast administration, with lengthening interscan intervals 

(0-2 minutes – 1 breath cycle between each acquisition; 2-4 minutes: 2 breath cycles 

between each acquisition; 4-6 minutes: 3 breath cycles between each acquisition; 6+ 

minutes: 4 breath cycles between each acquisition). All studies had at least 20 acqui-

sitions to inform the PK-modelling.  

 

Histopathological cut-up and staining 

At the time of hepatic resection the specimen was oriented perpendicular to the 

craniocaudal axis and the anterior surface marked. The midpoint of the metastasis in 

the craniocaudal axis was identified using ex-vivo ultrasound and marked superficial-

ly on the specimen. For deep lesions, an ultrasound examination was performed at 

the time of histological cut-up.  

 

Histopathological cut-up was performed prior to formalin fixation. Liver specimens 

were sectioned in the axial plane at the meridian of the selected metastasis based 

on the surgical and sonographic landmarks, with further approximately five millime-

ter sections taken through the metastasis. The sections were marked (anterior, pos-

terior, medial and lateral), photographed, and then transferred to cassettes. Sections 

were fixed overnight in formalin and embedded in paraffin. Three micrometer sec-

tions of each metastasis at the midpoint section were cut and stained using haema-

toxylin and eosin (H&E), and mounted on glass slides.  
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Histopathological analysis  

H&E stained slides were reviewed, using light microscopy, jointly by two consultant 

histopathologists with >10 years experience in reporting CRC histopathology. Each 

metastasis was scored by consensus, blinded to all clinical and imaging data, for the 

percentage of four principal components of CRLM: viable tumour, fibrosis, necrosis 

and mucin to the nearest 5%. This was used to determine proportion of viable tu-

mour estimate by visual assessment.   

 

Image-histopathology alignment 

Histopathology slides were scanned digitally (Aperio CS2 Slidescanner, Leica Biosys-

tems, USA) and imported into OsiriX 2 DICOM Viewer (Pixmeo SARL, Bernex, Switzer-

land) as converted DICOM files (JPEG to DICOM v2.0). DCE-MRI studies were also 

imported. Histopathological images were scaled to match the tumour on MRI to al-

low for size reduction during formalin fixation: the entire lesion was manually meas-

ured in the longest axial plane (x-dimension) and in the longest perpendicular (y-

dimension) at both imaging and histopathology. The histopathology images were 

then rescaled to match the x- and y-dimensions of the lesion on MRI.  

 

Histopathological images were fused with the DCE-MRI 4D volume and manually 

aligned to match the lesion contour in the imaging space, based on the histopatho-

logical orientation and local features such as the liver capsule or local blood vessels.   

 

 

Lesion subregion derivation 
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The entire metastatic lesion (ROIlesion-histopathology) and the subregion(s) of viable tu-

mour (ROIviable-histopathology) were manually delineated on the histopathology image, 

and saved in the imaging space (Figure 1). ROIviable-histopathology encompassed regions 

of predominantly viable, cellular tumour. Non-contiguous tumour regions less than 

500 μm in diameter were not included. To derive the non-viable tumour ROI (ROInon-

viable-histopathology), the ROIviable-histopathology was subtracted from ROIlesion-histopathology. 

 

The whole volume of the metastatic lesion (VOIlesion-imaging) was manually delineated 

on the unenhanced T1W images, or, in cases where the lesion was better defined or 

larger, using the T2W images, by a radiologist with seven years’ experience reporting 

liver MRI.  

 

The imaging subregion analysis was performed using in-house software. To create 

the image-derived subregions the contrast uptake curves for the voxels within 

VOIlesion-imaging and ROIlesion-histopathology were analysed using a principal component 

analysis (PCA) of the DCE-MRI enhancement curves, followed by k-means clustering 

of these modes, as described in a prior publication.16 Based on a retrospective analy-

sis of the dataset, three PCA modes were found to capture the variation in the data, 

and best separate regions of different contrast uptake characteristics, and were used 

to automatically define four subregions. These four subregions were subsequently 

manually merged into two regions: viable tumour, identified by a wash-in/wash-out 

curve, and non-viable tumour, where there were other contrast curves (non-

enhancing or contrast accumulation; Figure 2) as described by Kuhl et al.17  
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Thus for the VOIlesion-imaging two regions were defined: VOIviable-imaging-subregion and VOI-

nonviable-imaging-subregion. Two regions were also defined within ROIlesion-histopathology: ROIvia-

ble-imaging-subregion and ROInonviable-imaging-subregion.   

 

DCE-MRI analysis 

There were three stages to derivation of the PK parameters from DCE-MRI: 

i. Motion correction 

The liver is subject to respiratory motion. Although images were acquired in 

end expiration, which minimizes inter-frame motion (Kimura et al, 200418), 

there was residual inter-frame motion. This was corrected using a non-rigid 

motion correction algorithm developed using liver DCE-MRI studies as we 

have previously described, which results in significant improvement in the 

registration error.19  

ii. PK analysis 

The variable flip angle sequence was registered to the baseline image of the 

DCE-MRI image and used to derive baseline T1 values (T10) and, for each 

voxel in the DCE-MRI acquisition, signal was converted to contrast concentra-

tion. The Toft’s model, using population-average portal venous and arterial 

input functions20, was fitted to the contrast enhancement curve of each voxel 

to produce maps of PK parameters. 

iii. Extraction of PK parameters 

The PK parameter maps were imported into proprietary in-house PK View 

software, which was developed to aid this analysis.16 Mean, median, devia-
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tion, minimum and maximum values for Ktrans, kep and T10 for each of the de-

fined ROIs and VOIs were derived.  

 

Data Analysis  

i. Comparison of image-derived and histopathology defined subregions  

To assess the agreement between regions defined on histopathology with 

those semi-automatically determined from imaging, the spatial overlaps of 

ROIlesion-imaging and ROIlesion-histopathology, and ROIviable-imaging-subregion and ROIviable-

histopathology were estimated using the Dice similarity coefficient (DSC)21, as 

shown in Figure 3). 

ii. Assessment of viable tumour 

The percentage of viable tumour for the whole histopathology slide was re-

ported by visual assessment by agreement of two consultant histo-

pathologists. The percentage of viable tumour within the histopathology ROI 

and imaging ROI and VOI image were calculated:  

 Histopathology:   100 * ROIviable-histopathology/ROIlesion-histopathology 

 ROI imaging   100 * ROIviable-imaging/ROIlesion-imaging 

 VOI imaging   100 * VOIviable-imaging/VOIlesion-imaging 

These values were correlated using the Pearson product-moment correlation 

coefficient.  

iii. PK data analysis 

T10 and PK parameters were summarized for each of the ROI/VOIs and pre-

sented graphically. The following T10 PK parameters comparisons were per-
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formed using paired Student’s T-test. p-values of <0.05 were taken to be sig-

nificant.  

 

To compare viable tumour subregions defined by imaging and defined by his-

topathology: 

1) ROIviable-imaging-subregion and ROIviable-histopathology 

 

To compare viable tumour subregions defined by imaging in 2D and in 3D:  

2) ROIviable-imaging-subregion and VOIviable-imaging-subregion 

 

To compare viable and non-viable subregions:  

3) ROIviable-histopathology and ROInonviable-histopathology 

4) VOIviable-imaging-subregion and VOInonviable-imaging-subregion 

 

To compare the whole lesion with only the viable component: 

5) VOIlesion-imaging-subregion and VOIviable-imaging-subregion 

 

 

 

 

 

 

Results 
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Patients 

Fifteen patients were recruited to this prospective study. One patient was with-

drawn. The remaining fourteen underwent hepatic metastasectomy. Of these four-

teen patients, ten patients proceeded directly to metasectomy and four patients 

were treated with neoadjuvant chemotherapy. One patient declined post-treatment 

DCE-MRI, otherwise DCE-MRI was performed successfully in all cases at baseline and 

after chemotherapy where appropriate; and this provided the study dataset. Direct 

histological comparison with imaging was possible in nine patients: eight patients 

not treated with neoadjuvant chemotherapy and in one patient (patient 010) treated 

with neoadjuvant chemotherapy. One patient declined post-treatment DCE-MRI, 

one had further chemotherapy after post-treatment DCE-MRI, the specimen was not 

available for one patient, and one patient treated with chemotherapy had a com-

plete pathological response at the time of resection, precluding direct assessment of 

imaging and histology. In one patient there was recurrence at a prior resection mar-

gin, with multiple small tumour islands, which it was not possible to co-register reli-

ably with the DCE-MRI images.  

 

Histopathology analysis 

Viable tumour and non-viable subregions were defined for all patients as described 

above (see Figure 1).  

 

 

Image analysis 
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Motion correction and PK analysis were performed on all cases. Imaging-derived tu-

mour and non-tumour regions were defined for 14 of 15 lesions (Figure 2). In one 

case (Patient 006) the heterogeneous mix of tumour components produced wash-in 

wash-out tumour curves in all subregions defined at initial PCA i.e. it was not possi-

ble to define subregions. 

 

Comparison of image-derived and histopathology defined subregions  

The DSC for the lesions defined by imaging and histology (Figure 3), and the viable 

tumour subregions defined by histology and subregion clustering are summarized in 

Table 1. The lowest DSCs for the ROIviable occurred in patient 006, where all tumour 

subregions, and therefore the entire lesion, were categorized as viable tumour, and 

for patient 010 and patient 015, which were small lesions with fewer than 200 pixels. 

 

Assessment of viable tumour 

The proportion of viable tumour measured by the different methodologies is pre-

sented in Table 2. The subregions defined by histopathology and imaging typically 

overestimated the proportion of viable tumour as defined by histopathological visual 

assessment. As expected, there was a strong correlation between the proportion of 

viable tumour defined by subregion cluster between the ROIs and VOIs (r = 0.934, p 

< 0.001). Excluding patients where imaging subsegmentation failed (Patient 006), 

and the lesion resected after chemotherapy (Patient 010), there was a strong corre-

lation between the proportion of viable tumour determined by visual assessment of 

the histopathology and by imaging (r = 0.851, p < 0.01). 
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PK Data Analysis 

Comparisons between histopathology-defined and imaging-derived lesion subre-

gions were performed in nine lesions from nine patients. Within-lesion comparisons 

of imaging-derived subregions within tumour VOIs was performed in 15 lesions in 14 

patients, including one lesion in both pre- and post-chemotherapy. 

1) There were no significant differences between the Ktrans or kep or T10 values 

between equivalent imaging-derived and histopathology-defined lesions or 

viable tumour subregions (p > 0.1).  

2) There were no significant differences between the Ktrans or kep or T10 values 

between equivalent 2D (ROIviable-imaging-subregion) and 3D (VOIviable-imaging-subregion) 

subregions (p > 0.1).  

3) There were significant differences between the Ktrans and kep values for the 

viable tumour and non-viable tumour subregions defined by histopathology 

(p < 0.05): ROIviable-histopathology-subregion had significantly higher Ktrans (0.48 vs 

0.28 min-1; p = 0.039) and kep (1.10 vs 0.71 min-1; p = 0.024) than ROInonviable-

histopathology-subregion.  There was no difference in T10 values between viable tu-

mour and non-tumour subregions (p > 0.1). 

4) There were significant differences between the Ktrans, kep and T10 values for 

the viable tumour and non-viable tumour subregions defined by imaging (p < 

0.05): VOIviable-imaging-subregion had significantly higher Ktrans (Figure 4; 0.41 vs 

0.21 min-1; p = 0.001) and kep (Figure 5; 1.00 vs 0.58 min-1; p < 0.001) and sig-

nificantly lower T10 values (1.02 vs 0.89 s, p < 0.01) than VOInonviable-imaging-

subregion.  
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5) There were significant differences between the Ktrans and kep values for the 

whole lesion and the viable tumour subregions defined by imaging: VOIviable-

imaging-subregion had significantly higher Ktrans (Figure 4; 0.41 vs 0.33 min-1; p < 

0.001) and kep (Figure 5; 1.00 vs 0.83 min-1; p<0.001) than VOInonviable-imaging-

subregion. There was no difference in T10 values between viable tumour subre-

gions and the whole lesion (p=0.1). 
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Discussion 

This study has used a semi-automated clustering approach based on PCA of DCE-MRI 

contrast uptake curves to define regions of viable tumour within CRLM. We have 

demonstrated that distinct subregions can be derived in the majority of patients, and 

that there is concordance of these subregions with carefully sectioned and coregis-

tered histologically defined subregions.  

 

Pre-defining a region of viable tumour can be used to direct analysis of PK parameter 

maps. We have demonstrated significant differences between the mean PK parame-

ter values of subregions of viable tumour and non-viable subregions, irrespective of 

whether these subregions are defined by histopathology or imaging. It is conven-

tional to analyse PK maps by generating and interpreting data for the whole lesion: 

either deriving a mean contrast-uptake curve, or generating data for each voxel and 

pooling these data to generate summary statistics.e.g. 22 Importantly, we have 

demonstrated that the mean PK data for viable tumour produces significantly differ-

ent results from the mean PK data for this conventional whole lesion analysis.  

 

Defining a subset of voxels that represent viable tumour has two advantages. Firstly, 

the voxels represent biologically active tumour and therefore parameters derived 

from these voxels may correlate more consistently with aspects of tumour biology 

and outcome. Using DCE-MRI to assess tumour phenotypes has produced mixed re-

sults.23 Non-viable regions, as illustrated in our study, vary significantly from lesion-

to-lesion in the proportion of tumour that they represent. If data from both viable 

and non-viable subregions are incorporated into the summary statistics, these may 
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not consistently reflect properties of the viable tumour.  There are some approaches 

in the literature that have used different methodologies to analyse subsets of PK da-

ta, for example based on hot spots24 or using other data-driven subsets of the pa-

rameter maps.25 Our a priori technique defines regions considered to be tumour and 

then derives PK data for these regions. An advantage of this method is that the ex-

traction of enhancement characteristics and clustering are performed separately on 

each case based on the variation within the lesion and, therefore, does not require 

measurement or estimation of the arterial input function, or correction for T10, to 

perform the segmentation. Other researchers have adopted comparable approach-

es, for example by defining tumour voxels by the presence of enhancement,26 or ex-

cluding pixels with PK parameter values of zero.27 However, enhancement is a fea-

ture of both viable tumour and other tissues, such as fibrosis, which is a major com-

ponent of many tumours, including CRLM.9 We have taken into account the shape of 

the contrast-uptake curve in defining viable tumour and used a spatially-matched 

histological gold standard, to confirm voxel-wise concordance of our segmentation 

methodology.  

 

Secondly, our subregion representation can also been used to quantify viable tu-

mour, which is prognostically relevant,9 as is the regression of viable tumour in re-

sponse to chemotherapy.10 Currently, formal response assessment for CRLM is made 

using by RECIST 1.1 criteria7 based on changes in lesion size alone. These do not in-

clude any morphological criteria, although it is recognised that morphological chang-

es may improve response characterization.8 In a small number of patients, our imag-

ing-derived estimates demonstrated a strong correlation with the histopathological 
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assessment of the proportion of viable tumour, for untreated metastases. We did 

not have a large enough cohort of metastases resected after chemotherapy to assess 

whether the technique could be useful post-treatment. The ROI-based techniques 

tended to overestimate the amount of viable tumour compared with visual histolog-

ical assessment. This is likely to be because the resolution of imaging is lower than 

microscopic visual assessment, and is insufficient to resolve admixed viable and non-

viable tumour components.  This was similar to the methodology described by Mon-

sky et al.6 for soft tissue sarcomas, which demonstrated overall correlation, but did 

not include spatially-matched tumour regions.  Our technique could be adapted to 

generate a composite metric of the volume of viable tumour cells, which may more 

accurately reflect disease burden and response. Although we have developed this in 

the setting of resectable liver metastases, in order to allow direct histopathological 

correlation, this approach could be applied to the larger population of patients with 

metastatic liver disease who might be treated with palliative chemotherapy or ste-

reotactic internal radiotherapy (SIRT).  

 

One of the limitations of our study is its small sample size. While we were able to 

show significant differences in PK parameters between tumour subregions. We had 

insufficient number of patients to assess whether imaging estimates of viable tu-

mour could be used both before and after treatment. This requires further investiga-

tion using a larger dataset. Furthermore, the pathological assessments were in two 

dimensions, as sections were only taken at the central level, rendering it impossible 

to reconstruct the entire three-dimensional structure of the liver metastases. As a 
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result, the imaging-histopathological correlation analysis could only be performed in 

2D.  

 

Another potential limitation is that there were several manual steps in our method-

ology. Firstly, despite careful sectioning to match the imaging plane, the imaging-

histopathology registration involved a manual alignment step to account for fixation 

and orientation. Secondly, the histopathological subregions were manually defined 

by experienced observers, rather than automatically defined. During the image anal-

ysis, lesions were manually segmented and the subsegmentation strategy involved a 

supervised stage where automatically generated subregions were merged to create 

tumour and non-tumour regions. We recognise that fully automated lesion segmen-

tation and tumour subsegmentation would be preferred both to remove variability 

and to facilitate implementation in the clinical workflow. Automated segmentation 

of liver lesions is likely to be become routinely available in the future, and is the sub-

ject of ongoing investigation, including the evaluation of machine learning tech-

niquese.g. 28. The manual component of the subsegmentation process was a very 

quick step in the software we created, although was a potential source of bias, and 

future work to allow full automation of this process would be preferred. Machine 

learning techniques to allow voxel-wise allocation as viable or non-viable tumour 

based on enhancement characteristics might also be feasible.  

 

In summary, tumour segmentation based on DCE-MRI characteristics can define re-

gions of viable tumour in CRLM. This may have applications for quantitative imaging 
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analysis, and clinical utility as a method of more accurately quantifying tumour bur-

den. 
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Legends to Tables 

Table 1:  

Dice similarity coefficients comparing ROIlesion-histopathology with ROIlesion-imaging, and com-

paring ROIviable-imaging-subregion with ROIviable-histopathology 

 

Table 2:  

Proportion of viable tumour (%) by visual assessment of the histopathology, and cal-

culated from the histopathology-defined and imaging-derived subregions. 

  

Legends to Figures 

Figure 1:  

Image 1a is H&E stained histopathology slide of a 30mm resected colorectal liver 

metastasis demonstrating peripheral viable tumour with a centrally necrotic region.  

In image B the ROIlesion-histopathology is outlined (black line) and the regions ROIviable-

histopathology (solid grey region) and ROInonviable-histopathology (shaded grey region) are 

shown. 

  

Figure 2:  

Two-stage semi-automated segmentation of manually delineated liver metastasis by 

PCA clustering based on DCE-MRI signal-time curves. Image 2a and 2c show the four 

automatically defined subregions within VOIlesion-imaging and images 2b and 2d show 

the four mean signal-time curves for the equivalent regions. The three wash-in 

wash-out curves (Image 2b, labels 1, 2 and 4) were merged to create VOIviable-imaging-

subregion while the remaining voxels are classified as VOInonviable-imaging-subregion. 
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Figure 3: 

Image 3a shows the spatial overlap of ROIlesion-histopathology  (green outline) and ROIlesion-

imaging (red outline). Image 3b shows the spatial overlap of ROIviable-histopathology (be-

tween outer green outline and inner red outline) and ROIviable-imaging-subregion (between 

outer green and inner green outline; derived from ROIlesion-histopathology). Dice similarity 

coefficients were 0.834 and 0.93, respectively.  

 

Figure 4:  

Mean Ktrans of colorectal liver metastases (dark blue) image VOIs and of image-

derived tumour (purple) and non-tumour subregions (green). 

 

Figure 5:  

Mean kep of colorectal liver metastases (dark blue) image VOIs and of image-derived 

tumour (purple) and non-tumour subregions (green). 

 

Figure 6: 

Image 6a is a resected colorectal liver metastasis with central non-viable tumour 

(NV) and a rim of viable (V) tumour. Image 6b is the Ktrans map for the whole lesion 

and Image 6b is the Ktrans map for the viable tumour subregion only.  


