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Abstract 

Efficient separation of circulating tumor cells from biological samples to promote early 

diagnosis of cancer is important but challenging, especially for non-small lung cancer. In 

this article, a Y-Y shaped microfluidic device was designed to isolate non-small lung cells 

with dielectrophoresis approach. Numerical simulations were conducted that the 

trajectories of cells were traced by solving the electric potential distribution and the flow 

in channel. The effects of inlet velocity ratio of blood sample and buffer on separation 

performance were studied and optimized by conducting numerical simulations. Under 

optimal operating conditions, the separation efficiency can reach around 99%, which is 

achieved with 100kHz AC, electrodes potential of 1.6V to 2.2V, and flowrate ratio of 1.9 

to 2.5. This study presents a potential route for an efficient, relatively simple and low-cost 

method for circulating tumor cells separation. 

Keywords:  circulating tumor cells, separation, dielectrophoresis 
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1. Introduction  

Circulating tumor cells (CTCs) are tumor cells shedding from the solid tumor, entering into 

the bloodstream, surviving in the circulating system, and traveling to distant organs, which 

resulting in metastasis. The spread of CTCs from initial sites to form distant secondary 

tumors is one of the main cause of death in cancer patients.[1] CTC detection has received 

enormous attention because of the potential value in the early diagnosis of cancer, 

prediction of clinical prognosis, evaluation of therapeutic efficiency, development of 

targeted drugs and personalized medicine of malignant cancer. Since the concentration of 

CTCs in the blood is extremely low, on the order of one out of a billion cells, CTCs must 

be isolated to achieve a high concentration in order to facilitate liquid biopsy efficiently.[2] 

At present, the technologies commonly used in CTC separation can be categorized as  

CellSearch system, Nano Velcro CTC chip, microfluidic technology, and other physical 

separation methods including microfilter and density gradient centrifugation.[3] These 

methods are classified into positive isolation focusing on CTC capture and negative 

isolation focusing on capture of leukocytes or erythrocyte. CellSearch system is based on 

immunomagnetic method which uses magnetic nanoparticles coated with antibodies, 

aptamers or peptides to capture CTCs and isolate them from blood cells with the impacts 

of a magnetic field.[4] Although its false negative rate is high and consumes large amounts 

of blood samples, the standardization of CellSearch makes it the only CTC detection 

method currently approved by FDA. Nano Velcro CTC chip has a large surface area, which 

increases the contacting area with CTCs and thus improving the isolation efficiency, while 

it requires excessive consumption of antibodies.[5] Microfluidic technologies are classified 

into label-dependent isolation and label-independent isolation. The advantages of Label-
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independent isolation methods include simple operation process, keeping cell integrity and 

no need for antibodies. Label-dependent isolation methods commonly use Epithelial cell 

adhesion molecule (EpCAM) to target CTCs which can improve the specificity of 

methods.[6] Saliba et al.[7] developed a microfluidic device with antibody functionalized 

superparamagnetic beads that can self-assemble with magnetic traps in the microchannel. 

The capturing efficiency can reach higher than 94%, yet the self-assembled magnetic 

columns used in these methods are often unstable due to the large hydrodynamic drag force, 

resulting in low throughput. A magnetic force gradient based microfluidic chip was 

developed to separate CTCs depending on their expression level of EpCAM.[8] This 

method is of prognostic value in patients with solid tumors, such as advanced breast, colon, 

and prostate cancer, while its poor sensitivity for non-small lung cancer (NSCLC) restricts 

the utilization in treatment.[9] Physical separation methods such as morphology-based 

microfilter, and density gradient centrifugation methods have advantages of simple 

operation, maintaining cell integrity and no need for expensive antibodies. However, such 

methods are limited by the low specificity and high false positive.  Among negative 

isolation methods, magnetic nanobeads coated with anti-CD45 antibodies have been 

commonly used for separating leukocytes from blood samples, thereby enriching CTCs.[10] 

Although the recovery rate of this negative method is higher than that of positive method, 

the purity of isolated CTCs is relatively lower; therefore, further isolation is required. 

Dielectrophoresis (DEP) microfluidic technologies have been intensively investigated for 

CTC separation and detection. DEP is one of the most common electrokinetic phenomena 

and was first described by Pohl.[11] When a nonuniform electric field is applied, it will 

induce a dipole moment on the particle due to the electrical polarization at the particle's 
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surface. Driven by dielectrophoretic force, the particle has to be migrated in the nonuniform 

electric field to achieve electrostatic equilibrium. The magnitude of dielectrophoretic force 

(DEP force) is proportional to the gradient of electric potential, and also depends on the 

size, deformation and dielectric constant of substance. DEP separations of cells are 

sensitive to the sizes, shapes, and dielectric properties of the particles, which allows this 

method to be used widely in bioengineering. In the low frequency region with frequency 

roughly lower than 10 MHz, the DEP behavior of a cell is largely determined by 

extracellular factors, including membrane-bound protein, cell size, solution conductivity, 

and electric permittivity.[12] Becker et al.[13] developed a method to isolate viable 

cultured breast tumor cells from peripheral blood using DEP method, and succeeded in 

isolating cultured leukemia cells from blood and cultured breast tumor cells from CD341 

hemopoietic stem cells.[14] DEP techniques have been evaluated by scholars to manipulate 

and sort tumor cells.[15][16][17][18] However, previous studies used small electrode 

arrays, limiting the number of cells that can be processed to a maximum of hundreds of 

thousands. During DEP isolation process, eluate flow rate, and cell loading concentration 

influenced the efficiency of DEP isolation. The effects of these factors were analyzed and 

theoretical models were introduced to optimize the design of DEP-based cell separators.[19] 

Despite of the rapid development of microfluidics-based CTC separation technology, it 

remains challenging to develop CTC isolation technologies with improved sensibility, 

specificity and efficiency without compromising the integrity and activity of isolated CTCs. 

Besides, the dependence of dielectrophoretic force on the cell size makes cell separation 

with little difference of dielectric properties a challenge.  
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2. Approach 

2.1 Magnitude of DEP force 

 

Figure 1. Sketch of DEP force. The DEP force is the interaction of a nonuniform electric 

field with the dipole moment it induces. 

Primarily, DEP rises from the non-linear interaction applied on an extended dipole body 

subjected to a nonuniform electric field and surrounded by a dielectric medium, which can 

be harnessed to move and manipulate microparticles that suspended in liquid media.[20] 

Correspondingly, the DEP force is the interaction of a nonuniform electric field with the 

dipole moment it induces (shown in Fig. 1), the magnitude of which is given by[21]  

                               𝐹𝑑𝑒𝑝 = 2𝜋𝑟𝑝
3𝜖0𝑅𝑒(𝜖𝑟,𝑓

∗ )𝑅𝑒(𝐾𝐶𝑀)𝛻|�̅�|2                             (1) 

where 𝑟𝑝  is the particle radius, 𝜖0 = 8.854187817 × 10−12𝐹/𝑚  is the permittivity of 

vacuum, 𝜖𝑟,𝑓
∗  is the complex relative permittivity of fluid and 𝑅𝑒(𝜖𝑟,𝑓

∗ ) denotes its real 

part, 𝐾𝐶𝑀 is the Clausius-Mossotti factor and 𝑅𝑒(𝐾𝐶𝑀) denotes its real part, and �̅� denotes 

the root mean square electric field. The Clausius-Mossotti factor is a parameter to help 

describe the dielectric property, defined as 

                                                  𝐾𝐶𝑀 =
𝜖𝑟,𝑝

∗ −𝜖𝑟,𝑓
∗

𝜖𝑟,𝑝
∗ +2𝜖𝑟,𝑓

∗                                                             (2) 
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where 𝜖𝑟,𝑝
∗  is the complex relative permittivity of a specific particle. 

The complex permittivity of phase 𝑖 is expressed as 

 𝜖𝑟
∗ = 𝜖𝑟 −

𝑖𝜎

𝜔𝜖0
 (3) 

where 𝜖𝑟 denotes the relative permittivity, 𝜎 denotes the electrical conductivity, and 𝜔 is 

the angular frequency of the electric field. 

2.2 Problem description 

 

Figure 2. The configuration of the DEP-microchannel cell sorting system, the width of 

the microchannel ℎ = 200𝜇𝑚, the length of channel 𝐿 = 1200𝜇𝑚, the angle 𝛼 = 45°. 

Previous research has shown that NSCLC are relatively insensitive to some microfluidic 

isolation methods, which makes their isolation operation difficult.[22] Based on dielectric 

differences, DEP has great potential to identify and isolate CTCs from other blood cells. 

In this study, a DEP-assisted microfluidic device is presented and adopted in the isolation 

of 5 types of NSCLC (HOP-62, HOP-92, NCI-H226, NCI-H23, and EKVX) from blood 

samples. 

As shown in Fig. 2, the cell sorting system consists of low-voltage electrodes and a Y-Y 

configured microchannel, which is connected with two inlets and two outlets. (the width 

of inlets and outlets 𝑤 = 50𝜇𝑚) The upper wall of the channel is comprised of successive 
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triangles with alternating sides charged oppositely, which generates a nonuniform electric 

field in flow region. A blood sample containing erythrocytes (the density 𝜌 = 1050𝑘𝑔/𝑚3, 

the diameter 𝑑 = 5𝜇𝑚 , the electric conductivity 𝜎 = 0.31𝑆/𝑚 , and the relative 

permittivity 𝜖𝑟 = 59) and CTCs (physical properties as Table. 1) is fed into the flow 

channel from the upper inlet, while a buffer[23] (the density 𝜌 = 1000𝑘𝑔/𝑚3 , the 

dynamic viscosity 𝜇 = 0.001𝑃𝑎 ∙ 𝑠 , the electric conductivity 𝜎 = 0.055𝑆/𝑚 , and the 

relative permittivity 𝜖𝑟 = 79) is fed from the lower inlet, which is used to concentrate the 

cells to accumulate along one side of the channel. After entering the channel, the two 

streams mix at the intersection of the long channel. When the mixed fluid flow through the 

channel, due to the effect of the nonuniform electric field, the cells will be subjected to 

DEP forces with different magnitudes, which are proportional to the sizes of the cells. Since 

the sizes of CTCs are larger than that of erythrocytes, CTCs will be repelled selectively 

and captured at the Outlet 2, while other cells will escape from the Outlet 1, thus achieving 

a cell separation process.  

2.3 Dielectric properties of CTCs 

Gascoyne et al.[24] measured the dielectric properties of NCI-60 panel of tumor cell types 

and obtained the correlations between the dielectric properties and exterior morphology. 

According to their study, there exists a correlation for a spherical mammalian cell when 

DEP frequency 𝑓 < 1𝑀𝐻𝑧: 

 𝜎𝑝 = √2𝜋𝑟𝑝𝐶𝑚𝑒𝑚𝑓𝑐𝑜 (4) 

where 𝜎𝑝 is the medium conductivity, 𝐶𝑚𝑒𝑚 is the capacitance per unit area of the cell 

plasma membrane, and 𝑓𝑐𝑜 is the cell crossover frequency, which is proportional to the rate 
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at which the plasma membrane capacitance can be charged in the ionic milieu of the 

suspending medium in response to an applied electric field. The parameters about CTC 

properties acquired by them are adopted in this study to conduct numerical simulation in 

this study.[24] 

Table. 1 Dielectric properties of CTCs.  

Cell line 𝑟𝑝/𝜇𝑚 𝑓𝑐𝑜/𝑘𝐻𝑧 𝐶𝑚𝑒𝑚/𝑚𝐹 ∙ 𝑚−2 𝜎𝑝/𝑆 ∙ 𝑚−1 

HOP-62 9.84 33 20.7 0.029844 

HOP-92 10.68 30.8 20.5 0.02994 

NCI-H226 8.57 23.4 33.6 0.029917 

NCI-H23 8.94 59.1 12.8 0.030027 

EKVX 10.74 30.4 20.6 0.029862 

2.4 Governing equations and boundary conditions 

In this study, the numerical model is comprised with an electric field and flow field. 

According to Eq. (1), the DEP force is generated due to a nonuniform electric field, the 

intensity of which is given by  

 𝐸 = −𝛻𝑈 (5) 

where 𝑈 represents the electric potential. The electric field distribution is induced by the 

electric potential of the upper wall, where there is 𝑈 = ±𝑈0(𝑈0 is the electric potential 

exerted on the electrodes).  

The flow of fluids in channel is governed by Navier-Stokes equations:  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (6) 
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 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜇

𝜌
(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦
) (7) 

 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜇

𝜌
(

𝜕2𝑣

𝜕𝑦
+

𝜕2𝑣

𝜕𝑦2) (8) 

where 𝑢 and 𝑣 are the velocity components of fluid, 𝜌 is the density of fluid, and 𝜇 is the 

dynamic viscosity of fluid. The boundary conditions of inlets are controlled by the normal 

inflow velocity of blood 𝑢1 and the normal inflow velocity of buffer 𝑢1, while the outlet 

boundary condition is controlled by the pressure 𝑝0 = 0. 

The trajectories of cells are traced by solving the motion equation, which is given by 

impulse theorem 

 {

𝑑(𝑚𝑢)

𝑑𝑡
= 𝐹𝑥

𝑑(𝑚𝑣)

𝑑𝑡
= 𝐹𝑦

 (9) 

where 𝑚 is the mass of a cell; 𝐹𝑥 and 𝐹𝑦 are the components of the force source 𝐹, which 

consists of three terms: 

 𝐹 = 𝐹𝑑 + 𝐹𝑏 + 𝐹𝐷𝐸𝑃 (10) 

where 𝐹𝑑 is the drag force term, which is proportional to the relative velocity between the 

cell and the fluid 𝑢𝑟 = 𝑢𝑓 − 𝑢𝑝: 

 𝐹𝑑 =
18𝜇𝑓

𝜌𝑝𝑑𝑝
2 𝑚𝑝𝑢𝑟 (11) 

where 𝜇𝑓  is the viscosity of fluid, 𝜌𝑝  is the density of particle, and 𝑚𝑝  is the mass of 

particle; 

𝐹𝑏  is the Brownian force term, which depends on the temperature 𝑇 and the radius of 

particle 𝑟𝑝: 

 𝐹𝑏 = 𝜁√
12𝜋𝑘𝑏𝜇𝑓𝑇𝑟𝑝

∆𝑡
 (12) 
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where 𝜁 is a normally distributed random number with a mean of zero and unit standard 

deviation, 𝑘𝑏 = 1.38064852 × 10−23𝐽/𝐾  is the Boltzmann constant, ∆𝑡  is the time 

step;[25] 

and the third term represents the DEP force, which is proportional to the gradient of the 

electric field. (referring to Eq. 1) 

3. Results and discussion 

In this study, the separation performance of the DEP-assisted microfluidic method is 

evaluated by exploring the trajectories of five kinds of NSCLC (HOP-62, HOP-92, NCI-

H226, NCI-H23, and EKVX) in channel, accompanied by erythrocytes as a control group. 

The DEP force is induced by a nonuniform electric field, which is generated by electrodes 

arranged at the wall surface of microchannel on one side, which are connected with power 

sources. Shown in Fig. 3, the area with high potential are mainly distributed in the triangle 

regions. The pressure and axial velocity distributions are shown in Fig. 4 and Fig. 5, 

respectively. These figures indicate the presence of a pulsing accelerating-decelerating 

flow regime, which will promote the cells in liquid to the triangle regions where the 

velocity of fluid is relatively lower. 
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Figure 3. The electric potential distribution in the domain when  𝑓 = 100𝑘𝐻𝑧, 𝑈0 = 2𝑉. 

 

Figure 4. The pressure distribution when 𝑢𝑠 = 200𝜇𝑚/𝑠, 𝑢𝑏/= 400𝜇𝑚/𝑠. 
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Figure 5. The axial velocity (m/s) of the fluids when 𝑢𝑠 = 200𝜇𝑚/𝑠, 𝑢𝑏/= 400𝜇𝑚/𝑠. 

The trajectories of erythrocytes and CTCs (HOP-62 in Fig. 6) in the channel with or without 

the impact of DEP force are shown in Fig. 6. According to the figure, it can be seen that 

all cells share a same trajectory and are collected at Outlet 1without the effect of DEP. In 

comparison, CTCs are caught at Outlet 1 while erythrocytes escape the channel through 

the Outlet 2, which proving that the separation is achieved with DEP forces applied on 

cells.  

 

Figure 6. The trajectories of cells in channel when 𝑢𝑠 = 200𝜇𝑚/𝑠, 𝑢𝑏 = 400𝜇𝑚/𝑠, 𝑓 =
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100𝑘𝐻𝑧, and 𝑈0 = 1.8𝑉. 

 The separation efficiency of HOP-62 under different operation conditions (including the 

flowrate ratio of buffer and sample, and the electric potential of positive electrodes 𝑈0) is 

shown in Fig. 7, where it can be seen that the separation of CTC and erythrocytes can be 

achieved when 1.9 ≤ 𝑢𝑏/𝑢𝑠 ≤ 2.5, 1.6V ≤ 𝑈0 ≤ 2.2𝑉, and the sorting efficiency is able 

to reach approximately 99%. 

 

Figure 7. The separation efficiency of HOP-62 in DEP-assisted microfluidic device under 

different 𝑢𝑏 and 𝑈0, 𝑢𝑠 = 200𝜇𝑚/𝑠, 𝑓 = 100𝑘𝐻𝑧. 

4. Conclusions 

A novel DEP-based microfluidic strategy was presented in the paper where the cell sorting 

system is composed of low voltage electrodes and a microchannel in a “Y-Y” configuration. 

The mixture of erythrocytes and CTCs are fed into the flow channel from the upper inlet, 

whilst a carrying fluid is fed from the lower inlet to focus the cells to accumulate along 

upper side of the channel which features with successive triangles connected with 
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successive alternatively reversed electrodes to induce a non-uniform electric field. When 

the mixture of cells flows through the long channel, they are subjected to the non-uniform 

electric field, inducing DEP forces with different magnitudes. Due to the size difference 

between CTCs and the erythrocytes, DEP force repels CTCs which will be deflected and 

exit through the lower outlet to achieve effective separation from other cells. The optimal 

operation conditions were investigated, and high separation efficiency can be obtained with 

100kHz AC when electrical potential from 1.6 V to 2.2 V, and inlet flow velocity ratio 

from 1.9 to 2.5 are applied.  
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